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Water scarcity hotspots travel downstream due to
human interventions in the 20th and 21st century
T.I.E. Veldkamp1,2, Y. Wada2,3,4,5, J.C.J.H. Aerts1,6, P. Döll7,8, S.N. Gosling9, J. Liu10, Y. Masaki11,12, T. Oki13,

S. Ostberg14,15, Y. Pokhrel16, Y. Satoh2, H. Kim13 & P.J. Ward1

Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment,

we examine how human interventions (HI: land use and land cover change, man-made

reservoirs and human water use) affected monthly river water availability and water scarcity

over the period 1971–2010. Here we show that HI drastically change the critical dimensions of

water scarcity, aggravating water scarcity for 8.8% (7.4–16.5%) of the global population

but alleviating it for another 8.3% (6.4–15.8%). Positive impacts of HI mostly occur upstream,

whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel

downstream. Attribution of water scarcity changes to HI components is complex and varies

among the hydrological models. Seasonal variation in impacts and dominant HI components

is also substantial. A thorough consideration of the spatially and temporally varying

interactions among HI components and of uncertainties is therefore crucial for the success of

water scarcity adaptation by HI.
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S
ocioeconomic developments increasingly put pressure on
our global freshwater resources, thereby increasing water
scarcity, that is, the temporal deficits in freshwater resources

compared with anthropogenic and environmental demands1.
Over the past 100 years, human water demand increased almost
8-fold2 due to the quadrupling of the global population, increases
in per capita food demands and rising standards of living3–7.
Increasing volumes of water are needed to feed the global
population and to drive local and global economies4. To keep up
with these growing demands, large-scale human interventions
(HI) have taken place: land use and land cover change (LULCC),
including irrigation to increase food productivity; dams and
reservoirs to control the timing of streamflow; and water
withdrawals from surface water bodies and groundwater to
fulfil water demands. Although these HI are targeted at local to
regional scales, they are known to impact the hydrological
cycle and can affect streamflow on larger scales, such as in
downstream areas7–17. For example, earlier work has shown that
land use conversions from forest to cropland increase river
discharge, whereas irrigation increases local runoff but decreases
basin-wide runoff due to increased evapotranspiration rates9,15.
Moreover, upstream water withdrawals from the streamflow
may decrease water availability for downstream use9,14,17, and
dams and reservoirs can severely alter the timing of low- and
high-flows8–12,17. Having insight in the impacts of HI can help
water managers to highlight locations where HI have been
beneficial from a water resources perspective. Moreover, it can
help to identify regions where there is still room for expansion
and/or intensification of HI, given the historic and future
increases in water and food demand, and the expected changes
in climate conditions18–28. Such insights also allow us to identify
regions where a more optimal incorporation of HI is required in
the socio-hydrological system.

The allocation of shared water resources between upstream
and downstream regions has a prominent place on the global
science-policy agenda, given the fact that transboundary rivers and
lakes cover almost half of the global land area and are home to
B40% of the global population29. Sharing water resources creates
interdependencies that may lead to cooperative or conflictive
events, although evidence of causality is limited30. The
development of event databases such as the Transboundary Fresh
Water Dispute Database31, the Water Conflict Chronology32 and
the ICOW River Claims Data Set33 enable a more systematic
assessment of water conflict and resolution processes, and provide
insights into the effectiveness of cooperative arrangements34–40.
Despite the widespread recognition of the importance of upstream–
downstream interactions within river basins, only limited
quantitative research has been performed to unravel and
understand the dominant drivers of change, linking different
types of HI with water scarcity and (increased) exposure to water
scarcity14. At the same time, unequal impacts of upstream–
downstream interactions on water resources and water scarcity at a
higher spatial resolution, for example, within administrative regions
or river basins, are often left unstudied, despite their potential
impact on societies.

Going beyond the first assessment14 of the impact of upstream
water use on downstream water scarcity at a yearly scale, this
study incorporates different types of HI, namely LULCC, dam
and reservoir operations, and upstream water consumption, and
compares their impacts on freshwater availability and water
scarcity to the trends in climate change impacts. The central aims
of this study are therefore to quantify how HI have altered the
critical dimensions of water scarcity, including the average
duration, occurrence and severity of water scarcity; to evaluate
whether, and to what extent, HI have led to a reshuffling of water
scarcity hotspots, leading to changes in the exposure to water

scarcity events; and to assess how HI over time contribute to or
dominate over the trend in climate change impacts.

To do this, we performed a scenario analysis using monthly
water resources simulations at a 0.5�� 0.5� (B50� 50 km at the
equator) spatial resolution for the period 1971–2010 reflecting
conditions of no HI (NHI) and time-varying HI (see Methods).
This study uses an ensemble of five state-of-the-art global
hydrological models (GHMs) allowing for robust estimates:
H08 (refs 41,42), LPJmL43,44, MATSIRO45, PCR-GLOBWB46,47

and WaterGAP13. Each of the GHMs was driven by three global
state-of-the art observation-based historical climate datasets:
PGFv2 (ref. 48), GSWP3 (http://hydro.iis.u-tokyo.ac.jp/GSWP3)
and WFD/WFDEI49. The GHMs were also forced by a set of socio-
economic parameters to model historical demands: gross domestic
product (GDP), population density, livestock density, land use and
land cover2. In this study, we used the HYDE 3—MIRCA data
set50–52, ensembled following Fader et al.53, for simulating the
changes in irrigation and/or cropland patterns over time and their
time-varying impacts on water availability and water scarcity. We
introduced a spatially and temporally explicit measure of the
minimum environmental flow requirement54–57, that is, a rough
global estimate of water that ecosystems need to sustain healthy
conditions. By combining this with our seasonal assessment of
water availability and water scarcity, accounting for seasonal
variability and regional variation at a high spatial resolution, we
were able to develop an updated Water Scarcity Index (WSI)1. This
index provides a more meaningful indicator for water scarcity at
the seasonal scale than those used in past studies, as it reflects
both the human and environmental water needs58,59. In doing so,
we build upon the latest insights from previous hydrologic
research8–13,15 and translate its implications into the domain of
water scarcity and exposure to water scarcity events.

Our results show that HI substantially changed the critical
dimensions of water scarcity between 1971 and 2010, reshuffling
hotspots of water scarcity and causing a distinct pattern of
beneficiaries and losers, involving more than one-third of the
global population. Large differences between upstream and
downstream regions exist under the limited net global impact
of HI, causing water scarcity to travel downstream. Attribution of
water scarcity changes to HI components is complex and varies
among the hydrological models. Seasonal variation in impacts
and dominant HI components is also substantial. A systematic
deliberation of the spatially and temporally varying interactions
among HI components and of uncertainties is therefore needed
when adapting to water scarcity by HI.

Results
Impacts of HI at the global scale. HI employed to maximize the
utilization of water resources have significantly changed the local
water availability over the period 1971–2010 (Fig. 1 and Table 1).
Although on average 20.4% (16.6–29.1%) of the global population
(2010 values) experienced a significant increase in water availability
due to the implementation of HI, 23.7% (18.6–39.0%) experienced
a significant decrease. Consequently, HI significantly altered the
critical dimensions of water scarcity (average duration, occurrence
and severity) and caused a substantial reshuffling of those exposed
to water scarcity, affecting a considerable share of the global
population. One-third of the global population (2010) experienced
a significant increase in the average duration (20.1–42.7% of the
global population) and occurrence (14.4–50.4%) of water scarcity
events, respectively, whereas significant decreases in average
duration and occurrence due to HI were felt by 24.8% (19.0–26.4%)
and 20.7% (19.4–26.8%). Whereas HI alleviated water scarcity
conditions, on average, for 8.3% (6.4–15.8%) of the global popu-
lation and caused 2.9% (2.2–4.5%) to move out of water scarcity, it
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resulted in aggravated water scarcity conditions for 8.8%
(7.4–16.5%) and drove 3.0% (2.3–6.7%) of the population into
water scarcity. As a net result, HI slightly increased (þ 1.2%) the
global exposure of population to water scarcity. Using estimates of
the relative location of impacted regions within the river basin, we
find that the positive impacts of HI mostly occur in upstream areas,
whereas areas located further downstream are more often impacted
negatively (Fig. 2 and Table 2). For example, those populations who
moved out of water scarcity due to HI have, on average, a relatively
lower fraction of upstream area (0.16–0.28) compared with
those who moved into water scarcity (0.23–0.35). As a result,
HI caused water scarcity globally to travel downward through river
basins (Fig. 2b).

Impacts of HI at the regional scale. Although the absolute
numbers vary, we find the same overall patterns for most of
the river basins studied in detail. Although the net impact of
HI on the critical dimensions of water scarcity is often close to zero
(Supplementary Fig. 1), populations of most basins either experi-
enced increasing or decreasing water availability due to imple-
mentation of HI (Supplementary Fig. 2) and a substantial share of
the population moved in or out of water scarcity (Supplementary
Fig. 3). Moreover, a significant share of the population experienced
a change in the average duration, occurrence and severity of water
scarcity due to HI (Supplementary Figs 4 and 5). The mutual
differences across the different basins with respect to the share of
population being exposed to (i) an alleviation/aggravation of water
scarcity conditions, (ii) movement in/out of water scarcity or
(iii) significant increases/decreases in water availability can partly
be clarified by the initial pressure on the available water resources
under the NHI conditions. For example, a relative high share of the
population in the Ganges–Brahmaputra and the Indus basin lived
already in (deep) water scarce conditions and implementation of

HI led predominantly to an aggravation/alleviation of these
conditions. In contrast, we find that a relatively large share of the
population living in the Huang He basin moved into water scarcity
due to HI, whereas significant aggravations of water scarcity
conditions of those living already in water scarcity conditions were
experienced to a lesser extent. For the Amazonas and Congo basin,
we find only limited impacts of HI on the availability of water
resources, with even lower effects on the critical dimensions of
water scarcity. This can be explained by the relatively low rate of HI
in these basins, combined with a relatively low pressure on the
available water resources in major parts of these basins. Similar to
the global results, movements into water scarcity due to HI are
predominantly found in more downstream regions, whereas people
moving out tend to live in relatively upstream areas (Suppleme-
ntary Fig. 6). This regional divide can be seen in most river basins,
apart from the Paraná and the Volga, where those moving into
water scarcity live relatively more upstream. An interesting pattern
that is hidden in the globally aggregated numbers is that exposure
to water scarcity in the majority of the river basins studied shows a
distinct seasonal pattern. For example, our results show a clear
seasonal pattern with relatively high exposure to water scarcity in
Asia (for example, Ganges–Brahmaputra and Huang He) during
the northern Hemisphere spring, before the onset of the rainy
season, and high exposure to water scarcity in European and
American basins (for example, Mississippi, Rhine and Paraná)
during the northern Hemisphere summer and autumn
(Supplementary Fig. 2). The impacts of HI follow this seasonal
pattern in most river basins, with highest impacts in those months
with the highest pressure on the available water resources.

Dominant drivers of change at the global and regional scale.
Changes in the availability of water resources are driven by
multiple mechanisms, of which its dominance varies across basins
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Figure 1 | Impact of HI on water availability and water scarcity at the global scale. (a) The percentage of the global population that experiences a

significant increase or decrease (45%) in average duration and occurrence (number of months) of water scarcity. (b) The population exposed to water

scarcity and the net change in exposure due to HI compared with the NHI run (NHI), whereas (c) gives the population moving into/out of water scarcity and

(d) presents the population experiencing aggravated/alleviated water scarcity (WS) conditions. (e) Visualizes, finally, the percentage of population

experiencing increases/decreases in water availability (WA). The boxes in (a) and the shaded areas in (b–e) represent the interquartile ranges (q25–q75) and

the lines the ensemble-median values. Regional values for a selection of river basins are shown in the Supplementary Material (Supplementary Figs 1–5).
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Table 1 | Percentage of population exposed to significant changes in the critical dimensions of water scarcity due to HI.

Ensemble-median
(q25–q75)

H08 (q25–q75) LPJmL (q25–q75) MATSIRO
(q25–q75)

PCR-GLOBWB
(q25–q75)

WaterGAP
(q25–q75)

Exposure to water scarcity
Long-term mean

global exposure to
water scarcity
under HI run

37.6 (32.0–40.6) 41.1 (40.3–41.6) 35.0 (34.3–36.2) 43.5 (42.9–44.0) 27.1 (26.3–27.7) 35.9 (35.4–36.5)

Net change in
long-term mean
global exposure to
water scarcity
due to HI

1.2 (� 2.5 to 4.4) � 2.5 (� 2.8 to � 2.3) � 2.7 (� 2.9 to � 2.4) 6.3 (5.8 to 7.7) 1.3 (1.2 to 1.5) 4.2 (4.0 to 4.3)

Movement into
water scarcity
due to HI

3.0 (2.3–6.7) 1.9 (1.8–1.9) 2.3 (2.2–2.5) 9.1 (8.8–10.2) 3.0 (2.9–3.2) 6.6 (6.5–6.7)

Movement out of
water scarcity
due to HI

2.9 (2.2–4.5) 4.3 (4.2–4.6) 4.9 (4.7–5.0) 2.3 (2.3–2.4) 1.8 (1.7–1.8) 2.7 (2.6–2.7)

Severity of water scarcity
Significant

aggravation of
water scarcity
conditions
due to HI

8.8 (7.4–16.5) 8.5 (8.3–8.7) 5.6 (5.5–6.0) 22.6 (21.5–23.2) 7.7 (7.3–8.0) 16.1 (15.8–16.5)

Significant
alleviation of water
scarcity conditions
due to HI

8.3 (6.4–15.8) 15.7 (15.1–16.2) 17.6 (17.4–18.4) 6.5 (6.3–6.6) 8.0 (7.8–8.1) 6.5 (6.4–6.6)

Water availability
Significant

increase in
water availability
due to HI

20.4 (16.6–29.1) 28.3 (27.8–29.2) 31.9 (31.6–32.4) 14.4 (14.2–14.6) 19.3 (19.2–19.7) 17.8 (17.6–18.1)

Significant
decrease in
water availability
due to HI

23.7 (18.6–39.0) 18.3 (18.1–18.5) 17.6 (17.5–18.4) 52.1 (51.4–52.7) 23.5 (22.6–23.9) 38.6 (38.2–39.0)

Average duration and occurrence of water scarcity events
Significant

increase in average
duration of water
scarcity events due
to HI

26.5 (20.1–42.7) 13.9 (13.8–14.1) 20.9 (20.1–21.3) 54.0 (50.8–67.1) 26.5 (26.0–27.0) 41.2 (40.8–42.7)

Significant
decrease in average
duration of water
scarcity events due
to HI

24.8 (19.0–26.4) 33.2 (32.1–33.8) 25.9 (25.1–26.4) 16.7 (12.7–17.1) 19.4 (19.0–20.2) 24.9 (24.7–25.2)

Significant
increase in
occurrence of
water scarcity
events due to HI

33.3 (14.4–50.4) 14.6 (14.4–15.5) 12.0 (11.6–12.3) 57.0 (56.0–69.9) 33.3 (33.1–33.4) 50.1 (49.1–50.4)

Significant
decrease in
occurrence of
water scarcity
events due to HI

20.7 (19.4–26.8) 25.5 (25.0–26.8) 36.6 (36.3–38.1) 15.0 (11.5–15.0) 19.7 (19.4–20.1) 20.7 (20.7–21.2)

HI, human intervention.
Table 1 shows the global long-term mean share of the global population exposed to water scarcity under the HI run; the net change in exposure to water scarcity (% of the global population) due to HI; the
long-term mean share of the global population that moves into/out of water scarcity due to HI; the long-term mean share of the global population that already lives in water scarcity and experiences a
significant aggravation/alleviation of its water scarcity conditions due to HI; the long-term mean share of the global population that experiences significant increases/decreases in water availability due to
HI; and the long-term mean share of the global population that experiences significant increases/decreases in average duration and occurrence of water scarcity due to HI. The results presented in the
table show the ensemble medians per global hydrological model or over the full ensemble, with the interquartile ranges (q25,q75) between brackets.
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and seasons. Identifying the main driver (LULCC including the
increase of local runoff due to irrigation and reservoirs versus
upstream water consumption) of HI impacts as well as its origin
(being triggered locally or in upstream areas) reveals that
incoming discharge is the dominant origin of HI impacts for

61.8% (46.1–72.0%) of the global population (Fig. 3 and Table 3).
In regions being impacted negatively by HI the dominance of
incoming discharge is even higher (on average 87.2% of the
population), which highlights the dependency of these areas on
human actions and decisions being taken upstream. In contrast,
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Figure 2 | Global population-weighted mean ratio between the upstream area and total catchment area of impacted regions. (a) The difference in the

global population-weighted mean location within the river basin between those areas exposed to a significant increase and decrease in average duration and

total occurrence of water scarcity. Higher values indicate here areas being located more downstream. (b) The difference in these ratios between those areas

exposed to water scarcity under the NHI run (NHI) and the HI run. (c–e) The difference in these ratios between those areas exposed to a movement in/out of

water scarcity due to HI, a significant alleviation/aggravation of water scarcity (WS) conditions and a significant increase/decrease in water availability (WA),

respectively. The boxes in (a) and the shaded areas in (b–e) represent the interquartile ranges (q25–q75) and the lines the ensemble-median values.

Table 2 | Relative location within the river basin of those being exposed to significant changes in the critical dimensions of water
scarcity due to HI.

Ensemble-median
(q25–q75)

H08
(q25–q75)

LPJmL
(q25–q75)

MATSIRO
(q25–q75)

PCR-GLOBWB
(q25–q75)

WaterGAP
(q25–q75)

Exposure to water scarcity
Movement into water

scarcity due to HI
0.29 (0.23–0.35) 0.36 (0.35–0.37) 0.37 (0.36–0.38) 0.22 (0.22–0.23) 0.30 (0.29–0.30) 0.23 (0.22–0.23)

Movement out of water
scarcity due to HI

0.23 (0.16–0.28) 0.33 (0.33–0.34) 0.28 (0.27–0.29) 0.24 (0.22–0.24) 0.07 (0.07–0.07) 017 (0.16–0.18)

Severity of water scarcity
Significant aggravation of

water scarcity conditions due
to HI

0.21 (0.12–0.25) 0.25 (0.25–0.26) 0.25 (0.24–0.26) 0.11 (0.11–0.11) 0.21 (0.20–0.21) 0.13 (0.12–0.13)

Significant alleviation of
water scarcity conditions due
to HI

0.09 (0.09–0.11) 0.09 (0.09–0.09) 0.10 (0.10–0.10) 0.11 (0.10–0.12) 0.07 (0.07–0.07) 0.11 (0.11–0.12)

Water availability
Significant increase in

water availability due to HI
0.19 (0.16–0.21) 0.20 (0.20–0.20) 0.19 (0.18–0.19) 0.22 (0.21–0.22) 0.10 (0.10–0.10) 0.18 (0.18–0.19)

Significant decrease in
water availability due to HI

0.29 (0.21–0.34) 0.35 (0.34–0.35) 0.36 (0.35–0.36) 0.21 (0.21–0.21) 0.29 (0.29–0.29) 0.21 (0.21–0.21)

HI, human intervention.
Table 2 shows the population-weighted relative location-value of: those being exposed to water scarcity under the HI run; those who moved into/out of water scarcity due to HI; those who already live in
water scarcity and experienced a significant aggravation/alleviation of its water scarcity conditions due to HI; those who experience significant increases/decreases in water availability due to HI; and
those who experience significant increases/decreases in average duration and occurrence of water scarcity due to HI. The results presented in the table show the ensemble medians per global
hydrological model or over the full ensemble, with the interquartile ranges (q25,q75) between brackets.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15697 ARTICLE

NATURE COMMUNICATIONS | 8:15697 | DOI: 10.1038/ncomms15697 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


in regions being positively affected by the implementation of HI
(increasing water availability), local runoff acts as the dominant
trigger of change (50.6% of the population), highlighting the
relative self-sufficiency—and its positive consequences—of these
regions in managing their water resources. Reservoir operations
and LULCC are the dominant drivers of all HI-driven changes in
water availability in regions inhabited by 78.1% (77.6–82.6%) of
the global population. At the same time, we find that upstream
water consumption is a dominant driver of change in regions
inhabited by 21.9% of the global population only. Focusing on the
negative impacts of HI only, we find, nevertheless, that upstream
water consumption becomes significantly more important as a
driver of change, being dominant in regions inhabited by almost
half of the global population exposed (42.0%).

The earlier observed global dominance in drivers of change
is, however, not spatially uniform (Fig. 4 and Supplementary
Figs 7–9). Whereas upstream water consumption is the dominant
driver of changes in water availability in May and December
for the Huang He and Ganges–Brahmaputra basin, respectively,
LULCC and reservoir operations dominate the change in water
availability in the Paraná basin year-round (Supplementary
Fig. 7). Incoming discharge is relatively more often the dominant
origin of change in regions that experience decreases in water
availability due to HI (Supplementary Fig. 8), especially when
compared with those areas where HI impacts water availability
positively (Supplementary Fig. 9). Increases in water availability

are controlled by reservoir operations and LULCC in all river
basins, although its dominant origin differs from region to region
(Supplementary Fig. 9). If we only examine the influence of
reservoir operations and LULCC on the critical dimensions of
water scarcity, we find a net decrease in the global population
exposed to water scarcity and decreases in the average duration
and occurrence of water scarcity for a relatively higher share of
the global population, compared to the impacts of all HI together
(Supplementary Figs 10 and 11). Nevertheless, still a substantial
portion of the population experienced a significant aggravation of
its water scarcity conditions, or a movement into water scarcity
(Supplementary Figs 12–14), also when we only examine the
impact of these two forms of HI.

Compared with those regions with a significant trend in
climate change impacts on water resources over 1971–2010,
affecting on average 12.1% of the global population, we find,
finally, that HI impacts contributed or dominated the change in
water resources over time in a significant part of the globe,
inhabited by 8.2% and 1.5% of the global population, respectively
(Table 4). In addition, HI impacts significantly changed the
availability of water resources over time in regions not exposed to
a significant trend in climate change impacts, affecting an extra
6.3% of the global population. Also here, significant differences
exist in the global distribution of dominant trends and impacts
between August and December (Fig. 5). For example, when
looking at the relative influence of HI impacts on the availability
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Figure 3 | Dominant driver of changes in water resources due to HI. Figure 3 visualizes the share of the global population (2010 values) with a dominant

driver and origin of change: Local runoff: LULCC & Reservoirs; Incoming discharge: LULCC & Reservoirs; and Incoming discharge: Upstream water

consumption. Figure 3 shows the dominant drivers of change when taking into account all significant changes in water availability due to HI (a); significant

decreases in water availability due to HI (b); and significant increases in water availability due to HI (c).

Table 3 | Dominant driver of significant changes in water availability due to HI and its origin.

Ensemble-median
(WA dec/WA inc)

H08
(WA dec/WA inc)

LPJmL
(WA dec/WA inc)

MATSIRO
(WA dec/WA inc)

PCR-GLOBWB
(WA dec/WA inc)

WaterGAP
(WA dec/WA inc)

Dominant source
Local runoff 38.2 (12.8/50.6) 28.0 (0/48.9) 29.1 (0.8/46.3) 38.6 (38.0/42.3) 42.2 (12.6/82.9) 53.9 (49.4/64.3)
Incoming discharge 61.8 (87.2/49.4) 72.0 (100/51.1) 70.9 (99.2/53.7) 61.4 (62.0/57.7) 57.8 (87.4/17.1) 46.1 (50.6/35.7)

Dominant driver
LULCC and reservoir

operations
78.1 (58/100) 74.5 (40.2/100) 81.3 (49.5/100) 67.2 (59.0/100) 82.6 (68.7/100) 77.6 (68.1/100)

Upstream water consumption 21.9 (42/0) 25.5 (59.8/0) 18.7 (40.4/0) 32.8 (41.0/0) 17.4 (31.3/0) 22.4 (31.9/0)

HI, human intervention; LULCC, land use and land cover change.
Table 3 shows for the full ensemble and per global hydrological model (GHM) the share of the global population that has local runoff or incoming discharges as dominant origin of changes in water
availability due to HI. It also summarizes which share of the population (median values) has LULCC and reservoir operations or upstream water consumption as dominant driver of changes in water
availability due to HI. In the results, a distinction is being made between all significant changes in water availability, significant decreases in water availability, and significant increases in water availability
and their associated dominant driver of change as well as its origin. The results presented in the table show the ensemble medians per GHM or over the full ensemble, with the interquartile ranges
(q25,q75) between brackets.
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of freshwater resources in India, the Middle East region, Australia
or Latin America between August and December.

Sensitivity to the choice of model and forcing data. The GHMs
used in this study show a relative constant modelling spread in
outcomes for each of the analysis performed (Tables 1–4).
Whereas MATSIRO presents the high-end outcomes in all cases,
the result of the other GHMs are more closely related, for
example, with respect to the long-term mean exposure to water
scarcity events or the increase in average duration and occurrence
of water scarcity due to HI. Compared with the other models,
MATSIRO also shows to have the highest sensitivity to the use of
different forcing data sets, as shown by the relatively large
interquartile ranges presented for each of its outcomes.

When looking at the impact of HI we find that almost all
results per GHM show to be significantly different from zero,

irrespectively of the GHM used (Table 1). The impacts of HI are
globally significant, both with respect to the changes in water
availability, as well as regarding the changes in exposure to
water scarcity (movement in/out, aggravation/alleviation), and
the changes in average duration and occurrence of water scarcity
events. Only the estimated net changes in exposure to water
scarcity as a result of HI show ambiguous outcomes, with the
interquartile ranges varying from negative to positive values. This
can be explained by the variation in estimated net effects between
the different GHMs studied and forcing data sets used. For a
majority of GHMs (PCR-GLOBWB, WaterGAP and MATSIRO),
we find, on average, a relative higher share of the global
population that experienced significant decreases in water
availability, an alleviation of water scarcity conditions, a
movement into water scarcity or an increase in the persistence
of water scarcity events due to HI. H08 and LPJmL, on the other
hand, show a relative higher share of the global population for
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Figure 4 | Regional and seasonal variation in the dominant driver of change in water availability. Figure 4 shows for the months August (a,c) and

December (b,d) the dominant driver of change due to HI, together with its origin: Local runoff: LULCC & Reservoirs; Incoming discharge: LULCC

& Reservoirs; and Incoming discharge. Although (a,b) account only for the significant decreases in water availability (WA), (b,d) include only the significant

increases. The dominant driver of change and its origin are shown only if found to be consistent across a majority of model combinations (47).

Table 4 | Relative influence of HI on changes in water availability over 1971–2010 compared with the trend in climate change
impacts.

Ensemble-median
(q25–q75)

H08
(q25–q75)

LPJmL
(q25–q75)

MATSIRO
(q25–q75)

PCR-GLOBWB
(q25–q75)

WaterGAP
(q25–q75)

Sign. climate change impact trend on
water availability

12.1 (7.6–15.6) 7.5 (6.1–11.0) 7.0 (6.1–8.6) 16.1 (13.1–18.0) 15.0 (13.8–15.6 ) 10.2 (8.5–15.5)

HI contributing to the climate change
impact trend

8.2 (6.2–12.1) 6.1 (5.2–9.0) 5.7 (5.1–7.0) 10.7 (8.8–12.1) 12.3 (11.5–13.6) 7.8 (6.7–12.4)

HI dominating the climate change
impact trend

1.5 (0.9–3.2) 1.1 (0.7–1.5) 0.9 (0.6–0.9) 5.4 (4.2–5.9) 1.4 (1.0–1.9) 2.4 (1.7–3.2)

Sign. climate change impact trend only 0.3 (0.0–0.7) 0.3 (0.3–0.5) 0.4 (0.4–0.7) 0.0 (0.0–0.1) 0.8 (0.7–0.8) 0.0 (0.0–0.0)
Sign. HI impact trend only 6.3 (5.4–8.3) 6.3 (5.8–6.8) 5.8 (5.5–6.0) 9.5 (8.5–9.9) 3.5 (3.4–3.5) 8.4 (7.3–8.8)

HI, human intervention.
Table 4 shows for the full ensemble and per global hydrological model (GHM) the share (% of 2010 population values) of the global population exposed to a significant trend in climate change impacts on
water availability over the period 1971–2010. Moreover, it shows the share of global population living in areas where HI contribute or dominate this trend. Finally, it shows the share of global population
living in areas with only a significant climate change impact trend or only a significant HI impact trend. The results presented in the table show the ensemble medians per GHM or over the full ensemble,
with the interquartile ranges (q25, q75) between brackets.
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which HI caused an increase in water availability, an alleviation of
water scarcity conditions, a movement out of water scarcity or a
decrease in the persistence of water scarcity events.

All GHMs depict changes in incoming discharges to be the
largest source of decreases in water availability due to HI
(Table 3), thereby providing robustness to the ensemble-median
result. Local runoff as the source of change becomes significantly
more dominant in all GHMs when looking at the increases
in water availability due to HI only, with PCR-GLOBWB and
WaterGAP, indicating here the changes in local runoff to be
dominant in a slight majority of the globe. Reservoir operations
and LULCC were perceived by all GHMs to be the dominant
driver of changes in water availability due to HI. Although
reservoir operations and LULCC drive the increases in water

availability due to HI in all GHMs, they dominate the decreases in
water availability for a majority of the globe in LPJmL,
MATSIRO, PCR-GLOBWB and WaterGAP. Only in H08,
upstream water consumption becomes a dominant influence in
a majority of the globe when looking at the decreases in water
availability due to HI. As reflected by the ensemble-median
results, upstream water consumption becomes, nevertheless, in
each of the GHMs a significantly more important driver of
change when looking at the decreases in water availability only
compared to all changes in water availability.

Each of the GHMs indicate, finally, that HI contribute
significantly to the trend in climate change impacts over the
past 40 years, affecting 5.7% (LPJmL) to 12.3% (PCR-GLOBWB)
of the global population (Table 4). At the same time, we find that
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Figure 5 | Relative influence of HI compared with the trend in climate change impacts. Figure 5 shows the spatial and seasonal variation in the relative

influence of HI as driver of changes in water availability over the period 1971–2010, compared with the climate change impact trend. Here we show per area

the number of model combinations with: a significant climate change impact trend on water availability only (a,b); HI contributing to the climate change

impact trend on water availability (c,d); HI dominating over the climate change impact trend on water availability (e,f); and a significant HI trend only (g,h).

Results are shown separately for the months August (a,c,e,g) and December (b,d,f,h).
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HI dominate over the climate change impacts trend in regions,
inhabiting 0.9% (LPJmL) to 5.4% (MATSIRO) of the global
population. These cross-model variations can be explained partly
by the differences in areas with a significant climate change
impact trend. Whereas only 7–7.5% of the global population
experienced a significant change in climate change impacts over
time according to H08 and LPJmL, results are substantially higher
for PCR-GLOBWB (15.0%) and MATSIRO (16.1%).

Discussion
This research is the first to provide insights on the impacts of
HI (individually and altogether) on water scarcity over time, by
evaluating how HI have influenced the critical dimensions of
water scarcity, whether and to what extent they have led to a
reshuffling of water scarcity hotspots and who are winners or
losers. Using time-varying information on dam and reservoir
operations, LULCC and water demands, our study identified for
the first time the dominance of different drivers and sources of
change, and compared them with the trend in climate change
impacts. By introducing a spatially and temporally explicit
measure of minimum environmental flows, combined with the
inclusion of seasonality, our water scarcity estimates are more
realistic and significantly lower than the monthly results
presented in previous studies17,58. Although Wada et al.17 and
Mekonnen et al.58 applied spatially and temporally uniform
environmental flow requirements and assumed that all people
who experience water scarcity experience it at the same point in
time, our results show a clear seasonal pattern for the majority
of the river basins studied. It must be acknowledged, however,
that this seasonal approach limits our analysis to the fluxes
(runoff and discharge) of the hydrological cycle, whereas a
long-term equilibrium was assumed for the storage components
(lakes, aquifers and sub-surface reservoirs). In this study, we
assume that all water is taken out from the river and that water
users do not have the opportunity to take water from the lakes
and groundwater. As a result we underestimate water availability
in those regions that heavily rely on these storage components
and we therefore expect the water scarcity numbers to be lower
in reality. The multi-model framework of this study allowed
for more robust estimates compared to previous studies executed
in a single-model setting7–11,13–17.

Our results demonstrate that HI implemented throughout the
period 1971–2010 have led to substantial changes in the critical
dimensions of water scarcity and significantly reshuffled global
water scarcity hotpots. Although the net impact of HI on the
human exposure to water scarcity appears limited at the global
scale, we show that large spatial differences underlie this result. In
most regions, substantial parts of the population face aggravated
water scarcity conditions due to HI or move into water scarcity,
although others encounter alleviations or move out of water
scarcity. We also find that HI increase the average duration of water
scarcity events affecting a significant share of the global population.

Analysis of the dominant sources and drivers of changes in the
availability of water resources highlights that those regions
negatively affected by HI are located on average further
downstream in river basins than areas being impacted positively,
whereas they rely predominantly on actions taken upstream. This
leads globally to water scarcity travelling downstream due to HI.
The found spatial and seasonal variation in the dominant driver
and sign (positive/negative) of HI impacts illustrate, however, that
HI attribution to changes in water availability and water scarcity
is complex, and that the found relations should not be considered
to be homogeneous through time. This emphasizes a thorough
consideration of such interactions throughout the process of
design and implementation of water scarcity adaptation. The

modelling spread that underlie our results is, moreover, a call for
the different global models to further investigate the incorpora-
tion of HI in their modelling framework, thereby accounting for
possibly interaction effects and feedback linkages.

Foreseen changes in climate change and socioeconomic
developments18–28 are expected to amplify the observed trends
and to reinforce the observed pattern of winners and losers. HI
may alleviate/aggravate, on the one hand, the vulnerability to
climate change and climate variability, especially in those regions
that experience significant increases/decreases in water
availability due to HI. Climate change, climate variability and
changes in local water demands, on the other hand, may
significantly strengthen/weaken the HI impacts in future time
periods by putting more/less pressure on the water resources. Our
results show a significant trend in hydro-climatic impacts on
water availability over the period 1971–2010 for a substantial part
of the globe, with on average 12.1% of the global population being
exposed. HI impacts significantly contributed to or even
dominated these historical trends in regions inhabiting 9.7% of
the global population. In addition, 6.3% of the global population
experienced significant changes in water resources over time
due to HI only. Being sensitive to changes in either climate
change, HI and/or local water demands can have substantial
implications for the choices being made in the design of
adaptation strategies to cope with current and future water
scarcity18–28. For example, by focusing on decreasing water
demands via technical (for example, increasing efficiency),
regulatory (for example, quota) or market-based measures
(for example, water pricing), by targeting the increase of water
supply (for example, desalination, reservoirs, water transfers and
renewable groundwater) or by making sure water resources are
being allocated in an equitable, sustainable way (for example,
treaties). Such water management decisions should not be taken
in isolation, as our study shows that the consequences of
upstream measures and activities can be far-reaching in
downstream areas. Coping with local problems related to the
ongoing increases of human pressures on water resources
therefore requires a higher level—regional or global—
understanding of both the underlying mechanisms and drivers,
their origin and their potential effects16.

Apart from that, economic impacts, costs, but also societal
perception and political willingness in decision-making processes
determine greatly the local adaptation space to cope with water
scarcity and often prioritize focus areas and actions being under-
taken. Its complexity (incorporation of feedback loops between
nature and society, and vice versa), its specific model requirements
(coupling GHMs with economic welfare models, partial-equilibrium
models or agent-based models) and its specific information needs
(behavioural economics) require a thorough development of our
global modelling principles and involve extensive research. This
prohibits—at this moment—such a study at the global scale. Given
its importance and necessity, we do encourage research to take this
direction to facilitate studies to any of these human-nature
interactions and its societal impacts in a fully integrated manner.

Methods
Testing the impact of HI on water scarcity. In this study we evaluated how time-
varying HI affected water availability and water scarcity conditions in the late
twentieth and early twenty-first century, how they influenced the critical dimensions
of water scarcity and how they reshuffled water scarcity hotspots. To this end, we
performed a scenario analysis to compare gridded (0.5�� 0.5�) monthly estimates of
water availability and water scarcity conditions from the NHI run with those from a
(time-varying) HI (HI) run, including the impacts of LULCC, reservoir and dam
operations and upstream water consumption, altogether and separately.

Hydrological data under the ISI-MIP Phase 2 framework. An ensemble of 15
model combinations (5 GHMs forced by 3 observation-based historical climate
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data sets, Supplementary Table 1) was used to evaluate for each ensemble
member individually the impact of HI on water availability and water scarcity.
Subsequently, we calculated ensemble median values and presented these results
together with the modelling spread. The GHMs used in this analysis are: H0841,42,
LPJmL43,44, MATSIRO45, PCR-GLOBWB46,47 and WaterGAP13. Each of these
GHMs was forced with daily/three hourly (MATSIRO) inputs from three
observations-based historical climate data-sets: PGFv2 (ref. 48), GSWP3
(http://hydro.iis.u-tokyo.ac.jp/GSWP3) and WFD/WFDEI49 under the framework
of ISIMIP2a (phase 2 of the Inter-Sectoral Impact Model Intercomparison Project,
www.isimip.org). For a comprehensive overview of the different historical climate
data sets, we refer to the individual references and to Müller Schmied et al.13.

Water availability refers here to the monthly availability of water in rivers,
which consists of the locally generated runoff in each 0.5�� 0.5� grid cell and the
incoming discharge from upstream cells being diminished with the upstream water
consumption17. In doing so, we only account for the water fluxes (streamflow,
(sub-)surface runoff and baseflow) in our analysis and assume a long-term
equilibrium in the storages of the hydrological system (such as lakes, aquifers and
sub-surface reservoirs), for which the absolute values are unknown. Using the total
monthly water availability per cell under pristine conditions, we subsequently
estimated the minimum environmental flow requirements54–57 based on the
variable monthly flow methodology57, see Supplementary Methods. The
consumptive water use that are used by the GHMs to adjust the streamflow under
the HI run and the water withdrawals to assess water scarcity conditions under
NHI and HI run encompass water demands of the agricultural sector (irrigation
and livestock), the industry sector (thermal energy and manufacturing) and water
demands for domestic use, and are modelled using various socio-economic
parameters (GDP, population density, livestock density, land use and land cover)2.
The net amount of incoming discharge (being accounted for the consumptive
water needs) varies, thereby across the GHMs, not only due to differences in
generation of discharge or the height of the modelled water demands but also due
to variations in the allocation of the consumptive water needs over surface and/or
groundwater. The combination of these aspects are ground for the observed
variation in water availability across the GHMs, the differences in the exposure to
water scarcity and, subsequently, the impacts of HI on freshwater resources and the
critical dimensions of water scarcity. The methods used to model water availability,
to estimate water demands, and to allocate consumptive water demands over
surface and groundwater resources are summarized in the Supplementary Methods
and for a more extensive discussion we refer to Wada et al.2 or the individual
model refs 13,41–47.

Assessing water scarcity. Water scarcity conditions were assessed in this study
by means of the WSI1. The WSI estimates the ratio between water withdrawals
and water availability for humans, and is extensively used in water scarcity
assessments at global and regional scales17–20,22,24,25,58,60–64. In this study we
follow Mekonnen et al.58 and explicitly incorporate minimum environmental
flow requirements when estimating water scarcity conditions. Using the WSI, a
region is considered to experience water scarcity if WSIi,m41, that is, if 4100% of
the total available water resources is being allocated for environmental and
anthropogenic needs58:

WSIi;m¼
WWi;m

Qi;m � EFi;m
; ð1Þ

where WSIi,m is the WSI for cell i and month m, WWi,m is the total water
withdrawal in cell i and month m, Qi,m the total river water availability in cell i and
month m, and EFi,m the environmental flow requirement57. In our analysis we
underestimate the actual amount of water that may be available from groundwater,
reservoirs and lakes at the monthly scale, and therefore overestimate water scarcity
where these water sources are used for water supply.

Incorporating HI in the modelling framework. Three types of HI were included
in this study: LULCC, dam and reservoir operations and upstream water con-
sumption. The HYDE 3—MIRCA data set50–52, assembled following Fader et al.53,
was used by each of the GHMs, apart from WaterGAP, for simulating the effects of
changes in irrigation and/or cropland patterns on the generation of local runoff.
Although land-use conversions to agricultural land use tend to increase the volume
of water that runs off and increases the speed of runoff processes, irrigation water
use generally decreases runoff due to increased evapotranspiration rates15. The
GranD database65 was included in all GHMs to represent the historical
development in dams and reservoirs. Dam and reservoir operations shift
downstream streamflow patterns and decreased seasonal flow amplitudes,
especially if built for energy generating purposes. Moreover, dams and reservoirs
affect the absolute volumes of water via enhanced evaporation losses and direct
abstractions. Each of the GHMs distinguishes dams and reservoirs built for
irrigation and/or non-irrigation purposes, whereas PCR-GLOBWB additionally
identifies flood control and navigation purposes. The reservoir operation schemes
that are applied in each of the GHMs are based on Hanasaki et al.66 (H08,
MATSIRO and WaterGAP), Biemans et al.8 (LPJmL) and Haddeland et al.10 in
combination with Adam et al.67 (PCR-GLOBWB). Whereas the operation schemes
of Hanasaki et al.66, Biemans et al.8 and Haddeland et al.10 are retrospective, which
ensures optimal performance given its purpose, inflow and demand, PCR-

GLOBWB implemented a prospective scheme that has to deal with uncertain
forecasts of supply and demand46. All models, apart from H08, accounted for
increased evapotranspiration over reservoirs. For a more detailed discussion on the
parameterization of the reservoirs within each of the GHMs, we refer to the specific
model references13,41–47. Demand growth and its impact on water availability and
water scarcity was covered by the inclusion of the net upstream water abstractions
(that is, withdrawal—return flow) from the streamflow, as calculated by each of the
GHMs. Historical demand growth was also evaluated by inclusion of the historical
trends in local water withdrawals, influencing the water scarcity conditions. For a
detailed discussion on the inclusion of these HI in the modelling framework of each
of the GHMs, we refer to the Supplementary Methods and the individual model
references13,41–47.

Quantifying the impacts of HI. To assess the impacts of HI on the monthly water
availability and water scarcity conditions we performed a scenario analysis with two
simulation runs. In the first run (NHI), we evaluated water availability, water scarcity
conditions and exposure to water scarcity events without HI on the streamflow. In
the second run (HI), we evaluated water availability, water scarcity conditions and
exposure to water scarcity events including the impact of HI. In an additional ana-
lysis, we separated the impacts of demand growth via upstream water consumption
from the impacts of the other HI (dam and reservoir operations and LULCC).

Impacts of HI on the availability of water resources and the critical dimensions
of water scarcity were evaluated for each ensemble member individually.
Thereafter, ensemble-median values were calculated and presented together with
the interquartile range. All model combinations are weighted equally: a weighting
based on the performance of the individual forcing datasets or GHMs was not
executed. Impacts of HI are expressed by % of the population exposed (using 2010
values) at the global and regional scale looking at significant changes in the critical
dimensions of water scarcity (average duration, occurrence and severity of water
scarcity), in the availability of water resources and by showing who is moving
in/out of water scarcity. The relative location of impacts in river basins
was estimated by comparing the upstream area of a specific impact location
(that is, experiencing a significant increase or decrease in water availability due to
HI) with the total river basin area. For example, a value of 0.5 refers here to a
location for which the upstream area is half of the total river basin area, whereas a
value of 1 refers to the outlet of a basin into the ocean (or an internal sink) (that is,
the size of the upstream area is equal to the size of the total river basin). To show
the global- or basin-mean relative location of impacts, we aggregated these location
values by using population-weighted means. In all analyses, only changes 4|5%|
were considered to be significant and taken into account. Finally, we evaluated for
each month the trend in HI impact on water availability over the period 1971–2010
using linear regression analysis. We compared the trends in HI impacts with the
trend in impacts of climate change on the availability of water resources. In doing
so, we indicate where and when HI buffered, strengthened or even dominated the
hydro-climatic impacts. When interpreting the results of this analysis, one should
take into account, however, that the climate data used in this study, and
particularly its length, is not fully suitable for trend analysis.

Testing the sensitivity of results. Using an ensemble of 15 model-combinations
(5 GHMs and 3 forcing datasets) to assess the impacts of HI on water
scarcity conditions, the exposure to and average duration of water scarcity events,
and the underlying changes in water availability, allows not only to make
more robust estimates compared with a single-model study, it also enables the
evaluation of modelling uncertainties. The results presented here in graphs of the
main body of text concern the ensemble-median (q50) values together with
their interquartile ranges (q25–q75). Gridded results were presented if the
found signal was consistent and significant for a majority (47) of the model
combinations, otherwise the number of model combinations with a significant
signal was visualized.

Data availability. The hydrological data sets used in this study are generated
under the framework of phase 2 of the ISI-MIP project and will become soon
publicly available via www.isimip.org. The historical climate data sets that have
been used to force the GHMs (PGFv2, GSWP3 and WFD/WFDEI), the HYDE3—
MIRCA data-set describing the historical changes in land use and land cover, and
the GranD database that describes the historical development in dams and reser-
voirs can be downloaded from www.isimip.org.
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