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Abstract Massive near-term greenhouse gas emissions reduction is a precondition for staying “well
below 2∘C” global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial car-
bon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and stor-
age is required to avoid temperature “overshoot” in most pertinent scenarios. Here, we address two major
issues: First, we calculate the extent of tCDR required to “repair” delayed or insufficient emissions reduc-
tion policies unable to prevent global mean temperature rise of 2.5∘C or even 4.5∘C above pre-industrial
level. Our results show that those tCDR measures are unable to counteract “business-as-usual” emis-
sions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentra-
tion Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires
>1.1 Gha of the most productive agricultural areas or the elimination of >50% of natural forests. In addi-
tion, >100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios.
Such interventions would severely compromise food production and/or biosphere functioning. Second,
we reanalyze the requirements for achieving the 160–190 GtC tCDR that would complement strong mit-
igation action (RCP2.6) in order to avoid 2∘C overshoot anytime. We find that a combination of high irri-
gation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe
trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative
to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable “supporting
actor” for strong mitigation if sustainable schemes are established immediately.

Plain Language Summary In 2015, parties agreed to limit global warming to “well below” 2∘C
above pre-industrial levels. However, this requires not only massive near-term greenhouse gas emissions
reductions but also the application of “negative emission” techniques that extract already emitted carbon
dioxide from the atmosphere. Specifically, this could refer to the establishment of extensive plantations
of fast-growing tree and grass species in combination with biomass conversion to carbon-saving prod-
ucts. Although such deployment is seen as promising, its carbon sequestration potentials and possible
side-effects still remain to be studied in depth. In this study, we analyzed two feasibility aspects of such a
negative emissions approach using biomass plantations and carbon utilization pathways. First, we show
that biomass plantations with subsequent carbon immobilization are likely unable to “repair” insufficient
emission reduction policies without compromising food production and biosphere functioning due to its
space-consuming properties. Second, the requirements for a strong mitigation scenario staying below the
2∘C target would require a combination of high irrigation water input and development of highly effective
carbon process chains. Although we find that this strategy of sequestering carbon is not a viable alterna-
tive to aggressive emission reductions, it could still support mitigation efforts if sustainably managed.

1. Introduction

The “2∘C guardrail” was defined to avoid “dangerous anthropogenic interference with the climate system”
[United Nations Framework Convention on Climate Change (UNFCCC), 2009]. There is growing scientific evi-
dence [Schellnhuber et al., 2016] that this limit to global warming is indeed necessary for confining the risks
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of disastrous functional changes in the planetary machinery. The goal has now been ratified by 125 nations
that signed the Paris agreement in 2015 [United Nations Framework Convention on Climate Change (UNFCCC),
2015]. Current country pledges as described in the intended nationally determined contributions are vol-
untary mitigation efforts [Jeffery et al., 2015] that would clearly not add up to realize the stated objective.
There is an overwhelming expert consensus that substantial near-term emissions reductions are required,
instigating a full de-carbonization of the world economy by mid-century to establishing a reasonable prob-
ability of staying below 2∘C global mean temperature (GMT) rise (above pre-industrial levels) [Bertram et al.,
2015; Rogelj et al., 2015a, 2015b; Sanderson et al., 2016; Schleussner et al., 2016]. Should mitigation actions
not materialize, not be substantially increased over time, be disrupted, delayed or overpowered by concur-
rent fossil fuel-based development [Bertram et al., 2015; Smith et al., 2016], then GMT could increase by up
to ∼5∘C by the end of this century.

Even in the most ambitious mitigation scenarios, including the widely used Representative Concentra-
tion Pathway 2.6 (RCP2.6) scenario for limiting GMT rise to <2∘C [van Vuuren et al., 2010], there is an
additional need for large-scale carbon dioxide removal (CDR) from the atmosphere to offset particularly
hard-to-mitigate greenhouse gas emissions and prevent “overshoot” of the 2∘C temperature line. Hence,
the notion of employing substantial CDR action to complement strong mitigation action is currently
reflecting the predominant mind-set of the climate policy discourse. However, with existing mitigation
pledges and actions falling far short of what is required in such <2∘C scenarios, it seems reasonable to
ask whether even larger-scale CDR could possibly counteract failures to sufficiently reduce emissions? This
returns to the earlier framing of CDR as an ex-post option of managing an overshoot and bringing GMT
rise back down to 2∘C [Shepherd, 2009; Vaughan and Lenton, 2011; Caldeira et al., 2013; Kreidenweis et al.,
2016].

In either case, terrestrial CDR (tCDR), mainly via biomass-producing plantations (BPs) combined with sub-
sequent permanent carbon storage (e.g., bioenergy with carbon capture and storage, BECCS) has been
considered a feasible technology for achieving net-negative emissions by late century [Fuss et al., 2014]:
It comprises the three favorable aspects of being (i) a green energy carrier [Midilli et al., 2006]; (ii) a sub-
stitution for fossil fuels [Klein et al., 2013]; and (iii) economically attractive [Cornwall, 2017]. Thus, it is not
only a vital complement to strong emission reductions in mitigation pathways aiming at the 2∘C target
[e.g., van Vuuren et al., 2010; Fuss et al., 2014], but could also be investigated as a countermeasure to slow
down or even reverse CO2 accumulation on less stringent mitigation pathways [Riahi et al., 2011; Thom-
son et al., 2011; Caldeira et al., 2013]. However, in both cases large uncertainties remain, not only concerning
tCDR availability, effectiveness, economic and technological feasibility but also its likely and rather dramatic
environmental consequences [Fuss et al., 2014; Kato and Yamagata, 2014; Smith et al., 2016].

Here, we investigate the feasibility of tCDR and its trade-offs from a biosphere point of view. This includes
considering different background emissions scenarios (unabated, partially mitigated, or strongly miti-
gated), different starting points for implementing CDR, the required land extent of BPs, and their respective
water and nitrogen requirements. To achieve this, we explore two narratives, the first being a systematic
analysis of maximum tCDR potentials under insufficient mitigation action (i.e., comparably weak emissions
reductions), and the second focusing on the land and water demands of tCDR in a strong mitigation
scenario.

In particular, we investigate how spatially extensive BPs implemented by 2050 would need to be on an
unabated or partially mitigated pathway in order to observe the 2∘C guardrail. Accepting that this is not
the preferred policy framing of tCDR use, this assessment nevertheless addresses whether tCDR potentials
could be a “late-regret” solution if emissions continued to increase and the 2∘C line was transgressed around
2050. One can think of this analysis as a severe-risk assessment of an undesirable outcome, which exposes
the stark trade-offs it would generate. As such it helps inform policy discussions.

Furthermore, we analyze under what technological and management pre-conditions the biosphere could
provide the carbon extraction potentials defined by a strong transient mitigation pathway, namely the
RCP2.6 [van Vuuren et al., 2010]. Although the starting point of this scenario lies in the past (2006), we can
still investigate what the technological and environmental implications should have been to reach the pub-
lished tCDR potentials of BPs.
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Table 1. Potentials and Impacts for Each tCDR Scenario

Permanent Carbon

Sequestration (GtC) Years Saved (Years) (b) Impacts

(a) tCDR

Potentials

Part.

Mitigated Unabated

Part.

Mitigated Unabated

BP Area

(Mha)

Forest

Extent

Remaining

(%)

kcal

Loss

(%)

N Application

in Total

(Mt yr−1)

Needed to reach
2∘C (in RCPs)

∼320 ∼1,230 ∼46 ∼53

100NAT 1,130 1,424 165 67 6,899 0 570

100AGR 583 705 67 28 4,267 100 196

100AGR_p 324 391 44 15 2,771

25NAT 655 816 74 32 3,307 30 328

25AGR 454 549 56 21 2,176 73 151

25AGR_nv 289 291 41 11 2,176

10NAT 333 414 45 16 1,470 49 160

10AGR 295 354 42 13 1,078 43 96

BP, biomass-producing plantation; RCP, Representative Concentration Pathway; tCDR, terrestrial carbon dioxide
removal.
(a) Description of the tCDR scenarios and their potentials in 2100 in terms of permanent carbon extraction (GtC) and
years of emissions delayed (years) with respect to RCP8.5’s and RCP4.5’s 2100 emissions; (b) The impacts of tCDR on
land conversion (Mha) and remaining forest extent (reforestation potential), food production (% loss of kcal cap−1

day−1 production) and estimated nitrogen application (Mt yr−1).

For both narratives, the implications for environment and society are inferred for every tCDR scenario using
a state-of-the-art, spatially explicit, biogeochemical-processes-based model as described in the following.

2. Materials and Methods

2.1. The Model LPJmL

We here use the well-established [Cramer et al., 1999; Gerten et al., 2004; Friend et al., 2014] Dynamic Global
Vegetation Model including managed land [Bondeau et al., 2007; Text S2, Supporting Information] to simu-
late the growth of natural and managed vegetation—including BPs—and the associated biogeochemical
processes in a single, internally consistent framework. LPJmL embraces nine plant functional types with
dynamic distributions based on bioclimatic conditions and competition for light, water, and space, and 12
crop functional types as well as pastures with prescribed distributions and management [e.g., irrigation,
Jägermeyr et al., 2015] with calibrated yields until 2005 [Fader et al., 2010]. Furthermore, the model captures
two second-generation bioenergy functional types with prescribed distribution in scenarios (as specified
in Table 1) producing yields [Beringer et al., 2011]. With daily time steps and on a 0.5∘ × 0.5∘ grid, the model
evaluates the climate-dependent transient dynamics of carbon fixation, allocation, turnover and loss in veg-
etation growth while accounting for interactive effects of soil moisture and atmospheric CO2 content [for a
detailed description of model setup please see also Text S2 and Schaphoff et al., 2013]. Bioenergy plantations
are either woody (representing the growth characteristics of temperate willows and poplars or tropical Euca-
lyptus) or herbaceous (imitating Miscanthus and switchgrass) with harvest cycles of 8 years or multi-annual
occurrences, respectively [Beringer et al., 2011; Heck et al., 2016; Text S1]. Simulations of dedicated BPs differ
from those of corresponding natural vegetation by assuming higher productivity and harvest at regular or
growth-dependent intervals. Our results capture a realistic magnitude of production as verified by a com-
parison of the uncalibrated simulated woody and herbaceous BP productivity with observations from field
data as conducted by Heck et al. [2016].

2.2. Climate and Land Use Scenarios

We investigate the ability of tCDR to counteract future emissions associated with three climate scenarios
that generate specific GMT levels by the end of the century. In the first scenario, climate develops on an
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Figure 1. (a) Cumulative emission pathways leading to a mean global warming of 1.7∘C (Representative Concentration Pathway 2.6 [RCP2.6]), 2.5∘C, and 4.5∘C by 2100, respectively.
Dots indicate the starting points of terrestrial carbon dioxide removal (tCDR) assumed here. Climate projections for the upper two graphs were retrieved with a pattern-scaling
approach applied on five CMIP3 models [Heinke et al., 2013] while the RCP2.6 climate was retrieved from CMIP5 simulations. (b) Areas considered for tCDR in the studied conversion
scenarios. Values are given as % fraction of 0.5∘ × 0.5∘ grid cells for scenarios listed in Table 1. Note that only the dominant fraction of either natural or agricultural land in each cell is
displayed.

unabated business-as-usual pathway resulting in a GMT rise of ∼4.5∘C by 2100 [Heinke et al., 2013] and a
crossing of the 2∘C threshold in 2053 (Figure 1a). This climate forcing is comparable to the RCP8.5 projection
[Riahi et al., 2011] with 2,085 GtC cumulative anthropogenic emissions by the end of the 21st century. On
the RCP8.5 trajectory, a GMT rise by 2∘C above pre-industrial level is reached by 2047 [see figure, SPM.10
in Stocker et al., 2013], hence, we extended our simulations until 2106 to capture a similar timespan (e.g.,
2053–2106 instead of 2047–2100). In the second scenario, emissions are partially mitigated, leading to a
GMT rise of ∼2.5∘C by 2100 (and ∼1.8∘C by mid-century). This forcing is comparable to the RCP4.5 scenario
with 1227 GtC cumulative anthropogenic emissions by 2100. It is also equivalent to the current mitiga-
tion pledges of the Paris accord [Jeffery et al., 2015] and thus still not complies with the internationally
agreed objectives. The third climate scenario follows temperature and emissions projections (1.7∘C and
780 GtC cumulative emissions by 2100, respectively) of the strong-mitigation, transient RCP2.6 trajectory
[van Vuuren et al., 2010].

The climate forcing and CO2 concentrations for the first two climate scenarios were taken from the MPI-ESM
ECHAM5 model and found to give intermediate biosphere responses in LPJmL when compared with four
additional climate models participating in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and
prepared for our 2.5∘C and 4.5∘C trajectory following Heinke et al. [2013, see Figure S3]. For RCP2.6, climate
model inputs were taken from five CMIP5 models [HadGEM2-ES, MPI-ESM-MR, CanESM2, IPSL-CM5A-MR,
and MIROC-MR-CHEM; Taylor et al., 2012] and bias-corrected [Watanabe et al., 2012; Heinke et al., 2013]. The
sensitivity of BPs’ productivity to different levels of CO2 and climate is rather high but within the range
observed in field experiments [Figure S2, Norby et al., 2005; Hickler et al., 2008].

In the first part of our analysis, we investigate the tCDR potential necessary to hold the 2∘C line in the high
and the partially mitigated emission scenario, respectively, using a set of land-use scenarios differing in
terms of the spatial extent of BP plantations and in terms of whether currently cultivated or uncultivated
areas are considered for conversion (Figure 1b, Table 1). In these scenarios, land-use patterns for crops and
pastures are fixed at year 2005 levels until BPs are implemented according to the following rationale: By uti-
lizing all natural land suitable for growing BPs (7.4 Gha globally, 100NAT) or all present-day agricultural land
(4.2 Gha, 100AGR), theoretical upper limits on tCDR potentials are established. Scenarios where 25% of the
most productive either natural (e.g., parts of five major biomes, 25NAT) or agricultural land grid cells (e.g.,
parts of cropland and pastures, 25AGR) are converted to BPs represent very extensive versions of tCDR (3.3 or
2.2 Gha). Conversions of 10% of grid cells (1.4 Gha in 10NAT and 1.1 Gha in 10AGR, respectively) are perhaps
more realistic but still very ambitious tCDR scenarios. Grid cells unsuitable for agriculture, e.g., those covered
by ice, snow, or desert, were excluded. However, BPs may also be realized in apparently low-productivity
regions (e.g., central Australia) as long as they belong to the 25% most productive grid cells of grass- or
shrubland [following the biome classification by Ostberg et al., 2013]. For this systematic analysis of poten-
tials, we did not adhere to the land-use patterns associated with the studied RCPs [Riahi et al., 2011; Thomson
et al., 2011], since we are interested in the effectiveness of BPs to balance additional emissions under differ-
ent climates and CO2 concentrations per se, i.e., based only on production potentials for the selected areas,
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irrespective of whether they are considered BP areas in RCP land-use scenarios (see below for our alternative
scenario that allows for a feasibility analysis under an RCP2.6 land-use pattern).

Note that grid cells and plantation types are selected for conversion such that the highest global net carbon
potential—that is the highest sum of land-carbon changes from land conversion plus carbon extraction by
BPs—is achieved in each scenario (global distribution shown in Figure S1).

In the second part, the feasibility of a predefined RCP2.6 land-use scenario for crop, pasture, and bioenergy
plantations [van Vuuren et al., 2010; http://luh.umd.edu/data.shtml] is analyzed. In this scenario, created
by an Integrated Assessment Model (IAM), global population reaches 9 billion in 2050 causing cropland
expansion due to increasing food demand. Growing land-use intensity allows for agriculture to concen-
trate in poorer world regions while the abandoned land in wealthier regions can be used for establishment
of BPs. Specifically, this means that BPs are only allowed on abandoned crop and pasture land or natural,
non-forested and non-protected land. This in turn causes deforestation to meet the increasing food and
energy demand and to compensate for a decreasing CO2 fertilization effect. Land-use change is therefore
only demand-driven and not by climate policies. The provided single crop land distribution was transferred
to the spatial patterns of 13 crop types in LPJmL in 2005 and proportionally scaled to meet required areas (as
described in Boit et al., 2016; for spatial and temporal patterns see Text S3). According to this scenario, dedi-
cated BP areas increase to 441 Mha between 2006 and 2100 and are assumed to be herbaceous, since these
have higher biomass harvest potentials than woody BPs on a global scale [see Kato and Yamagata, 2014;
Heck et al., 2016]. In contrast to the previous scenarios, irrigation of BPs is explicitly considered, assuming
either sustainable or unlimited schemes. For the version assuming sustainable irrigation, water withdrawal
is constrained by local renewable water availability from rivers, groundwater baseflow, lakes, and reser-
voirs. Irrigated cropland area in 2005 [Jägermeyr et al., 2015] is assumed to increase proportionally over time
(reaching 362 Mha out of 5005 Mha total agricultural land in 2100), as is the irrigated fraction of BP area
(reaching 40 Mha in 2100). In the (thought experiment) scenario of unlimited irrigation, any water demand
is assumed to be met in one way or the other.

2.3. Calculation of Carbon Sequestration Potentials

For BPs to be an effective tCDR tool, that is realizing net negative emissions, the extracted carbon from
the atmosphere needs to be permanently immobilized and excluded from the carbon cycle. We calculate
the cumulative biomass harvest carbon until 2100 but employ a conversion-efficiency rule (CEff) before
accounting for land-carbon changes for the overall tCDR potential. That is, we simplify the life-cycle assess-
ment of processed carbon and carbon products by assuming that harvested biomass carbon is passed to a
carbon pool with a CEff of 50%: Half of the sequestered carbon is lost during biomass harvest, its subsequent
transportation, processing, and storage on longer time scales. This simplification represents a reasonable
global averaging in line with the current evidence [Lenton, 2010; Powell and Lenton, 2012; Smith et al., 2013].
However, there are various schemes by which biomass carbon could be utilized: biofuels with CEff’s of
∼20%, 50%, or 70% for the processes of fermentation, liquefaction or pyrolysis, respectively [Edenhofer et al.,
2011]; bioenergy with carbon capture and storage (BECCS) in geological reservoirs with theoretical CEff’s of
70–99% [Lenton, 2010; Edenhofer et al., 2011; Humpenöder et al., 2014]; or biochar generation, substituting
fertilizers on fields, with potential CEff’s of 70–90% (Lehmann, 2007; Woolf et al., 2010). Transportation may
lead to losses of 2–15% (Cannell, 2003; Smeets et al., 2007). We account for this range when analyzing the
tCDR potential in the RCP2.6 scenario by applying values of CEff of 50%, 75%, and 90%. Lower values of 20%
or less could lead to the unfavorable outcome that land-carbon losses exceed the carbon extraction by BPs,
so they are not considered here. The replacement of natural vegetation by land conversion is treated as a
one-time harvest with a 50% capture rate. As CO2 concentrations are prescribed in the model, we cannot
account for substituting fossil fuel energy carriers.

We express the tCDR potentials in terms of cumulative CO2 uptake and in terms of “years delayed” on the
emission trajectories of the similar climate scenarios of the partially mitigated RCP4.5 and unabated RCP8.5
to infer whether tCDR can extend the 2100 emissions budget for a certain period of time into the future. This
is achieved by subtracting accumulated tCDR potentials in 2100 from the RCP4.5 or RCP8.5 emissions bud-
get in 2100. By decelerating the emission accumulation with tCDR without actually leaving the trajectory we
can bypass the fact that in LPJmL CO2 concentrations are not affected by tCDR, thus fossil fuel substitution
and ocean and climate feedbacks cannot be accounted for.
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Under RCP2.6, BPs are required to extract 160–190 GtC from the atmosphere [van Vuuren et al., 2010; Kato
and Yamagata, 2014]. This should not only refer to the biomass harvest potentials alone but should again
take land-carbon changes from conversion to BPs into account. Note that tCDR potentials for RCP2.6 as sim-
ulated by LPJmL depend on the specific climate forcing provided by the different climate models. Not only
may precipitation patterns differ but also GMT increases may vary, mainly due to the diverse carbon cycle
responses arising from different modeling strategies [Brovkin et al., 2013; Boysen et al., 2014]: BP patterns
were not uniformly implemented in coupled models’ land surface schemes in CMIP5; they were treated
as cropland or grassland or entirely ignored, so the resulting climate patterns vary too. These differences
provide an uncertainty range for the simulated tCDR potentials presented here.

2.4. Calculation of Impacts of tCDR

We provide a rough assessment of impacts of tCDR on food production (i.e., drawbacks on current produc-
tion that is estimated to be ∼3,000 kcal cap−1 day−1 for 7 billion people based on simulated crop yields and
calorie content [see Text S3 and Wirsenius, 2000]), forest extent, and the nitrogen cycle.

Based on the concept of “planetary boundaries” [Rockström et al., 2009; Steffen et al., 2015] we also quantify
the impact of further reductions of natural forest cover brought about by tCDR plantations. The land-system
boundary defines thresholds of remaining forest extent for three continental forest biomes (boreal, temper-
ate, and tropical) beyond which the Earth system would enter a new state (in a possibly irreversible way). We
used this approach according to the fractional forest areas provided by LPJmL, which partly differ from those
used in Steffen et al. [2015]. By scaling simulated potential forest extents to those in Steffen et al. [2015], we
were able to analyze the relative change of area in our scenarios and to calculate the position with respect
to the planetary boundary for land-system change.

Nitrogen limitation to plant growth is not explicitly modeled in LPJmL. Therefore, we did a post hoc esti-
mation of the nitrogen content of the harvested and removed biomass [see Boysen et al., 2016], which can
be translated into the required amount of nitrogen fertilization. We do not account here for the possible
increase in N2O emissions that could arise from this increased fertilizer application or increased fossil fuel
use for producing fertilizer.

3. Results and Discussion

3.1. Sequestration Potentials of tCDR in a Partially Mitigated and in an Unmitigated Scenario

We find that tCDR could potentially push down GMT toward the 2∘C line in a partially mitigated climate sce-
nario that would approach 2.5∘C above pre-industrial level by 2100 (corresponding to ∼320 GtC emissions
between mid-century and 2100, following RCP4.5, see Figure 2). This is summarized in Table 1a. However,
the required BP area needs to be >1.1 Gha of the most productive agricultural land (10AGR, Figure 2f ) or
∼1.5 Gha of natural land (10NAT, Figure 2c). The theoretical tCDR potential is as large as 585–1130 GtC, or
67–165 years of delay, if all agricultural or natural land can be converted (100AGR and 100NAT, respectively,
Figures 2d and 2a). However, this would have most dire consequences for food production or the biosphere.
In order to maintain current global land use patterns for agriculture, the majority of natural ecosystems
would be eliminated in the 100NAT scenario. Moreover, the upper ceiling for tCDR potential would be low-
ered by up to 20% if the conversion of natural vegetation for the sake of tCDR would not make sure that
half of the natural-vegetation carbon would be permanently sequestered. Alternatively, converting all crop-
land and pastures into tCDR area (100AGR) while safeguarding natural ecosystems, would imply that all
land-based food and fiber production was abandoned. The implications still remain severe if only a quar-
ter of natural or agricultural land is taken for BPs, thereby stretching 2100’s carbon budget by 56–74 years
(Figures 2e and 2b). Additionally, simply allowing re-growth of natural vegetation on the same areas as in
25AGR (25ARG_nv, Figure 2e) would reduce potentials by >40% compared to BPs with 454 GtC permanent
carbon extraction by 2100.

These tCDR potentials could be increased by 10–15% if BPs were implemented earlier under the same cli-
mate conditions, e.g., when the 1.5∘C warming line was reached around 2038 [Boysen et al., 2016]. However,
starting BPs mid-century when CO2 levels and additional fertilization are higher, as in the unabated climate
scenario, can also be beneficial for BPs leading to similar tCDR potentials as in Boysen et al. [2016] (see sup-
porting information [Leipprand and Gerten, 2006; Luo et al., 2008] and Figure S2). For example, the 100AGR
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Figure 2. Potentials of terrestrial carbon dioxide removal (tCDR) along the Representative Concentration Pathway 4.5 (RCP4.5) and
RCP8.5 trajectories for different biomass plantations scenarios implemented by mid-century: Bright and dark lines indicate the end of
trajectory without and with tCDR in 2100. The difference between RCP’s endpoint and the modified trajectory’s endpoint refers to the
tCDR potential in GtC or years saved. (a–c) Results for converting 100%, 25%, and 10% of the most productive grid cells on natural land;
(d–f ) results for converting 100%, 25%, and 10% of the most productive grid cells on agricultural land to BPs. A conversion efficiency of
50% is applied. Exact end-point values for each scenario are listed in Table 1. (Adapted figure SPM.10 from the IPCC AR5 Summary for
Policymakers [Stocker et al., 2013] with permission of WG1 TSU.)

scenario removes 649 GtC between 2038 and 2100 on a partially mitigated pathway, while the 100AGR on an
unabated pathway captures 705 GtC between mid-century and 2100. However, tCDR is much less effective
in postponing the pertinent carbon-budget exhaustion: The maximum achievable tCDR potential trans-
lates into a delay by 28–67 years in the 100AGR and 100NAT scenarios, respectively. The more conservative
but still extensive scenarios (10AGR and 10NAT) can only provide 13–16 years of delay—on average three
times less than in the partially mitigated scenario. This shows that even though the CO2 “fertilization” effect
on plant growth is about 17–20% higher on the unabated mitigated pathway, strong emissions abatement
efforts are necessary as well as carbon extraction technologies such as tCDR. Staying on the unabated path-
way would mean not only a failure of mitigation in the first place, but would also predetermine tCDR to fail
its ultimate objective!

These results allow us to investigate the upper theoretical ceilings of tCDR following systematic land conver-
sion scenarios by minimizing the uncertainties from the development of complex, actual land-use patterns
(as done in the RCP2.6 study below). However, they also show that “realistic” tCDR potentials, following
multi-dimensional optimal pathways of land transformation are likely to remain far below scenarios such as
the 100%, 25%, or 10% scenarios used in this study.

3.2. Side-Effects of Large-Scale Biomass Plantations

Irrespective of the underlying emissions scenario, large-scale tCDR deployment would be associated with
impacts that are likely to be ecologically intolerable and socially unacceptable (Table 1b). The land conver-
sion towards tCDR following 25NAT implies widespread loss of habitats, thus further reducing biodiversity
and modifying ecosystems which are already under pressure [Ostberg et al., 2015] and face severe risks of
change under anthropogenic global warming [Ostberg et al., 2013; Warszawski et al., 2014]. The global forest
extent, currently estimated to consist of 62% natural sub-systems [Steffen et al., 2015], would be halved in
this tCDR scenario. When converting “only” 10% of natural land, still almost 1.4 Gha of habitats would be
lost or degraded—an area corresponding to half of today’s pasture extent.
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From calculating the nitrogen content in the globally harvested biomass under unabated conditions, we
find that this harvesting would extract 96–151 TgN yr–1 on 10–25% of the agricultural area (in addition to
the demand on the remaining cropland). This is of a magnitude comparable to today’s worldwide nitro-
gen demand of 147 TgN yr–1 in 2014 [Food & Agriculture Organization of United Nations, 2015; Steffen et al.,
2015], which already has led to transgression of the suggested planetary boundary for nitrogen by a factor
of two [Steffen et al., 2015; Food and Agricultural Organisation United Nations, .]. As another consequence,
substantial extra amounts of non-CO2 greenhouse gases would be released into the atmosphere after fer-
tilizer application or during the process of fertilizer generation. Thus, our simulated tCDR potentials may be
overestimated since we neither account for nutrient limitation of plant growth (nitrogen and phosphorus),
nor for the emissions associated with producing and applying fertilizers.

Agricultural calorie production on cropland would be reduced by 43–73% when converting the most suit-
able 10–25% of cropland for the purpose of tCDR. In view of a world inhabited by at least 9 billion people in
2050, it is unlikely that such deficits could be overcome by sheer management intensification or improve-
ment [Bajželj et al., 2014]. Transforming merely all pastures (i.e., keeping all cropland while eliminating the
entire production of meat and dairy products, 100AGR_p) would not result in substantial climate benefits:
While pastures are more extensive than croplands, they are also less productive for BP plantations.

Further impacts could arise from generating biogeophysical and biogeochemical effects through the land
conversion towards large-scale BPs [Pongratz et al., 2011; Arora and Montenegro, 2011; Brovkin et al., 2013].
These effects could include reductions in surface albedo and alterations of moisture fluxes [see Text S1 and
Boysen et al., 2016] or additional greenhouse gas emissions from fertilizer applications. Evidently, fully cou-
pled simulations are needed to assess these climate feedbacks (including changing atmospheric CO2 con-
centrations and ocean responses [Zickfeld et al., 2013; Tokarska and Zickfeld, 2015], something that currently
cannot be accomplished because most Earth system models still lack a process-based implementation of
BPs in the way LPJmL does.

3.3. Carbon Sequestration Potentials of tCDR in a Transient Mitigation Scenario (RCP2.6)

Harvested biomass carbon on 441 Mha BPs accumulates on climate-model average 152, 325, and 449 GtC
under rain-fed, sustainable, and unlimited irrigation conditions, respectively (Table S2). While these results
are uniform across the models, the same is not true for land-carbon changes after the conversion of original
land cover to BPs, i.e., the resulting tCDR potential by 2100 varies strongly (Table 2). Applying a conversion
efficiency of 50% (as before) delivers for instance ranges of 10–64 GtC (mean 57 GtC) net carbon sequestra-
tion for non-irrigated BPs (Figure 3a). The reason is that the prescribed climate forcing retrieved from each
single climate model might cause unfavorable growing conditions for BPs in some cases. If CEff was not
increased, unlimited irrigation would be necessary to achieve the required tCDR potential of 160–190 GtC
in 2100. An increase of CEff to 75% in combination with sustainable irrigation on selected areas (40 Mha)

Table 2. Potential tCDR (GtC) Under the Transient RCP2.6 Scenario

Rain-Fed Sustainable Irrigation Unlimited Irrigation

50% 75% 90% 50% 75% 90% 50% 75% 90%

MPI 57 94 117 141 222 270 208 320 387

Had 16 54 76 103 184 233 172 286 354

MIR 15 54 78 103 187 237 168 282 350

Can 10 49 72 97 180 229 164 277 345

IPSL 64 103 126 150 232 282 215 327 394

Mean 57 94 117 141 222 270 208 320 387

BPs, biomass-producing plantations; Can, CanESM2; CEff, conversion-efficiency; Had, HadGEM2-ES; IPSL,
IPSL-CM5A-MR; MIR, MIROC-MR-CHEM; MPI, MPI-ESM-MR; RCP2.6, Representative Concentration Pathway 2.6; tCDR,
terrestrial carbon dioxide removal.
Given are the net carbon sequestration potentials (that is, land-carbon changes are accounted for) for rain-fed (no
irrigation), sustainably and unlimited irrigated BPs in combination with different levels of conversion efficiencies
(CEff in %). Results were calculated by LPJmL driven by five climate model inputs.
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Figure 3. Terrestrial carbon dioxide removal (tCDR) potentials (GtC) for rain-fed (a), sustainably (b) and unrestrictedly irrigated (c) biomass-producing plantations in combination
with conversion efficiencies (CEff) of 50%, 75%, and 90% (shading) and for different climate models input for LPJmL (colors). The gray horizontal bar denotes the required tCDR of
Representative Concentration Pathway 2.6 of 160–190 GtC.

could produce the desired tCDR outcome though. However, such an increase in the sustainably irrigated
area would in turn put substantial pressure on global water use. In fact, the water consumption on dedicated
BP land would increase the total water consumption on agricultural land [∼1,000 km3 yr−1 in 2090–2100)
by 13% on model average (see Table S3, comparable to Heck et al., 2016]. This would strongly increase by a
factor of 20 (up to 2,500 km3 yr−1) if all BPs were equipped with unlimited water supply.

Remarkably, increasing CEff to 90% without any irrigation would still not be sufficient to get close to the
desired tCDR amount. This means that very strong efforts regarding water (and fertilizer) management,
infrastructure, and technical development would be globally necessary to fulfill the promises of this widely
used scenario for successful mitigation. Our result agrees with a previous study claiming that highly produc-
tive BPs, supported by heavy irrigation and fertilization, would be needed in the RCP2.6 narrative [Kato and
Yamagata, 2014]. The implications would again include biogeophysical and biogeochemical effects, which
were not considered in the land-selection process of the underlying IAM, while food production would need
to increase by ∼20% until 2050 compared to 2005 levels in our model. Thus, tCDR potentials on the RCP2.6
pathway are found to be smaller than anticipated. This finding reveals significant trade-offs when trying to
reach the total tCDR volume necessary for holding the 2∘C line—even more so, as that scenario was meant
to “start” about one decade ago! Hence, assumptions made by IAMs need to be carefully assessed regarding
the true abilities of the biosphere, which are independent of any socio-economic considerations.

4. Conclusions

Based on our detailed simulation results, we maintain that tCDR is not an effective tool to balance emissions
from unmitigated or only partially mitigated scenarios, regardless of spatial scales, timing, and background
mitigation pathways. In particular, substantial post-factum carbon removal on an unabated emission path-
way would require utilizing a major fraction of the global land surface (natural or agricultural areas), with
intolerably large environmental and social costs. Under a partially mitigated climate scenario, the utilization
of tCDR from mid-century on would be much more effective. However, the spatial scale of BPs would still
need to be very large and might cause comparable environmental costs. An earlier start of tCDR activities
on an ambitious mitigation pathway would definitely increase tCDR potentials, although BPs would be less
productive due to lower CO2 concentrations. Even in the strong mitigation scenario (RCP2.6), high inputs of
managed water and fertilizers would be needed in order to avoid fierce competition for land—with poten-
tially negative side-effects for climate and society.

This leaves us with a rather clear, but hardly comforting overall conclusion: Holding the 2∘C line seems only
feasible if two sets of climate action work hand in hand. On the one hand, greenhouse gas emissions need
to be reduced as early and as effectively as possible [Luderer et al., 2016; Smith et al., 2016]. In fact, an even
more aggressive strategy than reflected by the RCP2.6 scenario should be pursued, aiming at the “induced
implosion” of most fossil fuel-driven business cases in the next couple of decades [Rockström et al., 2016;
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Schellnhuber et al., 2016]. On the other hand, tCDR can significantly contribute as a “supporting actor” of the
mitigation protagonist, if it gets started and deployed immediately. This means that the biological extrac-
tion of atmospheric CO2 as well as the suppression of CO2 release from biological systems must draw upon
all possible measures—whether they are optimal or not, whether they are high- or low-tech. We therefore
suggest fully exploring the pertinent options available now [Rockström et al., 2017a], which include refor-
estation of degraded land [Lamb et al., 2005; Chazdon, 2008; Reij and Winterbottom, 2015; Morrison, 2016]
and the protection of degraded forests to allow them to recover naturally and increase their carbon storage,
e.g., within the Bonn Challenge initiative (http://www.bonnchallenge.org/) or the New York Declaration on
Forests [International Union for Conservation of Nature (IUCN) (n.d.) Streck et al., 2016]. Further options range
from up-scaled agro-forestry approaches [Faße et al., 2014; Lasco et al., 2014; Zomer et al., 2016] to the appli-
cation of biochar [Woolf et al., 2010; Crombie et al., 2015; Smith, 2016] and various no-tillage practices for
food production on appropriate soils [Lal et al., 2012; Davin et al., 2014; Mangalassery et al., 2014; Rockström
et al., 2017b]. Also, it becomes overwhelmingly evident that humanity cannot anymore afford to waste up
to 50% of its agricultural harvest along various consumption chains [Smith et al., 2013; Hiç et al., 2016] or to
go on operating ineffective irrigation systems [Jägermeyr et al., 2015].

So the bottom line is: Do not wait for first-best solutions, neither in emissions reductions action nor in tCDR
practice!

References
Arora, V. K., and A. Montenegro (2011), Small temperature benefits provided by realistic afforestation efforts, Nat. Geosci., 4, 514–518.

https://doi.org/10.1038/ngeo1182.
Bajželj, B., K. S. Richards, J. M. Allwood, P. Smith, J. S. Dennis, E. Curmi, and C. A. Gilligan (2014), Importance of food-demand management

for climate mitigation, Nat. Clim. Change, 4, 924–929. https://doi.org/10.1038/nclimate2353.
Beringer, T., W. Lucht, and S. Schaphoff (2011), Bioenergy production potential of global biomass plantations under environmental and

agricultural constraints, GCB Bioenergy, 3, 299–312. https://doi.org/10.1111/j.1757-1707.2010.01088.x.
Bertram, C., N. Johnson, G. Luderer, K. Riahi, M. Isaac, and J. Eom (2015), Carbon lock-in through capital stock inertia associated with weak

near-term climate policies, Technol. Forecast. Soc. Change, 90(Pt. A), 62–72. https://doi.org/10.1016/j.techfore.2013.10.001.
Boit, A., et al. (2016), Large-scale impact of climate change versus land-use change on future biome shifts in Latin America, Global Change

Biol., 22, 3689–3701. https://doi.org/10.1111/gcb.13355.
Bondeau, A., et al. (2007), Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Global Change Biol., 13,

679–706. https://doi.org/10.1111/j.1365-2486.2006.01305.x.
Boysen, L. R., V. Brovkin, V. K. Arora, P. Cadule, N. de Noblet-Ducoudré, E. Kato, J. Pongratz, and V. Gayler (2014), Global and regional effects

of land-use change on climate in 21st century simulations with interactive carbon cycle, Earth Syst. Dyn. Discuss., 5, 443–472. https://
doi.org/10.5194/esdd-5-443-2014.

Boysen, L. R., W. Lucht, D. Gerten, and V. Heck (2016), Impacts devalue the potential of large-scale terrestrial CO2 removal through
biomass plantations, Environ. Res. Lett., 11, 095010. https://doi.org/10.1088/1748-9326/11/9/095010.

Brovkin, V., et al. (2013), Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5
projections for the twenty-first century, J. Clim., 26, 6859–6881. https://doi.org/10.1175/jcli-d-12-00623.1.

Caldeira, K., G. Bala, and L. Cao (2013), The science of geoengineering, Annu. Rev. Earth Planet. Sci., 41, 231–256. https://doi.org/10.1146/
annurev-earth-042711-105548.

Cannell, M. G. R. (2003), Carbon sequestration and biomass energy offset: Theoretical, potential and achievable capacities globally, in
Europe and the UK, Biomass Bioenergy, 24, 97–116. https://doi.org/10.1016/s0961-9534(02)00103-4.

Chazdon, R. L. (2008), Beyond deforestation: Restoring forests and ecosystem services on degraded lands, Science, 320, 1458–1460.
https://doi.org/10.1126/science.1155365.

Cornwall, W. (2017), The burning question, Science, 355, 18–21. https://doi.org/10.1126/science.355.6320.18.
Cramer, W., D. W. Kicklighter, A. Bondeau, B. M. Iii, G. Churkina, B. Nemry, A. Ruimy, A. L. Schloss, and T. P. O. T. P. N. M. Intercomparison

(1999), Comparing global models of terrestrial net primary productivity (NPP): Overview and key results, Global Change Biol., 5, 1–15.
https://doi.org/10.1046/j.1365-2486.1999.00009.x.

Crombie, K., O. Mašek, A. Cross, and S. Sohi (2015), Biochar – Synergies and trade-offs between soil enhancing properties and C
sequestration potential, GCB Bioenergy, 7, 1161–1175. https://doi.org/10.1111/gcbb.12213.

Davin, E. L., S. I. Seneviratne, P. Ciais, A. Olioso, and T. Wang (2014), Preferential cooling of hot extremes from cropland albedo
management, Proc. Natl. Acad. Sci. U. S. A., 111, 9757–9761. https://doi.org/10.1073/pnas.1317323111.

Edenhofer, O., et al. (2011), Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on
Climate Change, Cambridge Univ. Press, Cambridge, U. K.

Fader, M., S. Rost, C. Müller, A. Bondeau, and D. Gerten (2010), Virtual water content of temperate cereals and maize: Present and
potential future patterns, J. Hydrol., 384, 218–231. https://doi.org/10.1016/j.jhydrol.2009.12.011.

Faße, A., E. Winter, and U. Grote (2014), Bioenergy and rural development: The role of agroforestry in a Tanzanian village economy, Ecol.
Econ., 106, 155–166. https://doi.org/10.1016/j.ecolecon.2014.07.018.

Food and Agricultural Organisation United Nations (n.d.), World Fertilizer Trends and Outlook to 2018, Food and Agric. Organ. U. N.
[Available at http://www.fao.org/documents/card/en/c/db95327a-5936-4d01-b67d-7e55e532e8f5.]

Food & Agriculture Organization of United Nations (2015), World Fertilizer Trends and Outlook to 2018, Food & Agric. Organ. of United
Nations, Rome, Italy.

Friend, A. D., et al. (2014), Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and
atmospheric CO2, Proc. Natl. Acad. Sci. U. S. A., 111, 3280–3285. https://doi.org/10.1073/pnas.1222477110.

Fuss, S., et al. (2014), Betting on negative emissions, Nat. Clim. Change, 4, 850–853. https://doi.org/10.1038/nclimate2392.

Acknowledgments
We thank the reviewers for their
thorough and constructive comments,
which significantly enabled us to
improve the quality of this manuscript.
The data used are listed in the refer-
ences, tables, supplements and can be
requested for download contacting
lena.boysen@mpimet.mpg.de. This
study was funded by the German
Research Foundation’s priority pro-
gram DFG SPP 1689 on “Climate
Engineering – Risks, Challenges and
Opportunities?” and specifically the
CE-LAND project. T.M.L. was supported
by a Royal Society Wolfson Research
Merit Award. Data underlying the
analyses will be provided upon request
to lena.boysen@mpimet.mpg.de. The
authors declare that they have no
competing interests.

BOYSEN ET AL. THE LIMITS OF TERRESTRIAL CARBON REMOVAL 472

http://www.bonnchallenge.org/
https://doi.org/10.1038/ngeo1182
https://doi.org/10.1038/nclimate2353
https://doi.org/10.1111/j.1757-1707.2010.01088.x
https://doi.org/10.1016/j.techfore.2013.10.001
https://doi.org/10.1111/gcb.13355
https://doi.org/10.1111/j.1365-2486.2006.01305.x
https://doi.org/10.5194/esdd-5-443-2014
https://doi.org/10.5194/esdd-5-443-2014
https://doi.org/10.1088/1748-9326/11/9/095010
https://doi.org/10.1175/jcli-d-12-00623.1
https://doi.org/10.1146/annurev-earth-042711-105548
https://doi.org/10.1146/annurev-earth-042711-105548
https://doi.org/10.1016/s0961-9534(02)00103-4
https://doi.org/10.1126/science.1155365
https://doi.org/10.1126/science.355.6320.18
https://doi.org/10.1046/j.1365-2486.1999.00009.x
https://doi.org/10.1111/gcbb.12213
https://doi.org/10.1073/pnas.1317323111
https://doi.org/10.1016/j.jhydrol.2009.12.011
https://doi.org/10.1016/j.ecolecon.2014.07.018
http://www.fao.org/documents/card/en/c/db95327a-5936-4d01-b67d-7e55e532e8f5
https://doi.org/10.1073/pnas.1222477110
https://doi.org/10.1038/nclimate2392


Earth’s Future 10.1002/2016EF000469

Gerten, D., S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch (2004), Terrestrial vegetation and water balance—Hydrological evaluation
of a dynamic global vegetation model, J. Hydrol., 286, 249–270. https://doi.org/10.1016/j.jhydrol.2003.09.029.

Heck, V., D. Gerten, W. Lucht, and L. R. Boysen (2016), Is extensive terrestrial carbon dioxide removal a “green” form of geoengineering? A
global modelling study, Global Planet. Change, 137, 123–130. https://doi.org/10.1016/j.gloplacha.2015.12.008.

Heinke, J., S. Ostberg, S. Schaphoff, K. Frieler, C. Müller, D. Gerten, M. Meinshausen, and W. Lucht (2013), A new climate dataset for
systematic assessments of climate change impacts as a function of global warming, Geosci. Model Dev., 6, 1689–1703. https://doi.org/
10.5194/gmd-6-1689-2013.

Hiç, C., P. Pradhan, D. Rybski, and J. P. Kropp (2016), Food surplus and its climate burdens, Environ. Sci. Technol., 50, 4269–4277. https://doi
.org/10.1021/acs.est.5b05088.

Hickler, T., B. Smith, I. C. Prentice, K. Mjöfors, P. Miller, A. Arneth, and M. T. Sykes (2008), CO2 fertilization in temperate FACE
experiments not representative of boreal and tropical forests, Global Change Biol., 14, 1531–1542. https://doi.org/10.1111/j.1365-2486
.2008.01598.x.

Humpenöder, F., A. Popp, J. P. Dietrich, D. Klein, H. Lotze-Campen, M. Bonsch, B. L. Bodirsky, I. Weindl, M. Stevanovic, and C. Müller (2014),
Investigating afforestation and bioenergy CCS as climate change mitigation strategies, Environ. Res. Lett., 9, 064029. https://doi.org/10
.1088/1748-9326/9/6/064029.

International Union for Conservation of Nature (IUCN) (n.d.), Bonn challenge. [Available at http://www.bonnchallenge.org/.]
Jägermeyr, J., D. Gerten, J. Heinke, S. Schaphoff, M. Kummu, and W. Lucht (2015), Water savings potentials of irrigation systems: Global

simulation of processes and linkages, Hydrol. Earth Syst. Sci., 19, 3073–3091. https://doi.org/10.5194/hess-19-3073-2015.
Jeffery, L., C. Fyson, R. Alexander, J. Gütschow, M. Rocha, J. Cantzler, M. Schaeffer, B. Hare, M. Hagemann, N. Höhne, P. van Breevoort, K.

Blok (2015), Climate pledges will bring 2.7∘C of warming, potential for more action – Climate action trracker. Clim. Action Tracker.
[Available at http://climateactiontracker.org/news/253/Climate-pledges-will-bring-2.7C-of-warming-potential-for-more-action
.html.]

Kato, E., and Y. Yamagata (2014), BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative
carbon emissions, Earth’s Future, 2, 421–439. https://doi.org/10.1002/2014EF000249.

Klein, D., et al. (2013), The value of bioenergy in low stabilization scenarios: An assessment using REMIND-MAgPIE, Clim. Change, 123,
705–718. https://doi.org/10.1007/s10584-013-0940-z.
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