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Enhanced seasonal predictability of the summer mean temperature in Central1

Europe favored by new dominant weather patterns2

P. Ho�mann3

4
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Abstract In this study two complementary approaches have been combined to estimate the reliability of the data-driven6

seasonal predictability of the meteorological summer mean temperature (TJJA) over Europe. The developed model is7

based on linear regressions and uses early season predictors to estimate the target value TJJA. We found for the Potsdam8

(Germany) climate station that the monthly standard deviations (σ) from January to April and the temperature mean9

(m) in April are good predictors to describe TJJA after 1990. However, before 1990 the model failed. The core region10

where this model works is the north-eastern part of Central Europe.11

We also analyzed long-term trends of monthly Hess/Brezowsky weather types as possible causes of the dynamical changes.12

In spring, a signi�cant increase of the occurrences for two opposite weather patterns was found: Zonal Ridge across Central13

Europe (BM) and Trough over Central Europe (TRM). Both currently make up about 30% of the total alternating weather14

systems over Europe. Other weather types are predominantly decreasing or their trends are not signi�cant. Thus, the15

predictability may be attributed to these two weather types where the di�erence between the two Z500 composite patterns16

is large. This also applies to the north-eastern part of Central Europe.17

Finally, the detected enhanced seasonal predictability over Europe is alarming, because severe side e�ects may occur.18

One of these are more frequent climate extremes in summer half-year.19

1 Introduction20

In the age of rapid climate change and the associated increase of extreme record-breaking weather events (e.g. Lehmann21

et al, 2015; Coumou et al, 2013), it is more important than ever to identify potential risks at an early stage. One crucial22

question in this context is, whether there are any early season predictors for mean circulation conditions which favor23

one of these extremes. Most of these extremes occurring at Northern Hemisphere mid-latitudes (e.g.the European heat24

wave in 2003, the Russian heat wave 2010, the Pakistan �ood 2010 and the heat wave in the United States in 2011)25

can be linked to resonant Rossby waves (Petoukhov et al, 2013). Such a wave mechanism behind those climate extremes26

increases the chance of a longer-term predictability of the general atmospheric conditions on the seasonal timescale.27

For example, a seasonal prediction of the summer mean temperature state over Europe could be a predictor for wet,28

dry or heat conditions. A systematic observational data analysis, which considers the linkage across seasons, would29

provide valuable information about the natural state of the atmosphere and its predictability. Similar approaches are30

already commonly used in climate relevant sectors, for example, agriculture to estimate crop yields before sowing in31

certain regions using atmosphere or SST patterns as early season predictors in regression models (e.g. Jarlan et al, 2014).32

For instance, circulation patterns over the North-Atlantic sector are linked to the precipitation variability in Morocco33

(Knippertz et al, 2003) and consequently a�ect the growing season there. Such a possible way applied to climatic target34

variables is described in this paper.35

Long-term daily time series of meteorological observations include a wide range of information about the state and36

variability of the global, regional and local climate system. As an introduction into the later presented methods we37

show two operationally performed analyses of the daily mean 2m-temperature values recorded at the Potsdam secular38

station. First, a regime shift around 1980 is visible by calculating the monthly standard deviations. Figure 1 depicts a39

strong decline of the late winter variability (February-March) after 1960 which occurs in synchrony with a rising summer40

variability (June-July). In the 1980s both reach the same magnitude. During the last decades a synchronization between41

the winter and summer variability was found. Furthermore, the variability in the transition season (April-May) jumped42

up to a rather stable state from 1990 to date.43

44

Second, the relation between the proxies for the state and the variability using �rst di�erences (4¹) of the monthly45

means (m) and monthly standard deviations (σ) derived from the same temperature record is represented in Fig.2. It46

shows the correlation between the individual monthly time series of m vs. σ to each other. An area of positive coe�cients47
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Fig. 1 20-year running mean time series of the monthly standard deviation averaged over two months periods: Feb-Mar (blue),
Apr-May (green) and Jun-Jul (orange).

is found in the center of every contour panel for the past period (1951-1980) and the recent period (1986-2015). In the48

transition from spring to summer we found high correlations between m{TApr} and σ{TMay}, m{TMay} and σ{TJun}49

as well as between m{TJun} and σ{TJul}. Under recent conditions this structure is stronger surrounded by areas of anti-50

correlations than under past conditions. The both preliminary analyses show �rst indications for a stronger dynamical51

linkage across seasons.52

In order to substantiate this fact two complementary approaches will be combined to identify possible changes in the53

seasonal predictability. First, an univariate regression model was used to estimate the target value in the middle of a54

year. The summer mean temperature (TJJA) was chosen due to its great social and economic relevance across sectors,55

such as tourism, public health, plant productivity, etc. As early season predictors a set of temperature derived variability56

measures for the �rst months of a year was composed (see Section 2). Second, we apply this approach to the regional57

scale (Europe) and combine this step with a weather pattern analysis in order to identify potential coincidences.58
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Fig. 2 Monthly Pearson correlation coe�cient matrix between m {T} end σ {T} using 4¹ from 1951-1980 (left) and 1986-2015
(right) in Potsdam. The area of interest is highlighted.
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More complex empirical models (e.g. Rust et al, 2015; Eden et al, 2015) are not su�cient for this task. These are often60

based on multiple linear regression, using a mixed set of independent early predictors (e.g. teleconnection indices) to61

estimate a target value in the near future. Thus, the results cannot be clearly attributed to one source. Furthermore,62

with these complex models long-term analyses over about one century are not feasible due to the lack of homogeneous63

data. Both issues are solved in our combined approach. Certainly, for more comprehensive investigations, further analysis64

techniques, such as Principle Component Analysis (e.g. Barnett et al, 1984; Stock and Watson, 2002; Della-Marta et al,65

2007), Partial Least-Square regression (e.g. Wold et al, 2001; Smoliak et al, 2010) or Wavelet regression (e.g. Prokoph66

and Patterson, 2004) could provide additional bene�ts, because atmospheric or oceanic patterns can be considered. In67

the medium term the combination of process-based operationally forecasts, e.g. CFS (Saha and Coauthors, 2014) or IRI68

(Barnston and Mason, 2011) and data-driven approaches (as presented here) could contribute to more skillful assessments69

of seasonal predictions.70

In this paper we address, how far the regional climate over Europe becomes more predictable during the last decades. In71

order to answer this question we combine two complementary methods, namely (1) identify the seasonal predictability72

changes and we (2) explain these by shifting dynamics.73

2 Data and Methods74

The basic idea of this study is to setup a quasi univariate empirical prediction model to estimate the meteorological75

summer mean temperature (TJJA) in a time series and one parameter several months in advance. Already, Colman and76

Davey (1999) found a predictive relationship between the North-Atlantic SST anomalies in winter and the subsequent77

summer temperature (July-August) in Central England. In this approach the daily temperature record is aggregated78

to monthly means (m) and standard deviations (σ) describing the state and variability, respectively. The target value79

(TJJA) will be estimated by a linear combination of early season predictors. The monthly standard deviations from80

January to April and the temperature state in April are used in our approach:81

TJJA = const.+ a · σ (TJan) + b · σ (TFeb) + c · σ (TMar) + d · σ
(
TApr

)
+ e ·m

(
TApr

)
+ err (1)

Those are intended to approximate (1) the low frequency �uctuations over Europe in the �rst 4 months of a year and82

(2) the adjusted phase in mid-spring. A strong contribution of the monthly mean temperature in April to the target83

value is expected. The individual components are detrended using �rst order di�erences (4¹) as suggested by Gornott84

and Wechsung (2016) and the system is solved using the Ordinary Least Squares (OLS) method. Former describes the85

particular states with respect to the previous years. In order to assess the predictability the squared correlation coe�cient86

(r²) between the observed and modeled values is calculated. This measure is also used to monitor the long-term behavior.87

All used numerical and graphical libraries are standard Python packages (numpy, matplotlib).88

The set of predictors in Eq.1 were found by a visual interpretation of Fig.2 (right panel). It shows the correlation matrix89

between monthly means (m) and monthly standard deviations (σ) for the present climate at Potsdam. The individual90

values are detrended by �rst di�erences (∆¹). By considering the monthly means in summer an anticorrelation to the91

standard deviations in January, February, March and April is found. On the other hand, by considering the monthly92

standard deviations in summer an anticorrelation to the monthly means in April or May is evident. The monthly standard93

deviations in the summer months are correlated to monthly means in summer (red cluster in the center). Consequently,94

the early season predictors for the regression model (Eq.1) can be narrowed. An additional sensitivity analysis was applied95

to check the model performance, respectively.96

The physical concept behind this empirical model is to approximate the amplitude and phase of the low-frequency97

�uctuations in the transition from the winter to the spring season on the local level. The main drivers are planetary waves98

moving around the globe at Northern Hemisphere mid-latitudes. They have characteristic properties: zonal wave number99

and phase speed. The long-term development of the meridional temperature gradient and the land-ocean temperature100

contrast change their behavior (e.g. Molteni et al, 2011). On the regional level (e.g. Europe) the phase positions of these101

global scale waves form patterns which are synoptically interpreted as di�erent weather types. It exists a multitude of102

shapes of the circulation. It is expected, that speci�c properties of the variability from January to April favor a certain103

behavior of the summer season, due to a more regular sequence of dominant weather types. Wave-like circulation patterns104

such as troughs or ridges over Central Europe are possible candidates. This is further analyzed in Section 3.4105

In this study the model has been applied to di�erent daily temperature datasets. For the local and long-term inspection106

the Potsdam climate station was analyzed from 1893 to 2015 (Section 3.1). For the regional view on the European domain107

the EOBS-0.25-v12 (Haylock et al, 2008) from 1950 to 2015 (Section 3.2) and the surface temperature in NCEP/NCAR108

R1 reanalysis data (Kalnay and et al., 1996) are used (Fig.15). Finally, the dynamical interpretation of the results is109

based on a subjectively derived classi�cation of weather types by Hess and Brezowsky (1977), provided by the German110

Meteorological Service under (http://www.dwd.de/DE/leistungen/grosswetterlage/), see Section 3.4.111

The respective composite patterns for the dominant weather types (Fig.9) are extracted from Z500 NCEP/NCAR R1112

(Kalnay and et al., 1996) reanalysis �elds for dates classi�ed as TRM and dates classi�ed as BM, respectively, in order113

to interpret their large scale circulation characteristics.114

Furthermore, a Mother-Wavelet analysis (Torrence and Compo, 1998) is used to analyze the di�erence between two115

period spectra. This approach is also used to low-pass �lter temperature �uctuations.116

http://www.dwd.de/DE/leistungen/grosswetterlage/
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Finally, the results obtained by the regression model (Eq.1) are compared to the performance of the Partial-Least-Squares117

(PLS) regression (e.g. Geladi and Kowalski, 1986; Smoliak et al, 2010) approach. The procedure calculates the correlation118

coe�cient between the target value (∆¹TJJA) and the early season predictors (∆
1Z500FMA) over the Atlantic-European119

sector. By using a Least-Square �tting the individual ∆1Z500 patterns are projected onto the correlation matrix. This120

step is repeated many times for the residuals. The resulting predictor time series of the leading components can used for121

the prediction.122

3 Results & Discussions123

3.1 Local (Potsdam)124

The model is �rstly applied using a long-term daily temperature record at a Central European climate station. One125

of the longest and most homogeneous record with missing data on only one day since 1893 is the secular station at126

Potsdam (52.2°N/13.4°E). Setting up the regression model (Eq.1) using the data from 1981 to 2014 the resulted output127

statistics is given in Tab.1. The �tted and adjusted R-square (r², d²) was 0.45 and 0.35, respectively. All regression128

coe�cients (a . . . e) are negative, which means that a low variability in late winter and a cold April compared to the129

previous year are good indicators for a positive summer mean temperature 4¹. The most signi�cant contributions deliver130

σ {TFeb}, σ {TMar}, m
{
TApr

}
having probability values p ≤ 0.05. All other non-signi�cant predictors included in this131

model contribute to better resolve single peaks more precisely. For instance, at the Potsdam climate station the mean132

temperature in April was 12.0°C (2014) and 9.3°C (2015). A �rst di�erence of -2.7K multiplied by the coe�cient -0.40133

(mApr) results in a +1.08K temperature increase of the summer 2015 when compared to the summer 2014.134

Table 1 Ordinary Least Squares model output statistics for Fig.3 (1981-2014).

variable const. σJan σFeb σMar σApr mApr

coe�cient 0.12 -0.11 -0.29 -0.38 -0.20 -0.40
std. error 0.22 0.14 0.15 0.21 0.17 0.11
t-statistic 0.52 -0.79 -2.02 -1.87 -1.17 -3.67
p-value 0.61 0.44 0.05 0.07 0.25 0.00

model statistics

R-squared 0.4459
adjusted R-squared 0.3469
F-statistic 4.5061
prob .(F-statistic) 0.0039
log likelihood -53.6984
AIC criterion 3.5117
BIC criterion 3.7810

Figure 3 shows the time series of the observed summer mean temperature values (�rst di�erences: 4¹) in Potsdam from135

1981 to 2014 (solid line) and the modeled one (dashed line). The regression model applied to the set of indicators revealed136

a good correspondence to the observed behavior given by r² = 0.45. The RMSE was 1.2K compared to the total range137

of 6.8K. Except for 1984 and 2003 all years agree in sign. The summer 2003 was characterized by an extended heat wave.138

This year is somewhat underestimated by the model. Träger-Chatterjee et al (2014) analyzed atmospheric precursors of139

this event and found speci�c conditions during the transition from winter to spring, however, no evidence for an interlink140

between the North Atlantic Oscillation (NAO) or the Arctic Oscillation (AO) and the heat summer was found. The141

underrepresentation of this event in the model can be addressed to the usage of �rst di�erences (4¹). Without it the142

predictability measure would reach lower values and the miscalculation of 2003 would be less pronounced. A shortening143

of the training period improved the predictability up to r² = 0.6 (as shown in Fig.6) and reduced the stability.144

145

The meteorological summer mean temperature in 2015 (see Fig.3) was predicted by applying the regression coe�cients146

to the new observed set of the 5 monthly indicators, respectively. An one out-of-sample cross-validation resulted in a low147

uncertainty range for the target value (red circles) of about ±0.2K. Converted into absolute values the prediction for the148

TJJA 2015 was 19.3◦C and hence 1.1K warmer than 2014. In the course of the summer of 2015 the monthly means were149

gradually recorded (green scatter). Finally, the observed summer mean temperature 2015 in Potsdam reached 19.3◦C150

(green circle). This is exactly the predicted one. However, the prediction seemed to fail after the �rst two summer months151

June and July (green triangles). These monthly means lay below the previous ones. An extended heat wave over Central152

Europe in the �rst half of August 2015 (green square) could compensate the prognostic temperature de�cit and a new153

monthly mean temperature record was reported. The hottest August (1997) with 21.2◦C by then was exceeded by 0.6K.154

August 2015 was with 21.8◦C the hottest one since 1893 and 4.6K above the climate normal (1961-1990). Altogether 13155

hot days (Tmax > 30°C) and 4 tropical nights (Tmin > 20°C) were reported.156
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Fig. 3 Time series of the observed summer mean temperature (solid line) and the modeled one (dashed line) in Potsdam from
1981 to 2014 (41). The out of sample prediction of 2015 (JJA2015, red) and the observed value (JJA2015, green) are given as
scatter.. The individual monthly mean temperature means for June (Jun2015), July (Jul2015) and August (Aug2015) are shown
as green triangles.

Fig. 4 Time series of the summer mean temperature (41) at Potsdam observed (solid line) and simulated (dashed line) for two
periods: 1954-1983 (a, b) and 1985-2014 (c, d). The corresponding absolute values are given in the lower row, respectively.

157

Although, the used �rst order di�erences are di�cult to interpret with respect to absolute values, the relation to the158

previous year is better assessable. Figure 4 shows the model results applied to two periods 1955-1984 (left column) and159

1985-2014 (right column). The lower row in Fig.4 depicts the re-calculated absolute values by using initial temperatures160

of the years 1954 and 1984, respectively. The comparison indicates a weak predictability measure for the early period161

(left column, r² = 0.16) compared to the late one (right column, r² = 0.61). However, a di�erence between the observed162

and the parallel simulated values of about -1K is evident for the last period. The absolute values in the late period are163

warmer and show a stronger year-to-year variability which is captured qualitatively well by the model. A much more164

systematic behavior can be seen by visualizing the whole parameter space using parallel coordinates (e.g. Inselberg,165

1985). Figure 5 depicts the cumulated contributions of the predictors from January to April to the target value (TJJA).166

Years, where TJJA (41) is lower/larger than -0.5K/0.5K are given in blue/red lines, respectively. About 65% of the167
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years have a signi�cant di�erence to the previous year. Almost no contributions of the early season predictors are found168

for the period 1955-1984 (left panel). All red and blue lines from January to April are close together. A few decades169

later the situation has changed. For the period 1985-2014 (right panel) we �nd much stronger contributions to the target170

value already in February, March and April. A clear spreading between the red and blue branch is evident (see Fig.5).171
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41.

172

The long-term analysis of the predictability was done systematically applying this univariate regression model on time173

windows of 30 years, each shifted by one year, through the entire time series since 1893 (see Fig.6, top). The best model174

statistics were found for the last period 1985-2014 (r² = 0.65). Few decades before the model performance revealed a175

much lower predictability (r² = 0.1 . . . 0.3). Around 1990 a state change from lower to higher seasonal predictability is176

evident. The graph for the one out-of-sample R-squared values (q2) is clearly weaker and measures the predictability177

of the missing years. Such an increase of the seasonal predictability was already reported by Kang et al (2006) using178

climate data of the 20th century from the (C20C) AGCM experiment. The contributions of the individual coe�cients179

(see Fig.6, bottom) indicate a regime shift around the year 1990 towards negative contributions.180

181

3.2 Regional (Europe)182

In order to investigate the predictability of the meteorological summer mean temperature (TJJA) on the regional scale183

the model has been applied to the daily gridded dataset EOBS-0.25-v12.0 (Haylock et al, 2008) that is provided up184

to the year 2014. Every single grid point is thereby considered as an independent record. The observation period was185

subdivided into an early and a recent period and the derived predictability measures (r²) were visualized. Figure 7186

shows the distribution of the r²-values over Europe for two periods: 1955-1984 (left panel) and 1985-2014 (right panel).187

The �gure depicts when and where the regression model works well. High predictability is given in red color. This is188

the case for the recent period over the southern part of the Baltic region. Two secondary maxima are also visible for189

the Iberian Peninsula and Turkey. Due to the scarce data coverage and poor data quality over Turkey the signal is190

somewhat questionable. The other two patterns (Fig.7, right panel) are dataset independent and can be qualitatively191

reproduced using NCEP/NCAR R1 (Kalnay and et al., 1996) reanalysis data (Fig.15, Annex). Therein we also �nd192

another predictability maximum over Pakistan. However, this is beyond our interest. Low predictability is found over193

Western- and Eastern Europe for the late period and for whole of Europe in the middle of the last century. The r²-values194

are clearly less than 0.3. The prominent di�erences between the two patterns require an investigation of circulation195

patterns over Europe and their long-term behavior.196

197

An alternative approach was checked using Partial Least-Square (PLS) regression (Geladi and Kowalski, 1986) to predict198

the TJJA at Potsdam based on February-April averaged NCEP/NCAR patterns of ∆1Z500 over the Atlantic-European199

Sector (30.0°W�42.5°E/25.0°N�65.0°N). It is based on a principle component regression. Compared to Eq.1 the temporal200

�uctuations explained by the standard deviations are here expressed by the �rst two ∆1Z500 principle components.201

This approach can qualitatively reproduce our results for the recent period (1991-2015) with r² = 0.74 (Fig.16, Annex).202

The simulation of an earlier period from 1971-1990 by using the resulting coe�cient matrix failed, because the ∆1Z500203

patterns and their year-to-year variability must include structural di�erences compared to the recent period. This is an204

indirect way to detect circulation changes in the atmosphere for speci�c applications.205
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Fig. 6 Upper panel: Time series of the 30-years running squared correlation coe�cients (r2 and q2) between the observed and
modeled data from 1923 to 2014. Lower panel: Time series of the regression coe�cient according to Eq.1.

3.3 Cross-Validation206

The ability of the diagnostic model (Eq.1) for prediction purposes was evaluated by using the Leave-One-Out Cross-207

Validation (LOOCV) approach (Fig.8, upper right). This �gure shows the already discussed R²-value (blue line) and the208

RMSE between the predicted and the observed values (red line) for the Potsdam station. Thereby, the period from 1950209

to 2016 was analyzed using a 30-year running time window. The two curves indicate opposite tendencies with clear jumps210

to enhanced predictability in recent years. The RMSE reaches values of about 0.9K. This is below the natural variability.211

Figure 8 (lower left) assess the prediction of the subsequent years. Every single scatter in the observed-forecast diagram212

indicates one prediction. A perfect forecast must be in line with the slant. The predicted ∆1TJJA values since 2010 are213

given in red color. All last 6 forecasts were within the uncertainty band (±1K). The last 3 years (2014, 2015, 2016) even214

very close to the slant. In order to assess the predictability skill on the regional scale the RMSE must be lower than the215

1σ (TJJA). The hashed area in Fig.8 (right panel) ful�lls this criteria. It is similar to the R²-pattern (Fig.7, right panel).216

Consequently, recent predictions of ∆1TJJA using Eq.1 for grid cells within the hashed areas are more reliable than the217

rest.218

219

3.4 Dynamical (Europe)220

The reason for the shown rising of the predictability measure is probably linked to a change in the circulation over221

Europe. Kyselý and Huth (2006) detected changes in the persistence of anticyclonic weather types in summer after 1990222

using subjective and objective methods. They explain these changes by the northward shift of the storm track in the223
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Fig. 7 European patterns of the squared-correlation coe�cient (r²) for two periods: 1955-1984 (left panel) and 1985-2014 (right
panel). The location of Potsdam is represented by the red circle.

Northern Hemisphere. The related decrease of cyclonic activity and enhanced blocking frequency favor the predictability224

on the longer timescale. Here, we use a long-term (subjectively derived) catalog of weather patterns (Grosswetterlagen)225

after Hess and Brezowsky (1977) provided by the German Meteorological Service to identify possible changes in the226

occurrence frequency from 1961 to 2015. This classi�cation relies on the synoptical experiences of meteorologists, which227

cannot be completely automated or discriminated objectively (James, 2007). Automated classi�cations of 40 weather228

type (e.g. Bissolli and Dittmann, 2001) are only available continuously since 1979 and are not considered in this study,229

because their reliability rises and falls with the used reanalysis dataset. Figure 9 shows the long-term monthly average230

of the 30 weather types (left panel) and their respective relative trends (right panel). The most frequent ones are the231

Cyclonic Westerly (WZ: 170 days/year) and the Zonal-Ridge over Central Europe (BM: 113 days/year). To the second232

most frequent group with more than 60 days/year belongs High over Central Europe (HM: 62 days/year) and Trough over233

Central Europe (TRM: 63 days/year). Two of these, BM and TRM, show a strong positive trend of the frequency in the234

summer half-year. Werner et al (2008) reported an increase of BM weather type during the summer months (June-August)235

already. All other weather types are either decreasing in frequency or their trends are not signi�cant (p > 0.05). The236

BM and TRM patterns are often associated with a strong contrast of weather variables (Z500, SLP, surface temperature,237

precipitation, etc.) in Central Europe. Figure 10 (top) represents the respective shape of the circulation in the middle238

troposphere (Z500) for the two conditions. Both shapes show a strong dissimilarity to the other Hess/Brezowsky weather239

types. Their uniqueness makes a mistake in the classi�cation process less likely. The distance between the two patterns240

(Z500HB − Z500TRM ), Zonal-Ridge and Trough over Central Europe, is shown in Fig.10 (bottom). It reveals a core241

region, where the contrast between the two circulation types is large. This is the case for the north-eastern part of Central242

Europe and the Potsdam climate station is located in the center.243

244

245

The temporal evolution of the two Hess/Brezowsky weather types since 1961 is shown in Fig.11. It represents their246

rising contributions on the total variability from March to July. While their percentage before 1980 laid below 10%,247

the conditions have changed after 1980. Their share has doubled and amounts currently almost 30%. This �nding248

demonstrates that the variability of the chaotic weather system shifts to a more regular state determined by less degrees249

of freedom or in synoptical terminology, weather types. However, theses changes have side e�ects. The new dominant250

weather patterns favor weather extremes in the summer half-year: BM (heat waves) and TRM (heavy rainfall). The251

air�ow is stronger meridional oriented.252

An additional Fig.14 (Annex) illustrates the 15-30d bandpass �ltered temperature values at Potsdam (red curve) given253

in polar coordinates for two years, 2014 (left panel) and 2015 (right panel). The occurred weather types, BM (red circle)254

and TRM (blue circles) are also added. It implies the live cycle of the new dominant weather patterns in comparison to255

the temperature variability, where TRM/BM favors negative/positive anomalies, respectively.256

257

A used Mother-Wavelet analysis (Torrence and Compo, 1998) of the Potsdam temperature record (see Fig.12, left) also258

revealed a shift from a stronger seasonal variability (∼ 50 days) in the early period to a prominent monthly variability259

(∼ 30 days) in the recent period. Both, late winter (Jan-Mar) and spring (Apr-Jun) show synchronizing tendencies in260

this direction (see Fig.12, right). Weather patterns with high persistence potentials, such as BM and TRM, could trigger261
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Fig. 8 Cross-validation: upper left: R2- & RMSE-curve between model and observation for Potsdam. The trend lines are added,
respectively. lower left: Observed-forecast diagram of ∆1TJJA in Potsdam. The scatters represent predictions of the subsequent
year. The predictions since 2010 are given in red. right panel: European map gives of the predictability skill (hashed areas) for
∆1TJJA under recent climate conditions (1986-2015) where RMSE < σ.
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Fig. 9 1961�2015 long-term means (left panel) and relative trends (right panel) of Hess/Brezowsky weather types occurrences.
Only signi�cant trends with p < 0.05 are shown.

the inter-seasonal connectivity. This is also visible in the correlation matrices. These show coherent structures of such262

links derived from temperature (Fig.2) and weather type occurrences (Fig.13) by month. Di�erent connection paths263

can be identi�ed. The strongest change in the correlation is found for the BM and TRM weather types in the summer264

half-year (April-September). An obvious anti-correlation (blue scaling) determines the recent conditions (1986-2015).265

This alternation is not visible in the early period (1951-1980). Consequently, the patterns under recent conditions reveals266

more regularities and may con�rm our �ndings for an enhanced seasonal predictability of the summer mean temperature267

in Central Europe favored by new dominant weather patterns.268

269

270
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Fig. 10 upper row: Composite patterns of the re-scaled Z500 values in NCEP/NCAR reanalysis (Kalnay and et al., 1996) data
for two Hess-Brezowsky weather types: BM (left) and TRM (right). lower row: Di�erence pattern of the two Z500 composites.

4 Conclusions271

The seasonal predictability of the meteorological summer mean temperature (TJJA) over Central Europe has improved272

during the last decades. This could be shown by using an empirical relation between the target value and early season273

predictors (late winter variability). A stronger year-to-year variability is evident and a linkage to the winter circulation274

through planetary wave activity (e.g. Zhang et al, 2014) was suggested. This was veri�ed by using two complementary275

approaches analyzing daily temperature records and the occurrences of Grosswetterlagen. Both approaches came to similar276

results. (1) the circulation has changed after 1990, (2) the system shifts to a more regular and predictable state, (3) the277

strongest relation was found for the north-eastern part of Central Europe. We conclude that the spatial center of higher278

seasonal predictability was found at location where the distance of the prevailing weather types (BM and TRM) is large.279

Both weather types are usually associated with opposite weather conditions and reveal a stronger contribution to the280

total variability over Europe after 1990.281

The sequence of BM and TRM can be interpreted as wave-like patterns of the jet stream over Europe. Thereby, the wave282

ridge and trough over Central Europe corresponds to the BM and TRM weather types. This �nding provides an indirect283
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Fig. 11 1961�2015 long-term evolution of the contribution on the total variability for the two Hess/Brezowsky weather types from
March to July: BM (sandybrown) and TRM (blueviolet). The individual trends are given as black lines.
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Fig. 12 Left panel: March to July averaged Mother-Wavelet spectra di�erences between two periods derived from the Potsdam
temperature record: 1970�1984 and 1999�2013. Right panel: The same as above for Jan-Mar (blue line) and Apr-Jun (red line).

way to identify possible circulation changes by analyzing the local variability in daily temperature time series (winter)284

as early season predictors for a later temperature state (summer). The application of this approach to other temperature285

derived indices, such as the number of hot days (Tmax > 30°C) provides similar results, even though the predictability286

measure is weaker (not shown).287

In the context of climate change and the linkage to the Arctic ampli�cation (e.g. Francis and Vavrus, 2012; Cohen et al,288

2014) possible circulation changes during boreal summer at mid-latitudes are discussed by, e.g., Coumou et al (2014). A289

higher frequency of quasi-resonant circulation regimes will lead to more extreme weather events (droughts, heat waves290

or �oods). This is, to a certain degree, consistent with our �ndings on the local and regional scale over Central Europe.291

Two weather pattern, which are often associated with extreme weather situations (BM: droughts, heat waves and TRM:292

�oods) become more frequent and determine increasingly the variability of the chaotic weather system over Europe. The293

resulting enhanced predictability measure goes along with a higher probability of persistent extreme weather events in294

the summer half-year. This side e�ect is alarming and points towards more frequent extreme weather conditions in the295

further course of the rapid climate change.296

Changes in the land-ocean temperature contrast in Northern Hemisphere (zonally asymmetric forcing) may also con-297

tribute to the enhanced predictability. In Jain et al (1999) detected changes in the seasonality of the land-ocean ratio298
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Fig. 13 Monthly Pearson correlation coe�cient matrix between BM vs. TRM occurrence using 4¹ from 1951-1980 (left panel)
and 1986-2015 (right panel). The area of interest is highlighted.

and the equator-pole gradient in historical data and one GCM run. Both parameters e�ect the large-scale circulation299

and the planetary scale variability (e.g. Molteni et al, 2011; Cohen et al, 2012). An impact of the land-ocean thermal300

contrast on blocking was studied by He et al (2014). They found more persistent events during positive phases of the301

Land-Sea Index (LSI) �cold land/warm ocean� in winter. However, long-term trends indicate a decrease of the blocking302

frequency due to the weakening of the LSI. We conclude, a possible connection to the enhanced seasonal predictability303

is likely.304

The prediction of the summer mean temperature of 2016 in Potsdam was successful, too, as shown in Fig.8 (lower left305

panel). The estimated value of 19.1°C was hit exactly. The r²-value for the training period 1994-2015 amounted to 0.62.306

Another temperature-based target value (the number of hot days) was estimated analogue to the described approach.307

Again, the estimated value of 15 days was hit exactly (r² = 0.58). Finally, the summer 2016 in Potsdam was similar308

compared to the previous year 2015 in terms of the mean temperature (19.3°C). However, Tmax > 30°C was exceeded309

11 times during the summer months June to August. Quite unusual, 4 more were reported in early September. That is310

altogether 10 days less than in 2015. The application for whole Europe was not realized due to missing real-time data.311

For future work we plan to extend the prediction to other relevant parameters, such as total precipitation, by using a312

temperature conditioned weather generator. This allows to estimate how far dry or wet conditions during summer are313

favored by the predicted temperature state. Also a climate model assessment in terms of seasonal predictability over314

Europe is planned in order to evaluate their performances.315

The application of a similar regression model to study the predictability skill for the winter season is much more complex.316

Folland et al (2012) described how potentially predictable is northern European winter climate a season ahead. They317

conclude that process-based forecast models must fully resolve the stratosphere dynamics and data-based approaches318

have to consider a much higher number of independent early season predictors (e.g. the North Atlantic SST index, QBO,319

Volcanic- and Nino 3.4 index).320

Acknowledgements I thank Frank Wechsung for his critical comments during time preparing the manuscript and the German321

Meteorological Service for maintaining such a consistent climate record.322
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Supplementary Material324

The supplementary materials include additional �gures, which underline our general �ndings and the discussed mecha-325

nism.326

S-Tab. 2 Prediction summary for Potsdam: mean temperature Jun-Aug (TJJA), mean temperature Jul-Aug (TJA) and hot days
(hoda).

observation prediction
2014 2015 ∆¹ 2016 ∆¹ 2015 r² 2016 r²

ja 1986 1987
TJJA 18.2°C 19.3°C +1.1K 19.1°C -0.2K 19.3°C 0.64 19.1°C 0.63
TJA 18.9°C 20.7°C +1.8K 19.1°C -1.5K 20.7°C 0.70 20.4°C 0.72
hoda 11d 21d +10d 15d -6d 21.9d 0.50 15.2d 0.52

327

328

S-Fig. 14 Polar coordinates plots of 15-30d bandpass �ltered temperature values at Potsdam (red lines) for the years 2014 (left
panel) and 2015 (right panel). The di�erent periods of the year are colored: January to March (blue), April (green) and June to
August (orange). The occurrences of speci�c weather types are given as circles: TRM (blue) and BM (red).

329
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S-Fig. 15 European pattern of the squared-correlation coe�cient (r²) for the period 1985-2015 using near surface temperature
data from NCEP/NCAR R1 (Kalnay and et al., 1996) analogue to Fig.7.

330
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S-Fig. 16 Partial-Least-Squares (PLS) regression (black dashed) of the summer mean temperature at Potsdam (black solid) using
Feb.-Apr. averaged Z500 patterns in NCEP/NCAR R1 reanalysis data over the Atlantic-European sector (top). The data are
detrended using �rst di�erences (41). The model was trained for the recent period (1991-2015) with r² = 0.74. The scores (middle)
and patterns of the coe�cients and loadings are added (bottom).
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