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Sweden

(Dated: 21 November 2016)

Complex network approaches have been successfully applied for studying transport processes in complex
systems ranging from road, railway or airline infrastructure over industrial manufacturing to fluid dynamics.
Here, we utilize a generic framework for describing the dynamics of geophysical flows such as ocean currents
or atmospheric wind fields in terms of Lagrangian flow networks. In this approach, information on the passive
advection of particles is transformed into a Markov chain based on transition probabilities of particles between
the volume elements of a given partition of space for a fixed time step. We employ perturbation-theoretic
methods to investigate the effects of modifications of transport processes in the underlying flow for three
different problem classes: efficient absorption (corresponding to particle trapping or leaking), constant input
of particles (with additional source terms modeling, e.g., localized contamination), and shifts of the steady
state under probability mass conservation (as arising if the background flow is perturbed itself). Our results
demonstrate that in all three cases, changes to the steady state solution can be analytically expressed in
terms of the eigensystem of the unperturbed flow and the perturbation itself. These results are potentially
relevant for developing more efficient strategies for coping with contaminations of fluid or gaseous media such
as ocean and atmosphere by oil spills, radioactive substances, non-reactive chemicals or volcanic aerosols.
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Perturbation-theoretic methods have found wide
applications in many areas of physics, ranging
from classical celestial mechanics to quantum
physics. At various occasions, they have proven
useful for addressing scientific problems where
an explicit analytical treatment is not possible,
but the system under study can be considered as
a minor modification of another problem where
such an analytical solution can be obtained. This
work combines basic concepts of perturbation
theory with Lagrangian flow networks, a novel
tool that allows characterizing structural prop-
erties of flows by means of complex network the-
ory. Specifically, by means of an eigenvector de-
composition of the associated transition matrix
(i.e., the spatio-temporally discretized Perron-
Probenius operator), it is studied how minor
modifications affect the steady-state distribution
of passively advected particles in a given flow
pattern. One main potential field of application
of the developed framework is atmospheric and
ocean physics, where the proposed approach may
help developing more efficient strategies for cop-
ing with contaminations of fluid or gaseous media

by oil spills, radioactive substances, non-reactive
chemicals or volcanic aerosols (e.g., to determine
the most efficient positions for removing the con-
taminating substances or anticipate their tempo-
rary trapping and natural precipitation).

I. INTRODUCTION

In recent years, complex network theory1–3 has been
successfully applied to studying complex systems serv-
ing the purpose of transportation of material or infor-
mation, ranging from road, railway or airline infrastruc-
tures4–7 over biological trnasport and industrial manu-
facturing8,9 to fluid dynamics10–12. The emerging field of
climate network analysis has produced relevant insights
into the complex dynamics of the Earth’s climate sys-
tem13–15. The applications of this modern approach to
climate science include unraveling the backbone struc-
ture of surface ocean currents from surface air tempera-
ture data16, studying transitions in global climate tele-
connection structure during different phases of the El
Niño Southern Oscillation (ENSO)17–19 and using causal
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network reconstruction techniques20 to identify different
Arctic drivers of mid-latitude winter circulation21.
Most climate network studies have followed an Eular-

ian approach in the sense of computing statistical inter-
relations between fluid dynamical field variables such as
temperature or pressure measured at spatially fixed po-
sitions (e.g., at fixed grid cells). In contrast to these
Eularian climate networks, many recent approaches to
describing flow patterns by means of complex network
methods11,22 are Lagrangian in the sense that the focus
is on the properties and transition probabilities of par-
ticles or small fluid volumes that are advected with the
flow. For example, such Lagrangian flow networks have
been applied to study the structure of surface ocean cur-
rents in the Mediterranean Sea11. Related methods are
transition networks encoding transition probabilities be-
tween discrete or discretized states in general dynamical
systems23,24 and transfer operator techniques with appli-
cations to fluid dynamics25.
Climate network approaches have been mostly diag-

nostic15 (i.e. focussed on studying the status quo sta-
tistical properties of a given dataset without making in-
ferences about the future) with only a few heuristic at-
tempts at deriving prognostic results from the networks,
e.g., for deriving improved predictions of El Niño dy-
namics26,27 and monsoon onset and withdrawal dates28.
In this paper, we combine the Lagrangian flow net-
work idea with the established perturbation theory for
linear operators29, which has been among other ap-
plications widely applied to many problems in quan-
tum mechanics30, to make prognostic inferences on fluid
transport dynamics for three distinct scenarios: (i) effi-
cient absorption (corresponding to particle trapping or
leaking), (ii) constant input of particles (with additional
source terms modeling, e.g., localized contamination),
(iii) and shifts of the steady state under probability mass
conservation. The proposed methodology presents a first
step towards a more efficient control of transport pro-
cesses in flow systems based on complex network ap-
proaches. Potential applications of interest include es-
timating the spread of contaminations or debris in fluid
media31,32 or the effects of various geoengineering pro-
posals on climate dynamics33.
The paper is structured as follows: After introducing

the mathematical formalism (Sect. II), we illustrate our
perturbation theoretical approach numerically by apply-
ing it to an idealized two-dimensional Lagrangian chaos
model of Rayleigh-Bénard convection (Sect. III). Finally,
the scope of the proposed methodology is discussed and
conclusions are drawn (Sect. IV).

II. MATHEMATICAL THEORY

A. General setting

Assume that we have the situation of some physical
space, in which we observe the motion of particles. We

divide this space into finitely or countably many sub-
regions, which will be identified with the nodes of a
network, the Lagrangian flow network associated with
the given flow field. Having a discrete number K of
such spatial elements, we can approximately describe
the transport of particles as a Markov chain. Specifi-

cally, let ~p(t) = (p1(t), . . . , pK(t))T be the vector of res-
idence probabilities of particles at all nodes at time t.
Given a transition matrix Aτ as a discretized version of
the Perron-Frobenius operator of the underlying flow11,
which describes the probabilities of transitions between
different sub-regions within a discrete time step τ , the
time evolution of the residence probabilities is given by

~p(t+ τ) = Aτ (t)~p(t). (1)

Under general conditions, the transition matrix can
depend on both, time t and the discrete time step τ . In
order to keep the considerations in this work as simple as
possible, in the following, we will restrict our attention
to stationary flows, where the transition matrix does not
depend on time. Moreover, we consider τ as a global
pre-defined parameter of the analysis, and simplify our
notation by writing A := Aτ from now on.
We recall that any column-stochastic matrix A has the

properties

K
∑

i=1

Aij = 1 and 0 ≤ Aij ≤ 1 ∀i, j ∈ {1, . . . ,K},

corresponding to the conservation of probability. We de-
note λi (i = 1, . . . ,K) the eigenvalues ofA and sort them
in descending order of their real parts as λ1 ≥ ℜλ2 ≥
ℜλ3 ≥ · · · ≥ ℜλK ≥ 0. For the sake of simplicity, we
assume that the weighted and directed network struc-
ture described by A corresponds to a strongly connected
graph, implying that λ1 = 1 is unique.
In a physically plausible case, the motion of particles

occurs with finite velocity. Thus, the smaller τ the more
zero entries A contains, since particles may at most reach
a few neighboring sub-regions during such a short time.
Let ~u∗

i and ~ui denote the left and right eigenvectors
of A associated with the eigenvalue λi. By assuming
non-degeneracy of the associated spectrum (i.e., pairwise
distinct eigenvalues of A, λi 6= λj ∀i 6= j), we have ~u∗

i ·
~uj = Ciδij with Ci 6= 0, where δij is the Kronecker delta.
Note that by rescaling of the ~ui, one can always achieve
Ci = 1 for all i. However, in what follows, we prefer to
consider the more general case.
The (asymptotic) steady state of the Markov chain

describing the flow system is given by ~u1. Since A is
a column-stochastic matrix, ~u∗

1 = (1, 1, . . . , 1) is a left
eigenvector associated with the eigenvalue 1.
In practice, we are often interested in a problem that is

somewhat more complex than a simple (closed) Markov
chain. Specifically, we may want to add a source/sink
term ~sτ (t) to the right-hand side of Eq. (1), which de-
scribes the amount of particles that are emitted/absorbed
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in the individual sub-regions described by the nodes of
the flow network during a certain time interval τ . Again,
in what follows we will ignore a possible time-dependence
and write ~s instead of ~sτ to simplify our notation.
In this paper, we investigate the case where the tran-

sition matrix A is perturbed and study the resulting ef-
fects on the steady state of A. For this purpose, let Ã
denote the perturbed matrix. In this case, Eq. (1) can
be rewritten as

~n(t+ τ) = Ã~n(t) + ~s, (2)

where ~n(t) = (n1(t), . . . , nK(t))
T
contains the number of

particles at the each node, and ~n(t)/N(t) with the total

number of particles N(t) =
∑K

i=1 ni(t) provides an em-
pirical estimate of ~p(t) if N(t) is sufficiently large. Note
that we have to consider ~n instead of ~p, since perturb-
ing A and simultaneously adding a source/sink term can
relieve the former probability conservation. Looking at
Eq. (2), we can see that in this case a steady state exists

if and only if (1− Ã) is invertible. In this case,

~nst :=
(

1− Ã
)−1

~s (3)

is the steady-state solution of the system.
More generally, the main idea of expressing a pertur-

bation is to write

Ã = A+ σV, (4)

where V is the perturbing factor and σ ≪ 1 describes
the magnitude of the perturbation. One can easily see,
that V is the reason why the probability condition of A
might not be conserved.
In the following, we will focus on three cases: (i) having

a non-zero probability for the particles to be absorbed at
a certain node, but no additional source or sink term, (ii)
a constant source term describing generation of particles,
together with an absorbing node, and (iii) a perturbation
without violation of probability conservation. Note that
the difference between an absorption process and a sink
(source) is that the efficiency of the former depends on
the particle density, while the latter would correspond to
removing (injecting) a fixed number of particles per time
unit.

B. Absorption problem without supply

Let us first consider the absorption of particles at a
single node only as a common example of a perturbation
to a passive advection process in a given flow field. Prac-
tically, this situation implies that there is a sub-region
of the flow domain at which particles are removed with
a certain probability. Specifically, let gk denote the frac-
tion of particles at node k that are removed during a
discrete time step τ (again, we suppress the additional
index τ for brevity). We define fk := gk/σ with σ being

again a parameter that allows us to conveniently scale
the magnitude of the perturbation. Then, we can write

Ãij = (1 − σfkδjk)Aij (5)

which according to Eq. (4) corresponds to

Vij = −Aijfkδjk. (6)

For the following considerations, let us restrict our at-
tention to the case ~s = ~0, which means that no particles
are additionally emitted into the flow domain. Due to
the considered local absorption, for large t, the number of
particles advected in the flow decays exponentially with
time at a rate given by the largest eigenvalue of Ã as

~n(t) ∝ (λ̃1)
t~̃u1 (7)

with λ̃1 < 1.

We now study the effect of the perturbation on the
leading eigenvalue and its associated right eigenvector
by employing concepts from perturbation theory. Re-
call that we have assumed λ1 to be non-degenerate. Let

~u
(α)
1 , λ

(α)
1 denote correction terms of order α in an ex-

pansion of the perturbed eigenvector and eigenvalue with
respect to the perturbation strength σ,

~̃u1 =
∞
∑

l=0

σl~u
(l)
1 , (8)

λ̃1 =

∞
∑

l=0

σlλ
(l)
1 , (9)

where λ
(0)
1 := λ1 = 1 is the leading eigenvalue of the

unperturbed system and ~u
(0)
1 := ~u1 the associated right

eigenvector. In a similar way, we can also express all
other eigentriples λi, ~u

∗
i , ~ui. Without loss of generality,

we assume in the following that ~u
(1)
1 , ~u

(2)
1 ⊥ ~u1. Note that

in the considered case, the term λ
(1)
1 should be smaller

than 0, since otherwise the number of particles would
increase with time. Taking the eigenvalue problem for
Ã,

Ã~̃u1 = λ̃1~̃u1,

and employing Eqs. (8) and (9) yields

(A+ σV)

(

∞
∑

l=0

σl~u
(l)
1

)

=

(

∞
∑

l=0

σlλ
(l)
1

)(

∞
∑

l=0

σl~u
(l)
1

)

.

(10)

Since the previous expression needs to hold uniformly
for all possible values of σ, we can decompose it into
separate expressions for the coefficients corresponding to
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the different powers of σ, yielding

σ0 : A~u1 = ~u1, (11)

σ1 : A~u
(1)
1 +V~u1 = ~u

(1)
1 + λ

(1)
1 ~u1, (12)

σ2 : A~u
(2)
1 +V~u

(1)
1 = ~u

(2)
1 + λ

(1)
1 ~u

(1)
1 + λ

(2)
1 ~u1,

(13)

...

σK : A~u
(K)
1 +V~u

(K−1)
1 =

K
∑

l=0

λ
(l)
1 ~u

(K−l)
1 . (14)

Here, Eq. (12) gives the first-order correction and
Eq. (13) the second-order correction to the perturbed
eigenvalue problem, while Eq. (11) again represents the
eigenvalue problem of the unperturbed steady-state so-
lution.
Let us first consider the first-order correction given in

Eq. (12). By multiplying the left eigenvector ~u∗
1 from the

left, we find

~u∗
1A~u

(1)
1 + ~u∗

1V~u1 = ~u∗
1 · ~u

(1)
1 + ~u∗

1λ
(1)
1 ~u1,

which implies that

~u∗
1V~u1 = λ

(1)
1 ~u∗

1 · ~u1 = C1λ
(1)
1 .

Defining

V
(0)
ij := ~u∗

iV~uj (15)

and employing Eq. (6), it follows that

V
(0)
11 =

K
∑

i,j=1

u∗
1,iViju1,j =

K
∑

i,j=1

Viju1,j

= −
K
∑

i,j=1

Aijfkδjku1,j = −
K
∑

i=1

Aikfku1,k = −fku1,k

and, hence,

λ
(1)
1 = −

fk
C1

u1,k. (16)

This means that the first-order correction to the leading
eigenvalue is proportional to the absorption rate fk at
the absorbing node k.
As the eigenvectors of A are a basis of RK , we can

represent the associated first-order correction term ~u
(1)
1

as a linear combination of the ~uk,

~u
(1)
1 =

K
∑

k=2

c
(1)
k ~uk, (17)

where we have made use of the fact that ~u
(1)
1 ⊥ ~u1. To

determine the coefficients c
(1)
k , we multiply Eq. (12) from

the left by the left eigenvectors ~u∗
k:

~u∗
kA~u

(1)
1 + ~u∗

kV~u1 = ~u∗
k · ~u

(1)
1 + λ

(1)
1 ~u∗

k · ~u1,

which by applying Eq. (17) leads to

K
∑

l=2

c
(1)
l ~u∗

kA~ul + V
(0)
k1 =

K
∑

l=2

c
(1)
l ~u∗

k · ~ul + λ
(1)
1 C1δk1

and, hence,

c
(1)
k =

V
(0)
k1

Ck(1− λk)
, k = 2, . . . ,K. (18)

This demonstrates that the steady-state solution is par-
ticularly sensitive to perturbations if many eigenvalues of
the unperturbed flow are close to unity, since

~u
(1)
1 =

K
∑

k=2

V
(0)
k1

Ck(1− λk)
~uk. (19)

In full analogy to the first-order correction terms u
(1)
1

and λ
(1)
1 , we can determine the second-order correction

terms u
(2)
1 and λ

(2)
1 . Specifically, defining

V
(1)
kl := ~u∗

kV~u
(1)
l (20)

and multiplying Eq. (13) from the left by ~u∗
1, we obtain

~u∗
1A~u

(2)
1 + ~u∗

1V~u
(1)
1 = ~u∗

1 · ~u
(2)
1 + ~u∗

1λ
(1)
1 ~u

(1)
1 + ~u∗

1λ
(2)
1 ~u1,

which yields

V
(1)
11 = λ

(1)
1

K
∑

k=2

c
(1)
k ~u∗

1 · ~uk + λ
(2)
1 ~u∗

1 · ~u1 = C1λ
(2)
1 . (21)

Similar as for the first-order correction, we thus find:

λ
(2)
1 = −

fk
C1

u
(1)
1,k. (22)

For the associated second-order correction to the eigen-
vector, we again make the ansatz

u
(2)
1 =

K
∑

k=2

c
(2)
k ~uk (23)

and multiply ~u∗
k from the left to determine the unknown

expansion coefficients:

~u∗
kA~u

(2)
1 + ~u∗

kV~u
(1)
1 =

~u∗
k · ~u

(2)
1 + λ

(1)
1 ~u∗

k · ~u
(1)
1 + λ

(2)
1 ~u∗

k · ~u1.

Inserting the expansions for u
(2)
1 and u

(1)
1 yields

K
∑

l=2

c
(2)
l ~u∗

kA~ul + V
(1)
k1 =

K
∑

l=2

c
(2)
l ~u∗

k · ~ul + λ
(1)
1

K
∑

l=2

c
(1)
l ~u∗

k · ~ul + λ
(2)
1 C1δk1,
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and we obtain

c
(2)
k =

V
(1)
k1 − λ

(1)
1 c

(1)
k

Ck(1− λk)
. (24)

As for the first-order correction, this implies that also the
impact of the second-order correction is the larger, the
closer the eigenvalues λk are to unity.
Taken together, the perturbed first eigenvalue and the

associated eigenvector read

~̃u1 = ~u1 + σ

K
∑

k=2

V
(0)
k1

Ck(1− λk)
~uk

+ σ2
K
∑

k=2

V
(1)
k1 − Ckλ

(1)
1 c

(1)
k

Ck(1− λk)
~uk +O(σ3) (25)

λ̃1 = λ1 − σ
fk
C1

u1,j − σ2 fk
C1

u
(1)
1,j +O(σ3). (26)

In a similar way, we can express further higher-order cor-

rection terms λ
(α)
1 and ~u

(α)
1 with expansion coefficients

c
(α)
k yielding

λ
(α)
1 =

V
(α−1)
11

C1
:=

1

C1
~u∗
1V~u

(α−1)
1 , (27)

~u
(α)
1 =

K
∑

k=2

c
(α)
k ~uk (28)

with

c
(α)
k =

1

Ck(1− λk)

(

V
(α−1)
k1 − Ck

α−1
∑

l=1

λ
(l)
1 c

(α−l)
k

)

. (29)

The aforementioned considerations apply to the case of
a fully localized absorption of particles at a single node.
The more general case of spatially distributed absorption
can be treated in an analogous way by specifying the
matrix elements of V accordingly.

C. Absorption problem with constant supply

In the previous section, we have considered a case
where the perturbed system has been efficiently leaked by
successive absorption of particles, so that its asymptotic
state is characterized by an absence of particles. The con-
sidered perturbation-theoretic approach described how
the steady state of the unperturbed system is modified,
depending on the eigenvalues of the unperturbed flow.
In the following, we will focus on the steady state of the
perturbed system in a setting where the absorption is
compensated by an additional supply of particles.
Here, we consider the case of constant non-zero parti-

cle supply, i.e., sj ≥ 0 ∀j ∈ {1, . . . ,K} and there exists
at least one j with sj > 0. Being interested in the steady
state of the perturbed system, we first recall that Eq. (2)

has a steady-state solution if and only if
(

1− Ã
)

is in-

vertible. This invertibility holds if and only if Ã has no
eigenvalue of one. Otherwise, for sufficiently long time t,
the number of particles would increase linearly with time
proportional to the associated right eigenvector

~n(t) ∝ ~̃u1t.

In the presence of an additional matrix V describing the
absorption of particles, the largest eigenvalue of Ã can
be smaller than unity, which guarantees the invertibility

of
(

1− Ã
)

and, hence, the existence of a steady state as

given in Eq. (3).
In order to express the eigenvalues and eigenvectors

of Ã, we again use a perturbation-theoretic approach by
expanding all eigenvalues and eigenvectors into powers of
σ. Assuming non-degeneracy, we obtain

λ
(1)
i = −

fk
Ci

ui,k

K
∑

j=1

u∗
i,jAj

~u
(1)
i =

∑

j 6=i

(

V
(0)
ji

Cj(λi − λj)

)

~uj

for the first-order correction term and

λ
(2)
i = −

fk
Ci

(

u
(1)
i,k −

1

Ci

ui,k

) K
∑

j,l=1

u∗
i,jAjk

~u
(2)
i =

∑

j 6=i

(

V
(1)
ji − V

(0)
ii

Cj

Ci
c
(1)
j

Cj(λi − λj)

)

~uj

for the second-order correction term.
Let us suppose that we know the eigenvalues and eigen-

vectors of Ã, which again form a basis of RK . Thus, we
can write

~nst =

K
∑

i=1

ai~̃ui and ~s =

K
∑

i=1

bi~̃ui. (30)

Inserting this into Eq. (3) yields

K
∑

i=1

ai~̃ui =
(

1− Ã
)−1 K

∑

i=1

bi~̃ui,

which is equivalent to

K
∑

i=1

ai~̃ui(1 − λ̃i) =
K
∑

i=1

bi~̃ui.

This is true, if and only if

ai =
bi

1− λ̃i

, i = 1, . . . ,K. (31)

Thus, for a given source term s we obtain the steady state

~nst =

K
∑

i=1

bi

1− λ̃i

~̃ui with bi = ~̃u∗
i · ~s. (32)
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D. Modified transition matrix with probability

conservation

Finally, we consider the case where the transition ma-
trix A is perturbed such as the probability is conserved,
which implies ~s = ~0 and

K
∑

i=1

Ãij =

K
∑

i=1

(Aij + σVij) = 1

for all j, i.e.,
∑

m Vmk = 0 as shown in Ref.34.

Here, we analytically express the steady state ~̃u1 of
the perturbed matrix Ã. Since Ã is now itself a column-
stochastic matrix, ~̃u1 is the right eigenvector belonging to
the eigenvalue λ̃1 and describes the steady-state distribu-
tion. As in the previous cases, we express the first-order
correction term as a linear combination of the eigensys-
tem of the unperturbed case as

~̃u1 = ~u1 + σ
∑

i6=1

di~ui (33)

and make use of

λ̃1~̃u1 = ~̃u1 = (A+ σV)~̃u1. (34)

Substituting Eq. (33) into Eq. (34) and multiplying with
~u∗
k from the left, we obtain

δk1 + σ

K
∑

i=2

diδki = λk

(

δk1 + σ

K
∑

i=2

diδki

)

+

σ

(

V
(0)
k1 + σ

K
∑

i=2

diV
(0)
ki

)

,

which implies

dk =
V

(0)
k1 + σ

∑K

i=2 diV
(0)
ki

Ck(1− λk)
, k = 2, . . . ,K. (35)

Note that the latter expression is exact, but hard to eval-
uate in practice. Letting σ → 0, we obtain a first-order
correction

d
(1)
k =

V
(0)
k1

Cj(1− λk)
, (36)

which is equivalent to the result of Eq. (18) for the ab-
sorption problem.

III. NUMERICAL EXAMPLE

To illustrate the framework proposed in the previ-
ous section, we numerically study a time-dependent two-
dimensional velocity field model exhibiting Lagrangian
chaos35. Here, the passive advection of particles starting

at time t at a position (x, z) is described by a stream
function as

dx

dt
(x, z, t) = −

∂Ψ

∂z
,
dz

dt
(x, z, t) =

∂Ψ

∂x
, (37)

where

Ψ(x, z, t) =
a

π
sin[π{x+ b sin(2πt)}]W (z) (38)

with a = 3.1, b = 0.0404411 and

W (z) = cos(q0z)− α cosh(q1z) cos(q2z)

+ β sinh(q1z) sin(q2z). (39)

The considered system is periodic in both time and space
as Ψ(x+2, z, t) = Ψ(x, z, t) and Ψ(x, z, t+1) = Ψ(x, z, t).
The latter periodicity enables us to set the time step of
the transition matrix as τ = 1 to effectively treat the
problem like for a stationary flow. For convenience, we
constrain the time derivative of z as dz/dt < 0 at z . 1/2
and dz/dt > 0 at z & −1/2, so that particles are forced
to stay within the domain −1/2 < z < 1/2. The re-
sulting flow pattern is shown in Fig. 1, exhibiting two
roll-like structures resembling a two-dimensional projec-
tion of Rayleigh-Bénard convection. We divide the whole
system into 100 sub-regions of size 0.2 × 0.1, which are
interpreted as the nodes of a Lagrangian flow network.
The steady state solution of the system is approximated
by the right eigenvector of the transition matrix corre-
sponding to the eigenvalue 1 shown in Fig. 2b.
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FIG. 1. (Color online) Steady-state distribution of particles
in the Lagrangian chaos model described by Eq. (37). Black
dots indicate the position of 10,000 particles with randomly
distributed initial conditions after t = 20. Numerical integra-
tion was performed with a fourth-order Runge-Kutta method
with ∆t = 0.001. The background color represents the resi-
dence probability of particles at each node.

Let us now consider the absorption problem discussed
in Sec. II B. We remove a particle when it reaches a cer-
tain region of the flow described by an absorbing node k
with the probability gk. Here, we consider the extreme
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FIG. 2. (Color online) (a) Eigenvalues of the transition matrix on the complex plane for the Lagrangian chaos model. There
exists one unique eigenvalue at unity, corresponding to the conservation of probability. The absolute values of all other
eigenvalues are smaller than 1. (b-d) Components of the first (b), second (c), and third (d) right eigenvectors of the system.
Note that since the corresponding eigenvalues are real, these eigenvectors have exclusively real entries.

case of gk = 1, i.e., all particles are absorbed at the con-
sidered node. This absorption takes place every τ = 1
time steps. After an initial transient, we expect that the
number of particles decays exponentially (Eq. 7).

Let λ̃1 again be the largest eigenvalue of the perturbed
transition matrix (Eq. 5), which coincides with the ab-
sorption rate of the considered problem. As predicted
by our previous analytical considerations, this rate de-
pends on the absorption node k. Equation (16) suggests

that λ̃1 is approximated by the residence probability of
the absorption node (Fig. 3(a)) at the first order of the
perturbation expansion. Indeed, Fig. 3(b) indicates that
both characteristics exhibit a rather strong correlation.
Deviations from a one-by-one correspondence can be at-
tributed to the coarse-graining of physical space under-
lying the network approximation, still too small particle
numbers and the ignorance with respect to higher-order
terms in the perturbation expansion. In particular, we
emphasize that the co-existence between regular (peri-
odic and quasi-periodic) and chaotic domains is an in-
herent characteristic of the considered two-dimensional
Lagrangian chaos model as well as a great variety of

similar systems. The clear separation between these do-
mains is partially relieved by our coarse-graining, im-
plying that while particles cannot migrate between do-
mains of different dynamics, the transition matrix may
exhibit non-zero transition probabilities since individual
fluid volumes may cover parts of different domains. As
a consequence, the leading eigenvector (Fig. 2b) of the
coarse-grained transition matrix may not provide a suffi-
cient approximation of the residence probabilities of the
system (Fig. 3a). Future studies should therefore address
the conditions for the validity of the corresponding ap-
proximations in further detail.

IV. CONCLUSIONS

We have considered the problem of coarse-graining pas-
sive advection processes in velocity fields by means of a
Markov chain approach utilizing the discretized Perron-
Frobenius operator, which can be interpreted as a La-
grangian flow network. Specifically, we have studied how
the eigensystem of the corresponding transition matrix
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FIG. 3. (Color online) (a) Residence probability of particles
at each node in the absence of absorption. (b) Absorption

rate λ̃1 and residence probability at the absorption node for
the absorption problem in the Lagrangian chaos model.

can be approximated by perturbation-theoretic methods
in the case of three different types of perturbations: (i) lo-
calized absorption, (ii) absorption in the presence of con-
stant particle supply, and (iii) changes of the velocity
field (i.e., keeping the total probability mass conserved).
We have shown that in all three situations, the correc-
tion terms to the original eigenvalues and eigenvectors of
the transition matrix can be analytically expressed up to
arbitrarily high order. Specifically, our analysis reveals
that modifications due the system’s steady state imposed
by any of the aforementioned types of perturbations can
be expressed in terms of the eigensystem of the unper-
turbed flow.
Our method is motivated by common perturbation

expansions in other areas of science like quantum me-
chanics, but mostly focuses on the properties of the sys-
tem’s steady-state solution which can exist in case of a
probability-conserving perturbation (e.g., a change of the
underlying flow or local absorption compensated by a
constant particle supply). However, the techniques used
in our study can be equally employed for studying modifi-
cations to higher-order variability modes as expressed by
the transition matrix’ eigentriples of higher order. Since
the spectral representation of the Perron-Frobenius op-
erator is a widely used tool in the mathematical analysis
of fluid dynamical problems, we are confident that the
results are of potential use in a variety of corresponding
applications.
To this end, most of our presented considerations have

been purely theoretical. It will be a subject of future
studies to provide further numerical verification of the
obtained results for different types of flow patterns and
perturbations. Specifically, we have demonstrated that
the correction terms to the unperturbed situation are
the more important, the closer the eigenvalues of the un-
perturbed system are to unity. This result allows gen-
erally characterizing the vulnerability of transportation
processes depending on the spectral properties of the
underlying flow pattern and classifying real-world trans-
portation problems accordingly.
Since the method presented in this paper is capable of

predicting the response of the steady state of the passive
advection problem as a generic type of transport phe-

nomenon, there are many possible applications of the de-
veloped expressions in various scientific disciplines. One
example relying on some previous work by one of the
authors36,37 are communication patterns related to the
flow of mobile agents. Over the last years, it has be-
come possible to track the motion of individuals using
GPS or call detail records from mobile devices such as
cell phones, which allows constructing a transition ma-
trix describing the commuter dynamics between differ-
ent urban sub-regions and thus gaining information on
human mobility and activity patterns38. Practical ap-
plications of such an urban commuter transition matrix
include the study of infectious disease spreading, urban
planning, design of evacuation plans in case of disasters,
etc. Notably, for such applications, the perturbation-
theoretic approach would call for an application to more
than just the leading eigentriple of the transition matrix.
Finally, we emphasize the relevance of the developed

approach for studying contamination processes in gen-
eral, like the spreading of oil spills or volcanic aerosols,
or certain geoengineering proposals related to injection
of reflecting or absorbing particles into different layers
of the Earth’s atmosphere to counteract global warm-
ing. In all these real-world cases, the time-dependence
of the underlying flow will become particularly relevant.
In our analytical considerations presented in this work,
we have exclusively considered stationary flows; however,
the perturbation-theoretic approach should be easily ex-
tendable to cases operating with time-dependent tran-
sition matrices and, hence, time-dependent eigentriples.
Additional questions that have been left open intention-
ally in this initial study include the explicit treatment of
degenerate eigenvalues of the transition matrix as well as
the perturbation-theoretic expansion of topological char-
acteristics of the associated flow networks like (in/out-)
degree and strength, local clustering coefficient and oth-
ers. We leave a detailed investigation of these problems
as subjects of future work.
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Identifying causal gateways and mediators in complex spatio-

temporal systems. Nature Communications, 6:8502, 2015.
21M. Kretschmer, D. Coumou, J.F. Donges, and J. Runge. Using
causal effect networks to analyze different arctic drivers of midlat-
itude winter circulation. Journal of Climate, 29(11):4069–4081,
2016.

22V. Rodriguez-Mendez, E. Ser-Giacomi, and E. Hernandez-
Garcia. Clustering coefficient and periodic orbits in flow net-
works. Chaos.
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A. Kováčik. Fukushima-derived radionuclides in ground-level air
of central europe: a comparison with simulated forward and back-
ward trajectories. Journal of Radioanalytical and Nuclear Chem-
istry, 295(2):1171–1176, 2013.
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