
 
 

 

Originally published as:  
 
Ito, A., Nishina, K., Reyer, C. P. O., Francois, L., Henrot, A.-J., Munhoven, G., 
Jacquemin, I., Tian, H., Yang, J., Pan, S., Morfopoulos, C., Betts, R., Hickler, T., 
Steinkamp, J., Ostberg, S., Schaphoff, S., Ciais, P., Chang, J., Rafique, R., Zeng, N., Zhao, 
F.  (2017): Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: 
benchmarking for impact assessment studies. - Environmental Research Letters, 12, 
085001  
 
DOI: 10.1088/1748-9326/aa7a19 
 

http://dx.doi.org/10.1088/1748-9326/aa7a19


OPEN ACCESS

RECEIVED

14 January 2017

REVISED

29 May 2017

ACCEPTED FOR PUBLICATION

19 June 2017

PUBLISHED

25 July 2017

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

Environ. Res. Lett. 12 (2017) 085001 https://doi.org/10.1088/1748-9326/aa7a19
LETTER

Photosynthetic productivity and its efficiencies in ISIMIP2a
biome models: benchmarking for impact assessment studies

Akihiko Ito1,2,14 , Kazuya Nishina1, Christopher P O Reyer3, Louis François4, Alexandra-Jane Henrot4,
Guy Munhoven4, Ingrid Jacquemin4, Hanqin Tian5, Jia Yang5, Shufen Pan5, Catherine Morfopoulos6,
Richard Betts6,7, Thomas Hickler8,9, Jörg Steinkamp8, Sebastian Ostberg3,10, Sibyll Schaphoff3,
Philippe Ciais11, Jinfeng Chang11, Rashid Rafique12, Ning Zeng13 and Fang Zhao3

1 National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 3058506, Japan
2 Japan Agency for Marine-Earth Science and Technology, Yokohama 2360001, Japan
3 Potsdam Institute for Climate Impact Research, Potsdam D-14412, Germany
4 Unité de Modélisation du Climat et des Cycles Biogéochimiques (UMCCB), Université de Liège, Liège B-4000, Belgium
5 International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University,

Auburn, AL 36849, United States of America
6 University of Exeter, Exeter EX4 4QF, United Kingdom
7 Hadley Centre, MetOffice, Exeter EX1 3PB, United Kingdom
8 Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main 60325, Germany
9 Goethe University, Frankfurt am Main 60325, Germany
10 Humboldt-Universität zu Berlin, Berlin 10099, Germany
11 Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette 91191, France
12 Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, United States of America
13 University of Maryland, College Park, MD 20742, United States of America
14 Author to whom any correspondence should be addressed.

E-mail: itoh@nies.go.jp

Keywords: carbon cycle, gross primary production, ISIMIP2a, modeling, uncertainty, vegetation

Supplementary material for this article is available online
Abstract
Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a
critical feature of the biome models used for impact assessments of climate change. We
conducted a benchmarking of global GPP simulated by eight biome models participating in the
second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four
meteorological forcing datasets (30 simulations), using independent GPP estimates and recent
satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global
terrestrial GPP ranged from 98 to 141 PgCyr−1 (1981–2000 mean); considerable inter-model and
inter-data differences were found. Major features of spatial distribution and seasonal change of
GPP were captured by each model, showing good agreement with the benchmarking data. All
simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use
efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental
slopes were higher than those obtained by remote sensing studies, but comparable with those by
recent atmospheric observation. Apparent differences were found in the relationship between
GPP and incoming solar radiation, for which forcing data differed considerably. The simulated
GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent
strengths, implying the importance of constraining canopy properties. In terms of extreme events,
GPP anomalies associated with a historical El Niño event and large volcanic eruption were not
consistently simulated in the model experiments due to deficiencies in both forcing data and
parameterized environmental responsiveness. Although the benchmarking demonstrated the
overall advancement of contemporary biome models, further refinements are required, for
example, for solar radiation data and vegetation canopy schemes.
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1. Introduction

Photosynthetic productivity is a fundamental function
of the terrestrial biosphere and is related to various
ecosystemproperties and services (Whittaker andLikens
1973). Gross primary production (GPP) is one of the
largest carbon flows in the global carbon cycle and
responds to changes in various environmental con-
ditions such as light, temperature, humidity, nutrient,
and ambient carbon dioxide (CO2) conditions. Any
changes inGPP can affect atmosphericCO2 and thus the
climate–carbon cycle feedback (e.g. Cox et al 2000).

Quantifying GPP under a changing environment
is a challenging task, however, not only for modeling
but also for observation. This issue is a serious
limitation of present carbon cycle models, which have
been used for future projection and impact assess-
ments (Friedlingstein et al 2006, Arora et al 2013).
Even with updated micrometeorological techniques
such as the eddy-covariance method (Baldocchi et al
2001), GPP cannot be directly measured and must be
estimated from net CO2 flux using appropriate
separation algorithms (Reichstein et al 2005). Beer
et al (2010) scaled up field-based GPP data using a
statistical model approach to produce a global map of
GPP, although the assumptions used in the estimation
can introduce certain biases (Wehr et al 2016). GPP
has also been estimated by satellite remote sensing
based on the relationship between canopy-absorbed
solar radiation and GPP, using the light-use efficiency
approach (e.g. Zhao et al 2005). Recent global GPP
estimation studies have provided useful data to
investigate spatial and temporal patterns of the
terrestrial carbon budget (Ryu et al 2011, Koffi et al
2013, Yan et al 2015, Yebra et al 2015, Zhang et al
2016a). Nevertheless, consistent global GPP values
have not been attained (Baldocchi et al 2015). For
example, an isotopic study by Welp et al (2011)
implied that global GPP is much higher than the
values obtained by flux and satellite studies. In
contrast, an analysis by Ma et al (2015) implied that
previous studies have overestimated global forest GPP
because of an incorrect assumption of forest coverage
change. Terrestrial ecosystem models have been
successfully adopted in carbon cycle studies, but large
uncertainties remain in their estimates (Anav et al
2015, Schwalm et al 2015). They adopt different leaf-
and canopy-photosynthetic schemes, which respond
diversely to environmental variability, and they use
different forcing data, leading to serious uncertainties
and preventing reliable risk assessments.

In this study, we examined global terrestrial GPP
estimated by eight biome models of the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP). The
chief aim of the second phase (ISIMIP2a) is the
benchmarking of impact models focusing on inter
annual variability (Rosenzweig et al 2017, Frieler et al
in prep). To clarify the reliability and limitations of
existing models, benchmarking (or validation) has
2

become increasingly important in all research areas of
modeling (Luo et al 2012, Kelley et al 2013). Indeed,
Chang et al (2017) conducted a benchmarking of
ISIMIP2a biome models with respect to the net
ecosystem carbon budget, focusing on the impact of
El Niño and Southern Oscillation (ENSO) events. In
this paper, we examine consistency in major aspects of
(mainly global annual ones for brevity) of GPP
estimated using different biome models and forcing
data thorough comparisons with independent esti-
mates and observational data.
2. Methods
2.1. Biome models and simulations
In ISIMIP2a, to examine model responsiveness and
limitations in forcing data, we used four meteorological
forcing datasets for the historical period (Sheffield et al
2006,Weedon et al 2014): Global Soil Wetness Project 3
(GSWP3, 1901–2010), Water and Global Change
(WATCH, 1901–2001), WATCH Forcing Data with
ERA-Interim (WFDEI, 1901–2010), and Princeton’s
Global Meteorological Forcing Dataset (Princeton,
1901–2012). These datasets provide daily solar radia-
tion, temperature, precipitation, humidity, and wind
conditions at a spatial resolution of 0.5°×0.5° in
latitude and longitude. They were produced from
different reanalysis data and by different downscaling
methods to cover the range of uncertainty in forcing
data. De-trended 30-yr data were also provided for each
dataset to conduct spin-up runs under a stationary
condition. Historical changes in atmospheric CO2

concentration were prescribed by combining data from
Meinshausen et al (2011) through 2005 and Dlugo-
kencky and Tans (2014) from 2006 to 2013. See the ISI-
MIP web page (www.isimip.org/) for the detailed
simulation protocol and model description.

In the biome sector, eight models provided
simulation output (table 1). These models differ in
structure of the biogeochemical scheme and parame-
terization of vegetation dynamics, and thus in their
responsiveness to environmental change. As revealed
in the first phase of ISIMIP, the biome models produce
substantially different projections of productivity,
biomass, and soil carbon pool (Friend et al 2014,
Nishina et al 2015). In terms of GPP calculation, the
models differ in parameterizations of canopy radiation
transfer, leaf phenology, and physiological limitation
on photosynthetic capacity. Moreover, the model
simulations differ in consideration of land-use change,
with several models assuming fixed land use through-
out the simulation period.

2.2. Benchmarking datasets
WeusedtwoglobalGPPdata-drivenproducts,whichare
independent of the ISIMIP simulations, for bench-
marking of annual and monthly GPP. First, we adopted
the satellite-derived GPP product based on Moderate



Table 1. Summary of biome models and simulations.

Biome models GPP-estimation scheme GSWP3 Princeton WATCH WFDEI Reference

CARAIB (Carbon Assimilation in

the Biosphere)

3-component canopy scheme with Farquhar

biochemical photosynthesis

X X X X Dury et al

2010

DLEM (Dynamic Land Ecosystem

Model)

2-component canopy scheme with Farquhar

and Collatz biochemical photosynthesis

X X X X Tian et al

2011

JULES (Joint UK Land Environment

Simulator, University of Exeter)

2-component canopy scheme with Farquhar

and Collatz biochemical photosynthesis

X X X – Clark et al

2011

LPJ-GUESS (Lund Potsdam Jena

General Ecosystem Simulator)

Canopy scheme with Haxeltine-Prentice

photosynthesis

X X X X Smith et al

2001

LPJmL (Lund Potsdam Jena model

with managed Land)

Canopy scheme with Haxeltine-Prentice

photosynthesis

X X X X Bondeau

et al 2007

ORCHIDEE (Organizing Carbon

and Hydrology in Dynamic

EcosystEms)

Canopy scheme with Farquhar

photosynthesis with Ball stomata model

X X X X Krinner

et al 2005

VEGAS (Vegetation Global

Atmosphere Soil)

Canopy scheme with light-use efficiency

approach

X – X X Zeng et al

2005

VISIT (Vegetation Integrative

Simulator for Trace gases)

1-layer canopy scheme scaled-up from

Leuning stomatal leaf gas exchange

X X X X Ito and

Inatomi

2012
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Resolution Imaging Spectroradiometer (MODIS; Zhao
et al 2005) fAPAR and a light-use efficiency model from
2000 to 2012. The original data, whichwere in GeoTIFF
formatwith a50-meshgrid,were averagedandconverted
into 0.5°-mesh. Second, we adopted up-scaled flux
measurement data (Beer et al 2010) from 1982 to 2011;
the original spatial resolution of the data was 0.5°. The
data were produced using site-based flux measurement
data, climate data, SeaWiFS vegetation index, and a
regression-model ensemble algorithm (Jung et al 2009).
These data were used for benchmarking of GPP by grid-
based linear regression. Note that the CARBONES GPP
dataset (Kuppel et al 2014), although adopted by other
studies (e.g. Anav et al 2015), was not used in this study,
because the dataset is a hybrid of observational data and
the ORCHIDEE simulation.

Simulated GPP values were also correlated with
solar-induced fluorescence (SIF; mWm−2 nm−1 sr−1)
data at the far-red peak (wavelength 737 nm)
measured by the Global Ozone Monitoring Instru-
ment 2 (GOME-2; Joiner et al 2013). SIF is expected to
be closely correlated with biophysical and biochemical
properties and processes of photosynthesis (e.g.
quantum yield; Genty et al 1989). In particular, SIF
from satellites tends to capture vegetation activity
under clear sky conditions, in which photosynthesis
and fluorescence respond in a similar manner (Porcar-
Castell et al 2014). Therefore, observed SIF data have
been used for model benchmarking as a proxy of GPP
(Guanter et al 2014, Zhang et al 2016b). However, SIF
is not completely linked with photosynthetic biophys-
ical processes, and the data contain intrinsic noises and
biases due to low signal levels. The GOME-2 SIF data
are, even at a monthly basis, a bit noisy for grid-based
comparison at the original 1°-mesh resolution, so they
were used after aggregation into a 5°-mesh during the
period from 2007 to 2010.
3

2.3. Analyses and metrics
We obtained data of 30 simulations (table 1) and
structured the comparisons in terms of forcing data
and biome models. Basic metrics such as mean,
standard deviation, and coefficient of variation
(standard deviation divided by the mean) were
examined first. Metrics specific to biospheric studies
such as long-term mean, seasonal change, interannual
change, and linear trend of GPP were also examined.
To separate the variabilities caused by forcing data and
biome models, two-way analysis of variance (ANOVA)
was conducted (R 3.4.0; R Core Team 2017) for the
30 global annual mean GPP estimates in 1981–2000.
For grid-based benchmarking, the mean annual GPP
in 2001–2010 for each grid was correlated with those
estimated by using MODIS and flux up-scaling
data. We also performed correlation analysis on the
5°-averaged GPP values and GOME-2 SIF data to
assess their relationship.

Several metrics related to GPP properties were
examined. Seasonal-cycle amplitude (SCA) of GPP,
which reflects vegetation activity and affects atmo-
spheric CO2 (Graven et al 2013, Wenzel et al 2016),
was defined as the difference between the maximum
and minimum monthly values for each year.
Resource-use efficiencies of GPP are expected to
provide insights into underlying mechanisms and
limiting factors of photosynthetic production. Based
on the incoming solar radiation data and simulated
GPP and evapotranspiration, we calculated radiation-
use efficiency (RUE) and water-use efficiency (WUE)
as follows:

RUE ¼ GPP=DSR ð1Þ

and

WUE ¼ GPP=TR ð2Þ



Table 2. Summary of estimated GPP values and their trends.

Biome model GPP, 1981–2000 (Pg C yr−1) Mean trend, 1981–2000 (% yr−1)

Forcing data GSWP3 Princeton WATCH WFDEI SD GPP WUE RUE SCA

CARAIB 126.5 141.2 130.6 133.1 6.2 0.49 0.28 0.35 0.32

DLEM 108.1 108.8 106.2 105.9 1.4 0.32 0.23 0.30 0.32

JULES 98.4 99.9 101.9 1.8 0.30 0.22 0.27 0.22

LPJ-GUESS 117.5 119.3 111.8 117.0 3.2 0.39 0.29 0.36 0.17

LPJmL 126.7 126.8 120.6 125.0 2.9 0.25 0.16 0.23 0.03

ORCHIDEE 104.5 116.6 107.3 106.9 5.3 0.26 0.23 0.24 0.26

VEGAS 106.3 108.2 111.0 2.3 0.19 0.06 0.20 0.13

VISIT 133.4 121.1 113.4 115.6 8.9 0.28 0.15 0.26 0.16

Mean 115.2 119.1 112.5 116.3 0.31 0.20 0.28 0.20

SD 12.7 13.1 9.2 9.9 0.09 0.08 0.06 0.10

Table 3. Summary of model intercomparison projects of biome models.

Project name Period Forcing meteorological data Description and experiments GPP range (Pg C yr−1)

CMIP5 (Anav

et al 2015)

1850–2005 Climate models driven by

historical GHG

concentration

Earth-system model experiments

including biogeochemical feedbacks

130–169

MsTMIP

(Schwalm et al

2015)

1901–2010 CRU-NCEP Factor-out of climate, land-use,

atmospheric CO2, and N deposition

99–187

TRENDY (Sitch

et al 2015)

1901–2009 CRU-NCEP Factor-out of climate, land-use, and

atmospheric CO2

(51.5–75.5 for net

primary production)

ISI-MIP (this

study)

1971–2012 GSWP3, Princeton,

WATCH, WFDEI

Comparison of different forcing data

for benchmarking

98.4–141.2

Table 4. Summary of ANOVA for mean global GPP.

Factor Degrees of

freedom

Sum of

square

Mean

square

F value p value

Forcing

data

3 167.1 55.7 2.698 0.0748

Biome

model

7 2947.2 421 20.97 0.01

Residuals 19 392.2 20.6
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where DSR is downward short wave radiation at
the land surface and TR is vegetation transpiration. In
general, photosynthetically active radiation (PAR)
accounts for about 48% of DSR (McCree 1972), and
RUE as defined by equation (1) may be easily
converted into a PAR-based value. For the DLEM,
JULES, and VEGAS models, WUE was calculated
using total evapotranspiration rates, because TR data
files were not supplied for these models. Therefore, in
this study, inter-model comparisons were made only
for relative change from the 1996–2000 annual
average. Note also that RUE could be defined using
solar radiation absorbed by the canopy (e.g. Ruimy
et al 1999), which is inferred from leaf area index and
the canopy attenuation coefficient (typically 0.5) of
Lambert-Beer’s law. However, because a few models
do not supply leaf area index data, we used equation
(1), which is applicable to all model runs.
3. Results and discussion
3.1. Global terrestrial GPP by biome model
Global terrestrial GPP simulated by the biome models
using the four forcing datasets during the common
overlapping period of 1981–2000 was 115.7 ±
11.0 PgCyr−1 (mean ± standard deviation of all
simulations), ranging from 98.4 to 141.2 PgCyr−1
4

(table 2). Although this may seem to be a broad
range, most values fell within the range of previously
reported values (table 3). Most of the simulated
GPP values were not very different from those of
MODIS (112 PgC yr−1, 2000–2012) and flux up-
scaled (132 PgC yr−1, 1982–2011) estimates.

As shown by the ANOVA result (table 4), the
variability in the estimated global GPP was primarily
attributable to inter-model variability (84% of total);
inter-data variability and residual (interaction term)
accounted for 4.8% and 11%, respectively. Apparent
inter-model differences were found, ranging from
100.1 ± 1.8 PgCyr−1 for JULES to 133.1 ± 6.2 PgCyr−1

for CARAIB. In contrast,model-ensembleGPPwas not
significantly different among the four forcing datasets,
ranging from 112.5 ± 9.2 PgCyr−1 for WATCH to
116.3 ± 9.9 Pg C yr−1 for WFDEI (table 2). In terms
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Figure 1. Annual time-series of terrestrial ecosystem functions and efficiencies simulated by the eight biome models with four forcing
datasets: (a) gross primary production (GPP), (b) seasonal-cycle amplitude (SCA), (c) radiation-use efficiency (RUE), and (d) water-
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of differences among the forcing datasets, DLEM
showed the smallest variability (2.9 Pg C yr−1) and
VISIT the largest variability (20.0 Pg C yr−1) between
the maximum and minimum values. Few common
patterns were found in the dependence on forcing
data among the biome models. Four biome models
(DLEM, LPJ-GUESS, LPJmL, and ORCHIDEE)
simulated the highest GPP when using the Princeton
forcing data, and four models (CARAIB, JULES,
ORCHIDEE, and VEGAS) simulated the lowest GPP
when using the GSWP3 forcing data. For three
datasets, CARAIB estimated the highest GPP among
the models. Different, inconsistent patterns were
found in other cases.

3.2. Trends in GPP
The simulated global terrestrial GPP showed similar
interannual variability, irrespective of biome model
and forcing data. The average slope of the linear trend
was estimated as 0.30 ± 0.07% yr−1 or 0.35 ±
0.09 PgC yr−2, and differed among simulations: from
the shallowest slope in VEGAS driven by GSWP3
data (0.19% yr−1) to the steepest slope in LPJ-GUESS
driven by WATCH data (0.41% yr−1). These GPP
slopes were steeper than those of the flux up-scaling
(0.14% yr−1, 1982–2000; 0.08% yr−1, 1982–2011) and
satellite observation (0.035% yr−1, 2000–2012). Kolby
Smith et al (2015) found similarly higher incremental
trends of terrestrial net primary productivity esti-
mated by the CMIP5 models: 7.6 ± 1.67% in 1982–
2011 (i.e. 0.25 ± 0.06% yr−1). They implied that the
present models overestimate the vegetation response
5

to elevated CO2 due to insufficiencies in model
parameterization such as nitrogen limitation (Zaehle
et al 2014, Schimel et al 2015). In contrast, a recent
study (Campbell et al 2017) of long-term atmo-
spheric observation of carbonyl sulfide showed that
terrestrial GPP has increased at a higher rate than
previously thought before: 31 ± 5% in the 20th
century (assuming linearity, 0.31 ± 0.05% yr−1).
While their results show higher incremental trends
in the late 20th century, the mean incremental trend
by ISIMIP2a models is comparable with the
atmospheric observation-based estimate. Because
inconsistency remains in observational evidence,
model studies as conducted here are important to
perform sensitivity analyses and to resolve underlying
mechanisms.

The SCA of GPP also showed incremental trends
(figure 1(b)), on average 0.20 ± 0.11% yr−1, implying
that temperate and boreal vegetation contributed at
least partly to the GPP increase and that vegetation
phenology (e.g. growing season length) could have
been affected in these regions. The estimated SCA
incremental trends spans from −0.018% yr−1 in
LPJmL driven by Princeton to 0.42% yr−1 in CARAIB
driven by WFDEI (see table 2 for data-ensemble
results). Such incremental trends and inter-model
variability have also been found in previous studies
(Zhao and Zeng 2014, Ito et al 2016) and are
consistent with satellite-observed greening of northern
vegetation (Zhu et al 2016). Among the GPP-related
properties, the SCA trends showed the largest
variability among the simulations. The average RUE
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of GPP was calculated as 0.156 ± 0.015 g C MJ−1 in the
simulations, and its mean trend was calculated as
0.28 ± 0.06% yr−1 (figure 1(c)). None of the forcing
data showed a clear decadal trend such as global
dimming and brightening (Wild 2012), so the
incremental trend in RUE was primarily caused by
the GPP increase. Simulated global transpiration (data
not shown) indicated moderate incremental trends:
0.088 ± 0.037% yr−1. This transpiration increment was
mainly related to vegetation activity (e.g. leaf area
expansion), while land precipitation did not show a
clear decadal trend. Consequently, estimated WUE
showed clear incremental trends (figure 1(d)):
0.20 ± 0.076% yr−1. Among the biome models, the
WUE trend spanned from 0.06% yr−1 for VEGAS to
0.287% yr−1 for LPJ-GUESS. The incremental trend of
WUE was largely attributable to the increase of GPP.
Both experimental and theoretical studies suggest that
water loss by transpiration does not increase
quantitatively in parallel with photosynthetic carbon
assimilation due to stomatal regulation of gas
exchange (Medlyn et al 2001, Bonan et al 2014).
Also, observational and modeling studies indicated
that biospheric WUE has increased, mainly as a result
6

of elevated CO2 (Keenan et al 2013, Xue et al 2015),
which enhances photosynthesis but restricts transpi-
ration by stomatal closure.

3.3. Meteorological variability and GPP
To clarify the characteristics of environmental
responsiveness, which should account for inter-model
variability, the estimated GPP values were correlated
with temperature, precipitation, solar radiation, and
CO2 conditions for 1981–2000. For temperature, the
inter annual variability was comparable among the
four forcing datasets (figure 2(a)). The estimated GPP
responded similarly to temperature variability irre-
spective of forcing data and biome models, with values
ranging from 3.1 PgC yr−1 K−1 (ORCHIDEE driven by
WFDEI) to 6.1 PgCyr−1 K−1 (DLEM driven by
WATCH). For precipitation, a moderate difference
was found among the forcing data, from 772 kg H2O
m−2 yr−1(Princeton) to 821 kg H2O m−2 yr−1

(WATCH; figure 2(b)). The biome models showed
comparable positive responsiveness to precipitation,
spanning from 0.064 PgC yr−1 (kg H2O m−2 yr−1)−1

(JULES driven by Princeton) to 0.117 PgC yr−1 (kg
H2O m−2 yr−1)−1 (VISIT driven by GSWP3). For solar
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radiation, a conspicuous difference was found among
the forcing data, spanning from 172 Wm−2(WATCH)
to 190 W m−2 (Princeton). These forcing data also
differed in decadal trends and interannual variability.
For example, only the Princeton data showeda clear
incremental trend (+0.14 W m−2 yr−1) with large
interannual variability, whereas the others showed
small negative trends. Remarkably, the biome models
responded differently to solar radiation among the
forcing data (figure 2(c)); the estimated GPP only
responded positively to solar radiation in Princeton-
driven simulations. The high solar radiation in the
Princeton dataset may be associated with the high GPP
of five models (CARAIB, DLEM, LPJ-GUESS, LPJmL,
and ORCHIDEE; table 2). Because solar radiation is
important not only for GPP estimation but also for
Earth’s energy budget (Kiehl and Trenberth 1997),
improvement of the solar radiation dataset is of great
significance.

3.4. Benchmarking
The spatial distribution of GPP simulated by different
biome models agreed for overall continental-scale
patterns (supplementary figures S1 and S2, available at
stacks.iop.org/ERL/12/085001/mmedia), such as gra-
dients from high GPP in equatorial rain forests to low
7

GPP at high latitudes and in deserts. However, inter-
model differences were evident regionally at sub-
continental scales. For example, JULES showed a
sharp transition of GPP from tropical forests to
surrounding rangelands, whereas LPJ-GUESS and
VEGAS showed more gradual transitions. The spatial
distribution of the coefficient of variation of simulated
GPP values (figure S2(c)) showed higher variability in
low-GPP areas such as arid regions (e.g. central
Eurasia, North Africa, and Australia) and Arctic
tundra. Among the models, LPJmL showed the
highest coefficients of determination (R2≈ 0.92) with
the reference data (figure 3); others also showed R2

values of 0.8 or higher. The benchmarking of annual
GPP using independent datasets confirmed that the
biome models could capture the major global patterns
of photosynthetic productivity as obtained by up-
scaling and remote sensing approaches. Along with
advancements in the flux measurement dataset and
machine-learning algorithms, further useful field-
based datasets (e.g. Jung et al 2017) will become
available for model benchmarking.

The relationship between simulated GPP and
satellite-observed SIF data (figure 4) seems reasonable,
considering the noisiness of the data. In most
biome models, simulated GPP was linearly related

http://stacks.iop.org/ERL/12/085001/mmedia
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Figure 4. Global relationship between sun-induced chlorophyll fluorescence (SIF) from GOME-2 and gross primary production
(GPP) simulated by the eight biome models (a–h), during the period 2007–2010 using the GSWP3 forcing dataset. Black lines show
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to the corresponding SIF values, and DLEM
showed the highest R2 value for the relationship.
Several models (e.g. JULES and VISIT) estimated high
GPP in low-SIF areas, resulting in somewhat lower R2

values. As demonstrated in previous studies (e.g. Anav
et al 2015, Zhang et al 2016b), simulated GPP and SIF
data show comparable seasonal cycles in temperate
and boreal ecosystems. Because SIF is more intimately
coupled with photosynthetic biophysical processes,
benchmarking with SIF is expected to provide
additional information on vegetation activity. Indeed,
Zhang et al (2016c) used SIF data to obtain an
ensemble GPP by weighting estimates by multiple
models. We confirmed that monthly GPP simulated by
the biome models shows comparable seasonal change
with that in SIF (figure S3). In tropical areas, however,
the seasonal signal was very weak, and such
correspondence was unclear (figure S3(c)), implying
8

that several models have difficulty with the environ-
mental responsiveness of tropical ecosystems. In
accordance with its effectiveness as a proxy of
photosynthetic activity, more and higher-quality SIF
data will soon be provided by satellites, including the
Greenhouse gas Observation Satellite (GOSAT;
Frankenberg et al 2011) of Japan and the Fluorescence
Explorer (FLEX) of the European Space Agency. We
expect a considerable increase in usage of SIF data by
terrestrial vegetation studies in the coming years.

The benchmarking of global terrestrial GPP
revealed different characteristics of the participant
models. For example, LPJmL and ORCHIDEE
captured long-term mean GPP with higher agreement
with observational data than the others. DLEM
showed better agreement with SIF data and smaller
inter-data variability. VEGAS showed slightly
lower GPP and smaller incremental trends, whereas
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CARAIB showed relatively higher GPP and larger
trends. LPJ-GUESS captured intermediate mean
annual GPP and larger incremental trends. JULES
and VISIT showed lower or higher total GPP but
captured intermediate incremental trends. Therefore,
we should be aware that the current biome models
have their own pros and cons, and we need caution in
specifying which model works best for a given purpose
(e.g. analysis of temporal variability, spatial mapping,
and biogeochemical process study). Better under-
standing of such model characteristics is useful for
interpret impact simulation results.

3.5. Impacts of extreme events
In the context of model benchmarking and global
change study, extreme events are gathering increasing
attentions. Here we focused on two extreme events:
the huge eruption of Mt. Pinatubo in 1991
(McCormick et al 1995) and the strong ENSO in
1997–1998. Simulated global GPP markedly decreased
after the Mt. Pinatubo eruption irrespective of biome
model and forcing dataset (figure 5(a)). Model-mean
GPP anomalies in 1992 differed among the forcing
datasets, ranging from −1.51 PgC yr−1 for WFDEI
cases to −2.25 PgC yr−1 for GSWP3 cases. In contrast,
observational evidence suggests that the terrestrial
biosphere could absorb more carbon, which would
account for the decline in the atmospheric CO2 growth
rate observed after the eruption (Keeling et al 1995).
The time-series of solar radiation in the forcing data
showed few volcanic signals after the eruption event
(data not shown): only the WATCH dataset shows a
clear decline in solar radiation by (about 2Wm−2) in
1992. Moreover, the forcing datasets did not contain a
variable for the diffuse component of solar radiation.
Several studies revealed the importance of diffuse
radiation for the increased canopy radiation absorp-
9

tion and carbon assimilation (Roderick et al 2001, Gu
et al 2002, Kanniah et al 2013), which would explain
the low CO2 growth rate after the huge volcanic
eruption. By appropriately including solar radiation
factors, several model studies have successfully
simulated the change in terrestrial carbon budget
after the volcanic eruption (Lucht et al 2002, Frölicher
et al 2013). In the present study and other multi-
model studies (e.g. Le Quéré et al 2015), however,
most biome models were unsuccessful in simulating
the anomalous GPP increase after the eruption.

Many studies have assessed the impacts of ENSO
events on the terrestrial carbon budget, which affects
the atmospheric CO2 growth rate (e.g. Zeng et al 2005,
Betts et al 2016). The ENSO event in 1997–1998 was
the strongest one in the simulation period, and was
accompanied by a high atmospheric CO2 growth rate.
In 1998, the warmest year in the 20th century, most
models estimated negative GPP anomalies in the
tropics (figure 5(b)). In the cases of LPJml driven by
WFDEI and JULES driven by Princeton, tropical GPP
dropped down by as much as 4 PgC yr−1 as compared
with other years. In contrast, several models responded
only moderately to the ENSO event. The warmth in the
ENSO period could lead to a longer growing period for
temperate and boreal vegetation, leading to a positive
GPP anomaly offsetting the negative tropical one. Also,
the high atmospheric CO2 growth rate in the ENSO
period could be attributable partly to increased
respiratory CO2 emission. As implied by figure 2, the
interplay of multiple meteorological factors (i.e.
radiation, temperature, and precipitation) makes it
difficult to isolate the GPP response to specific events,
evenanextremeone.Asa result, thepresentmodelshave
been insufficiently constrained and calibrated in terms
of responsiveness to the eruption event and similar
extreme environmental variability.
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3.6. Mechanistic findings from benchmarking
The incremental GPP trends (figure 2(a)) could be
attributable to several mechanisms: (1) enhancement
of photosynthetic capacity, (2) elongation of growing
period, (3) expansion of canopy leaf area, and (4)
land-use and land-cover change. As attempted by Xia
et al (2015), factors related to leaf area (phenology and
vegetation structure) and photosynthetic capacity
(physiology) could be combined using an appropriate
metric. The simulated GPP trend occurred heteroge-
neously over the land area. At a global scale, it is well
correlated with the trend of mean leaf area index (LAI)
trend in the different biome models and forcing
datasets (figure 6). Note that several models assumed a
stationary land-use and plant functional type distri-
bution but showed a similarly positive relationship.
Therefore, the incremental GPP trend was at least
partly attributable to LAI expansion, which in turn,
has several causes. Apparently, the CO2 fertilization
effect played an important role, but observational
evidences provide inconsistent implications for the
model sensitivity as noted previously (Kolby Smith
et al 2015, Campbell et al 2017). We need to seek
additional data and metrics to reduce the uncertainty;
for example, Wenzel et al (2016) implied that SCA is a
useful metric to constrain the simulated GPP trend.

Spatial variability in the simulated GPP trends
(figure S4) has additional mechanistic implications.
For each forcing dataset, positive trends occurred from
tropical to boreal regions, especially in North America,
Eurasia, and eastern Australia. In contrast, consistently
negative trends occurred in Central America, a part of
South America, and eastern Central Africa. The
simulated regional GPP showed different temporal
patterns in response to meteorological regimes (figure
S5). For example, it is remarkable that the incremental
10
trend continued in Asia, Africa, Europe, and North
America after 2000 but almost completely disappeared
in Oceania and South America. This period of the
2000s is known as the hiatus of global warming,
leading to an unexpected depression of the atmo-
spheric CO2 growth rate probably due to suppressed
ecosystem respiration (Keenan et al 2016, Ballantyne
et al 2017). A regional analysis of GPP may provide a
supporting evidence for the recent perturbations in
the global carbon cycle, although further in-depth
analyses are required.

Another implication for biome models and
meteorological data is related to the solar radiation
used in global simulation analyses. Although solar
radiation is the ultimate driver of photosynthesis, this
benchmarking study suggests that it was underrepre-
sented in forcing data and that biome models are
insufficiently constrained to capture responses to
solar radiation variability (figure 2(c)). Solar radia-
tion is acknowledged to be highly heterogeneous over
the land surface and therefore difficult to accurately
quantify at broad scales. Also, atmosphere–ecosystem
interaction studies have focused more heavily on
other environmental factors such as temperature,
precipitation, ambient CO2, and nutrients. However,
as shown by the poor simulation results for the GPP
anomaly after the Mt. Pinatubo eruption, we need
more accurate solar radiation data and further
refinement and constraints on modeled radiation
use by terrestrial vegetation. This task is necessary not
only for refining historical simulations but also for
improving the reliability of future projections,
including the increase of industrial aerosol emissions
and deployment of solar radiation management
(Mercado et al 2009, Caldeira et al 2013, Ito et al
2017).
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4. Concluding remarks

We conducted a benchmarking of eight biome models
and confirmed that these current biome models can
approximately capture basic features such as the spatial
distribution of productivity (i.e. capability of CO2

fixation). Such benchmarking of model-estimated
GPP has been conducted by previous model inter
comparison studies (table 3), and this ISI-MIP study
provided several new findings. By using multiple
meteorological forcing datasets, it revealed contribu-
tions of inter-model (primary) and inter-data (sec-
ondary) variabilities. Focusing on recent decades, it
was possible to assess model responses to several well-
known extreme events. Importantly, the results of the
biome sector could be combined with other sectors
such as water and agriculture, allowing us to conduct
more human-relevant analyses. Recent advancements
in instruments and data-analysis studies are providing
an increasing amount of data for benchmarking,
allowing us to examine the validity and limitations of
models in more detail. Although several benchmark-
ing studies of biome models have been conducted, this
study provided some new insights. First, this study
provided results of WUE and RUE and the seasonal-
cycle amplitude of GPP, allowing us to address the
underlying mechanisms of the historical changes.
Second, our use of multiple forcing datasets permitted
us to account for a wider range of estimation
uncertainty than in previous studies. The comparison
emphasized the large discrepancy in solar radiation
among the forcing datasets. Third, the use of flux up-
scaled GPP and satellite-derived SIF data provided
more insights than a simple comparison between
models. These findings imply that we need to improve
parameterization of GPP, for example, in terms of
radiation responsiveness. Although further observa-
tion and modeling studies are required, this type of
benchmarking study helps to refine biome models and
improve our confidence in future projections (e.g.
+1.5 and +2 °C impact assessments for the Paris
Agreement, conducted as the next phase of ISIMIP,
i.e. ISIMIP2b) using these models.
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