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ABSTRACT 23 

Quantifying the influence of weather on yield variability is decisive for agricultural 24 

management under current and future climate anomalies. We extended an existing semi-25 

empirical modeling scheme that allows for such quantification. Yield anomalies, measured as 26 

inter-annual differences, were modeled for maize, soybeans and wheat in the US and 32 other 27 

main producer countries. We used two yield data sets, one derived from reported yields and 28 

the other from a global yield data set deduced from remote sensing. We assessed the capacity 29 

of the model to forecast yields within the growing season. 30 

In the US, our model can explain at least two thirds (63-81%) of observed yield anomalies. Its 31 

out-of-sample performance (34-55%) suggests a robust yield projection capacity when 32 

applied to unknown weather. Out-of-sample performance is lower when using remote-sensing 33 

derived yield data. The share of weather-driven yield fluctuation varies spatially, and 34 

estimated coefficients agree with expectations. Globally, the explained variance in yield 35 

anomalies based on the remote-sensing data set is similar to the US (71-84%). But the out-of-36 

sample performance is lower (15-42%). The performance discrepancy is likely due to 37 

shortcomings of the remote-sensing yield data since it diminishes when using reported yield 38 

anomalies instead. Our model allows for robust forecasting of yields up to two months before 39 

harvest for several main producer countries. An additional experiment suggests moderate 40 

yield losses under mean warming, assuming no major changes in temperature extremes. 41 

We conclude that our model can detect weather influences on yield anomalies and project 42 

yields with unknown weather. It requires only monthly input data and has a low 43 

computational demand. Its within-season yield forecasting capacity provides a basis for 44 

practical applications like local adaptation planning. Our study underlines high-quality yield 45 

monitoring and statistics as critical prerequisites to guide adaptation under climate change. 46 

 47 
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INTRODUCTION 48 

 49 

Strongly varying crop yields can endanger farmers' livelihoods and can lead to national 50 

production shortages. Yields are determined by weather and agronomic management 51 

influences as well as by stress factors like pests or diseases. For calculating crop yields under 52 

current or a changing climate it is important to quantify these influences. Therefore we devise 53 

a semi-empirical modeling scheme which allows for quantifying weather influences with high 54 

explained variance. We use two different yield data sets with different qualities, one based on 55 

reported yield data and the other on remote sensing combined with yield statistics. We show 56 

the ability of the model to predict yield anomalies up to two months before harvest. 57 

 58 

Two approaches are widely used to simulate crop yields (Di Paola et al., 2016, Jones et al., 59 

2016, Lobell &  Burke, 2010). Process-based models simulate physiological processes like 60 

carbon assimilation to calculate yields. Statistical models correlate yields with yield-61 

determining factors to elicit contributions of individual factors. Both approaches, and hybrids 62 

between them, can aid in understanding and forecasting weather-related yield variability (Liu 63 

et al., 2016). Their application to conditions (e.g. climate) out of the training scope is a 64 

contested area, however (Lobell &  Burke, 2010, Rötter et al., 2011).  65 

Here we extend an existing statistical framework for modeling inter-annual yield variability. 66 

The approach is “semi”-empirical as known physiological influences are reflected in the 67 

exogenous variables, following the naming of Rahmstorf (2007). The concept was introduced 68 

in Wechsung et al. (2008) and later successfully applied to German maize and winter wheat 69 

yields (Gornott &  Wechsung, 2016). We extend the model by adding temperature-stress 70 

related variables, using more crops, applying it to 34 countries and providing two application 71 

cases: forecasting yield anomalies up to two months before harvest and gauging of yield 72 

losses under moderately increased temperatures. 73 

We analyze four staple crops: maize, wheat (spring and winter separately) and soybeans, 74 

which cover approx. 34% of the global harvested area (Portmann et al., 2010). We use 75 

reported crop yield data in seven countries and a global gridded yield data set that downscaled 76 

reported yield statistics utilizing satellite data (here used for 33 countries). Subnational yield 77 

data are needed for quantifying spatial differences of yield influences. Though these data are 78 

increasingly available, there are still data-scarce regions especially in developing countries. 79 

The global and publicly available data set supplied by Iizumi et al. (2013b) might serve as 80 

alternative. The dataset uses annual remote sensing information to downscale national and 81 
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subnational yield statistics. The algorithms utilized therein to separate reflectance data 82 

spatially and temporally into crops or vegetation necessarily introduce uncertainty, which 83 

increases with the share of other vegetation types in grid cells. Despite these caveats we test 84 

the potential of this global gridded data set for quantifying yield anomalies, as it may be 85 

helpful when subnational yield data are not accessible.  86 

 87 

We apply a two-step procedure: the model performance is first analyzed in depth in the US 88 

and then, second, extended to all main producing nations. We start with US yields, since the 89 

high-quality yield data base curated by the US Department of Agriculture (USDA, 2015) 90 

allows for rigorous model evaluation. The model is applied in parallel to the USDA and the 91 

Iizumi et al. (2013b) data. The US are one of the largest crop producers (FAO, 2016) and 92 

have highly diverse climate and soils. We employ one model specification based on selection 93 

results by Gornott and  Wechsung (2016), but test its sensitivity regarding variations in yield-94 

influencing factors and transformation of variables. Additionally, we include penalty terms 95 

for heat and frost.  96 

 97 

Instead of absolute yields we consider yield anomalies to remove trends, systematic biases 98 

and time-invariant farm- or county-specific influencing factors. Normalizing anomalies of 99 

yield and exogenous variables by the logarithm allows a comparison of influences across 100 

scales and variables. Only weather variables are included in the model, explicitly neglecting 101 

agronomic influences like acreage, shifting land use or fertilizer application on inter-annual 102 

yield fluctuation (Mueller et al., 2012, Ray et al., 2015). But these data do not increase model 103 

performance in Germany (Conradt et al., 2016) and are difficult to obtain as time series on a 104 

spatially explicit level with large spatial coverage; they would therefore enlarge uncertainty. 105 

We only use monthly weather values which are deemed to provide more reliable information 106 

than daily weather data from models due to aggregation effects (Kilsby et al., 2007, Lobell, 107 

2013, Maurer et al., 2010). This also avoids the use of downscaling methods when using 108 

climate model outputs (Glotter et al., 2014, Iizumi et al., 2012). 109 
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MATERIALS AND METHODS 110 

 111 

Input data 112 

 113 

Yield data 114 

We employed two sets of yield data for maize, soybeans, spring and winter wheat (all in t/ha). 115 

For the US we used either USDA (USDA, 2015) yields at county level, from 1980 to 2010, or 116 

gridded yield data from Iizumi et al. (2013b) from 1982 to 2006 (henceforth “GGYD” for 117 

“Gridded Global Yield Data”). Both were re-gridded to 0.5° spatial resolution (about 50 km at 118 

the equator) to match with the resolution of the weather and land-use data. USDA county 119 

yields were assigned to each 0.5° grid cell that completely fall within a county or intersect 120 

with its boundaries; yields for grid cells intersecting with several counties were averaged. 121 

GGYD yields are provided at 1.125° resolution and were interpolated to 0.5° with second 122 

order conservative remapping (preserving fluxes and spatial gradients). Additional county-123 

level yields for Germany, Russia, Tanzania, Australia, Brazil and Burkina Faso (from the 124 

respective statistical offices) allowed for further model and yield data quality assessments. 125 

National yield time series from FAO (FAO, 2016) were used for comparison of aggregated 126 

yield time series. We considered those countries as main producers (Figure 1, SI Table S3) 127 

which, sorted by total production, together accounted for more than 90% of world production 128 

for a specific crop between 2000 and 2011 (FAO, 2016). 129 

 130 

Weather data 131 

We used AgMERRA climate data (Ruane et al., 2015) at 0.5° spatial and monthly temporal 132 

resolution, providing minimum, maximum and average temperature, precipitation and 133 

shortwave radiation from 1980 to 2010. AgMERRA has been designed for use in agricultural 134 

research focusing on reproducing both average and extreme values. 135 

 136 

Growing season and land-use data 137 

We utilized static MIRCA2000 crop- and irrigation-specific land-use fractions around 2000 138 

on 0.5° spatial resolution (Portmann et al., 2010). Growing seasons were also taken from 139 

MIRCA2000, using the sub-crop with the largest harvested area. Winter and spring wheat 140 

were distinguished by their growing season length: eight or more months were classified as 141 

winter wheat, four months or less as spring wheat. Remaining ambiguities were resolved by 142 

considering the sub-crop with the maximum (minimum) growing season length as winter 143 
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(spring) wheat. Soybeans have a prolonged flowering period (Ritchie et al., 1993) at the 144 

transition between vegetative and reproductive season. Although it could be physiologically 145 

reasonable, we restrained from reflecting this period in a separate set of exogenous variables 146 

to avoid collinearities and rank deficiencies (many variables for few data). 147 

 148 

 149 

Regression scheme 150 

 151 

Definition 152 

We applied an ordinary least squares (OLS) regression scheme based on the Cobb-Douglas 153 

production function with different model specifications. The function relates inter-annual 154 

changes of crop yields to a product of inter-annual changes of weather variables (equation 1; 155 

SI equation SE3). The natural logarithm linearizes all terms into a sum. 156 

log 𝑦𝑡
′ = log 𝛽0  +  ∑ 𝛽𝑗  log 𝑥𝑗𝑡

′𝐽
𝑗=1  +  log 𝑢𝑡

′   , with 𝑗 = 1, … , 𝐽  and 𝑡 = 1, … , 𝑀       (eq. 1) 157 

Variables are yield (y), weather (xj) and error term (u). Estimated coefficients are 𝛽0..𝐽 and 158 

denote intercept (𝛽0) and weather influences. All variables are provided per grid cell. Years 159 

are indexed with t. Anomalies are denoted with a prime (′). We calculated yield anomalies as 160 

first differences (𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1) between adjacent years, making an explicit time variable 161 

obsolete. We used two regression methods: STSM (Separate Time Series Model) and PDM 162 

(Panel Data Model).  While STSM estimates an independent model for each grid cell, the 163 

PDM parametrizes relationships across grid cells, allowing for spatial variation in mean yields 164 

with grid cell-specific fixed effects. These choices are justified by earlier results (Conradt et 165 

al., 2016, Gornott &  Wechsung, 2016) and the similarity of results under different techniques 166 

(SI Section 3). Whether spatial correlation poses a problem for the PDM method is tested (see 167 

below). In the US we considered nine climatic regions (SI Figures S1-2). Other, larger main 168 

producers were split into administrative boundaries for PDM estimation; for all others only 169 

one national PDM was estimated (SI Table S3).  170 

 171 

 172 

Exogenous variables 173 

Exogenous variables either describe potential growth or stress factors that reduce growth, 174 

included for their known physiological relevance. They are tested for statistical significance, 175 

but the model formulation stays constant. We therefore consider the model as “semi”-176 
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empirical following the argumentation of Rahmstorf (2007). A combined temperature-177 

radiation variable relates yields to potential growth. Temperature-normalized solar radiation 178 

(SRT, equation 2) is used to account for co-linearity in both variables. Killing (KDD) and 179 

freezing degree days (FDD) were added to better account for the non-linear influence of 180 

extreme temperatures on crop yields (Barlow et al., 2015, Schlenker &  Roberts, 2009). They 181 

are defined as the temperature sum above or below a crop-specific threshold, respectively 182 

(equations 3,4). The KDD threshold TKDD was 32°C for all crops, while the FDD threshold 183 

TFDD was -15°C for the two wheat types and 0°C for maize and soybeans (Hatfield et al., 184 

2011, Luo, 2011, Porter &  Gawith, 1999, Sanchez et al., 2014).  185 

 186 

𝑆𝑅𝑇 =
𝑅𝑆

𝑇𝑎𝑣𝑔+20
          (eq. 2) 187 

𝐾𝐷𝐷 = ∑ max (𝑇𝑑 − 𝑇𝐾𝐷𝐷; 0)𝑁
𝑑=1                                                                            (eq. 3) 188 

𝐹𝐷𝐷 = ∑ min (𝑇𝑑 − 𝑇𝐹𝐷𝐷; 0)𝑁
𝑑=1                                                                             (eq. 4) 189 

  190 

Further stress variables comprised potential evapotranspiration (PET) and precipitation. Both 191 

variables map the yield-reducing effect of inadequate demand and supply of water by PET 192 

and precipitation, respectively. PET was calculated from VPD according to Haude (1955) as 193 

in Gornott and  Wechsung (2016) except that the month-specific correction factor fH was 194 

considered constant for the sake of a simpler model. For winter wheat only the reproductive 195 

part of SRT was considered, while for the other crops only the vegetative part was used. The 196 

full regression specification is provided in SI section 2. Further agronomic justifications are 197 

provided in Gornott and  Wechsung (2016). Economic variables like fertilizer price and 198 

harvested area were not considered since these only added little explanatory power in 199 

Germany (Conradt et al., 2016) and are generally not available on larger areas across the 200 

world. 201 

 202 

PET and precipitation were split between the vegetative and reproductive part of the growing 203 

season. The identification of both parts was based on phenological heat units. The first month 204 

of the reproductive period was defined as the first month where the temperature sum, 205 

accumulated over the growing season until this month, exceeds 50% of the total temperature 206 

sum, accumulated over the whole growing season (supplementary equations SE4,5).  207 

 208 

 209 
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Aggregation 210 

After estimation yield anomaly time series (observed, predicted and one-out-of-sample 211 

predicted yield anomalies) were aggregated from grid cells to climate regions or countries 212 

(supplementary equations SE1,2). Aggregation was performed unweighted, i.e. treating each 213 

grid cell as equal, or weighted by land-use patterns according to MIRCA2000. Performance 214 

measures (see below) were then calculated for aggregated time series.  215 

 216 

 217 

Model evaluation 218 

 219 

Performance 220 

Six performance indicators were calculated: coefficient of determination (R2), root mean 221 

square error (RMSE), Nash-Sutcliffe efficiency (NSE), one-out-of-sample R2 (henceforth: 222 

R2
O1), out-of-temperature R2 (R2

OOT) and out-of-precipitation R2 (R2
OOP). The first three are 223 

standard model evaluation indices and measure the explained variance, the mean deviation 224 

and a combined measure of model bias and variability, respectively. They indicate the 225 

capacity of the model to explain yield anomalies, which is important for interpreting 226 

coefficients. R2
O1 was calculated by subsequently and separately stripping each year from the 227 

estimation data, estimating the model with the reduced data and eventually predicting yield 228 

anomalies for the stripped year with this reduced model. R2
O1 thus indicates the model’s 229 

capacity to project yields from weather data that have not been used for model training. R2
OOT 230 

and R2
OOP were similarly calculated by omitting the six first-differences towards and from the 231 

three warmest (driest) years, defined by highest growing season mean temperature (lowest 232 

precipitation over PET). Thus the model was trained on six yield anomalies less and was then 233 

used to predict these missing anomalies. The correlation between these predicted and 234 

observed anomalies in only the warmest (driest) years, calculated across aggregation regions, 235 

indicates the capacity to project yield anomalies under warmer (drier) climate. Performance 236 

measures were calculated on nationally aggregated time series, but are also available for each 237 

grid cell. 238 

 239 

 240 

Statistical tests 241 

The adequacy of the linear model for capturing yield anomalies was examined with six 242 

statistical tests. The regression equation specification error test (RESET) evaluated whether 243 
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quadratic variables would improve the model. The Lagrange multiplier test according to 244 

Breusch–Pagan (LM) was used to examine spatial independence of the data. The Breusch–245 

Godfrey test was applied to assess autocorrelation and the Breusch–Pagan test to probe 246 

heteroscedasticity (Croissant &  Millo, 2008, Wooldridge, 2013). Normal distribution of 247 

residuals was tested using the Shapiro–Wilk test. Whether multi-collinearity of exogenous 248 

variables poses a problem was assessed with the condition index following Belsley et al. 249 

(1980). All analyses were performed with R (R Core Team, 2016). 250 

 251 

 252 

Model application 253 

Two practical applications of the model were performed. 254 

 255 

Yield forecasting 256 

The model was applied to forecast yield anomalies during the growing season up to two 257 

months before harvest. We clipped the last one or two months, respectively, from the 258 

MIRCA2000-defined growing season and calculated all weather variables based on this 259 

reduced season. Afterwards the model was trained on the reduced weather data set, relating 260 

yield anomalies to weather anomalies observed up to one or two months before harvest. The 261 

one-out-of-sample performance of this reduced model is then a measure for its forecasting 262 

capacity. 263 

 264 

Yield effects from temperature warming 265 

Effects of moderate warming were calculated as a model application case. Temperature in 266 

every second growing season of the AgMERRA climate was raised by 0.9 or 1.4 °C, 267 

corresponding to the difference between the 0.6 °C of warming already present in 1986-2005 268 

(Schleussner et al., 2016) and current climate change targets of 1.5 or 2 °C. Differences in 269 

warming over land and ocean (IPCC, 2013) were neglected. Precipitation and radiation were 270 

not modified since we assume stochastic changes with mean zero for this temperature range 271 

(IPCC, 2013). Differences in CO2 concentrations would be relevant for absolute yields, but 272 

were not considered due to rather minor changes (plus ~30 or 60 ppm for 0.9 or 1.4 °C 273 

warming, respectively, compared to 1980-2010 average concentrations; IPCC (2013)). The 274 

CO2 increase of ~60 ppm during the historical period is not relevant for this application when 275 

assuming a similar increase in the warmed period – first differences cancel the trend in both 276 

time series. Yield anomalies were predicted with coefficients estimated from unmodified 277 
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climate and exogenous variables from the artificial climate data. Grid-cell yield time series 278 

were nationally aggregated without weighting. The first-difference approach allows 279 

interpreting yield changes between adjacent years as effects of temperature increases. Yield 280 

changes (unmodified to modified and modified to unmodified years, with inverted signs) were 281 

averaged and the logarithm removed. A temperature change of 0 °C was used for deriving 282 

normalization constants with which all other yield changes were multiplied. Uncertainty of 283 

predictions u was calculated by adding RMSE of the one-out-of-sample model (RMSEO1) and 284 

variance of the temperature-modified yield time series (eq. 5): 285 

𝑢 = √(𝑅𝑀𝑆𝐸𝑂1)2 +  𝑉𝑎𝑟(𝑚𝑜𝑑. 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠)                                                  (eq. 5) 286 

 287 

 288 
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RESULTS 289 

 290 

Results for the contiguous US 291 

 292 

The model had a substantial capacity for explaining and predicting yield anomalies. 293 

Yield anomaly time courses for USDA-based models are shown in Figure 2. Results for each 294 

of the eight crop-yield data set combinations are displayed in Table 1. All grid cells where the 295 

specific crop is grown are included. Either unweighted or weighted aggregation was used, 296 

decided on the higher R2
O1 for each crop individually. Time series for US regions are 297 

provided in SI Figure S11. A performance comparison of different model specifications is 298 

provided in SI Figure S6. All statistical tests indicated that the OLS model estimation is 299 

adequate (SI section 4). 300 

 301 

The model achieved at least two thirds of explained variance (R2) and a robust (i.e. at least 302 

25%) one-out-of-sample performance (R2
O1) for all four crops with USDA data. Extremely 303 

low yields, like those occurring during the US heat and drought wave in 1988 for maize and 304 

wheat, were captured by the model, though not in full magnitude. For the two wheat types, 305 

yield loss quantities over the whole time series were comparable between model and 306 

observations, and for winter wheat also between one-out-of-sample model and observations. 307 

The set of three years of most negative yield anomalies (bottom decile) was equal for 308 

observed and modeled time series in 7 out of 12 cases. The observed top decile was captured 309 

in 8 out of 12 cases. For the one-out-of-sample predicted yields the correspondence for the 310 

bottom decile was less accurate with only 3 out of 12 cases. The direction of change and the 311 

sign of modeled anomalies matched with the input data for all crops, with only few 312 

exceptions.  313 

 314 

The model performed differently for different crops, judged by R2
O1. The regression 315 

method, variable set or difference method influenced model performance (SI Figure S6). 316 

Unweighted aggregation was better for maize, soybeans (except GGYD soybeans where R2
O1 317 

was low) and spring wheat, but disfavored for winter wheat. Model performance differed 318 

between the two yield data sets. Although R2 values were similar or higher for GGYD yields, 319 

R2
O1 values with GGYD data (Table 1Error! Reference source not found., SI Figure S6) 320 

were lower in three of four cases. Differences between R2 and R2
O1 were thus higher for 321 
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GGYD yields. STSM models showed, on average over all crops and specifications, slightly 322 

higher R2 and R2
O1 values than PDM models (SI Figure S6). R2 and R2

O1 were correlated for 323 

USDA yields (r = 0.97, p = 0, n = 24), but not GGYD yields (r = 0.29, p = 0.17, n = 24). 324 

NSE and R2 showed larger differences for GGYD than USDA yields. Thus the model's 325 

explanatory power was not an indicator for the model's projective power with GGYD yields. 326 

The out-of-temperature and out-of-precipitation performance (where six anomalies were 327 

omitted for training) was lower than the one-out-of-sample performance. All out-of-328 

temperature values with USDA yields are, nevertheless, above 0.25, thus higher than 329 

expectable by chance (corresponding to r = 0.5). One-out-of-sample performance in the three 330 

warmest years is hardly different from modeled values. Out-of-precipitation values are above 331 

0.25 only for wheat. 332 

 333 

The explained variance varied spatially (Figure 3). There was a substantial fraction of grid 334 

cells where the model was able to capture yield variability to a large  (green shades) or an 335 

intermediate extent (yellow shades). But there were also several regions where the model 336 

failed to capture variability (red shades). For all crops these were located in areas where yield 337 

variability was lower compared to other regions. In regions with substantial yield variation 338 

(coefficient of variation CV, defined as standard deviation over mean, is larger than 15%) the 339 

model achieved a higher R2 more often (SI Figure S10; SI Table S2). There was a moderate 340 

fraction of grid cells (11-27%) that exhibited low yield variability and was not well explained 341 

by the model. 342 

 343 

Model coefficients indicated crop-specific patterns of weather influence. The influence of 344 

coefficients depended on the crop, but was independent from the estimation method (Figure 345 

4). All STSM coefficient means except two were significantly different from 0 (t-test at 95% 346 

confidence level). For all crops a high PET in the reproductive period was clearly negative. 347 

Precipitation was positive for summer crops during the vegetative period and for soybeans 348 

and winter wheat also during the reproductive period. For spring wheat and maize too much 349 

precipitation during the reproductive period was negative. Normalized solar radiation was 350 

negative for maize and soybeans (vegetative period), but strongly positive for spring and 351 

winter wheat. Any day above 32°C was damaging for all crops (not significant for winter 352 

wheat), whereby maize was most affected. Days below -15°C or 0°C, respectively, were 353 

damaging for all crops, but did not occur during the spring wheat growing season. There was 354 

a marked difference of coefficient values between the two yield data sets (USDA, GGYD). 355 
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This was the case for STSMs (SI Figure S7) and PDMs (SI Figure S8). 356 

  357 

 358 

Coefficients varied between climate regions (Figure 5). A high PET during the vegetative 359 

season was positive for maize yield in the northern climate zones, but negative in the south. 360 

Vegetative PET was positive everywhere for soybeans. For spring wheat a high PET was 361 

negative everywhere except the northwest. For winter wheat a high PET during the 362 

reproductive season was positive only in the northeast, but negative elsewhere. The effect of 363 

precipitation did not show pronounced regional diversity: it was positive in most regions for 364 

all crops, with few exceptions. Elevated SRT during the vegetative period had a positive 365 

effect on maize yields in mid and western states, but not elsewhere. Enhanced SRT was 366 

negative for soybeans in all regions. For spring wheat, by contrast, higher SRT was positive 367 

everywhere except the northwest. For winter wheat more SRT had positive effects during the 368 

reproductive period in almost the whole US, with a positive gradient to the southeast. Days 369 

above 32°C were harmful everywhere for maize, spring and winter wheat (-2 to -4% yield 370 

loss for each day). 371 

 372 

 373 

A mapping sensitivity test, where climate, land-use and growing seasons were interpolated 374 

from grid cells to counties rather than yields from counties to grid cells, showed similar or 375 

slightly higher R2 (0.82, 0.74, 0.65 and 0.68 for maize, soybeans, spring and winter wheat, 376 

respectively) and R2
O1 values (0.61, 0.55, 0.34 and 0.30). We kept the mapping of yields to 377 

grid cells, though, to maintain a common framework for both yield data sets. 378 

 379 

 380 
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Results for global main producers 381 

 382 

The model explains more than two thirds of yield variance in main producer countries. 383 

The robust out-of-sample performance in the US supported an extension of the evaluation to 384 

other main producers (SI Table S3; Figure 1). Only GGYD yields could be used as generally 385 

available source here. Nationally aggregated GGYD yield anomalies mostly corresponded 386 

well with FAO yield anomalies (SI Figure S12), motivating the usage of this data set. The 387 

performance (R2 and R2
O1) for all crops is displayed in Figure 6. The explained variance 388 

among main producers, weighted by total production, was 84%, 72%, 71% and 71% for 389 

maize, soybeans, spring and winter wheat, respectively. The weighted average one-out-of-390 

sample performance was 42%, 22%, 33% and 15%. The cumulative production share (within 391 

the main producers) of nations which achieved an R2
O1 of at least 25% is 64%, 18%, 68% and 392 

30% for maize, soybeans, spring and winter wheat, respectively. Analyses with PDM 393 

estimation led to similar, though slighty lower performances (SI Figure S14). Calculating 394 

aggregated model performance as average performance over all grid cells in a country, rather 395 

than by correlating previously aggregated yield time series, resulted in lower model 396 

performances: mean R2 [R2
O1] STSM values over countries were 0.47 [0.18], 0.44 [0.15], 0.48 397 

[0.19] and 0.36 [0.10] for maize, soybeans, spring and winter wheat. This aggregation effect, 398 

as discussed in Gornott and  Wechsung (2016) for Germany, was thus confirmed globally. 399 

 400 

Yield time series for selected main producers can be found in the supplement (SI Figure S13). 401 

Mean performance was best for maize (highest R2 and R2
O1). While R2 was similarly high for 402 

soybeans, the R2
O1 was rather low (22%). For winter and spring wheat the model achieved 403 

equal mean R2, while mean R2
O1 was substantially higher for spring wheat. There was no 404 

obvious influence of harvested area, length of yield time series, share of rainfed agriculture, 405 

mean yield level or standard deviation on model performance. Countries where GGYD yields 406 

were constructed from subnational data (Table S1 in Iizumi et al. (2013b)) tended to have a 407 

larger R2
O1, but not significantly. There are some notable discrepancies between R2 and R2

O1, 408 

especially for winter wheat: for example in India or Egypt an R2 of 0.93 and 0.73, 409 

respectively, was accompanied by an R2
O1 of 0.04 and 0.03. In both cases, this discrepancy is 410 

due to extreme yield values captured by the model, but not the one-out-of-sample model (data 411 

not shown). If these extremes are removed, R2
O1 increases to 0.16 and 0.22, respectively. 412 

Differences between R2 and R2
O1 are generally due to an out-of-sample time series which is 413 
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less variable and captures fewer extreme values than the modeled time series. 414 

 415 

 416 

Yield data quality influences the detection of weather influences. There was a marked 417 

difference in model performance when using either reported sub-national yield data or 418 

gridded yield data derived from remote sensing. R2
O1 values for USDA data were 55%, 45%, 419 

34% and 35% for maize, soybeans, spring and winter wheat, respectively, while for GGYD 420 

data these were 59%, 18%, 32% and 26%, thus lower except for maize (Table 1Error! 421 

Reference source not found.). This difference was also visible for Germany, Russia, Burkina 422 

Faso, Tanzania and Brazil (SI Table S4). 423 

 424 

The average explained variance over all main producing countries and crops was 41.8% with 425 

GGYD yields. This was slightly higher than the 32-39% which have been found by Ray et al. 426 

(2015) with reported data. For maize the average R2 was 44% with our model, compared to 427 

39% in Ray et al., and for soybeans it was 42%, compared to approx. 35%. For wheat 428 

(average over spring and winter) it was 42% with our model, compared to 35%.  429 

 430 

 431 

Yield anomalies are forecasted with high accuracy within the growing season in several 432 

countries. The model was used for a simple forecasting of yields up to two months before 433 

harvest. The results for countries with reported yields are shown in Figure 7, for all main 434 

producers using GGYD yields in SI Figure S15. In all but five (out of 14) cases the one-out-435 

of-sample performance is equal or even higher than the standard model when omitting the last 436 

month of the reproductive season for training and prediction. In seven cases this holds also 437 

when omitting the last two months. In ten cases yield anomalies can be predicted better than 438 

by chance (R2
O1 > 0.25) two months before harvest, and in six cases this prediction accuracy 439 

is more than 50%. When using GGYD yield data, 25 of 63 cases can be predicted with at least 440 

25% accuracy two months before harvest (representing 4-86% of global production 441 

depending on the crop), and in six cases with 50% accuracy (representing 0-51% of global 442 

production). 443 

 444 

 445 

Mean warming suggests negative yield effects. When increasing temperatures by 0.9 or 446 

1.4 °C above the 1980-2010 average, yields are predicted to lose 3-18% (excluding Australian 447 
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wheat and Brazilian soybeans) in comparison to reported yield data (Table 2). Results for 448 

Russia had high uncertainties due to large RMSEO1 values and standard deviations. 449 

Projections based on GGYD yields were not performed due to low R2
OOT scores (Table 450 

1Error! Reference source not found.).  451 

 452 

 453 
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DISCUSSION 454 

 455 

 456 

We have applied a semi-empirical regression model to estimate weather influences on yields 457 

of maize, soybeans, spring and winter wheat. The model achieves good performance in 458 

explaining and predicting inter-annual yield variation in the US. For all main producer 459 

countries a high average explanatory power but varying out-of-sample prediction capacity is 460 

attained. The model shows medium to high accuracy for yield anomaly forecasts during the 461 

growing season up to two months before harvest. An application of the model with artificially 462 

increased temperatures suggests negative effects of moderate warming on crop yields. 463 

 464 

 465 

Modeling yield anomalies in the US 466 

 467 

The fraction of explained yield variation was at least two thirds and the one-out-of-sample 468 

yield prediction accuracy achieved 34-55%. The model also achieved a quantitative 469 

reproduction of negative yield anomalies in most cases, which is of particular importance 470 

when studying non-linear economic responses. When validating the model in the warmest or 471 

driest years its out-of-sample capacity is better than 25% in six of eight cases (Table 1Error! 472 

Reference source not found., USDA). 473 

 474 

Explanation (R2) and projection (R2
O1) capacity were strongly different (up to 0.65) in some 475 

cases, and more so for GGYD yields (SI Figure S6), underlining that both model fit and out-476 

of-sample performance should be considered when evaluating the quality of a model 477 

(Holzkämper et al., 2015, Landau et al., 2000, Refsgaard et al., 2013). Differences between 478 

NSE and R2 values could be due to an over-proportional influence of outlier values or scale 479 

effects on the NSE. 480 

 481 

The different out-of-sample performance of the model with USDA and GGYD yield data, in 482 

particular for soybeans and winter wheat, suggests several uncertainties of the gridded yield 483 

data. First, the combination of reported yields with remote sensing data and growing season 484 

modeling might not be apt for winter crops as these are more easily mixed with other 485 

vegetation. Second, the time series of the GGYD data is shorter by six years, leaving less data 486 

for out-of-sample estimations. Yet a regression with USDA yields in the shorter GGYD time 487 
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frame produced similar results as with the full range (data not shown), thus the shorter time 488 

series alone is unlikely to explain different performances. Third, the equal or higher average 489 

R2 with GGYD yield data (SI Figure S6) could possibly result from an implicit consideration 490 

of weather influences in the GGYD data set or the fitting of the model to more extreme values 491 

which arose in the GGYD construction but are not necessarily caused by weather. A 492 

misestimation of the true weather influence with our model would ensue. FAO yields, which 493 

are used in GGYD construction to calibrate remote sensing data, are often combined from 494 

reported and estimated data, adding a further layer of uncertainty. Fourth, yield variability 495 

from small plot sizes, in particular in developing countries, could be flattened at the coarse 496 

aggregate scale and thus blur weather influences. Fifth, GGYD yields showed lower CVs than 497 

USDA yields (except spring wheat, SI Table S2). This may explain the larger differences 498 

between R2 and R2
O1 for GGYD yields, as low CVs together with shorter time series can lead 499 

to high correlations, but instable models i.e. a low R2
O1. Similar differences in model 500 

performance between observed and remote sensing-derived yields in other nations (SI Table 501 

S4) further support our conclusions.  502 

 503 

The geographical variation of model performance could have several causes. Different 504 

management techniques eliminate different shares of weather influence on crop yield. In 505 

particular irrigation, which is more prominent in the Western US (Schlenker &  Roberts, 506 

2009), marginalizes the effect of precipitation and also temperature (Lobell &  Bonfils, 2008, 507 

Schauberger et al., 2017). This is underlined by a lower model performance in this region 508 

(Figure 3). Thus, a low explanatory power might reflect a limited influence of weather on 509 

yields, as our model only detects weather impacts. Other reasons could include unconsidered, 510 

indirect weather influences (e.g. pests or diseases), errors in observations or aggregation 511 

effects. This may also explain the substantial share of grid cells with high yield variability but 512 

low explanatory power (SI Table S2Error! Reference source not found.). Low yield 513 

variability is difficult for any model to capture. Combined analysis of yield variation and 514 

model explanatory power reveals that areas with low yield variability are more likely to have 515 

a lower R2 (SI Table S2, SI Figure S10). Areas with a high USDA yield CV, by contrast, have 516 

equal shares of high and low explained variance. Uncertainties introduced by interpolating 517 

yield or weather statistics could destroy their associations (Hansen &  Jones, 2000). A 518 

comparison of our results using GGYD data to the global study by Ray et al. (2015), using 519 

reported data, revealed a similar or larger share of grid cells with substantial yield variability 520 

but unsatisfactory explained variance (R2 < 0.45) in Ray et al. Our results suggest, again, that 521 
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yield variability in many agricultural areas is influenced by more factors than only weather. 522 

These could include changing land-use patterns (Olmstead &  Rhode, 2011), economic 523 

influences like fertilizer usage or stressors like ozone or pests. 524 

 525 

The estimated coefficients and their geographical distributions agree with expectations. Maize 526 

reacted negatively to a high PET in the reproductive season and to very hot days (KDD) in 527 

particular in warmer regions – which agrees with previous findings (Lobell et al., 2013, 528 

Schlenker &  Roberts, 2009). This is contrary to expectations that C4 crops would not 529 

experience much damage from mild heat (Sage &  Kubien, 2007), but is likely due to water 530 

stress prior to direct heat damages (Schauberger et al., 2017). This effect also explains the 531 

higher model performance for maize and soybeans in the South, where water stress is more 532 

dominant. PET in the vegetative season and solar radiation affected maize positively only in 533 

cooler regions, confirming previous studies (Long et al., 2006, Rötter &  Van de Geijn, 1999). 534 

Precipitation effects seem limited, though vegetative precipitation was usually positive. This 535 

conforms with a larger water demand of maize during the vegetative season (Hlavinka et al., 536 

2009). The relatively low precipitation coefficient values, despite its prominent importance 537 

(Barnabas et al., 2008, Troy et al., 2015), are due to comparably high and strongly varying 538 

input values (Gornott &  Wechsung, 2016, Lobell et al., 2013). 539 

Differences in C3 (soybeans, wheat) and C4 (maize) photosynthesis efficiencies (Long et al., 540 

2006, Rötter &  Van de Geijn, 1999) are reflected in a lower positive effect of SRT for maize. 541 

KDDs were less negative for winter wheat than for maize, since these hardly occur during the 542 

growing season – winter wheat is usually harvested before heat waves build up. A higher PET 543 

in the reproductive cycle was more detrimental than a higher PET in the vegetative cycle of 544 

either winter wheat or maize due to a more developed canopy. This also applies to 545 

precipitation effect differences between the reproductive winter wheat and the vegetative 546 

maize cycle. The model performance was low for all crops in the Northwest, and only slightly 547 

higher in the East North Central region. These regions seem more stable against weather 548 

fluctuations. 549 

 550 

Six independent statistical tests indicated that our OLS estimation approach is applicable. 551 

Quadratic variables would not improve the model fit although this technique is often used to 552 

capture non-linear influences (Lobell et al., 2011, Ray et al., 2015). Autocorrelation occurring 553 

in many grid cells (SI Figure S9) points to periodically occurring yield variability, which 554 

might lead to an underestimation of standard errors with OLS. But this autocorrelation is due 555 
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to autocorrelation in the raw yield data (55%, 32%, 31% and 37% of grid cells for maize, 556 

soybeans, spring and winter wheat, respectively, at 95% confidence level with a Ljung-Box 557 

test) and the first difference approach which produces correlated yield differences. Therefore 558 

we assume it as unproblematic for our analysis. The nationally aggregated time series was 559 

weakly autocorrelated for soybeans and winter wheat and not autocorrelated for maize and 560 

spring wheat. 561 

 562 

When calculating yield variability on spatially aggregated level, a land-use weighting is 563 

usually applied to capture spatially divergent contributions to agricultural production.  But 564 

model performance was better with unweighted yields except for winter wheat, whose 565 

growing area is less concentrated (SI Figure S3). Land-use patterns can be considered as an 566 

indirect function of climate since crops more favored by a certain climate also tend to have 567 

more area share. Thus there is an implicit inclusion of land-use patterns in the estimated 568 

coefficients, which makes the weighting negligible when inspecting aggregated yield 569 

variability. The differences are not substantial in all cases, which further suggests that land-570 

use weighting can be omitted. This is beneficial for model generalization since weighting is 571 

another level of uncertainty (Cohn et al., 2016, Porwollik et al., 2016).  572 

 573 

The model only used monthly aggregated weather data as input. This is an advantage over 574 

models requiring daily weather input since monthly aggregates are the preferred output from 575 

climate models (Taylor et al., 2012) and are also less sensitive to outliers. The yield-anomaly 576 

approach of our model additionally eliminates any time-dependent systematic bias. It is 577 

therefore particularly apt for usage with data from climate models, which often require a bias 578 

correction before impact assessments (Hempel et al., 2013). 579 

 580 

 581 

Application to main producers 582 

 583 

The generally good correlation between GGYD and FAO yield anomalies (SI Figure S12) 584 

allows us to interpret aggregated production from GGYD yields and MIRCA2000 areas as 585 

representative for main producing countries. The average R2
O1 was at least one third for maize 586 

and spring wheat. For soybeans and winter wheat average R2
O1 was low, which is likely due 587 

to shortcomings of GGYD data with these crops (see above and below). This is supported by 588 

the increased performance of the model when using reported yield data (SI Table S4).  589 
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More than half of the global maize and spring wheat production anomalies could be well 590 

explained by our model (R2
O1 at least 25%). This enables the usage of our model in global 591 

economic assessments. We assume this share to rise with more reported yield data. 592 

Countries with a high predictive capacity of the model (R2
O1 above or around 50%) all have 593 

water-dominated yield variability, i.e. the majority of cultivated area being rainfed and a 594 

rather high alternation between deficient and sufficient precipitation. This suggests that the 595 

model particularly captures water-limiting signals, though this may be questioned by the low 596 

R2
OOP with GGYD yields (Table 1). Wheat grown in Morocco and Turkey was classified as 597 

winter wheat due to its relatively long growing season (7-11 months) over the local winter, 598 

but is different from “classical” winter wheat grown in cooler nations where the crop 599 

experiences a vegetative pause over the winter. This could bias results towards lower R2 600 

values. The performance of our semi-empirical model, when run with reported yield data, was 601 

equal or superior to several previously applied statistical approaches (Iizumi et al., 2013a, 602 

Lobell &  Field, 2007, Ray et al., 2015, Urban et al., 2012). 603 

 604 

We analyzed GGYD yields as an alternative to reported yields in areas where such data are 605 

currently not available. But the model-based nature of the data set could introduce a bias to 606 

our results. The robust performance of the semi-empirical model in the US, Germany, Russia, 607 

Burkina Faso, Tanzania and Brazil allows its usage for identifying cases where GGYD yields 608 

presumably suffer from a construction bias. We speculate that an existing weather influence 609 

on crops could be blurred by GGYD construction steps and is therefore less detectable with 610 

our (or any weather-driven) model. R2 and R2
O1 values are then further apart, for example due 611 

to GGYD-processing induced yield extremes that are uncoupled from weather influences. The 612 

less convincing results for soybeans and winter wheat match with the evaluation by Iizumi et 613 

al. (2013b) suggesting that GGYD data likely requires improvement for both crops. A 614 

remaining concern is whether estimating a statistical model from a data set (GGYD) and then 615 

using the same model to evaluate these data may confound conclusions. But two additional 616 

analyses confirm our assumption that estimation problems occur more likely when GGYD 617 

yields are involved. First, the out-of-sample performance of models trained on reported yields 618 

is clearly superior to models trained on GGYD yields (SI Table S4). Second, a cross-619 

comparison of model-predicted yields with reported FAO data, but where the model has been 620 

estimated with GGYD data (SI Figure S14), shows that there are discrepancies for all crops. 621 

Differences between predicted yields and FAO are usually smaller when using reported yields 622 

for training the model (dashed blue lines in Figure 2). Nevertheless we esteem the unique 623 
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ability of GGYD yields to cover all regions of the globe where subnational yield data are 624 

otherwise difficult to obtain. Usage of latest satellite data with more sophisticated land-use 625 

separation methods may reduce counter-factual error sources and thus increase the reliability 626 

of satellite-derived yield statistics (Iizumi &  Ramankutty, 2016). 627 

 628 

Yield forecasting and warming experiment 629 

 630 

The model concept allows for a simple extension towards forecasting of yields few months 631 

before harvest. This study presents a first example application in this direction. The 632 

forecasting is robust (R2
O1 > 50%) up to two months before harvest in several major 633 

producing countries, but requires improvement in others, in particular for soybeans and winter 634 

wheat. The performance is thus comparable to previous approaches (Bolton &  Friedl, 2013, 635 

Johnson, 2014, Sakamoto et al., 2014), but has been done here without any particular 636 

adaptation to country-specific conditions or model formulation. In several cases the reduced 637 

growing season leads to higher R2
O1 values than the full season. This could stem from three 638 

reasons. First, crop climatic requirements can be different in grain filling and maturity phase 639 

(Barnabas et al., 2008), which are not distinguished in our reproductive season and could lead 640 

to meaningless coefficients in the default model. Second, the growing season dates in 641 

MIRCA2000 could be wrong, leading to an improvement when omitting a too long part. 642 

Third, the vegetative and reproductive season split could be misplaced. These reasons will 643 

have to be investigated in further studies. Again, the importance of high-quality input yield 644 

data for model training is highlighted: only then reliable within-season forecasts are possible, 645 

as evidenced by the lower performance with GGYD yields.  646 

The forecasting scheme could be modified in two directions. Both require near-term monthly 647 

weather forecasts published, for example, by the NOAA (NOAA Climate Forecast, 2017). 648 

First, the full growing season can be used for training. In the season where yields should be 649 

predicted before harvest the missing part of the weather information is supplied by a near-650 

term forecast. Second, both approaches can be combined: a reduced growing season, e.g. 651 

withholding the last two months of the season, is used for training. Yield predict ions are then 652 

calculated for three or more months before harvest by supplying the missing weather 653 

information up to two months before harvest with near-term weather forecasts. 654 

 655 

Predicting yields with counter-factual temperature increases is another model application 656 

case. The approach neglects CO2 trends, variation of cofactors like precipitation and comes 657 
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with high uncertainties (out-of-temperature performances in Table 1 and the u measure 658 

according to equation 5 provide a first, maybe too high estimate), which might mask effects. 659 

This could change if real climate scenarios were used including drifts in temperature extremes 660 

and precipitation. But impacts seem plausible in direction and magnitude compared to 661 

previous studies (Challinor et al., 2014, Giannakopoulos et al., 2009, Schleussner et al., 662 

2016). The low R2
OOT performance for GGYD yields underlines the importance of high-663 

quality yield data when projecting future yields. The average decline in wheat yields, when 664 

averaged over spring and winter wheat at 0.9°C warming (Table 2), is 6% – in agreement with 665 

the results by Liu et al. (2016). Thus the semi-empirical model described here can be 666 

considered a fourth method next to the three methods considered therein. 667 

 668 

The model scheme presented in this study is an open concept that can be extended to 669 

incorporate further weather or economic factors. The prediction of yields within the growing 670 

season is highly sought after for timely adaptation measures in management, storage or 671 

marketing. Our model will be further developed in this direction. The differential performance 672 

between observed and remote-sensing based yield data calls for better and publicly available 673 

yield data from statistical offices in all countries. These can aid in planning adaptation or 674 

evaluating, for example, agricultural micro-insurance schemes. 675 

 676 
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TABLES 842 

 843 

Table 1: Model performance for eight crop-yield data set combinations in the US. Columns 

are crop, yield data set, application of land-use weighted aggregation, Nash-Sutcliffe 

efficiency (NSE), explained variance of the modeled (R2) and one-out-of-sample time series 

(R2
O1), out-of-temperature and out-of-precipitation correlation (R2

OOT and R2
OOP) and the 

share of grid cells for which the model is significant (p < 0.05). 

Crop Yield 

data 

Weighted 

Aggregation 

NSE R2 R2
O1

 R2
OOT R2

OOP Significant 

Cells 

Maize 
USDA No 0.74 0.81 0.55 0.31 0.11 51 % 

GGYD No 0.70 0.92 0.59 0.08 r<0 47 % 

Soybeans 
USDA No 0.69 0.69 0.45 0.38 0.02 60 % 

GGYD Yes 0.60 0.72 0.18 r<0 r<0 24 % 

Spring 

wheat 

USDA No 0.63 0.63 0.34 0.28 0.42 52 % 

GGYD No 0.61 0.73 0.32 r<0 0.34 48 % 

Winter 

wheat 

USDA Yes 0.64 0.65 0.35 0.33 0.28 50 % 

GGYD Yes 0.55 0.91 0.26 0.00 0.00 10 % 

 844 

 845 

 846 

 847 
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Table 2: Yield effects (as fraction of average historic yields) of artificial temperature 849 

increases, using only reported yield data. Fractions were normalized with T+0 offset. Values 850 

in brackets are uncertainty measures u (+/-) of the fraction according to equation 5. 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

  870 

Crop Country T +0.9 °C T +1.4 °C 

Maize 

USA 0.96 (0.07) 0.95 (0.07) 

Russia 0.88 (0.87) 0.85 (0.86) 

Brazil 0.97 (0.19) 0.95 (0.20) 

Germany 0.96 (0.09) 0.94 (0.09) 

Burkina Faso 0.95 (1.00) 0.94 (1.00) 

Soybeans 
USA 0.97 (0.16) 0.96 (0.17) 

Brazil 1.00 (0.12) 1.00 (0.12) 

Spring 

wheat 

USA 0.95 (0.16) 0.92 (0.17) 

Australia 1.05 (0.71) 1.07 (0.74) 

Russia 0.89 (0.77) 0.84 (0.83) 

Winter 

wheat 

USA 0.97 (0.07) 0.95 (0.07) 

Russia 0.88 (0.72) 0.82 (0.78) 

Germany 0.95 (0.06) 0.92 (0.07) 

Brazil 0.89 (0.32) 0.85 (0.36) 
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FIGURE CAPTIONS 871 

 872 

 873 

Figure 1: World map of countries analyzed in this study. Colors of countries denote whether 

GGYD and reported yields (green), only GGYD yields (blue) or only reported yields (red) are 

used in this study. Countries in white are no main producers and not analyzed. 
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 875 

Figure 2: Observed and modeled time series of national US yield anomalies for maize (a), 

soybeans (b), spring wheat (c) and winter wheat (d). Black lines are anomalies of reported 

USDA yields, red lines are anomalies predicted by the model trained on the full data panel, 

gray lines are anomalies predicted from one-out-of-sample models, and blue dashed lines are 

FAO yield anomalies. Data points were 56,092, 38,373, 21,291 and 58,877 for maize, 

soybeans, spring and winter wheat, respectively. Numbers in plots are performance measures 

and standard deviation (SD); colors of numbers correspond to the respective anomaly series. 

Modelled and FAO yield anomalies were significantly (p < 0.05) correlated for maize 

(Pearson’s r = 0.87), soybeans (0.69) and winter wheat (0.68), but not for spring wheat 

(0.13), since FAO yields combine spring and winter wheat. 
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 878 

Figure 3: Explained variance of yield anomalies due to weather anomalies (R2, color map on 

top) for maize (a), soybeans (b), spring wheat (c) and winter wheat (d) with USDA yields. 

White regions have no cropping area.  
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Figure 4: Coefficient comparison for STSM and PDM model estimation for maize (a), 

soybeans (b), spring wheat (c) and winter wheat (d) with USDA yields. Blue boxes show 

coefficients with STSM estimation (estimated for each grid cell), while green boxes show 

PDM coefficients (estimated for each climate region). The band inside each box is the 

median, while boxes represent 25% and 75% quantiles. Whiskers are defined as the maximum 

and minimum as long as both values are within the 1.5 interquartile range from the median. 

Otherwise the last points in this range are shown with whiskers and outliers are depicted as 

points. Red +/- symbols indicate a mean significantly larger/lower than 0 (t-test at 95% 

confidence level). 
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 884 

Figure 5: Estimated coefficients for USDA yields. Rows are maize (a), soybeans (b), spring 

wheat (c) and winter wheat (d). Coefficients were estimated with STSM regression and 

aggregated from grid cells to climate regions. From left to right the coefficients are PET in 

vegetative (maize, soybeans, spring wheat) or reproductive (winter wheat) season, 

precipitation and SRT in the same seasons, respectively. Color map is shown at bottom. 
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Figure 6: Performance of STSM models in main producing countries for maize (panel a), 

soybeans (b), spring wheat (c) and winter wheat (d). Countries are ordered by descending 

R2
O1; three-letter codes are provided in SI Table S3. Green crosses mark R2 and red 

diamonds R2
O1 values (left y axis). The mean R2 and R2

O1 over all main producers, weighted 

by production, are indicated with dashed green and red lines, respectively. A “w” above 

countries indicates that the displayed R2
O1 value is achieved when including land-use 

weighting. Gray and blue bars denote total and rainfed harvested area in Mha, respectively 

(right y axis). The orange line denotes cumulative production share among main producers 

(left y axis). 
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 891 

Figure 7: Capacity of the model for yield forecasting within the growing season, using only 

reported yield data. The one-out-of-sample performance R2
O1 is shown. Gray bars are the 

standard model with full growing season used for training and prediction. Green and black 

bars show performance when withholding one or two months, respectively, for training the 

model and predicting yield anomalies out of sample. Burkina Faso (BFA) is not a main 

producer and therefore plotted off set. 
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