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Abstract
Climate extremes have the potential to cause extreme responses of terrestrial ecosystem
functioning. However, it is neither straightforward to quantify and predict extreme ecosystem
responses, nor to attribute these responses to specific climate drivers. Here, we construct a
factorial experiment based on a large ensemble of process-oriented ecosystem model simulations
driven by a regional climate model (12 500 model years in 1985–2010) in six European regions.
Our aims are to (1) attribute changes in the intensity and frequency of simulated ecosystem
productivity extremes (EPEs) to recent changes in climate extremes, CO2 concentration, and land
use, and to (2) assess the effect of timing and seasonal interaction on the intensity of EPEs.
Evaluating the ensemble simulations reveals that (1) recent trends in EPEs are seasonally
contrasting: spring EPEs show consistent trends towards increased carbon uptake, while trends in
summer EPEs are predominantly negative in net ecosystem productivity (i.e. higher net carbon
release under drought and heat in summer) and close-to-neutral in gross productivity. While
changes in climate and its extremes (mainly warming) and changes in CO2 increase spring
productivity, changes in climate extremes decrease summer productivity neutralizing positive
effects of CO2. Furthermore, we find that (2) drought or heat wave induced carbon losses in
summer (i.e. negative EPEs) can be partly compensated by a higher uptake in the preceding
spring in temperate regions. Conversely, however, carry-over effects from spring to summer that
arise from depleted soil moisture exacerbate the carbon losses caused by climate extremes in
summer, and are thus undoing spring compensatory effects. While the spring-compensation
effect is increasing over time, the carry-over effect shows no trend between 1985–2010. The
ensemble ecosystem model simulations provide a process-based interpretation and generalization
for spring-summer interacting carbon cycle effects caused by climate extremes (i.e. compensatory
and carry-over effects). In summary, the ensemble ecosystem modelling approach presented in
this paper offers a novel route to scrutinize ecosystem responses to changing climate extremes in
a probabilistic framework, and to pinpoint the underlying eco-physiological mechanisms.
1. Introduction

Climate variability and extremes are key features
influencing terrestrial ecosystem functioning (Smith
2011, Reyer et al 2013, Baldocchi et al 2016). Climatic
© 2017 IOP Publishing Ltd
extremes directly propagate into the biosphere
through various eco-physiological pathways, for
instance affecting plant phenological events (Jentsch
et al 2009, Ma et al 2015) or carbon cycling from
regional to global scales (Knapp et al 2002, Reichstein

mailto:ssippel@bgc-jena.mpg.de
https://doi.org/10.1088/1748-9326/aa7398
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aa7398&domain=pdf&date_stamp=2017-7-7
https://doi.org/10.1088/1748-9326/aa7398


Spring weather
(warm / cold)

Meteorological
drought

Heat wave

Longer term
effects

(a)
(c)

(c)

(b)

Plant activity & growth
Net carbon uptake
Gross primary production
Ecosystem respiration

Plant activity & growth
Net carbon uptake
Gross primary production
Ecosystem respiration

Spring Summer

Soil
moisture

deficit

Figure 1. Conceptual illustration of spring-summer interacting carbon cycle effects due to climate extremes. In years affected by
summer heat and drought (arrows (c)), warm spring conditions could potentially partly compensate for carbon losses in summer due
to higher carbon uptake in spring (arrow (a), associated with (þ)). Conversely, however, warm spring conditions might lead to earlier
soil moisture depletion (arrow (b), associated with (þ)) and thus a carry-over effect from spring to summer carbon cycling. Diagram
modified from Sippel et al (2016b), CC BY 4.0.
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et al 2013, Zscheischler et al 2014a, Frank et al 2015).
Major climatic extreme events such as the European
heat wave and drought in 2003 (Ciais et al 2005,
Reichstein et al 2007), or droughts in North America
(Schwalm et al 2012, Wolf et al 2016), Australia (Ma
et al 2016) and the Amazon (Phillips et al 2009, Lewis
et al 2011) consistently cause net carbon losses.
However, because the number of directly observed
large-scale extreme climate events and associated
impacts on ecosystem productivity are rare, and
because field experiments are often limited in extent
and thus difficult to upscale to larger regions (Beier
et al 2012), crucial uncertainties remain in our
understanding of processes that control these phe-
nomena.

Climatic extreme events are changing in magni-
tude and frequency (Alexander et al 2006, IPCC 2012),
and these occur in addition to more gradual climatic
changes in, e.g. seasonal variation (Stine et al 2009,
Cassou and Cattiaux 2016) and climate trends. These
changes, in tandem with non-linear feedbacks or
lagged effects (Frank et al 2015), might impart decisive
consequences for regional and global-scale carbon
balances of terrestrial ecosystems (Reichstein et al
2013).

For example, the extreme summer drought 2012 in
the contiguous United States caused losses in carbon
uptake in summer (Wolf et al 2016) which were offset
by warming-induced increases in spring carbon
uptake, leading to a spring–summer compensation
of the regional carbon balance (figure 1). Furthermore,
Wolf et al (2016) hypothesized that earlier spring plant
activity could have induced negative carry-over effects
to summer productivity via soil-moisture deficits
(figure 1), as suggested in Richardson et al (2010).
However, as the evidence for seasonal compensation of
extremes in Wolf et al (2016) is based on a single event
only it remains uncertain whether such interacting
effects can be expected generally for climate extremes
2

in summer. Long time series allowing a comprehensive
study of additional independent climatic extreme
events in spring and/or summer would be required as
such lagged effects in ecosystem productivity could
have simply occurred by chance.

Climate extremes may cause immediate or delayed
responses in ecosystems (Frank et al 2015), but not all
climate extremes lead to an extreme ecosystem
response (Smith 2011). Therefore, systematic quanti-
fication and attribution of contemporary trends in
ecosystem productivity extremes, including potential
interactions of events, is required. Respective analysis
on observations is often hindered by small sample
sizes. Alternatively, large ensembles of climate–
ecosystem model simulations might complement a
‘case study type’ assessment of extremes in the
observational record because they allow exploration
of how climate variability and extreme events are
related to extreme ecosystem responses (Ciais et al
2005, Schwalm et al 2012, Wolf et al 2016). For
example, multi-thousand member ensembles of
climate simulations were used to analyse and attribute
extreme climate events, such as the Russian heat wave
in 2010 (Otto et al 2012), or to investigate the role of
climate extremes in causing, e.g. floods (Pall et al 2011,
Schaller et al 2016) and heat-health related issues
(Mitchell et al 2016). This approach is appropriate
when analysing the impact of climatic extreme events
on ecosystem functions.

This study investigates two main objectives: our
first objective is to systematically assess changes in
EPEs in spring and summer using climate–ecosystem
model ensemble simulations, and to attribute seasonal
changes in EPEs to changes in climate extremes,
atmospheric CO2 and land-use change. Second, we
focus on interactions between negative summer EPEs
and the preceding spring conditions, and reinvestigate
the outlined spring compensation and carry-over
effects in years affected by negative summer EPEs on
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regional carbon cycling from a climate-ecosystem
ensemble modeling perspective, and provide a model-
based interpretation and generalization of these
effects.
2. Data and methods

The methodological workflow of the study is as
follows: we use a large ensemble of bias-corrected
regional climate model simulations (section 2.1) to
drive an ensemble of ecosystem model simulations
(section 2.2) for six eco-physiologically different
European regions. Factorial model simulations are
set up (section 2.3) and used to disentangle climatic
and non-climatic drivers of seasonal changes in EPEs,
and to scrutinize respective spring-summer interact-
ing carbon cycle effects (section 2.4).

2.1. Regional climate model simulations and
physically consistent bias correction
The core ingredient to the present study is an ensemble
of regional climate simulations over Europe that cover
26 years of transient climate change (1985–2010) and
800 ensemble members in each year (i.e. 20 000
members in total) based on perturbed initial
conditions. Climate model simulations have been
generated through distributed computing on citizen
scientists’ computers (www.climateprediction.net/
weatherathome), using the global general circulation
model HadAM3P (1.875°� 1.25°15 min resolution,
19 vertical levels) and a dynamically downscaled
regional model version (HadRM3P, 0.44°� 0.44°� 5
min resolution, Massey et al (2015)) in atmosphere-
only mode. Hence, the model is driven by observed sea
surface temperatures, sea ice fractions, the solar cycle,
and the observed atmospheric composition (green-
house gases, aerosols, ozone, see Massey et al (2015)
for further details). The present experimental setup
has been used to assess and attribute changes in
climatic extreme events and its impacts in various
sectors (Otto et al 2012, Sippel and Otto 2014, Schaller
et al 2016, Mitchell et al 2016), because the large
available sample size allows scrutiny of even small
changes in the odds of climatic extreme events. The
European summer climate in HadRM3P and other
climate models is frequently too hot and dry (Massey
et al 2015). To alleviate this issue, we apply a
resampling-based bias correction that preserves the
physical consistency in the ensemble simulations (for
details see Sippel et al (2016a)): A Gaussian kernel
fitted over 1985–2010 mean summer area-averaged
temperatures in the ERA-Interim dataset (Dee et al
2011) in each of the six European regions (online
supplementary table S1) is used as a constraint for
resampling 500 ensemble members in each year. The
resampling procedure improves the representation of
summer climate in HadRM3P substantially, but
reduces the available sample size of the ensemble
3

and cannot account for all possible biases (Sippel et al
2016a).

2.2. Terrestrial ecosystem simulations: model
description
The process-based Lund–Potsdam–Jena managed
Land dynamic model (LPJmL, Version 3.5) simulates
terrestrial vegetation dynamics (growth, competition
and mortality), land–atmosphere fluxes of carbon
(gross and net primary productivity, ecosystem
respiration) and water (evaporation, transpiration,
interception) in natural ecosystems (Sitch et al 2003)
and under human land use (Bondeau et al 2007).
Carbon allocation in LPJmL follows the fully coupled
photosynthesis and water balance scheme of the
BIOME3 model (Haxeltine and Prentice 1996), i.e. the
photosynthetic light-use efficiency is subject to
environmental controls via co-limiting light-limited
enzyme regeneration and rubisco-limited enzyme-
kinetic rates (Haxeltine and Prentice 1996). Respira-
tion from plant compartments follows a modified
Arrhenius relationship (Lloyd and Taylor 1994).
Heterotrophic decomposition of litter and soil carbon
pools depends additionally on soil moisture and
follows first-order kinetics (Sitch et al 2003). LPJmL
consists of 11 natural plant functional types and 13
crop functional types that differ in their bioclimatic
limits and ecophysiological parameters. Here, we run
LPJmL with an improved hydrology scheme (Gerten
et al 2004, Schaphoff et al 2013), human land use
(Bondeau et al 2007), agricultural water use (Rost et al
2008), and an improved phenology module (Forkel
et al 2014). Phenology and photosynthesis-related
parameters have been optimized against remote
sensing observations resulting in an improved
simulation of natural vegetation greenness dynamics
(Forkel et al 2015). LPJmL ensemble simulations are
performed at a monthly temporal and at 0.5° spatial
resolution. The spinup procedure consists of 1200
years by randomly concatenating individual ensemble
members (sampled from the first ten available years,
1986–1995) with transient CO2 concentration and
land use.

2.2.1. Region selection
All ensemble simulations are conducted for six
individual regions in Europe that broadly sample
the spectrum of variability of vegetation productivity
in Europe (online supplementary figure S1, available
at stacks.iop.org/ERL/12/075006/mmedia), revealed
from seasonal cycles in the satellite observed Fraction
of Photosynthetically Active Radiation (FPAR) taken
from the MODIS FPAR product (Myneni et al 2002).
Spring (March–May) and summer (July–September)
cover very different seasonality patterns in FPAR
(figure 2). The LPJmL ensemble reproduces seasonal
dynamics of vegetation phenology at the regional
scale and the regional gradient in FPAR dynamics
(figure 2).

http://www.climateprediction.net/weatherathome
http://www.climateprediction.net/weatherathome
http://stacks.iop.org/ERL/12/075006/mmedia
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Figure 2. (a) Illustration of seasonal cycles in vegetation phenology (indicated by the fraction of absorbed photosynthetically active
radiation, FPAR) in satellite observations (MODIS) and in the ensemble of LPJmL model simulations (± 2s range) in all six regions
studied in this paper. (b) and (c) Identification of extremes in the response variable’s distribution in the presence of trends in (b) spring
and (c) summer: quantile regression of the 10th and 90th conditional percentile against time.

Table 1. Overview over factorial model simulationsa.

Scenario name CO2 Land-use Climate Section

All transient CO2 transient land-use transient climate 3.1–3.3

CONSTCO2 constant CO2
b transient land-use transient climate 3.1–3.2

CONSTLU transient CO2 constant land-usec transient climate 3.1–3.2

CONSTLUCO2 constant CO2
b constant land-usec transient climate 3.1–3.2

SPRINGRAND transient CO2 transient land-use transient climate, spring randomizationd 3.3

a Each factorial simulation is conducted for 1986–2010 climate and propagated through the entire climate ensemble.
b
fixed to 345 ppm in 1985.

c
fixed to 1985 land-use values.

d Ensemble members have been randomly concatenated on June 1st in each year (‘random spring’, but meteorological summer and

autumn are identical to the other scenarios).

Environ. Res. Lett. 12 (2017) 075006
2.3. Factorial model simulations
The factorial set of climate–ecosystem model simu-
lations (table 1) is based on a standard run (‘All’), in
which LPJmL is run with all drivers, including
4

transient CO2 concentrations and human land-use
(Fader et al 2010). Moreover, LPJmL is run separately
for constant CO2 (‘CONSTCO2’), constant land-use
(‘CONSTLU’), and both constant CO2 and land-use
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(‘CONSTLUCO2’). In this factorial, ensemble-based
setup the differences between these runs are used to
disentangle and pinpoint climatic and non-climatic
(CO2, land-use) drivers of contemporary changes in
EPEs (sections 3.1 and 3.2). Lastly, to investigate carry-
over effects from spring conditions to EPEs in summer
(section 3.3), an additional LPJmL simulation driven
by randomised spring climatic conditions (‘SPRING-
RAND’) is conducted. This step consists of randomly
concatenating members of the climate ensemble
between summer and spring (on June 1st) within
each year such that summer meteorology remains
identical to the ‘All’ run, but spring conditions are
different. Hence, the difference in summer carbon
cycling between ‘All’ and ‘SPRINGRAND’ is driven by
lagged effects from spring in the ecosystem model.

2.4. Analysis methodology
2.4.1. Selection of extreme events
All individual ensemble members are averaged to
regional and seasonal means for further analysis. EPEs
are sampled directly from the tail of the response
variable distribution (Smith 2011), which is either
gross primary productivity (GPP) or net ecosystem
productivity (NEP) in the present study. Let xi,t,s,fac
denote the response variable x (x ∈ {GPP, NEP}), an
arbitrary ensemble member i, in year t, season s, and
from any factorial run fac (region is not indexed
separately to lighten the notation). Ensemble members
in which the response variable exceeds or falls below a
given threshold in the ‘All’ simulations are labelled as
positive and negative EPEs (xþextreme

j;t ;s;fac and x�extreme
j;t ;s;fac ,

respectively). The index j runs only over ensemble
members within in a given category (�extreme or
þextreme). In section 3.1, an illustrative extreme value
analysis is conducted by fitting a generalized Pareto
distribution (GPD) to extremes in the response
variable, where the GPD constitutes a suitable limit
distribution for such peak-over-threshold selection of
extreme values (Coles et al 2001). These statistical fits
are derived from the ‘All’ simulations separately for the
response variables’s lower and upper tails (negative
and positive EPEs) using a 5th and 95th quantile
threshold to identify EPEs, and separately for
each season and two decadal periods (1986–1995
and 2001–2010).

In sections 3.2 and 3.3, a quantile regression of the
10th (90th) conditional percentile against time in the
‘All’ simulation is performed (Cade and Noon, 2003)
to identify EPEs relative to time-dependent thresholds,
thus accounting for potential trends in the 25 year
period. This yields a selection of 1250 EPEs (out of
12 500 members) for each response variable, region,
and season (see figures 2(b) and (c) for an illustration).

2.4.2. Attribution to drivers of change
In section 3.1 (figure 3(b)–(e)), the effects of
individual factors on changes in EPEs (CO2:
Dx�extreme

CO2 s
, land-use: Dx�extreme

LUs
, climate: Dx�extreme

climates
,

5

indicated here exemplarily only for negative extremes)
between both periods and in season s are teased out by
computing the difference between both time periods
of the averaged individual effects from the factorial
simulations (averages over any specific dimension (.)
are denoted as x):

Dx�extreme
CO2s

¼ ðx�extreme

:;2001�2010;s;All

�x extreme
:;2001�2010;s;CONSTCO2

Þ�ðx�extreme
:;1986�1995;s;All

�x extreme
:;1986�1995;s;CONSTCO2

Þ ð1Þ

Dx�extreme
LUs

¼ ðx extreme

:;2001�2010;s;All

�x extreme
:;2001�2010;s;CONSTLUÞ�ðx extreme

:;1986�1995;s;All

�x extreme
:;1986�1995;s;CONSTLUÞ ð2Þ

Dx�extreme
climates

ðx extreme
:;2001�2010;s;CONSTLUCO2

� x�extreme
:;1986�1995;s;CONSTLUCO2

Þ ð3Þ

In section 3.2, the contribution of changes in CO2,
land-use and climate to trends in EPEs are estimated
individually for each tail, response variable, region and
season. We assume linear trend slopes over the 25 year
period and computed these in both tails separately
(illustrated here for the negative tail, bAll

�extreme
s ),

b�extreme
Alls

¼ Dðx�extreme
:;:;s;All Þ
Dt

: ð4Þ

The contribution of trends in CO2ðbCO2

�extreme
s

Þ, land-
use ðbLU

�extreme
s Þ, and climate ðbclimate

�extreme
s Þ to

changes in the response variable is determined from
factorial model simulations, i.e.

bCO2

�extreme
s

¼ Dðx�extreme
:;:;s;All � x�extreme

:;:;s;CONSTCO2
Þ

Dt
ð5Þ

bLU
�extreme
s ¼ Dðx�extreme

:;:;s;All � x�extreme
:;:;s;CONSTLUÞ

Dt
ð6Þ

bclimate
�extreme
s ¼ Dðx�extreme

:;:;s;CONSTLUCO2
Þ

Dt
: ð7Þ

To further examine climate-related drivers of change in
ecosystem productivity, we analyse the individual
contribution of trends in temperature, precipitation
and radiation to bclimates). A simple statistical
attribution framework is presented in the online
supplementary data based on the ‘CONSTLUCO2’

scenario (supplementary section S1.2).

2.4.3. Spring–summer interacting carbon cycle effects
due to climate extremes
In section 3.3, we identify all ensemble members
that experience a negative EPE in summer (June–
September, i.e. x�extreme;JJAS

j;t ;s;All ) using a time-dependent
10th percentile threshold. To detect spring compensa-
tion effects, we analyse the preceding spring con-
ditions in the identified ensemble members in terms of
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ecosystem productivity anomalies that might poten-
tially alleviate carbon losses in summer. Furthermore,
the contribution of carry-over effects from spring to
negative summer EPEs (e.g. via soil moisture
depletion) is disentangled using factorial model
simulations by analysing the difference between the
‘All’ and ‘SPRINGRAND’ simulations, i.e. with
identical summer meteorology in both factorial
simulations, but randomised spring meteorology.
Hence, we compute spring–summer carry-over effects
as the difference between the identified negative
summer EPEs in both scenarios.
3. Results

In this section, we firstly illustrate in one region how
large ensembles of climate–ecosystem model simu-
lations can be used to study EPEs (section 3.1) and,
secondly present a systematic assessment of spring and
summer trends in EPEs and an attribution to drivers
(section 3.2). Lastly, we investigate spring-summer
interacting carbon cycle effects due to climate
extremes (section 3.3).

3.1. An illustrative attribution analysis of ecosystem
productivity extremes
The probability distributions of monthly GPP and
NEP from the LPJmL ensemble in CEU-FRA for an
earlier (1986–1995) and a more recent (2001–2010)
period reveal an overall upward shift of GPP and NEP
in spring but more nuanced changes in summer
(figure 3(a) for NEP and online supplementary figure
S5(a) for GPP). To investigate these changes in more
detail, we apply an extreme value analysis to the tails of
the probability distributions in both periods. Return
time plots (figures 3(b)–(e)) for NEP and figures S5
(b)–(e) for GPP) have been used widely in event
attribution studies (National Academies of Sciences,
Engineering andMedicine, 2016) to scrutinize the tails
of a distribution by plotting the magnitude of an
extreme event as a function of return time. Here, an
event in the upper (lower) tail with an average return
time of 20 years corresponds to a 95th (5th) percentile
event when using annual data.

Differences between the blue and orange lines in
figures 3(b)–(e) indicate how the likelihood of EPEs
occurring has changed between the two compared
decades for a given season and extreme type. In spring,
terrestrial ecosystems exhibit an increase in GPP and
NEP under extreme conditions in the upper and lower
tail of the distribution in the more recent period (both
tails shifted upward for any given return time, figures 3
(b) and (d) and figures S5(b) and (d)). These increases
are driven by a roughly equal positive contribution of
climate and CO2 changes in the upper tail, and a larger
contribution of climate change in the lower tail, in
particular for GPP (figure S5(d)). Changes in the tails
of the GPP distribution between both periods that are
6

induced by individual drivers in the ecosystem model
are largely additive, i.e. the average contribution of
changes in CO2, land-use, and climate added to the
statistical model for the 1986–1995 tail matches the
statistical fit for the 2001–2010 tail (figures 3(b)–(e)
and figure S5).

Changes in summer GPP are close to neutral,
because the negative response to climate change is
compensated by a positive contribution of CO2. NEP
has significantly reduced (figures 3(c) and (e)),
predominantly due to negative climate effects. For
illustration, the European heat wave and drought of
2003 (figure 2(e), dashed horizontal line) results in a
roughly 1-in-80 year event in the 1985–1995 decade
but is already a 1-in-35 year event in the recent period.
While the difference between the two decades used in
this study is not comparable to a counterfactual
climate simulation as utilised in other attribution
studies (Mitchell et al 2016) it is reasonable to assume
that the main difference in the climate simulations and
thus NEP simulations comes from anthropogenic
climate change.

Because ecosystem responses to climate extremes
are often highly nonlinear and asymmetric depending
on the type of extreme, changes in the likelihood of
EPEs as discussed here are likely different from risk
ratios based on meteorological variables alone (Stott
et al 2004, Stott et al 2013). This study therefore
exemplifies a simulation of the whole chain of events
from meteorology to ecosystem responses in extreme
event attribution (Stone and Allen 2005) and presents
a framework for studying extreme ecosystem impacts.

3.2. Attribution of trends in ecosystem productivity
extremes
Across all six European regions, trends towards
increased gross productivity in spring for both positive
and negative EPEs from 1986–2010 confirm a general
upward shift in the GPP distribution (figure 4(a)) that
is driven by both climate and CO2 changes. The
pattern of an upward shift in spring is also found for
NEP, but to a smaller extent that can be explained by a
smaller sensitivity to recent changes in CO2 and
climate (figure 4(b)). This is because recent climate
change and CO2 fertilisation are not only enhancing
primary productivity in spring but also ecosystem
respiration, causing a smaller net response. Positive
GPP trends are generally more than twice as large as
NEP trends, i.e. less than half of the increased carbon
uptake remains in the system after increased
respiratory losses are accounted for, which is a
consistent pattern for both positive and negative EPEs.

In summer, the response of ecosystem productivi-
ty to recent climate change reverses (with few
exceptions), but remains positive for CO2 changes:
Hence, predominantly negative ecosystem productiv-
ity responses to recent climate change are balanced by
a positive response to CO2 change, causing a mix of
slightly increased (two regions), close-to-neutral



(a)

(b) (c)

(d) (e)

Figure 3. (a) Seasonal cycle of NEP distribution as simulated by the LPJmL-ensemble for 1986–1995 and 2001–2010 in the France
subregion. (b)–(e) Return time plots of seasonal NEP extremes (i.e. plotting the magnitude of an extreme event as a function of return
time) in spring (b) and (d) and summer (c) and (e) for the upper (b) and (c) and lower (d) and (e) tail of the distribution for 1985–1995
and 2001–2010 (solid blue and orange lines, respectively, derived from fitting a generalized Pareto distribution (GPD) to threshold
exceeding extremes in each tail, cf Coles et al (2001)). (b)–(e) Differences between the blue and orange lines indicate how the
likelihood of extremes occurring has changed between the two compared decades. To illustrate the relative importance of individual
drivers, we also plot the effects of changes in NEP that are driven individually by CO2, land-use, and climate from factorial model
simulations depicted by the dashed lines, following equations (1)–(3). Full figure, including individual simulations is available in the
supplementary data (figure S6).
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(three regions) and reduced (one region) gross
carbon uptake. Summer increases are confined to
energy-limited regions in northern Europe (NEU-
SCA and CEU-RUS) and more pronounced for the
upper tail of GPP because the response of positive
EPEs to recent climate change is marginally positive
(in contrast to the other regions, figure 4(a)). Similar
to spring, summer NEP trends are generally smaller
in magnitude than GPP trends, and almost exclu-
sively negative. The observed negative trends in
summer ecosystem productivity and EPEs are most
pronounced in water-limited regions in southern
Europe (MED-SEE, MED-ESP, CEU-FRA) with
7

relatively similar trend slopes in the upper and lower
tail. The energy-limited regions in northern Europe
experience reduced summer productivity under
negative EPEs, but small increases in NEP under
positive EPEs due to slightly different climate
responses in the upper and lower tail (figure 4(b)).

Overall, LPJmL ensemble simulations reveal that
seasonally contrasting responses of EPEs to changing
climate conditions will be a crucial factor in determin-
ing regional-scale carbon balances in the near future.
Further analyzing climate-induced trends in spring
and summer ecosystem productivity (bclimateMAM

and bclimateJAS) in the online supplementary data



(a)

(b)

Figure 4. Factorial attribution of spring (MAM) and summer (JAS) trends in EPEs in six European regions to changes in land-use,
CO2 and climate, for (a) GPP, and (b) NEP, as simulated by LPJmL.

7 The subregion over Spain is excluded from the analysis because
seasonality in ecosystem productivity differs strongly from other
European regions, see figure 2.
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(sections S1.2 and S2.2) reveals that climate-induced
positive productivity trends are mostly driven by
warming temperatures in spring (GPP: figure S7, NEP:
figure S8), whereas the ecosystem response to summer
warming is negative for NEP and GPP across Europe
(except GPP in NEU-SCA).

3.3. Elucidating spring–summer interacting carbon
cycle effects due to climate extremes
In 2012, the contiguous United States experienced a
very warm spring followed by an extreme summer
drought. Wolf et al (2016) hypothesized that warmer
spring conditions and elevated spring plant activity
might have induced soil moisture deficits, thereby
exacerbating the impacts of summer drought (fig-
ure 1). Here, we analyse lagged effects in all ensemble
members that experience extreme reductions in
8

summer productivity7 (negative EPEs). Specifically,
we investigate
a.
 whether productivity losses induced by summer
droughts are (increasingly) compensated by
warmer spring conditions (‘spring compensation’,
conceptual link (a) in figure 1), and
b.
 whether spring–summer ‘carry over effects’ via
soil moisture depletion further exacerbate nega-
tive EPEs in summer (conceptual link (b) in
figure 1)?
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Figure 5. Spring–summer interacting carbon cycle effects due to climate extremes illustrated in one region (NEU-ENG). (a)
Association of spring anomalies with summer (June–September) anomalies in individual ensemble members. (b) Differences in soil
water content explain spring-summer carry-over effects in the carbon cycle. The average spring compensation and contribution of
carry-over effects to negative EPEs in summer are indicated by a horizontal red arrow in (a) and vertical red arrow in (b), respectively.
Marginal distributions are plotted at the edge of each plot as individual ticks for all ensemble members (gray) and negative summer
extremes (red).

Table 2. Spring compensation of summer extremes in GPP and contribution of dynamical effects.

Region Variable Summer

extreme

Spring compensation Carry-over effect

Mean

(gC m�2

month�1)

Mean

(gC m�2

month�1)

Meana (% of

summer

anomaly)

Trenda,b

(%

year�1)

Mean

(gC m�2

month�1)

Mean (%

of summer

anomaly)

Trendb

(%

year�1)

NEU-SCA GPP �24.0 5.6 19.0 1.7� �2.8 11.5 �0.1

NEU-ENG GPP �36.1 6.2 13.2 2.1� �8.5 23.5 �0.4�

CEU-RUS GPP �38.2 5.7 11.3 1.0� �3.3 8.3 0.0

CEU-FRA GPP �33.7 1.0 2.7 1.7� �4.8 14.4 �0.1

MED-SEE GPP �34.3 �2.1 �4.6 0.7� �3.1 8.6 0.1

NEU-SCA NEP �19.5 2.0 7.8 0.3� �1.9 9.1 0.2�

NEU-ENG NEP �27.2 1.5 3.8 1.2� �5.1 19.1 �0.8�

CEU-RUS NEP �32.2 1.4 3.3 0.5� �2.0 6.0 0.0

CEU-FRA NEP �27.3 �1.6 �4.3 1.0� �2.9 11.1 �0.4�

MED-SEE NEP �24.9 �3.5 �10.4 0.4� �2.1 8.7 �0.4�

a The sign is reversed for the computation of spring compensation relative to the summer anomaly for ease of understanding.
b Significance of the trend slopes at the 5% confidence level is indicated by an asterisk (�).
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The conditional selection of summer extremes
over NEU-ENG (figure 5(a)) shows that negative
summer extremes can be preceded by various
ecosystem productivity conditions in spring (figure
5(a)), i.e. there is no obvious deterministic link.
However, there is indeed a probabilistic link between
carbon cycling under summer extremes and the
preceding spring productivity conditions, as four out
of five European regions show, on average, increased
spring GPP that compensates to a small extent for
summer reductions (2.7%–19.0% average compensa-
tion, table 2), but smaller effects are observed for NEP
(�4.3% to þ7.8%). The MED-SEE region is an
exception where summer extremes co-occur with on
average reduced spring productivity (�4.6% in GPP
9

and �10.4% in NEP of the summer anomaly are in
addition lost in spring). Moreover, elevated ecosystem
productivity in spring (GPP, and less so NEP) is
increasingly compensating reductions in summer
productivity in all European regions over the past
25 years (figure 6), albeit average spring compensation
of negative EPEs in summer can only account for a
fraction of the summer anomaly. These trends might
be a consequence of seasonally contrasting trend
slopes (sections 3.1 and 3.2).

3.3.1. Is there a causal link between spring carbon
cycling and summer extremes?
Carry-over effects from spring to summer contribute
on average 8.3%–23.5% for GPP (6.0%–19.1% for
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NEP) to the magnitude of extreme productivity
reductions in summer (negative EPEs, see figure 5(b)
for an illustration). This carry-over contribution is
revealed by analysing differences in summer EPEs in
the ‘All’ and ‘SPRINGRAND’ simulations (table 1),
where summer meteorology is identical but spring
conditions randomized in the latter simulation.
Hence, summer ecosystem productivity extremes
would be less severe if they would have been preceded
by random spring conditions. The carry-over effects
simulated by LPJmL are due to soil moisture
depletion, because differences in soil moisture content
explain a large fraction of the magnitude of carry-over
effects across all regions (online supplementary table
S2, figure 5(b) for NEU-ENG). These carry-over
effects have been largely stable over the last 25 years
(figure 6).

In summary, the analyses presented here provide
an independent process model explanation and
generalization of the observed seasonal compensation
mechanism (Wolf et al 2016). However, we find that
the average spring compensation of summer extremes
is relatively small for GPP, almost neutral for NEP, and
even negative (spring amplification of summer
extreme) in MED-SEE for both GPP and NEP.
Conversely, carry-over effects from spring to summer
extremes via soil moisture play an important role in
shaping simulated EPEs and exacerbate carbon cycle
impacts on average. Hence, a substantial contribution
of compensation effects (as observed for the 2012 US
event, (Wolf et al 2016)) cannot generally be expected
10
at present in Europe, and the role of these effects
remains to be quantified on larger spatial scales,
including uncertain long term legacy effects of climate
extremes (Anderegg et al 2015). Furthermore, positive
compensation trends as found for recent years (figure
6) cannot continue indefinitely, simply because there
are natural limits to shifts in ecosystem phenology
(Körner and Basler, 2010) and plant physiological
responses to warming (Norby and Luo 2004).
4. Discussion

The results of our study provide evidence that EPEs in
European ecosystems show a seasonally contrasting
response to changes in climate when investigated using
a large ensemble of ecosystem model simulations.
Spring climatic changes tend to shift the GPP and NEP
distribution upwards (including extremes in the
upper and lower tails), whereas climatic changes in
summer, most notably warming, lead to approximate-
ly neutral (GPP) or even negative trends (NEP), i.e.
intensified carbon losses under climate extremes.
Further, summer carbon losses as a result of climate
extremes are partly compensated by a higher uptake
in the preceding spring in temperate regions, but
these spring compensatory effects are largely
undone through a negative carry-over effect from
spring to summer via depleted soil moisture,
which further exacerbates summer carbon losses.
Hence, our analyses provide a model generalization
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and interpretation of seasonal compensation and
carry-over effects of carbon-cycle extremes.

However, the results of the present analysis might
be confined by the fact that the underlying climate
ensemble is based on just one regional climate model
and uncertainties related to simulated trends, changes
in (individual) climate variables, potential feedback
mechanisms, and the applied bias correction remain
(Massey et al 2015, Sippel et al 2016a).

Ecosystem models are derived from well-estab-
lished theory of plant-atmosphere carbon exchange
(Bonan 2015), and are widely analysed in the context
of climate extremes (Ciais et al 2005, Reichstein et al
2007, Zscheischler et al 2014a). Nonetheless, the
results presented here can still be influenced by scale
mismatches, where models scale carbon assimilation
from leaf to the ecosystem scale (Rogers et al 2017), or
ecophysiological processes are simulated without
considering a diurnal cycle and averaged over 0.5°
grid cell size.

Moreover, a possible caveat of the present study is
that ecosystem and carbon cycle models tend to
overestimate the response of terrestrial carbon cycling
to drought conditions if compared to observations-
based datasets (Huang et al 2016). LPJmL and related
earlier versions have been shown to overestimate the
sensitivity of ecosystem productivity to precipitation
deficits in central European regions as compared to
tree ring data (Babst et al 2013), albeit qualitative
responses are largely captured (Rammig et al 2015).
Temperature extremes that are not associated with
precipitation deficits are not affected (Rammig et al
2015). On the continental scale in Europe, extremes in
LPJmL simulated GPP respond more sensitively to
climate extremes than data-driven products, but in a
qualitatively consistent way considering for example
the ratio between positive and negative GPP extremes
in Europe (Zscheischler et al 2014b). In this context,
comparing the upper and lower tail of simulated
ecosystem productivity in this study (figure 3(c) vs.
figure 3(e)) reveals that extreme carbon losses in the
lower tail are larger in magnitude than gains due to
positive EPEs for a given return period (slopes in the
return time plots in the lower tail exceed those in the
upper tail for both GPP and NEP). This asymmetry
in EPEs is consistent with analyses at the continental
and global scale in observations-based products
(Zscheischler et al 2014b). Van Oijen et al (2014)
compares ecosystem productivity simulations and the
vulnerability to precipitation deficits to satellite
observations of vegetation greenness and finds that
LPJmL (and other vegetation meodels) largely
reproduce spatial patterns across Europe. Further-
more, the LPJmL version used in the present study
incorporates a phenology scheme that improves
phenological dynamics and variability of FPAR (Forkel
et al 2015), and thus might overcome one of the
previously identified key weaknesses of earlier LPJmL
versions (Mahecha et al 2010).
11
Nonetheless, the analysis and attribution of
simulated EPEs ignores a number of ecosystem
processes and potential feedbacks between these, as
these are missing in the LPJmL ecosystem model (e.g.
wind disturbance, pests, nitrogen and phosphorous
limitations) and generally many ecosystem processes
and feedbacks during climatic extreme events are still
unknown or uncertain (Reichstein et al 2013, Frank
et al 2015). Hence, model improvements can only be
conducted in synthesis with improving our process
understanding of climatic extreme events. Therefore,
dedicated ecosystem manipulation experiments
(Knapp et al 2002, Jentsch et al 2007, Beier et al
2012) will be crucial to evaluate and scrutinize model
predictions.

Despite these caveats, we argue that the analyses
and tools presented here are useful to investigate
specific hypotheses related to extremes in terrestrial
ecosystems. Our approach allows a physically consis-
tent probabilistic assessment of extremes in ecosystem
productivity. Because the outlined probabilities and
return times of EPEs are based on one ecosystem
model, they should not be taken at face value, but
rather be regarded as an approach to scrutinize model
sensitivities and attribute drivers behind contempo-
rary changes in ecosystem risk on decadal time scales.

An application of the analysis metrics developed
for this study to other process-oriented ecosystem
models or data-driven approaches (Tramontana et al
2016) could be one way to sample respective ecosystem
model uncertainties, and to further scrutinise various
hypotheses about interacting and contrasting con-
temporary changes in the frequency and intensity of
ecosystem productivity extremes. Thereby, our sug-
gested ensemble analyses might complement state-of-
the-art ecosystem risk assessments (Van Oijen et al
2014, Rolinski et al 2015) and possibly guide
ecosystem manipulation experiments towards pin-
pointing the most relevant and uncertain drivers of
contemporary change in ecosystem extremes.
5. Conclusion

In this paper, we illustrate large ensemble simulations
of ecosystem productivity as a useful tool to explore
variability and change in EPEs from a probabilistic
perspective. The approach allows to identify the
drivers of changes in EPEs using attribution-type
analyses (Stott et al 2013) and to analyse interacting
carbon cycle effects caused by climate extremes (i.e.
compensatory and carry-over effects). We find
contrasting trends in spring vs. summer carbon cycle
extremes in six eco-physiologically different European
regions. A recent upward shift in the distribution of
spring ecosystem productivity (including extremes)
can be attributed to recent climate warming and CO2

increases, whereas in summer, ecosystem extremes
are intensifying for NEP (i.e. more carbon lost to
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the atmosphere under drought and heat conditions)
and roughly stable for GPP, despite a positive
response to increasing CO2. Despite these overarching
trends, regional differences are emerging, in that
water-limited regions in southern Europe show
smaller trends in spring, hence benefitting to a smaller
degree from warming, while negative trends in
summer net ecosystem productivity and its extremes
are least pronounced in temperature-limited northern
regions.

Furthermore, spring GPP increasingly compensates
negative EPEs in summer GPP in four out of five
European regions. However, this compensation occurs
only partly, onaverage in the rangeof 2.7%–19.0%of the
summer anomaly, but depends on the definition of
extremes (figure 5). Spring compensation effects and
trends are smaller but mostly positive for NEP.
Conversely, spring–summer carry-over effects exacer-
bate carbon cycle losses under summer extremes
(contribution of 8%–23% in GPP and 6%–19% in
NEP to summer anomaly), thereby counterbalancing
and undoing positive compensation-related effects.
Therefore, we expect that climate extremes increasing
in frequency and intensity (IPCC 2012) might further
exacerbate legacy effects of ecosystem extremes in the
long termbeyondtheactual events (Anderegg etal2015).
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