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Abstract.

Motifs and roles are basic quantities for the characterization of interactions among

3-node subsets in complex networks. In this work, we investigate how the distribution

of 3-node motifs can be influenced by modifying the rules of an evolving network model

while keeping the statistics of simpler network characteristics, such as the link density

and the degree distribution, invariant. We exemplify this problem for the special case

of the Japanese Business Firm Network, where a well-studied and relatively simple

yet realistic evolving network model is available, and compare the resulting motif

distribution in the real-world and simulated networks. To better approximate the

motif distribution of the real-world network in the model, we introduce both subgraph

dependent and global additional rules. We find that a specific rule that allows only

for the merging process between nodes with similar link directionality patterns reduces

the observed excess of densely connected motifs with bidirectional links. Our study

improves the mechanistic understanding of motif formation in evolving network models

to better describe the characteristic features of real-world networks with a scale-free

topology.

PACS numbers: 89.75.Hc, 89.65.Gh

Keywords: Network reconstruction, Inference in socio-economic system, Socio-economic

networks
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1. Introduction

In directed complex networks [1, 2] motifs are subgraphs that allow for a concise

attribution of a node’s functional role [3, 4]. These subgraphs are understood as essential

building blocks of the networks and allow a detailed characterization and classification of

the system under study in many disciplines, ranging from biology [5, 6] to socio-economic

systems [7]. Previous work has provided a conceptual understanding of the mechanisms

behind the formation of motifs in networks [8]. It has been shown that the connection

patterns of nodes with high degrees have a particularly strong influence on the motif

distribution [9]. From a dynamical perspective, motifs emerge in order to optimally

exploit local stability characteristics of the network [10]. However, still little is known

about the dynamical origins of the motif distributions in evolving complex networks with

scale-free topology [11]. The aim of this study is to better understand the formation of

motifs and to identify and test candidate mechanisms that could generically affect the

formation process of motifs in an evolving network model.

Business and trade networks provide well-studied economic examples of directed

networks that allow for detailed investigations of the aforementioned questions. In

business networks, individual firms are interpreted as nodes [12]. If a business or trade

relationship between two firms is reported, a link between the involved nodes is drawn.

On a far more aggregated level, this system can be expressed as a trade network, where

countries or industry sectors build the nodes of the network [13, 14, 15]. In both

business and trade networks the nodes take specific roles within the supply chain as

service or commodity providers and/or consumers. Both types of economic networks

can be understood as arising from an aggregation of the supply chains for all individual

products. On the level of international trade networks, industries have been identified to

form characteristic trading patterns among different subnetworks [16]. On the firm level,

previous empirical work has observed a strongly non-trivial motif distribution among

Japanese business relations [17].

The business network of the Japanese economy shares some common topological

features of many complex networks [18, 19]. These include the scale-free degree

distribution that has been empirically observed in complex networks among a variety

of different disciplines, ranging from social networks [20, 21, 22, 23], economics [24],

biology [25] to information technology [26, 27]. The emergence of the scale-free property

is often explained by preferential attachment [28, 29]. The comparatively small power-

law exponent in the Japanese Business Firm Network is well modeled by a merging

mechanism between firms that exhibits features that are statistically similar to processes

in other fields in physics, such as the coagulation process in aerosols [30].

Due to the existence of universal features of complex networks and the straight-

forward interpretation of a node’s functional role within motifs, the Japanese Business

Firm Network provides an interesting case for obtaining new conceptual knowledge

about the formation of motifs in complex networks. The aim of this paper is to

study possible candidate mechanisms that allow reproducing the empirical distribution



Motif formation and industry specific topologies in the Japanese Business Firm Network3

of 3-node motifs in the Japanese Business Firm Network within an evolving network

model. These mechanisms should leave the statistics of simpler network characteristics,

such as the total number of nodes, link density and degree distribution as invariant as

possible. Instead of providing a comprehensive review of the impacts of the investigated

mechanisms on various topological network features at different levels of the network’s

structural organization, in this work we explicitly focus on obtaining an understanding

on the formation of motifs.

We start our investigations by comparing some relevant topological characteristics

of a previously suggested evolving network model [30] with those of the real-world

business network in Japan. The utilized model is based on three main processes, node

annihilation, node creation and merging of nodes, which are interpreted as bankruptcies,

creation of newcomer firms, and a merging process between two firms, respectively.

Firstly, we identify the main drawbacks in the description of motifs in the model. In a

second step, we investigate the appearances of roles and motifs in different industries of

the Japanese Business Firm Network and introduce an industry structure to the model.

To influence the motif distribution in the model, we then evaluate the impact of different

rules concerning the linking preferences of newcomer nodes. Furthermore, we monitor

the appearance of motifs when modifying the rules for the merging process and when

adding relinking possibilities to the model.

Our paper is organized as follows: In section 2, we describe the dataset (2.1) utilized

in our study together with concepts to characterize the motif distributions (2.2) and the

industry subgraphs (2.3). Subsequently, section 3 presents the existing basic evolving

network model together with three modifications to improve the representation of the

empirical motif distributions of the Japanese Business Firm Network. We then evaluate

in section 4 the motif distributions in the real-world data and the original network model

(4.1) and focus on distinctive topological characteristics within industry subgraphs (4.2)

that are used to introduce subgraph specific rules in the network model (4.3). In section

4.4 we assess the impact of business preferences that can be expressed as global rules

on the motif appearances. Section 5 summarizes our main findings.

2. Data and Methods

2.1. Dataset description

The investigated data encompasses business firm relationships that have been recorded

by Teikoku Databank, one of Japan’s largest corporate research providers. The database

used for this study comprises company pairs that have reported an inter-company

business relationship in the year 2009. Next to a company’s industry attribution and

its date of creation, the data contains information about the reporting date of an inter-

company relationship.

Let G = (V,E) denote a directed unweighted network that consists of the set

of nodes V and the set of links E, which is described by an adjacency matrix (aij)
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Figure 1. Distribution of motif appearances in different networks. (a)

Overview of the motif patterns µ and roles R (encircled numbers) in directed networks.

(b) Number of appearances of motif patterns in the real-world network Gr (blue solid),

the original evolving network model Gm (red dashed) and in random graphs GERr
and GERµ with corresponding densities of uni- and bidirectional links as observed in

the data (magenta dashed) and in the model (orange dashed), respectively. For the

models, the median values are represented as markers and the upper (lower) quartiles

are illustrated by the upper (lower) shaded boundary. The median and quartiles are

estimated from the respective ensemble of model realizations. The two plots at the

bottom show the penalty values for ∆Pµ(Gr,Gm) (red dashed) and for the random

graphs ∆Pµ(GERr ,GERm ) (orange dashed).

with entries aij = 1 if (i, j) ∈ E and aij = 0 otherwise. We define the real-world

Japanese Business Firm Network Gr = (Vr, Er) by drawing a link (i, j) ∈ Er between

two companies vi, vj ∈ Vr, if commodities or services have been exchanged in return for

money. The link direction is defined to coincide with the direction of the monetary flow.

As the available data does not contain quantitative information on the value of the flow,

in this work we will exclusively consider such binary networks. The resulting real-world

network consists of |Vr| = 446, 108 companies with |Er| = 2, 471, 689 links. The results

of this study have been cross-checked for consistency with the available data for the firm

networks from 2010 to 2015. As the main results do not change significantly with the

years, we restrict our following discussions to the results for the network of 2009.

2.2. Motif and role comparisons

Motifs are defined as small induced subgraphs of the network. In directed networks,

13 connected motif patterns (denoted with index µ) with 3 nodes can be distinguished.

Within these motifs, the individual nodes occupy one of 30 characteristic functional

roles (index R). An overview of the motif patterns and roles is presented in figure 1(a).
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If one node is a member of various motifs in the graph, this node can simultaneously

take different roles.

In previous studies [17] a non-trivial motif distribution of connected subgraphs has

been observed in the Japanese Business Firm Network. The results have been obtained

by comparing the appearances of motifs in the real-world network with expected

appearances in randomized graphs. These surrogates were generated by switching links

such that each node keeps its number of incoming and outgoing links [8]. This is a useful

approach to characterize the motif appearance of real-world networks with respect to a

randomized graph with identical degree sequence as the original model.

In contrast, in this study we are interested in the total differences between the

motif distributions in two networks Gx and Gy, which partially, but not exclusively arise

from differences in the local in- and out-degrees. Consequently, we directly compare

the absolute number of motif appearances rather than their normalized deviations from

the case of a randomized null model. This avoids the problem that differences in the

topological characteristics of the surrogates of the two networks will not be tracked, if

the networks Gx and Gy are compared to their respective surrogates. To allow for a

comparison of the absolute number of motif appearances, we ensure that the number

of nodes in the ensemble average of the model networks complies with the number of

nodes in Gr.
With xµ denoting the number of appearances of motif pattern µ in a graph Gx and

yµ the respective number in another graph Gy, we define the penalty value ∆Pµ(Gx,Gy)
as

∆Pµ(Gx,Gy) :=
xµ − yµ

min(xµ, yµ)
. (1)

The difference between the appearances of motif µ is normalized with respect

to the graph with the smaller number of appearances. This allows for a meaningful

comparison between different motif patterns with different magnitudes in appearance.

Equation (1) is anti-symmetric with respect to the exchange of graphs, following

∆Pµ(Gx,Gy) = −∆Pµ(Gy,Gx). To obtain the penalty value for an ensemble of model

realizations, we first average the motif frequencies of all ensemble members and then

apply equation (1).

2.3. Industry subgraphs

Motif distributions and linking patterns are known to show industry specific

characteristics in macroeconomic networks [16, 31]. To investigate how these

characteristics are present in the microeconomic network of business firms, we assess

how the industry structure in the Japanese Business Firm Network provides information

about the composition of the network’s topology and the motif distribution. Let

Gζ = (Vζ , Eζ) denote the subgraph that is induced by the subset of nodes Vζ ⊂ Vr.

Here, Vζ contains all nodes of Gr that belong to an industry ζ.

To analyze differences in the topology of the individual subgraphs, we start

with examining the degree distribution, the link density and the reciprocity rζ of
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the individual industries’ induced subgraphs. Since the analyzed networks do not

contain self-loops and as we are interested in both the link density and the reciprocity

separately [32], we utilize the standard definition of the reciprocity,

rζ =

∑
i 6=j a

(ζ)
ij a

(ζ)
ji∑

i 6=j a
(ζ)
ij

, (2)

where the a
(ζ)
ij denote entries of the adjacency matrix of subgraph Gζ . This definition

describes the probability of the existence of an oppositely directed link when one link

in the network is chosen at random.

Furthermore, we investigate the characteristic linking patterns of industries by

counting the appearance of roles in motifs. To assess an industry’s role characteristic,

we aggregate the appearance of role R in industry ζ by considering all nodes of this

industry, obtaining the number of appearances in the industry

NR
ζ =

∑
i∈Gζ

νRi . (3)

The number of appearances of role R for one node i is denoted by νRi . Here, motifs of

the full network G that may extend over several industries are taken into account. In

order to compare the role characteristic for industries of different size, we normalize NR
ζ

with respect to the full number of role appearances in this industry,

nRζ :=
NR
ζ∑

Ri N
Ri
ζ

. (4)

The associated z-score, defined as

zRζ :=
nRζ − Eζ(nR)

σζ(nR)
, (5)

quantifies to which extent a role R is characteristic for industry ζ. Here, Eζ(n
R) [σζ(n

R)]

denotes the mean value [standard deviation] of the normalized appearances among the

industries. A high value of zRζ implies a relatively frequent appearance of role R in

industry ζ.

3. Evolving network model

3.1. Basic model

In previous work, it has been shown that some key topological features of the real-

world Japanese Business Firm Network Gr can be well approximated by an evolving

network model Gm that incorporates a merging process of firms [30]. The development

of this model has been originally motivated by the observation of similar statistical

characteristics in the mass distribution of aerosols [33]. In each evolution step of

this model, a randomly selected node is either annihilated (with probability a), newly

created (probability b) or merged with another existing node in the network (probability

c = 1 − a − b). When a new node is created one incoming and one outgoing link
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are attached to the new node. In order to reproduce the observed scale-free degree

distribution of the real-world network, the selection criteria for both link creation and

the merging process follow a preferential attachment rule [34]. Previous studies have

demonstrated that the merging activity of firms in the real economy follows waves of

market sentiment and depends on many factors, for example the size and the stock

market performance of the involved firms [35, 36]. As a simplification, we do not

consider these factors here and utilize the simple assumption of preferential attachment

to reproduce the basic statistical characteristics of the real-world network.

The probability Πj→i that node j is connected to (or merged with) node i reads

Πj→i =
ki + 1∑
l(kl + 1)

. (6)

Thus, a node i with a high total degree ki (i.e. the number of incoming plus outgoing

links) is more likely to be chosen as business partner. With the choice of equation (6)

we ensure that isolated nodes with ki = 0 can still be chosen as new business partners.

As we will show in section 4, there are marked differences between the motif

distributions obtained from the basic evolving network model as described above and

those of the empirical Japanese Business Firm Network. In order to resolve these

discrepancies, in the following we utilize the characteristics of the industry subgraphs in

the real-world network Gr to deduce meaningful modifications of the model. Thus, we

introduce an industry structure to the model and assess the impact of characteristic

linking and merging preferences between firms on the appearance of motifs in the

network. Specifically, we will consider three types of modifications that are described

in the following.

3.2. Introduction of industry structure

Motivated by empirical findings that are obtained by utilizing the methods introduced in

section 2.3 and detailed later in section 4.2, we consider an additional industry structure

as part of the network model. At the initiation of the network evolution, we randomly

assign an industry to each node. The probability of a node to be associated with industry

ζ is estimated from Gr as |Vζ |/|Vr′|, where |Vr′| denotes the total number of firms that

belong to either of the following five main industries of the network (cf. section 4.2):

construction, manufacturing, whole sales, transport & communication and service. We

assign to newcomer nodes the industry with the largest population deficit that has

arisen from previous annihilation and merging processes in comparison with the real-

world benchmark network.

In the original model, a new node is created with exactly one incoming and outgoing

link each. Here, we modify the connection pattern of newcomers and introduce two

characteristic connection patterns for each industry of which one is randomly chosen at

node creation with equal probability. This procedure represents a simplification of the

patterns observed in the real-world network as will be discussed in section 4.3. However,

by restricting the modification to two linking patterns with equal probability, a clear
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understanding of the influence of linking preferences of newcomer firms on the resulting

motif distribution can be obtained. Furthermore, we reduce the risk of over-fitting

the model by minimizing the introduction of additional parameters. The choice of the

industry specific connection pattern is motivated by the results of the subgraph analysis

of the real-world network Gr, for which the obtained specific connection patterns for

each industry will be presented in section 4.3. We refer to the model that includes the

industry structure as Gind in the remainder of this study.

3.3. ∆k-rule for the merging process

In section 4.1, we will report and discuss an observed excess frequency of motifs with

bidirectional links in the model Gm as compared to Gr. To account for this effect, we

designed a rule to reduce this overshoot in the model. Bidirectional links occur in

the merging process when two companies merge that share the same business partner.

When two firms serve as a supplier and consumer to the shared partner before merging,

respectively, a bidirectional link will be established in the merging process. Thus, an

intuitive rule to reduce the appearance of motifs with bidirectional links is based on the

local degree properties of each node. We denote the difference of a node’s in-degree and

out-degree as ∆ki = kini − kouti . Following the above argument, we expect a reduction

of bidirectional links if merging processes between firms i and j with ∆ki ·∆kj < 0 are

forbidden. This rule, which we refer to as the ∆k-rule, can be interpreted such that

two firms with similar shares of their input/output allocations are more likely to merge.

With the production function describing a company’s output depending on its input,

two firms with similar production functions will exhibit the same sign in ∆ki, allowing

for a merging process. In this paper, we indicate network models G• that include the

∆k-rule with an additional subscript ∆k.

3.4. Substitution of trading partners

Finally, we investigate a third modification of the model that allows companies to

substitute their trading partners. Hence, we introduce a relinking process with

probability d in the evolution step. The probabilities of the processes during network

evolution are then adjusted to satisfy a′ + b′ + c′ + d = 1. Specifically, the probabilities

of the annihilation, creation and merging processes are modified such that the relative

ratios between the probabilities of the processes stay constant, i.e. a′ = (1− d) · a and

analogous for b′ and c′. During relinking, a company (node) i and one link are chosen

at random. We then consider this company substituting its business relation in favor

of a company that shares a common business partner. Thus, the new business partner

l of node i is found by following a path from node i to another node of length 2. With

the symmetrized adjacency matrix with entries a′ij = a′ji = max(aij, aji), the probability

that the link is reconnected to node l is then given by

Πi,l =
(
∑
j a
′
ija
′
jl)(1− a′il)∑

m(
∑
j a
′
ija
′
jm)(1− a′im)

. (7)
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Equation (7) accounts for the assumption that more common business relations make

a reconnection to node l more likely. Models G• that include the relinking process are

denoted with the additional subscript l.

4. Results and discussion

4.1. Motif appearances in the real-world network and basic model

Previous work has shown that the model Gm with a choice of probabilities a = 0.2,

b = 0.5 and c = 0.3 (for the annihilation, creation and merging process, respectively)

approximately reproduces the scale-free degree distribution from the real-world network,

following a power law ∝ k−α with an exponent of α ≈ 1.4 [12]. Despite changes in

the number of firms and links, it has been concluded that some basic characteristics

such as the degree distribution are robust in the business firm network of Japan

from 1994 to 2014 [12]. In this work, we simulate an ensemble of 100 networks with

approximately the same number of nodes |Vm| in the model as in Gr. From the different

realizations, we obtain a network ensemble with |Vm| = 450, 000 ± 6, 000 nodes and

|Em| = 1, 090, 000±20, 000 links (denoting the ensemble average and standard deviation,

respectively). Note that due to the probabilistic nature of the network model, it is not

possible to fix both the number of nodes and the link density at exactly the desired

values corresponding to those of the real-world network.

Figure 1(b) illustrates the motif distribution for the real-world network Gr and the

basic evolving network model Gm. Note that many patterns of connected motifs are

more frequently observed in Gm despite its lower link density (ρm < ρr). To further

quantify the impact of the link density difference, we construct an Erdős-Rényi type

random graph ensemble GERr such that the link densities for both uni- and bidirectional

links correspond to the respective densities in the real-world network. This is achieved

by drawing uni- and bidirectional links with the respective probability estimated from

the real-world network separately. GERm is similarly defined for the modeled network.

We simulate 100 realizations for the Erdős-Rényi type random graphs. As shown in

figure 1(b) the penalty values ∆Pµ(Gr,Gm) are in general smaller than the corresponding

values ∆Pµ(GERr ,GERm ) between the random networks with identical link density. This

observation arises from the similarity in the degree distribution between data and model,

both following a power-law ∝ k−α with almost identical exponent. In random graphs,

the Poisson distributions show different values of their characteristic parameter which

are uniquely determined by the respective link density. For sparsely connected motif

patterns, the evolving network model offers a good description of the motif distribution

of the data. However, the model considerably overestimates the appearances of dense

motifs with bidirectional links such as µ = 11 to 13, especially ∆P13(Gr,Gm) = 5.8+1.8
−1.4.

Here, the central penalty value refers to the median of the ensemble. The upper (lower)

error bands denote the differences of the upper (lower) ensemble quartiles of ∆Pµ from

the corresponding median. As we will demonstrate in section 4.4, the large value of
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∆P13 can be attributed to the creation of bidirectional links during the merging process

in the model.

4.2. Industry subgraphs in the business network

In the real-world network, 95.6 % of all firms belong to either of the five

industry subgraphs with highest cardinality: whole sales (GW , |VW |/|Vr| = 0.329),

construction (GC , 0.22), manufacturing (GM , 0.215), services (GS, 0.145) and transport

& communication (GT , 0.047). As only a small part of the network consists of nodes from

neither of these subgraphs, we focus in this study on these main industries. Figure 2(a)

shows the degree distributions of the subgraphs. From visual inspection, we observe

that in most industries this distribution resembles a power-law with an exponent that

is similar to the exponent of α ≈ 1.4 in the full network. In the construction sector,

however, the distribution does not obey a power-law due to the lack of middle-sized

firms. This underlines the uniqueness in the establishment of business relations between

construction firms in Japan, which is supported by findings from previous studies [37].

We further analyze the characteristic linking patterns of industries by counting

the appearances of roles in motifs. In business networks, a node’s role is related to a

company’s function in the supply chain of a final product. For example, the pattern

of motif µ = 3 (see figure 1(a)) arises from a supply chain where the firm with role

R = 6 serves as an intermediate component manufacturer for some end product. Note

that individual supply chains cannot be obtained from the network at the considered

aggregation level of the data. Nevertheless, the role of a firm can provide meaningful

interpretations. For example, if a firm specializes on the production of intermediate

components, it is likely that role R = 6 is attributed to that firm in many motifs.

The obtained z-scores, determined as described in equation (5), are presented in

figure 2(b). We observe that manufacturing companies are more likely to occupy roles

as a provider of intermediate goods (R = 6) and roles with a bidirectional link to one

partner. Business firms in the service sector, however, are more prominent in roles

with incoming links (R = 2, 7 and 13). Figure 3 illustrates excerpts of subgraphs that

consist of example business firms with a characteristic role for their industry. Here,

the representative firm in the construction sector (figure 3(a)) occupies role R = 1

by consuming goods and services from other firms. The providers are primarily firms

from the construction or whole sales sector. In the example from the manufacturing

industry (figure 3(b)), the considered firm exhibits mainly outgoing links to the whole

sales sector. This indicates the requirement of inputs for production delivered by that

sector. The large number of incoming links from other manufacturing companies hint

towards the firm’s role as a manufacturer of intermediate goods. In the whole sales sector

(figure 3(c)) the selected firm with role R = 18 has established bidirectional relationships

with other whole sales and manufacturing businesses. A different pattern is observed

for the transport & communication and service sectors. Here, nodes with characteristic

roles often exhibit a low degree but are connected to hubs in other industries. In
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Figure 2. Topological properties of the industry subgraphs. (a)

Complementary cumulative distribution function of the total degree ki in the induced

subgraphs Gζ for different industry categories ζ. (b) Role analysis of industries: z-

scores as defined in equation (5). The values of E(zζ)± σ(zζ) for each industry ζ are

indicated by gray lines.

(a)

(e)

(b) (c)

(d)

Figure 3. Network excerpts around exemplary nodes with characteristic

industry roles. The exemplary nodes from the construction (a), manufacturing (b),

whole sales (c), transport & communication (d) and service (e) sectors are marked

yellow, respectively. Unidirectional (bidirectional) links connected to the selected

nodes are plotted in red (light blue). Gray edges depict unidirectional links that are

not connected to the selected nodes.

figure 3(d), many firms from the transport & communication sector consume goods or

services from the same manufacturing partner. Finally, in figure 3(e), the selected firm

provides services to a manufacturing business that has many clients in the whole sales

sector. A summary of the characteristic topological features in the industry-induced

subgraphs, including the link density ρζ and the reciprocity rζ , is presented in table 1.
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Table 1. Overview on some topological characteristics in the key industries of the

Japanese economy and illustration of the introduced linking pattern in the modified

model Gind. Depending on a newcomer’s industry, one of the two patterns is chosen at

random with equal probability at node creation.

Subgraph rζ ρζ characteristics of dominant roles
pattern in Gind

(I) (II)

GC Construction 0.04 1.9 · 10−5 both incoming and outgoing links → • → → •
GM Manufacturing 0.11 3.3 · 10−5 intermediate/component manufacturer → • → ↔ • ←
GW Whole Sales 0.06 2.0 · 10−5 more outgoing than incoming links ← • → → •
GT Transport & Comm. 0.10 9.0 · 10−5 unidirectional links → • ← ← • →
GS Service 0.07 2.2 · 10−5 incoming links → • ← → •

4.3. Impact of the industry structure on the motif appearances

With the results presented above, we next introduce an industry structure to the model

and modify the linking pattern at the creation process of a new node as described in

section 3.2.

The considered linking patterns in Gind and the results of the subgraph analysis of

Gr are summarized in table 1. The comparatively high value of the reciprocity r in the

manufacturing sector GM indicates a higher density of bidirectional links as compared to

most other industries. Therefore, we introduce the possibility of a bidirectional link for

newcomer nodes from the manufacturing sector. We observe that zrM > E(zM) + σ(zM)

for R = 6, 11, 19 and 24 (cf. figure 2). Except for R = 19 these roles describe the

production of intermediate goods. Thus, we keep the pattern of one incoming and one

outgoing link for manufacturing nodes. In the transport & communication industry

GT the reciprocity also shows a comparatively high value. However, we do not include

a bidirectional link for GT due to the infrequent appearance of roles with these links

(i.e. roles R = 9 - 12 and R = 26 - 30, see figure 2). This illustrates the importance

of the connection to high-degree firms in other industries, as shown in figure 3(d). As

the roles R = 3, 7, 13 with zrT > E(zT ) + σ(zT ) exhibit either incoming or outgoing

links, we introduce the patterns with two links of identical directions (either incoming

or outgoing) to the node for GT . Motivated by the lower link density ρζ in GC , GW

and GS, we introduce the pattern with a single unidirectional link only for newcomer

nodes of these industries. As most motifs µ appear more frequently in Gm than in

Gr (cf. figure 1), we do not consider the possibility of adding more than two links to

newcomers. In the whole sales sector GW , we observe more outgoing than incoming

links for the characteristic roles R = 4, 5, 8, 9, 18 and 20. On the other hand, we see

a strong dominance of roles R = 2, 5, 7, 12 and 13 with incoming links in the service

sector GS. In GC both incoming and outgoing links are almost equally present in the

roles with zC > E(zC) + σ(zC). We consider these results in the directionality of links

in the selected patterns as summarized in table 1.

To compare the introduced connection patterns with the empirical data, we analyze

the directionality distribution of newly established firms in the Japanese economy from
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Figure 4. Distribution of the fraction of incoming initial links θin for key

industries in the Japanese Business Firm Network. The bars indicate the

probabilities p(θin ∈ I) of values in the intervals I defined as described in the legend.

Gr. For this purpose, we define the fraction of incoming initial links θini for node i as

θini =
κini
κi

. (8)

Here, κi denotes the number of initially established links of company i and κini describes

the number of incoming links among them. Motivated by a comparison of the real-

world data with the original evolving network model we consider κi = 2. There are,

however, firms with more than 2 links, that have been reported in the same month as

the establishment of the first link. In these cases the first two links cannot be uniquely

identified and we set the value of κi > 2 such that all reported links of this month

are considered. In cases when the first 2 links of a newcomer firm can be obtained

from the data, the statistic of θin in equation (8) allows for a direct evaluation of the

linking pattern of newcomers in the real-world network that can be compared with the

introduced linking pattern (I) of Gind in table 1. If κi > 2, the method still provides

insights to the question if the first links of newcomers are predominantly incoming or

outgoing.

The distribution of θin is illustrated in figure 4. We observe a strong tendency of

firms in the whole sales sector to firstly establish outgoing links to other companies.

Firms in this industry buy the products first before further distributing them among

other companies or final consumers. In the construction and service sectors, new

participants in the market tend to start as providers, establishing incoming links first.

Although the observed connection patterns are less distinctive than in the model, these

findings are in line with the introduced simplified pattern scheme in table 1.

The impact of the introduction of the industry structure to the model as described

above can be seen in figure 5. We observe that the industry structure improves the

description of motifs µ = 0, 3, 7, 11, 12, and 13, whereas the absolute penalty value
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Figure 5. Impact of model Gind on the motif distributions in the full

network. Top: Absolute frequencies of motif appearances in the real-world network

Gr (solid blue), the model Gm (red) and the modified model with and industry structure

Gind (light blue). Bottom: Penalty values ∆Pµ as defined in equation (1) for two model

variants with respect to the real network. For the models, the median (markers) and the

respective upper and lower quartile (shaded boundaries) of the ensemble realizations

are shown.

increases for motifs µ = 1, 2, 4, 5, 6 and 8. However, the improvements outweigh the

negative effects (see table 2). Nevertheless, despite a positive impact on the densely

connected motifs µ = 11, 12 and 13, further modifications of the model are required to

more accurately describe the motif distribution of the real-world network.

4.4. Impacts of merging preferences and substitution of links on the motif appearances

From the findings discussed above, we deduce that a reduction of the observed excess

frequency of densely connected motifs in the model as compared to Gr requires an

additional modification of the merging rule. Specifically, this excess cannot be simply

explained by the introduction of an industry structure to the model alone (see figure 5).

Therefore, we utilize in the following the ∆k-rule (cf. section 3.3). Thus, only pairs of

firms with similarities in their input/output allocations merge in this model variant. We

apply this rule in addition to the introduction of the industry structure and investigate

the results of the resulting model Gind,∆k.



Motif formation and industry specific topologies in the Japanese Business Firm Network15

Figure 6. Impact of the ∆k-rule on the motif distributions in the full

network. As in figure 5 for two further model variants Gind,∆k and Gind,∆k,l involving

the ∆k-rule.

Figure 6 shows the total numbers of motif appearances (top) and the penalty values

∆Pµ (bottom) for the modified model Gind,∆k that includes both the industry structure

and the ∆k-rule. We observe that the introduction of the ∆k-rule has a substantial

impact on motifs with bidirectional links, greatly reducing the number of appearances

of motifs µ = 8, 11, 12 and 13. This leads to a much better description of the data in these

motif patterns, with a penalty value of ∆P13(Gr,Gind,∆k) = 0.9+0.8
−0.5 in motif µ = 13. This

improvement of the model leads to the hypothesis that pairs of firms that allocate their

input/output similarly show a higher probability to merge. A more detailed investigation

of this hypothesis is subject to future studies in order to complement the literature on

drivers of the merging of firms [35, 36].

As shown in section 4.3 the introduction of the industry sector results in a better

description, especially of unconnected motifs. This is mainly achieved by introducing

the bidirectional link pattern to manufacturing firms. For the sparsely connected motifs

µ = 1 to 5 the models Gm and Gind describe the motif appearance as observed in the

real-world network almost equally well (cf. figure 5). In turn, this rule provides a more

accurate description of unconnected motifs with bidirectional links (µ = 0) and reduces

the deficit of densely connected motifs µ = 11 to 13. However, for the fully connected
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Table 2. Sum of the penalty values for all motifs in the investigated model variants.

model Gm Gind Gind,∆k Gind,∆k,l G∆k Gl G∆k,l Gind,l

|∆P (Gr,G•)| 28+11
−6 25+10

−8 17+7
−4 14+5

−4 33+15
−10 29+9

−5 32+13
−9 21+8

−6

motif with unidirectional links (µ = 6) the introduction of the industry structure results

in a less accurate modeling of the real-world network. This can be attributed to the

introduction of nodes in three industries that receive only one link at creation.

Furthermore, the deficit of appearances of motif µ = 6 can be explained by the lack

of relinking possibilities for companies in the models Gm,Gind, and Gind,∆k. As described

in section 3.4 and equation (7), we therefore finally investigate the impact of additional

relinking possibilities on the motif distribution by considering substitution opportunities

for companies according to their preference towards common business partners in the

model variant Gind,∆k,l. Thus, the abundances of unidirectional fully connected motifs

are increased.

To compare the description of the motif distributions among all variants of the

evolving network model, we calculated the sum |∆P | :=
∑
µ |∆Pµ| over the 16 motif

patterns µ for all model modifications in table 2. The table includes all combinations of

the discussed modifications. We see that the ∆k-rule and the introduction of relinking

possibilities alone do not decrease the penalty value |∆P | in comparison with the original

model Gm. This can be attributed to the fact that while these models improve the

descriptions of motifs they are defined for (i.e. µ =11, 12, 13 for ∆k and µ = 6 for l),

the unconnected motif with a bidirectional link (µ = 0) is still badly described without

including the industry structure in the model. Thus, the additional industry structure

improves the description of the motif distribution in the model markedly. From table 2

and figures 5 and 6, we see that, consequentially, the model Gind,∆k,l offers the best

description of the motif distribution.

To find a suitable value for the relinking probability d in model Gind,∆k,l, we

investigated the impact on the motif distribution for different values of d. The possibility

to substitute business relations improves the description of motif pattern µ = 6 in the

model. A high value of d results in a high frequency of this pattern (not shown).

However, the modification l also increases the frequency of pattern µ = 7 and decreases

the frequency of µ = 0 and 8 (not shown). With these opposing effects on the motif

distribution, we observe the lowest sum of the penalty values for d = 0.3. At this

probability the largest effect on motif µ = 6 is obtained, while leaving the impacts on

other motif patterns relatively small. Compared to Gind,∆k, the penalty value |∆P6|
considerably decreases without increasing |∆Pµ| for µ 6= 6. The median value of∑
µ |∆Pµ| decreases from 17+7

−4 for Gind,∆k to 14+5
−4 for Gind,∆k,l.

From this observation, we conclude that substitutions of business relations play

an important role in the formation of motifs. In particular, our results imply that the

representation of the motif distribution in the model improves when business relations
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are relinked by firms in favor of partners that already exhibit many common business

partners. We consider a study on empirical evidences for this hypothesis concerning the

relinking process as important subject for future research.

5. Conclusion

In this study we have studied different strategies to influence the motif distribution in

an evolving network model to better understand the formation process of motifs in the

Japanese Business Firm Network. While the original model provides a good description

of many topological properties of the real-world network, it overestimates the appearance

of densely connected motifs with bidirectional links. To better understand the origin

of motif appearances, we have analyzed the topology of individual industry subgraphs

in the real-world network and introduced an industry structure to the model. Unlike

other industries, the construction sector in Japan follows a unique degree distribution

that does not obey a power-law due to the lack of middle-sized firms. The performed

role analysis with respect to industries demonstrated that roles with bidirectional links

appear predominantly in the manufacturing sector.

We have introduced subgraph- and industry-specific linking patterns at node

creation in the evolving network model. This influences the appearance of sparsely

connected motifs within the individual subgraphs. However, the impact on densely

connected motifs with bidirectional links is small. To better describe the appearance of

densely connected motifs in the real-world network, we modified the merging process of

nodes in the model by introducing the ∆k-rule. This rule states that nodes that exhibit

higher in-degree than out-degree do not merge with nodes that have more outgoing than

incoming links. In the context of business networks this rule is interpreted such that

firms which predominantly provide goods or services to other companies do not merge

with firms that predominantly exhibit the position of a customer. With the ∆k-rule

the frequencies of densely connected motifs with bidirectional links in the model are

reduced, improving the reproduction of the real-world network properties in the model.

Furthermore, we have shown that by introducing additional possibilities to reconnect

links from a node preferably to another node with many common neighbors, the deficit

of appearances of completely unidirectionally connected motifs in the model is reduced.

Our results provide both empirical and conceptual insights into the mechanisms

of motif formation in an evolving network model. We have modified the existing

basic model to improve the description of the motif distribution by achieving a better

agreement with the real-world business network. In addition, our findings provide

information about the selection preferences of business partners in the creation and

merging process of firms. We have established the hypothesis that business firms tend

to merge with companies that exhibit similarities in their input/output allocations. This

finding provides a starting point for future empirical studies that focus on the merging

behavior of firms. In particular, we outline the analysis of the degree distribution of

merging partners in the Japanese Business Firm Network as an important topic for
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future research. The second elaborated hypothesis of this study states that companies

tend to substitute business relations in favor of companies that share many common

business partners. This can be deduced from the observed improvement of the model to

better reproduce the appearance of motifs when substitution possibilities are taken into

account. Providing empirical support for this hypothesis is another subject of future

studies.

Despite the specific application to the Japanese Business Firm Network, our results

are also potentially relevant for complex networks in other disciplines. For example, in

biological networks with high abundances of fully connected motifs with unidirectional

links [5], our investigated mechanisms might offer a starting point for future research

on the principles underlying the formation of such networks.

In summary, this study provides initial insights motivating future research on

influencing motif distributions in network models with a scale-free topology. We consider

further systematic studies on correlations between the motif appearances of different

patterns as relevant research opportunities. In particular, an assessment of correlations

in the course of modifications to the creation and merging processes of nodes would

provide further insights into the ability to influence motif appearances on scale-free

network topologies.
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