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Classification of natural flow regimes in Poland
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Abstract

Hydrological classifications are aimed at simplifying spatio-temporal
variability of flow regimes, and secondly, at supporting environmental flow
management. The objective of this study was to perform classification of
natural flow regimes in Poland using an inductive approach based on a
set of hydrological metrics (HMs), and to develop a model for prediction
of class membership based on a set of environmental variables (EVs). A
set of 147 gauges with relatively unmodified flow regimes was identified
and, for each gauge, values of 73 HMs and 28 EVs were computed. Clas-
sification was performed using k-means and k-medoids techniques (both
produced equivalent results), based on four principal components explain-
ing 73.4% of variability in HMs. Out of seven distinguished classes, four
(P1-P4) were spread across the Polish Plain, one (U5) was restricted to
uplands and two (M6 and M7) to mountains. The between-class differ-
ences in HMs and EVs were generally high, although some classes (P2,
P4, U5, M6, M7) were more easily distinguishable than others (P1, P3).
Mean predictive accuracy of the developed random forest model was 79%
which is high compared to other studies of this type. The lowest accuracies
(0 and 50%) were achieved by two classes with the lowest counts. Vari-
ables representing diverse aspects: hydrography, climate, topography and
geology had the highest importance in the RF model. Future research can
benefit from the database of selected gauges with computed HMs, EVs
and assigned classes, freely available through a long-lasting data reposi-
tory. With this study, the first step towards application of the Ecological
Limits of Hydrological Alteration (ELOHA) framework for environmental
flow management at regional scale has been achieved.

Keywords hydrologic classification, random forest, hydrologic metric, Indi-
cators of Hydrologic Alteration, catchment properties, ELOHA, environmental
flow

1 Introduction

River flow regimes vary in space and time on an extraordinary scale. The tem-
poral scale spans from minutes (flash floods) to years (supra-seasonal droughts),
while the spatial variability is controlled by catchment properties such as cli-
mate, topography, land cover, soils and geology. River scientists have for a long
time tried to simplify this huge spatio-temporal variability by performing hy-
drological classifications. First classifications were more descriptive in nature
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and focused on monthly variability, the number of peaks during an annual cycle
and their dominant feeding mechanism (Pardé, 1933; Lvovich, 1938). Further
developments (Gottschalk et al., 1979) also focused on flow genetic sources at
monthly scale, but reduced the subjectivity of the previous methods by intro-
ducing strict discrimination criteria.

On top of the natural factors, human influences such as water abstraction,
dams or diversions may be another driver shaping the flow regimes. In the
1990s the awareness rose that humans altered flow regimes on unprecedented
scale worldwide, which caused the extensive ecological degradation and the loss
of biodiversity (Poff et al., 1997). This has led to development of biologically-
relevant flow metrics, based on daily data and describing different aspects of flow
regime: magnitude, timing, duration, frequency and rate of change (Richter et
al., 1996). These new metrics, called Indicators of Hydrologic Alteration (THA),
together with their various offsprings (Olden, Poff, 2003) have since them been
increasingly used for deriving hydrological classifications. This new context of
classifications was partly driven by the new notion of environmental flows (Acre-
man, Dunbar, 2004) and the need to assign the natural flow regime class to
perturbed sites. Most notably, flow regime classification was designed as one
of key steps in the Ecological Limits for Hydrologic Alteration (ELOHA; Poff
et al., 2010) framework for assessing ecological effects of streamflow alteration
at regional scales.

The ELOHA framework directly embraces flow-ecology relationships that
are usually region-specific. Hence, it is of vital importance whether such rela-
tionships have been established for Polish rivers. The answer is mixed. On the
one hand, there are no studies, to my best knowledge, that quantify such rela-
tionships from the flow regime classes perspective. On the other hand, there is
a solid base to establish such relationships due to a wealth of studies reporting
ecological data on aquatic or river-dependent organisms in a hydrological con-
text. This kind of research in Poland included macrophytes (Jusik et al., 2015;
Szoszkiewicz et al., 2010), riparian wetlands (O$wit et al., 1996; Pustowska-
Tyszewska et al., 2014; Szewczyk et al., 2005), zooplankton (Czerniawski, Do-
magala, 2010), aquatic invertebrates (Dumnicka, Koszalka, 2005; Grzybkowska,
Witczak, 1990; Grzybkowska et al., 1996; Kajzer-Bonk et al., 2013; Skalski et al.,
2012; Wrzesinski, 2014; Wyzga et al., 2012), fish (Wyzga et al., 2009; Bischoff,
Wolter, 2001), birds (Kajtoch, Figarski, 2013; Kloskowski et al., 2015; Try-
janowski et al., 2009) and mammals (Wuczynski, Jakubiec, 2013). The majority
of these studies, though, dealt with the effects of high river flows. The character
of reported relationships between flow and ecology was diverse across different
studies: a positive role of floods on floodplain vegetation (Oswit et al., 1996),
fish diversity (Bischoff, Wolter, 2001) and aquatic warbler density (Tryjanowski
et al., 2009) was reported, but negative effects of floods on certain species, e.g.
chironymids (Grzybkowska et al., 1996), white stork (Tryjanowski et al., 2009)
were also identified. These studies were typically restricted to one or several
sites on a river or on a group of neighbouring rivers, which brings about a
question of their applicability on a wider scale, relevant for environmental flow
management. First attempts to integrate flow-ecology-relationships for differ-
ent groups of communities (wetland vegetation, fish) in a river-basin scale have
been made in near-pristine NE part of Poland (Piniewski et al., 2011; Piniewski
et al., 2014). More recently, the first national-scale study was performed, trying
to upscale flow-ecology relationships from several low-modified, representative



sites in Poland across the entire country for the sake of the environmental flow
method definition (as a part of future water management legislation) (KZGW,
2015). The developed method is based on the combination of a Hydrology-based
Environmental Flow Regime (HEFR; Opdyke et al., 2014) methodology and the
habitat simulation model MesoHABSIM (Parasiewicz, 2007). Hence, an exten-
sive natural flow regime classification, not performed in Poland to date, may
have a practical importance in further enhancements of this new method.

Natural flow regime classifications were performed over medium and large
scales in numerous locations worldwide. The typical examples include country-
or state-wide classifications: Australia (Kennard et al., 2010b), France (Snelder
et al., 2009), USA (McManamay et al., 2014; Archfield et al., 2014), New Ze-
land (Snelder, Booker, 2013) and Iran (Tavassoli et al., 2014). Less frequent
were classifications applied at geographical region level, usually within one coun-
try, e.g. Ozark—Ouachita Interior Highlands (Leasure et al., 2016), south-east
Queensland (Mackay et al., 2014), Washington (Liermann et al., 2012) and the
Mediterranean region (Oueslati et al., 2015) or large river basins, e.g. the Ebro
(Solans, Poff, 2013) or the Segura (Belmar et al., 2011). A natural extension of
numerous classifications is application of decision tree models for class member-
ship prediction based on landscape characteristics. For example, Classification
and Regression Trees (CART) have been used (Liermann et al., 2012; Kennard
et al., 2010b), as well as random forests (McManamay et al., 2014; Snelder,
Booker, 2013; Leasure et al., 2016; Mackay et al., 2014; Liermann et al., 2012)
and boosted regression trees (Snelder et al., 2009).

In this study the overarching methodological framework for hydrological
classifications developed by Olden et al. (2012) is followed. The most commonly
applied pathway of inductive reasoning is pursued, in which similarities among
rivers are characterised according to a set of diagnostic hydrological metrics
that vary spatially across the landscape. In contrast, deductive approaches use
indirect environmental surrogates for hydrology to establish flow regime clas-
sifications. Inductive approach consists of several steps (Olden et al., 2012):
(1) acquisition and evaluation of hydrological data; (2) selection of hydrological
metrics; (3) computation of hydrological metrics; (4) conducting the hydrologi-
cal classification and (5) interpretation and (optionally) spatial modelling of the
developed classification.

The objective of this study is to perform a hydrological classification of
natural streamflow regimes in Poland. More specifically, the purpose is to: (1)
identify a set of relatively unimpaired and representative flow gauges for the
area of Poland; (2) compute hydrological metrics for each gauge and identify
which metrics are the most influential; (3) compute environmental variables
characterising each gauged catchment and identify which variables are the most
influential; (4) perform flow regime classification using several statistical meth-
ods, select the final classification and interpret the results; (5) develop a decision
tree using the random forest technique in order to predict class membership for
ungauged streams.



2 Materials and Methods

2.1 Study area

Poland lies in Central and Eastern Europe with a total area of 311,888 km? (Fig.
1). It is predominantly a lowland country: its largest part belongs to the Cen-
tral European Plain and Eastern Baltic Plain (region names after Kondracki,
2002). These two regions were formed by glacial erosion in the Pleistocene ice
age. The southern part of this plain characerised by a flat relief was shaped by
older glaciations, while the northern part is full of lakes and low hills formed
by younger glaciations. Elevation gradient increases towards the south. The
Czech Massif (consisting of the Sudetes mountains and their foothills) stretches
along the south-western part of the Polish border, while in the eastern part of
the country the Central European Plain transforms first into the Polish Up-
land, and then into Carpathians and their Foothills in the south-eastern corner
(Fig. 1). Poland has a temperate climate with cold winters and warm sum-
mers, which is influenced by air masses from all directions: maritime air from
the west, cold polar air from Russia and Scandinavia, as well as sub-tropical
air from the Atlantic Ocean, Mediterranean, and Black Sea. Land cover (as-
sessed using CORINE Land Cover 2006) is predominantly agriculture (63%)
and forests (32%).

The complex interplay of climatic and physiographic factors has a direct
effect on streamflow of Poland’s rivers. The classic work of Dynowska (1971)
reported five types of flow regimes occurring in Poland (Supplementary Material
Figure S1) that can be distinguished by simple rules (3.4 - the highest of the
mean March and April flows; Qs 7,8 - the highest of the mean June, July and
August flows; Qmean - mean annual flow):

1. Weak nival (Q3,4 < 1.3 - Quean);

2. Strong nival (@34 > 1.8 Qmean);

3. Moderate nival (Q3.4 € [1.3 - Qmean, 1.8 Qmean));

4. Nivo-pluvial (Q3.4 € [1.3* Qmean, 1.8 * Qmean] and Qg7.5 > 1.1 - Qmmean);
5. Pluvio-nival (Qs7.s € [1.3 - Qmean, 1.8 - Qmean])-

Hence, the classification scheme of Dynowska, 1971 is based on two parameters
referring exclusively to the time of occurrence (spring or summer) and stan-
dardized magnitude of peak monthly streamflow. The naming system suggests
that different classes are characterised by different origin of flood waters: nival
(snow melt) and pluvial (rain).

2.2 Streamflow data

In this study mean daily measured discharge data from the Institute of Me-
teorology and Water Management - National Research Institute (IMGW-PIB)
were used. Gauge selection process has to follow certain criteria that are fit-for-
purpose with respect to the study objective. In our case the most important
criteria were: (1) good geographical coverage taking into account spatial cli-
matic and physiographic variability; (2) good temporal record availability and



(3) the minimum level of human disturbance manifested by nearly unimpaired
flow regime. The temporal window for all analyses was set to the 30-year period
1984-2013. The minimum record availability was set to 80% (24 years). This
is much more than the threshold of 15 years and the minimum overlap across
records of 50% recommended by Kennard et al. (2010b), so the uncertainty of
this classification originating from different lengths of records and data overlap
should not be high.

For assessing disturbance level previous experience from large-scale hydro-
logical modelling of natural streamflow in Poland was used (Piniewski et al.,
submitted), in which a benchmark catchment dataset was constructed. First,
gauges with catchment area of more than 10,000 km? were excluded, as at this
scale flow alteration is almost unavoidable (Leasure et al., 2016). For the remain-
ing gauges, a wide array of GIS layers related to water management and land
cover was collected. All catchments containing reservoirs with capacity larger
than 5 million m® were excluded, while for all remaining catchments the relative
importance of existing small reservoirs with respect to the mean flow was as-
sessed on the case-by-case basis. Catchments containing cities with population
above 200,000 inhabitants were all excluded. Only one catchment with popu-
lation above 100,000 inhabitants (Kielce) was present but its relative impact
on streamflow was assessed as low due to large catchment size. Other reasons
for exclusion were: presence of major water abstractions or point sources, cross-
basin water transfers, mining and large amount of fish ponds. In the next step,
all streamflow hydrographs were screened and in case of dubious patterns they
were compared to the hydrographs from the nearby catchments. In such cases,
selected hydrological metrics that are sensitive to some specific types of flow al-
teration were calculated and gauges that were clear outliers were excluded. After
performing all these analyses a set of 147 gauges shown in Figure 1 and listed
in the Supplementary Material Table S1 was identified. Geographical coverage
is good, albeit some regions known for their lower anthropogenic pressure (e.g.
north-eastern Poland) are better represented than others. The minimum, mean
and maximum catchment area was equal to 6, 856 and 6800 km?, respectively.

The missing records were handled in the following way. The gaps shorter than
30 days (extremely rare) were filled in by interpolation. Whenever there was a
gap longer than 30 days, data from the whole year were being removed. 73%
of gauges had the complete data record, while 12% had only one year missing.
For 16 out of 30 years flow data availability was above 99% of the whole gauge
data set, while the lowest availability was achieved in 2013 with 87% of active
records. It is acknowledged that some level of anthropogenic flow alteration is
still present in most of selected catchments, however the work done represents
our best efforts to select the subset of least human-impacted gauges.

2.3 Hydrological metrics

Due to a general ecological rationale of this classification, a suite of hydrological
metrics (HMs) that describe the totality of the flow regime was selected (Olden
et al., 2012)). The Time Series Analysis module of the River Analysis Package
(Marsh, 2004) was used to calculate the majority (70 of 73) of the metrics (Table
1). Scale dependence was removed by standardizing flow data with respect to
mean annual flow. The only exception were three area-specific runoff metrics
(Masr, Med_MinAsr and Med_MaxAsr), which refer to the mean, median of the



minimum and median of the maximum annual flows, respectively, divided by
the catchment area. Metrics accounted for magnitude and variability of average
and extreme flows, frequency and duration of high and low pulses, rate and
frequency of flow changes and timing of extreme and seasonal flows.

2.4 Environmental variables

Environmental variables (EVs) include climatic and physiographic catchment
descriptors that are expected to be correlated with some of the HMs. A wide
range of EVs (Table 2) was selected representing different categories such as the
size, geography, climate, topography, geology, soil, land cover and hydrography.
Selection was a trade-off between a review of studies that also used EVs for sim-
ilar purposes (Kennard et al., 2010b; Liermann et al., 2012; McManamay et al.,
2014; Snelder et al., 2009; Snelder, Booker, 2013; Leasure et al., 2016; Mackay
et al., 2014) and the availability of respective GIS data in Poland (Table 2). In
order to compute these characteristics for each of 147 gauges, first each gauge
was associated with its upstream catchment. Next, the gridded characteristics
(climate and topography) were calculated for each catchment as the statistics
(mean, minimum or maximum) of intersecting grid cells, while vector charac-
teristics (geology, soil, land cover and hydrography) were calculated based on
intersection of respective layers within catchment boundaries and performing
spatial summaries.

2.5 Flow regime classification approach
2.5.1 Ordination analysis

Due to high redundancy within the HM dataset, it is not recommended to
use all metrics for classification. In this study the Principal Component Anal-
ysis (PCA) was performed on the whole set of HMs in order to minimize their
multi-colinearity by identifying a parsimonious sub-set of non-correlated syn-
thetic indices (principal components, PCs) that represent several dimensions
of hydrological variability. The number of non-trivial components (those with
highest factor loadings) was determined using the broken stick rule. Five HMS
having the highest correlation with selected PCs were used for interpretation of
the synthetic indices. Projection of cases on two-dimensional factor plain was
done in order to further interpret the results.

2.5.2 Cluster analysis

The statistical techniques used for organising rivers into similar classes are nu-
merous and vary in the output (Olden et al., 2012). The most commonly applied
hard clustering methods assume that gauges can be divided into non-overlapping
clusters with well-defined boundaries. Two main sub-types of hard clustering are
(agglomerative) hierarchical and partitional clustering methods. The first group
is based on a bottom-up approach in which each gauge starts in its own cluster,
and pairs of clusters are merged upon moving up the hierarchy. The latter group
seeks to identify clusters of equal distinction. Partitional clustering, on the other
hand, attempts to directly decompose the data set into a set of disjoint clusters,
each of which is characterised by a central vector. Finally, in soft clustering



techniques, stream gauges can belong to multiple classes with a certain degree
of membership.

In this study we applied two partitional methods: k-means and k-medoids.
The common feature of these two techniques is that they both divide N ob-
servations with P dimensions (variables) into k clusters (pre-defined value) so
that the sum of distances between observations and the points designated as
cluster centres is minimised. In the k-means technique, the cluster centre is the
mean of observations in the cluster and the distance measure is calculated as the
within-cluster sum of squares. In the k-medoids algorithm, the cluster centre is
one of its members, called a medoid. The k-medoids technique is known to be
more robust to outlier data than the k-means.

Both k-means and k-medoids were run for different values of k between 2 and
15. In order to overcome the problem of finding the local minimum, 40 random
starting cluster configurations were used for each k and the best solution (for
each k) was being retained. As in the study of Snelder, Booker (2013), for k-
means, the optimum number of clusters was selected based on analysing the
plot of k values against the percent of variation (ratio of within-cluster sum of
squares for a given k to the whole-dataset sum of squares). This value decreases
with increasing k and the candidate optimal point is the one for which the rate of
decrease goes down. For k-medoids partitioning, the optimal number of clusters
was the one with the highest mean silhouette value, s (Kaufman, Rousseeuw,
1990). The higher s, the better cluster assignment of a given observation. If s is
close to 0, it means that the observation falls in between two different clusters.

2.6 Random forest

A random forest (RF) classification tree was used as an empirical model of the
class membership prediction as a function of EVs. The RF consists of a collec-
tion of simple CART-type tree predictors, each capable of associating a specified
set of independent predictor values with one of the categories present in the de-
pendent variable. Multiple trees built using random subsets of the data are then
combined to produce one prediction for each observation. For each observation,
the class with the highest proportion of trees voting for membership in this class
wins. The advantage of RF's over traditional approaches is an increased classifi-
cation accuracy and robust approaches to estimating variable importance based
on decrease in classification accuracy caused by random permutations of each
variable (Breiman, 2001).

In order to select variables to be used as potential predictors, the PCA was
first performed on the set of EVs from Table 2 using the same approach as
described in section 2.5.1 for HMs. The EVs representing different categories
(Table 2) and having highest correlation with four first PCs were selected. The
optimal size of the subset of predictor variables was defined as vk, where k is the
number of predictors. The maximum level and number of nodes of an individual
tree were set to 8 and 30, respectively. The maximum allowed number of trees
to grow was set to 200. The percentage of sample used for training was 65%,
while the remaining 35% were used to calculate mis-classification rates in cross-
validation procedure. Another measure of classification quality was Cohen’s k
coeflicient of agreement assessing the predictive performance of the classification
tree compared to random expectations.



3 Results

3.1 Flow regime classification

The first four PCs had eigenvalues greater than those determined by the cor-
responding broken stick distribution, explaining 73.5% of the variation in 73
hydrological variables. Table 3 specifies the variation explained by each PC and
up to five HMs with the highest loadings. Interpretation of high values of PCs
is also provided. In summary, each of the four PCs represents truly different
aspects of the flow regime: (1) low flows and predictability, (2) high and low
spells, (3) monthly flow magnitude and (4) contingency and high flows.

Both criteria used for optimal number of clusters selection (percent of vari-
ation for k-means algorithm and average silhouette for k-medoids algorithm)
suggested seven classes as the most appropriate number. Furthermore, both
techniques led to nearly the same classification, with only one out of 147 gauges
assigned to different classes, so they can be regarded as equivalent. For clarity,
in the further text, the output of k-means classification shall be used as the final
one, due to a better interpretability of the class assignment of the ambiguous
gauge.

Most classification algorithms force a grouped structure to what may other-
wise be a continuously varying distribution (Olden et al., 2012). Placement of
different class members in the four-dimensional ordination space (projections on
the PC1-PC2 and PC3-PC4 plains) shows that although a grouping structure
can be distinguished, the borders between some of the classes are vague (Fig.
2). The majority of points are located in the proximity of their respective clus-
ter centres, but each class has members whose location in the ordination space
suggests that assignment to another class could also be possible.

Figure 3 illustrates geographical location of seven natural flow regime classes
across Poland. The main geographical distinction can be made with respect to
prevailing location of class members to either plain (P), upland (U) or mountain
(M) areas. For this reason, first four classes were named P1-P4, the fifth class was
named U5 and the last two classes were named M6-M7. While classes P2, P4, U5,
M6 and M7 (the last one, only when elevation is included) can be distinguished
from each other basing solely on geographical location, there are two classes (P1
and P3) that are widely scattered around the Polish Plain. This suggests that
other factors than location play an important role. Silhouette values (Fig. 3) are
usually the highest in the proximity of class geographic centres, which suggests
that some of the gauges located far from the centres may be mis-classified. This
effect is particularly strong for classes P1 and P4.

Table 4 presents the most important features distinguishing hydrological
classes, including already discussed location (cf. Fig. 3), their monthly flow
regime (Fig. 4), other hydrological metrics and environmental variables (Fig.
5). The only common feature of all monthly hydrographs across seven classes is
that the mean monthly flow is the highest in March or April, and in the next
months it gradually decreases until the end of summer/beginning of autumn (all
classes apart from M7) or winter (M7). Otherwise, classes differ with respect to
the magnitude and variability of monthly flows, but some classes (e.g. P1 and
U5) show similar temporal patterns, which suggests that other factors might
play a distinguishing role.

In most cases, between-group variability in HMs exceeds within-group vari-



ability (cf. Fig. 5 showing 10 selected HMs with high correlations with first four
PCs). In consequence, it is often possible to distinguish a class using just one
or more HMs, as presented in Table 4. For example, a gradient can be observed
for some HMs when analysed across four ”plain stream” classes (P1-P4): base-
flow index, low flow magnitude and flow predictability decrease when moving
from class P1 to P4, while high flow magnitude and daily coefficient of vari-
ation increase when moving in the same direction. This is also well reflected
in the seasonal stability of flow regimes depicted in Figure 4, i.e. standardised
monthly flow values are the closest to the value of 1 for the class P1, and they
keep diverging from 1 for classes P2 through P4. The size of the boxes and
whiskers representing inter-annual variability, also grows from P1 to P4 (Fig.
4). Classes P1 and U5 are characterised by similar monthly flow regime and are
not distinguishable by any of the aforementioned HMs, but class P1 has con-
siderably higher mean annual specific runoff (Masr) and lower variability in rise
rate (VarAnnMRateRise) than class U5 (Fig. 5). Two classes of mountainous
streams, M6 and M7, also have a lot of similar hydrological features, but their
main discriminating factors are the median Julian date of the annual minimum
flow occurrence (JDMinMed) and Masr (both much higher values for M7 than
MS6).

Since this classification was based on PCs derived from the full set of HMs, it
is natural to expect some variability in HMs across different classes. However, it
is less obvious whether EVs allow for discriminating hydrological classes. Figure
5 also includes 10 EVs (those representing different environmental aspects and
having high correlations with first four PCs derived from EV-based PCA), while
Table 4 contains an indication of EVs that allow for discriminating certain
classes.

The easiest way to distinguish classes M6 and M7 is by elevation, slope
or precipitation. All EVs representing these categories differ fundamentally be-
tween these two classes and the remaining five. Summer (TMP_JJA) and winter
temperature (TMP_DJF) as well as percentage of agricultural land (LU_agr) al-
low to discriminate between M6 and M7 reasonably well. In contrast, class U5
can be distinguished from others based on geological properties: presence of
loess or limestone bedrock. Class P2 has significantly higher percentage of lakes
(HYD lake) and wetlands (HYD_wet) than any other class. Among other fac-
tors, class P4 can be discriminated by relatively low effective infiltration into
the uppermost aquifer (GEO_inf), which is connected to low summer precipi-
tation (PCP_JJA) and high percentage of till (i.e. predominantly impermeable)
bedrock (GEO_till).

In contrast, there is no single EV that makes it possible to discriminate
classes P1 and P3. In fact, the most abundant class P3 seems to be the most
problematic class in this respect, as it cannot be distinguished by location (Fig.
3), any single HM and any single EV (Table 4). Its monthly flow regime is ”in
between” stable classes P1-P2 and highly variable class P4 (Fig. 4). In fact, this
difficulty with class P3 should not be surprising in the light of Figure 2 showing
that P3 is situated directly in the middle of PC1-PC2 space, neighbouring with
all classes apart from M7. Hence, simple rules cannot work in this case and more
advanced approaches are needed to predict class membership.



3.2 Prediction of class membership

Seventeen EVs selected for the random forest model are marked with * symbol
in Table 2. Thus, the number of variables in a single tree was set to V17 ~ 4.
Predictive accuracy of the RF model on the training dataset (N = 95) was
equal to 94%. Six classes had the accuracy above 93% and only M7 class (with
only four counts for the training dataset) had the accuracy of 50%. Predictor
importance analysis (cf. Table 2 for variable definitions) showed that stream
density (HYD_str) had the highest importance among selected 17 EVs, followed
by summer temperature (TMP_JJA), mean slope (TOP_slp), effective infiltra-
tion (GEO.inf) and percentage of wetlands (HYD_wet). The importance of these
EVs was higher than 90%. Two EVs with the lowest importance were: limestone
and loess bedrock percentage (GEO_lim and GEO_loess, with the accuracy of 45
and 53%, respectively). All remaining variables had the accuracy in the range
of 70-90%.

The RF model did not perform as well for the testing dataset as for the
training dataset (Fig. 6). Predictive accuracy was equal to 0.79 and Cohen’s k
coeflicient of agreement to 0.73. The accuracy was highly variable across classes.
For classes P1-P4 it ranged between 0.67 and 0.86, for class U5 it was equal to
zero, while for classes M6 and M7 to 1 and 0.5, respectively. The results for
both U5 and M7 should be treated with caution, as they are based on only 2
cases. It can be observed that even though the most abundant class P3 had a
high accuracy (0.86), it was the only incorrectly allocated class for P1, P2 and
P4 (Fig. 6). The mean silhouette value for gauges with correctly predicted class
was higher than the corresponding value for gauges with incorrectly allocated
classes (0.3 vs. 0.21 for training and 0.36 vs. 0.31 for validation). This suggests
that incorrect predictions happen more likely for streams whose assignment to
hydrological class is more uncertain.

4 Discussion

Classification of natural flow regimes in Poland performed in this study is, to our
knowledge, the first such classification in Central-Eastern Europe. Its outcome
differs substantially from the classification of Polish river regimes of Dynowska
(1971), mainly due to differences in methodology (a large set of HMs repre-
senting the totality of the daily flow regime vs. an approach based on flood
seasonality and interpretation in terms of dominant feeding mechanism) and in-
put data. Nevertheless, some similarities exist, e.g. the weak and moderate nival
classes partly correspond to the P2 and P1 classes, respectively (Supplementary
Material Figure S1). The pluvio-nival regime of Dynowska (1971) partly over-
lays with the M7 class, which is associated with the highest elevation. The main
feature distinguishing two approaches is that our classification shows that some
regions are inhomogeneous and there can be three-four different classes close to
each other (e.g. north-east or south-east of Poland; cf. Fig. 3), like in the study
of Kennard et al. (2010b). Such a short-distance variability is most likely con-
trolled by other factors than climatic ones. It is noteworthy that a wide array
of different EVs appeared to have a strong influence on hydrological properties
and the derived classification (Fig. 5B), which was also reflected by the fact that
top five EVs with the highest variable importance in the RF model represented
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hydrography, climate, topography and geology. The fact that climate was not a
single dominating factor like in some other classifications can be explained by
the regional (i.e. not continental) scale of this application (McManamay et al.,
2014).

Predictive accuracy of the developed random forest (79%) was relatively
high compared to other similar studies: 73% (Leasure et al., 2016), 75% (Lier-
mann et al., 2012), 63% (Snelder et al., 2009), 67% for the best configuration
(Snelder, Booker, 2013) and 76% for the best configuration (McManamay et
al., 2014). In contrast to Snelder et al. (2009) who reported that higher class
predictability was achieved for more hydrologically distinctive classes and those
with strong relationships between HMs and EVs, it was found in this study,
similar to Liermann et al. (2012), that low accuracy was exclusively associated
with classes that had very few members (U5 and M7). These two classes had
highly distinctive regimes and catchment properties, in contrast to class P3 that
had a transitional (and not very distinctive) regime and properties (cf. Table
4), but the most abundant P3 had a much higher predictive accuracy than the
least abundant U5 and M7. This suggests that in the future updates of the RF
model, its error rate could be decreased by increasing gauge counts in classes
U5 and M7.

A direct application of the results of this study depends on two aspects,
(1) whether a gauged or ungauged river is considered; (2) whether it has a
modified or unmodified flow regime. Firstly, for unmodified, gauged, sites having
a sufficient amount of continuous flow records (here, a minimum of 25 years
was used; a shorter time series can also be used, but it would increase the
uncertainty, cf. Kennard et al., 2010a, and below the catchment area of 10,000
km?, flow regime classes can be attributed on the basis of direct calculations
of hydrological indices. Secondly, for gauged sites that are suspected to have a
modified flow regime, two approaches can be applied simultaneously: flow regime
classification and prediction based on EVs. If the same class is derived using both
approaches, it may be a hint that the flow modification is not so strong, whereas
the opposite case would be a partial evidence for a considerable modification.
Thirdly, for ungauged sites, regardless whether modified or not, only the RF
model can be applied in order to predict the natural flow regime class. This
yields a higher uncertainty than assigning a class based on hydrological indices,
but is still the best available option.

In the context of environmental flow management, a direct application is
somewhat limited due to the fact that establishing environmental flow standards
should not rely solely on hydrological classes, but also on hydromorphology and
flow-ecology relationships (Poff et al., 2010). Although none of these issues was
addressed in this paper, the developed class membership prediction model can be
applied across the entire network of Polish rivers, generating a high-resolution,
national map of flow regime types, that would be a valuable asset in itself (cf.
Snelder et al., 2009; Liermann et al., 2012; Leasure et al., 2016). If, for example,
published evidence on flow-ecology relationships in Polish rivers is collated into
a comprehensive database (such as the one of McManamay et al., 2013, for the
South Atlantic Region of the U.S.), these relationships could then be stratified by
flow regime classes and statistically analysed. Another opportunity arises from
future enhancements of the newly developed method for environmental flow
assessment in Poland (KZGW, 2015). Ultimately, environmental flow standards
used in national water legislation could also be class-dependent.
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In the view of ongoing climate change that is projected to considerably af-
fect natural streamflow in Poland (Piniewski et al., 2014), future work should
also attempt to understand how the designed classes could change (e.g. shift
between existing classes, new classes, etc.) in response to this phenomenon. To
this end, different approaches can be used: e.g. driving a class membership pre-
diction model with downscaled climate projections data (Dhungel et al., 2016)
or performing independent classifications for current and future flows simulated
by a hydrological model (Zhang et al., 2015).

Finally, in order to increase the availability of the results of this study, the
spreadsheet database of reference Polish gauges storing computed hydrological
metrics, environmental variables, principal components and assigned flow regime
classes (Supplementary Table S1) is also available in a free, long-term research
data repository (DOI: 10.4121 /uuid:3cd28c08-8¢30-4686-8f9-d1ech0a5a29c). Po-
tential uses of this unique dataset include: (1) creation of one’s own classification,
e.g. using other techniques or focused on specific aspects of the flow regime, (2)
examining relationships between catchment properties and hydrological metrics,
and (3) development of new predictive models for class membership.
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Table 1: List of hydrological metrics used in this study (adapted from Marsh,
2004).

Group?  Code Definition?

1 Masr Mean annual specific runoff®
Medl1Mean Median of the November flow means
Med12Mean Median of the December flow means
Med0O1Mean Median of the January flow means
Med02Mean Median of the February flow means
Med03Mean Median of the March flow means
Med0O4Mean Median of the April flow means
MedO5Mean Median of the May flow means
Med06Mean Median of the June flow means
Med07Mean Median of the July flow means
Med0O8Mean Median of the August flow means
Med09Mean Median of the September flow means
Med10Mean Median of the October flow means
CV1lMean Variability of the November flow means
CV12Mean Variability of the December flow means
CVO01Mean Variability of the January flow means
CV02Mean Variability of the February flow means
CV03Mean Variability of the March flow means
CV04Mean Variability of the April low means
CV05Mean Variability of the May flow means
CV06Mean Variability of the June flow means
CVO07Mean Variability of the July flow means
CV08Mean Variability of the August flow means
CV09Mean Variability of the September flow means
CV10Mean Variability of the October flow means
Med Median of daily flows
cv Coefficient variation of daily flows
Skw Skewness of daily flows
Var Variability (range to median ratio) of daily flows
S_Lg Standard deviation of the log of daily flows
MedAnnBFI Median of all years Baseflow Index (calculated using Lyn-

Hollick digital filter)

VarAnnBFI Variability of all years Baseflow Index

2 Med_MinAsr Median of the minimum annual specific runoff®
Med_MaxAsr Median of the maximum annual specific runoff®
MedAnnMin Median of all years Minimum
MedAnnMax Median of all years Maximum
MedAnnP 10 Median of all years Percentile 10
MedAnnP 90 Median of all years Percentile 90
VarAnnMin Variability of all years Minimum
VarAnnMax Variability of all years Maximum
VarAnnP 10 Variability of all years Percentile 10
VarAnnP 90 Variability of all years Percentile 90
PS1YrARI Partial series 1 Yr ARI (Average Return Interval)
PS10YrARI Partial series 10 Yr ARI

3 MedAnnHSNum Median of all years Number of High Spell
MedAnnHSLong Median of all years Longest High Spell
MedAnnHSPeak Median of all years Mean of High Spell Peaks
MedAnnHSMeanDur Median of all years Mean Duration of High Spell
VarAnnHSNum Variability of all years Number of High Spell
VarAnnHSLong Variability of all years Longest High Spell
VarAnnHSPeak Variability of all years Mean of High Spell Peaks
VarAnnHSMeanDur Variability of all years Mean Duration of High Spell
MedAnnLSNum Median of all years Number of Low Spell
MedAnnLSLong Median of all years Longest Low Spell
MedAnnLSPeak Median of all years Mean of Low Spell troughs
MedAnnLSMeanDur Median of all years Mean Duration of Low Spell
VarAnnLSNum Variability of all years Number of Low Spell
VarAnnLSLong Variability of all years Longest Low Spell
VarAnnLSPeak Variability of all years Mean of Low Spell troughs
VarAnnLSMeanDur Variability of all years Mean Duration of Low Spell

4 MedAnnNumRise Median of all years Number of Rises
MedAnnMRateRise Median of all years Mean rate of Rise
MedAnnNumPFall Median of all years Number of Falls
MedAnnMRateFall Median of all years Mean rate of Fall
VarAnnNumRise Variability of all years Number of Rises
VarAnnMRateRise Variability of all years Mean rate of Rise
VarAnnNumFall Variability of all years Number of Falls

Continued on next page
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Table 1 — Continued from previous page

Group' Code Definition?
VarAnnMRateFall Variability of all years Mean rate of Fall

5 P_MDFM Predictability based on monthly mean daily flow
C_MDFM Constancy based on monthly mean daily flow
M_MDFM Contingency based on monthly mean daily flow
JDMaxMed Median of all years Julian dates of maximum flows
JDMinMed Median of all years Julian dates of minimum flows

Note: ! Code: 1 - Mean flow magnitude and variability; 2 - Extreme flow magnitude and
variability; 3 - Frequency and duration of high and low pulses; 4 - Rate and frequency of flow
changes; 5 - Timing of extreme and seasonal flows. 2 All variability metrics were calculated as
inter-percentile range divided by the median. 3 These metrics are expressed in m® - s™! - km™
and were calculated outside the River Analysis Package.

Table 2: Environmental variables description.

Code Indicator Category Source

AREA Upstream catchment area [km?] Size Calculations in
GIS

LOC_long* Longitude [decimal degrees] Geography Calculations in
GIS

LOC_ lat Latitude [decimal degrees] Geography Calculations in
GIS

LOC_coast™ Distance to coast [km] Geography Calculations in
GIS

PCP_ann Mean annual precipitation [mm] Climate CPLFD-GDPT5

PCP_DJF* Mean DJF precipitation [mm] Climate CPLFD-GDPT5

PCP_JJA* Mean JJA precipitation [mm] Climate CPLFD-GDPT5

TMP_ann Mean annual temperature [deg. C] Climate CPLFD-GDPT5

TMP_DJF* Mean DJF temperature [deg. C] Climate CPLFD-GDPT5

TMP_JJA* Mean JJA temperature [deg. C] Climate CPLFD-GDPT5

TOP _elev* Mean elevation [m a.s.l.] Topography CODGIK

TOP_slp* Mean catchment slope [-] Topography CODGIiK

GEO_inf* Mean annual effective infiltration  Geology PIG-PIB

into the uppermost aquifer [mm]

GEO_sand Percentage of sandy bedrock [-] Geology PIG-PIB

GEO_lime* Percentage of limestone bedrock [-] Geology PIG-PIB

GEO_loess* Percentage of loess bedrock [-] Geology PIG-PIB

GEO_till* Percentage of till bedrock [-] Geology PIG-PIB

GEO_outsand  Percentage of sandr bedrock [-] Geology PIG-PIB

SOL_coar* Percentage of coarse-textured soils [-]  Soil IUNG-PIB

SOL._fin Percentage of fine-textured soils [-] Soil IUNG-PIB

SOL_org Percentage of organic soils [-] Soil IUNG-PIB

LU_for* Percentage of forest land [-] Land cover Corine Land Cover
2006

LU_agr Percentage of agricultural land [-] Land cover Corine Land Cover
2006

HYD_str* Mean stream density [km/km?2)] Hydrography IMGW-PIB

HYD_lake* Percentage of lakes [-] Hydrography = IMGW-PIB

HYD_sink Percentage of sinks [-] Hydrography = IMGW-PIB

HYD_wet* Percentage of wetlands with water  Hydrography  KZGW

table depth above -0.5 m. [-]
Abbreviations: CPLFD-GDPT5: CHASE-PL Forcing Data - Gridded Daily Precipitation and
Temperature Dataset (Berezowski et al., 2016), CODGIK - Central Agency for Geodetic and
Cartographic Documentation (provider of the Digital Elevation Model); PIG-the effective
infiltration and geological units map); IUNG-PIB - Institute of Soil Science and Plant Cultivation
- National Research Institute (provider of the soil map); IMGW-PIB - Institute of Meteorology
and Water Management - National Research Institute (provider of the Map of Hydrographic
Division of Poland, MPHP); KZGW - National Water Management Authority (provider of the GIS
layer ” Groundwater-dependent land ecosystems”) . * symbol next to variable code denotes that
this variable has been selected for the random forest model
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Table 3: Interpretation of PCA results for hydrological metrics and environmen-

tal variables.

PCA Axis’  Metrics/variable name? Interpretation (of a high
value)
Hydrological metrics

PC1 (40.7) Med (0.97), P.MDFM (0.96), High values of low flows, base-
MedAnnBFI (0.95), S.Lg (- flow contribution and pre-
0.95), MedAnnP 10 (0.94) dictability

PC2 (17.3) MedAnnHSNum (0.81), High frequency and low du-
MedAnnL.SNum (0.72), ration of high and low spells,
MedAnnLSLong (-0.72), high mean specific runoff and
Masr  (0.7), Med02Mean low February flow
(-0.7)

PC3 (7.7)  Med01Mean (0.62), High December/January
Med0O5Mean (-0.61), flows, low May/June flows,
Med12Mean  (0.58), JD- early occurrence of minimum
MinMed (-0.58), Med0O6Mean flow
(-0.54)

PC4 (6.3) M_MDFM (0.62), High contingency, high April
Med04Mean (0.57), flows, high wvalues of high
MedAnnP 90 (0.52), flows, low variability in rise
VarAnnMRateRise (-0.53), rate and in high spell dura-
VarAnnHSLong (-0.57) tion

Environmental variables

PC1 (44.1) TOP_elevmean (0.97), High elevation and slopes,
PCP_JJA (0.97), high precipitation, low tem-
TOP _elevmax (0.97), perature
TOPslp (0.95), PCP_ann
(0.94)

PC2 (13.4) GEO.loess (0.64), LU_agr High percentage of loess
(0.63), LU for (-0.61), bedrock, high percentage
LOC_DistCoast (0.56), of agriculture (and low of
LOC_ Lat (-0.52) forest), high distance to coast

and low latitude

PC3 (8.4) TMP.DJF (-0.8), LOC Long Low winter and annual
(0.78), TMP_ann (-0.55) temperature, high longitude

(east)
PC4 (7.5)  GEOtill (0.63), SOL_coars (- High percentage of till

0.52)

bedrock and low percentage
of coarse-textured soils

! Percentage of variation in hydrological metrics explained by a given PC is shown in brackets. 2
Up to five metrics/variables with the highest absolute correlations (higher than 0.5) are given.
Correlation coefficients of a given metric with a respective PC are shown in brackets.
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Table 4: Descriptive characteristics of the distinguished flow regime classes.

Class  Monthly flow regime (cf. Other hydrological  Geography (cf. Environmental

Fig. X) metrics (cf. Fig. X) Fig. X) variables (cf.
Fig. X)

P1 Very stable regime High predictability Scattered across No single dis-
with a peak in March  (due to high contin-  northern and  tinguishing
and summer low flows; gency) eastern part of  feature
usually low inter-annual PL, with one
variability in all seasons homogeneous

part  clustered
close to the
coast

P2 Stable regime with a  High predictabil- Exclusively High percent-
peak in  March-April ity (due to high between 52.5 age of lakes
and summer low flows; contingency), low and 54 latitude and wetlands
usually low inter-annual  magnitude of 10- N, although not
variability in all seasons year flood, low mean  as close to the

fall and rise rate coast as many
gauges in class
P1

P3 Variable regime with High value of PC3; Scattered across No single dis-
a peak in March and no single metric the whole  tinguishing
summer low flows; clearly distinguishes  country with feature
usually medium inter- this class (the  exception of
annual variability with most appropriate is  the far south
occasionally higher  Predictability) (mountains)
variability in summer and far north

(coast); highest
frequency in the
NE quarter

P4 Highly wvariable regime Low predictability, Predominantly Low summer
with a peak in March low specific runoff in the centre precipitation,
and low flows in summer of PL, south of low catch-
and autumn; high inter- latitude 53 N ment slopes,
annual variability in all low percent-
seasons (slightly lower in age of forests,
spring) hardly no

wetlands

U5 Very stable regime with Low periodicity, low Central part of  High percent-
a peak in March and low high flow magnitude  the southern PL age of loess
flows in summer and au- (with exception  and limestone
tumn; low inter-annual of the far south bedrock, low
variability in all sea- - mountains) percentage of
sons apart from summer forests
(medium)

M6 Variable regime with a  High daily flow CV, South of lat- Max. eleva-
peak in March-April and high magnitude of itude 51 N, tion (lower
low flows in late summer 10-year flood mountains and than in M7
and autumn; medium foothills and higher
inter-annual variability than in re-
in winter and spring and maining
high in summer and au- classes)
tumn

M7 Variable regime with a  High specific runoff, = South of lat- High
peak in April and low late minimum and itude 51 N, mean/max.
flows in autumn and maximum flow oc-  highest moun- elevation,
winter; low inter-annual  currence tain ranges summer pre-
variability in all sea- cipitation,
sons apart from summer low summer
(medium) temperature
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Figure 1: Study area and location of selected flow gauging stations.
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Figure 2: Projection of the cases (gauges) on 2D factor plain of two first PCs
with highest loadings. Percentage of variation in hydrological metrics explained
by a given PC is shown in brackets.
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Figure 3: Spatial distribution of flow regime classes in Poland. Class counts are
given in the main legend in brackets. Dot diameter in small maps is proportional
to the silhouette value: the greater this value, the better given gauge is classified.
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Figure 4: Standardized mean monthly flows for seven distinguished classes. Box
plot variability for each month was calculated across class members.
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Figure 5: Box plots of selected hydrological metrics (A) and environmental vari-
ables (B) categorised by flow regime classes.

Number of gauges allocated
to different classes

Class

Figure 6: Predictive accuracy of the random forest model across different flow
regime classes. Black and white bars refer to the number of correctly and in-
correctly allocated classes, respectively. Red labels next to white bars refer to
incorrectly allocated class names and the numbers above each bar denote mean
accuracy for each class.
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