
 
 
 

Originally published as:  
 
Otto, C., Willner, S. N., Wenz, L., Frieler, K., Levermann, A. (2017): Modeling loss-
propagation in the global supply network: The dynamic agent-based model acclimate. - 
Journal of Economic Dynamics and Control, 83, 232-269  
 
DOI: 10.1016/j.jedc.2017.08.001 
 

http://dx.doi.org/10.1016/j.jedc.2017.08.001


Modeling loss-propagation in the global supply network: The dynamic
agent-based model acclimate

C. Ottoa,b,1,∗, S. N. Willnera,c,1, L. Wenza,d, K. Frielera, A. Levermanna,b,c

aPotsdam Institute for Climate Impact Research, Potsdam, Germany
bColumbia University, New York, USA

cUniversity of Potsdam, Potsdam, Germany
dMercator Research Institute on Global Commons and Climate Change, Berlin, Germany

Abstract

World markets are highly interlinked and local economies extensively rely on global supply and value chains.
Consequently, local production disruptions, for instance caused by extreme weather events, are likely to
induce indirect losses along supply chains with potentially global repercussions. These complex loss dynamics
represent a challenge for comprehensive disaster risk assessments. Here, we introduce the numerical agent-
based model acclimate designed to analyze the cascading of economic losses in the global supply network.
Using national sectors as agents, we apply the model to study the global propagation of losses induced by
stylized disasters. We find that indirect losses can become comparable in size to direct ones, but can be
efficiently mitigated by warehousing and idle capacities. Consequently, a comprehensive risk assessment
cannot focus solely on first-tier suppliers, but has to take the whole supply chain into account. To render
the supply network climate-proof, national adaptation policies have to be complemented by international
adaptation efforts. In that regard, our model can be employed to assess reasonable leverage points and to
identify dynamic bottlenecks inaccessible to static analyses.
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1. Introduction1

We here present the dynamic agent-based model acclimate describing the propagation of disaster-induced2

production losses in the global economic network. We define disasters as unanticipated local events leading3

to an unpremeditated production reduction of the affected firms. These can be natural disasters such as4

earthquakes and volcano eruptions and climate extremes such as heatwaves, floods, and tropical cyclones.5

For the economic system, the latter are likely to become even more challenging in the future as they are6

projected to increase in intensity and frequency under ongoing climate change (Herring et al., 2015; Field7

et al., 2012). In the present-day global economy, local firms and markets are highly interlinked forming8

a complex network of supply and value chains. In the process of globalization, the density of inter-firm9

linkages has increased significantly (Maluck and Donner, 2015). In addition, production principles have10

changed. Lean production schemes have been implemented that permit reducing storage costs, but, at the11

same time, render sectors more dependent on the timely delivery of intermediate goods needed for production.12

Consequently, local disasters can have global repercussions. Locally, disasters directly suppress economic13

activity such as commodity production. The associated losses, however, can spread to other sectors via14

back- and forward-linkages of the supply chains causing indirect losses (Rose, 2004; Acemoglu et al., 2012).15

Further, recent studies suggest that in the last decades the vulnerability of the economy with respect to16

climate extremes has increased (OECD, 2015; Wenz and Levermann, 2016). Overall, indirect losses can17

represent a significant – or even dominant – share of total losses (Noy, 2009; Przyluski and Hallegatte, 2011).18

Unfortunately, state-of-the-art integrated assessment models tend to underestimate costs of natural disasters19

(Revesz et al., 2014), partially because they cannot resolve economic losses resulting from climate extremes20

appropriately (Stern, 2016).21

A profound understanding of the direct and indirect losses of climate-related disasters is also important22

with respect to a comprehensive assessment of the costs that climate change will impose upon societies, the23

so-called social costs of carbon. Especially in view of the international agreement to limit global warming24

“well below 2◦C above pre-industrial levels”2 (see, for instance, the discussion in Clark et al. (2016)), reliable25

estimates of the overall costs of climate change are needed to enable policy makers to develop sound and26

farsighted plans for climate change mitigation (Rogelj et al., 2015; Robiou du Pont et al., 2016) and adaptation27

(Cutter et al., 2015). As structural adaptation, supply chains are in need to be rendered climate-proof28

(Levermann, 2014). Unfortunately, state-of-the-art integrated assessment models tend to underestimate29

climate impact costs (Revesz et al., 2014), partially because they cannot resolve economic losses resulting30

from climate extremes appropriately (Stern, 2016).31

With the acclimate modeling framework, we adopt a global modeling perspective suitable to assess the32

global repercussions of local disasters. By choosing an agent-based modeling approach, we can account33

for two aspects essential for the assessment of indirect losses: the heterogeneity of firms (Kirman, 1992;34

Aoki and Yoshikawa, 2012) as well as for the complex structure of the production network (Battiston et al.,35

2012; Weisbuch and Battiston, 2007). Together with a high temporal resolution this enables us to resolve36

the cascading and the absorption of indirect losses along supply chains. For a realistic description of loss37

mitigation mechanisms, we account for three flexibilities of the economic system that are key for short-term38

adaptation (Hallegatte, 2014). First, we explicitly model inventories acting as buffer stocks. Second, economic39

agents in acclimate can shift their demand to non-affected suppliers. Third, firms can adjust their production40

according to the demand they receive, reducing their production in times of low demand or activating idle41

capacities in order to increase production in times of high demand. Responding to price signals, firms42

base the decisions on their optimal production level on clear and simple optimization principles. Finally,43

non-equilibrium market situations are taken into account. This allows us to describe scarcity situations44

that arise during the disaster or in the direct aftermath (Hallegatte, 2008): since productive capacities are45

limited and transportation of goods is time consuming, local supply shortages can not always be mitigated46

immediately and supply-demand mismatches may occur.47

In this paper, we employ our model to analyze the economic response to stylized disasters. The global48

input-output (I-O) data-set we use as baseline accounts for 27 different sectors (including final demand) on49

2reached in the United Nations Framework Convention on Climate Change negotiations in Paris in December 2015
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country level. Thus, in this study, firms represent national sectors. By focusing on the outage of a single50

sector, exemplary the manufacturing sector in Japan, we are able to study indirect effects in a controlled51

setting. For large outages, indirect losses are found to be in the same order of magnitude as direct losses. By52

spreading from one sector to the next, they prevail for much longer within the network than the direct ones.53

Due to non-linearities in the propagation dynamics they can, in fact, even peak long after the direct losses54

have ceased.55

This paper is organized as follows. At first, we review the relevant literature and discuss in how far our56

model differs from existing approaches in Section 2. Next, we provide an overview of the acclimate model in57

Section 3. We then analyze local aspects of the economic response dynamics to stylized disasters in Section 4,58

before discussing the response of the global economy in dependence of disaster duration and disaster size in59

Section 5. Finally, we discuss our main findings in Section 6, before concluding in Section 7. A detailed and60

comprehensive description of the numerical model can be found in Appendix A.61

2. Related literature62

For a long time, it was commonly assumed that micro-level idiosyncratic shocks would average out and63

that their effects on the aggregate macro-level would therefore be negligible (Lucas, 1977). However, only64

recently, Gabaix (2011) revealed in a ground-breaking study that this is not the case if the distribution of65

firm-sizes is sufficiently fat-tailed. The author bolstered this ‘granular’ hypothesis empirically by showing66

that idiosyncratic movements of US firms make a significant contribution to the observed macroeconomic67

variations in output growth. Further important theoretical contributions in this direction were made by68

Acemoglu et al. (2012) and Carvalho (2014), who focused on the impact the topology of the economic network69

has on shock propagation. They revealed that sizable aggregate fluctuations can result from idiosyncratic70

shocks if there are ‘hubs’ in the network, i. e., well connected firms supplying numerous firms of different71

sectors, which facilitate the cascading of losses from one layer of the supply chains to the next. These72

theoretical findings were complemented by more empirical ones. Gabaix (2009) revealed that power-laws, i. e.,73

fat-tailed distributions, are ubiquitous in economics, and a study by Arenas et al. (2002) on self-organized74

criticality in economic networks suggested that economic systems are often at the boundary between chaos and75

organization – in a regime where fluctuations become important because they can trigger regime transitions.76

Further, Foerster et al. (2011) and Carvalho (2014) showed that the importance of idiosyncratic shocks has77

increased since the ‘great moderation’ in the mid-eighties, i. e., the reduction in the volatility of business78

cycle fluctuations. Di Giovanni et al. (2014) studied the French firm network affirming the importance of79

a fat-tailed distribution of firm-sizes and the inter-connectedness of the firm network for micro-shocks to80

contribute to aggregate fluctuations. Moreover, partially triggered by the financial crises, network theory81

was applied to study shock propagation in economic networks (Schweitzer et al., 2009; Helbing, 2013) with a82

focus on systemic risks at financial markets (Battiston et al., 2012; Elliott et al., 2014; Acemoglu et al., 2015).83

These static analyses have been complemented by dynamic modeling approaches (Mandel et al., 2015).84

Two well established – albeit rather different – modeling frameworks are I-O and computable general85

equilibrium (CGE) models (see van der Veen (2004) and Okuyama and Santos (2014) for a comprehensive86

introduction and Section 6 for a detailed comparison with our model acclimate). Both approaches can reflect87

the economic dependencies in high detail (Rose, 2004). However, when it comes to describing and temporally88

resolving the indirect economic effects of disasters due to the cascading of losses along supply chains – the89

main focus of this paper – both, I-O and CGE, approaches may not be able to realistically describe the90

economic responses in the period of days to months following a disaster (Hallegatte, 2008; Farmer and Foley,91

2009; Farmer et al., 2015). Whereas the production system in I-O models is fixed rendering short-term92

adaptation impossible (Albala-Bertrand, 2013), that of CGEs is highly adaptive and flexible due to price93

responsiveness and a high degree of substitutability among commodities. CGEs are calibrated such that94

supply and demand elasticities as well as the elasticities of substitution are suitable to describe an economy95

in long-term equilibrium. Consequently, in contrast to I-O models that tend to overestimate losses, CGEs96

are prone to mitigate losses unrealistically well (Hallegatte, 2008).97

Attempts to represent a system’s complex dynamics from the bottom up are undergone in agent-based98

models (ABMs), e. g., (Gallegati and Richiardi, 2011; Axtell, 2007). Here, the stylized facts of macroeconomic99
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systems emerge from the interplay of individual heterogeneous agents (Caiani et al., 2016; Delli Gatti et al.,100

2005), which may lead to non-equilibrium dynamics. Micro-economically founded agent-based growth models101

have, for instance, been proven to reproduce exponential growth (Delli Gatti et al., 2007; Mandel, 2012). In102

recent years, ABMs have been frequently applied to study the implications of specific policies (Dosi et al.,103

2010). Further, similar to static methods, a focus was put on systemic risk by studying bankrupt avalanches104

and their dependence on network topology (Weisbuch and Battiston, 2007; Delli Gatti et al., 2010; Riccetti105

et al., 2013; Chaney, 2016; Wolski and van de Leur, 2016). However, ABMs still struggle to gain broader106

recognition from the mainstream neoclassical economic community (Leombruni and Richiardi, 2005). In107

particular, they are criticized for providing the modeler with too much freedom in the implementation of108

the decision rules for the bounded rational agents – usually, ad-hoc behavioral rules are chosen that appear109

meaningful and allow to reproduce key stylized facts (Salle, 2015). However, the unambiguousness of the110

representative, perfectly rational agents in neoclassical macroeconomics is lost (Fagiolo et al., 2007) since111

different sets of rules may reproduce the same stylized facts. Yet, the agents’ decision rationale may be112

derived from behavioral studies investigating the individual decisions, the interaction of the individuals, and113

the emerging macro behavior (Assenza et al., 2015).114

Regarding the analysis of production loss cascades along supply-chains, ABM approaches appear promising115

because loss propagation can be very naturally discussed in a setting where the economy is described by116

heterogeneous interacting agents yielding a production system with well tuneable flexibilities (Stiglitz and117

Gallegati, 2011). Only recently, Gualdi and Mandel (2016) presented an ABM of an evolutionary network of118

monopolistically competitive firms, which is able to reproduce important stylized facts of real-world firm119

networks. For instance, they can allocate the scale-free topology of firm networks to the competition among120

the firms. Further, as in the static theory (Acemoglu et al., 2012), their model permits to ascribe aggregate121

volatility to the fat-tailed distribution of firm sizes.122

A foray in the description of disaster-induced losses in supply networks was undertaken by Hallegatte123

(2008) with the introduction of an agent-based dynamic model, the ARIO model. A more recent version of the124

model accounts for inventories acting as buffer-stock, which are essential for the assessment of indirect losses in125

the disaster aftermath (Hallegatte, 2014). This model was successfully employed in several empirical disaster126

impact studies such as Hallegatte (2009), Ranger et al. (2011), and Hallegatte et al. (2011). Further, Henriet127

et al. (2012) extended the model to study how the robustness of a firm network to micro-shocks depends on128

the structure of the network as well as the heterogeneity of direct losses. Moreover, the authors provided129

an algorithm to disaggregate sectoral I-O tables such that a firm network with realistic size distribution is130

obtained.131

The first version of the acclimate modeling framework was introduced by Bierkandt et al. (2014) to study132

the downstream propagation of production losses in a global supply network in the presence of inventories.133

The model was then extended to account for adaptation of upstream demand – in terms of quantity and in134

terms of the redistribution of demand among the supplier base in the disaster aftermath (Wenz et al., 2015).135

Wenz and Levermann (2016) employed the model to study heat-stress induced production losses in the global136

supply network. They observed that in recent years the supply network has become more susceptible to loss137

propagation due to an enhanced interconnectivity of the economy, well in line with the findings of Henriet138

et al. (2012).139

In ABMs designed to describe loss propagation in supply networks, firms most importantly have to make140

two kinds of decisions: Firstly, rationing decisions with respect to their output if the demand they receive141

exceeds their productive capacity and, secondly, decisions on the redistribution of their upstream demand142

among their supplier base to mitigate supply shortages in the disaster aftermath. In the ARIO model and143

the first two versions of the acclimate model, this is done by reasonable ad-hoc behavioral rules. In both144

models, output is distributed according to a proportional rationing scheme. In the ARIO-inventory model145

redistribution of demand is not possible, whereas Wenz et al. (2015) redistribute demand according to a146

supply-reliability measure combined with a proportionality scheme.147

In this paper, we take a different approach with respect to the agents’ decision rationale. All relevant148

decisions are governed by local optimization principles, e. g., firms decide upon their production level by149

profit maximization. We believe that this comprises several advantages. First, using prices as an organization150

mechanism, we can more easily bridge the gap to the CGE literature. The model setup may be interpreted151
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as a ‘natural’ extension of the CGE approach to the context of ‘myopic’ agents, which do not have enough152

information to reach a market clearing equilibrium in each timestep. Instead, disequilibrium situations153

arise, where prices differ among agents. In the disaster aftermath, these price differences subsequently154

ease out over many timesteps. This way, the path of the economy back to market clearing equilibrium155

is temporally resolved and made explicit. Further, in the disaster math, where disequilibrium conditions156

dominate (Hallegatte, 2008), the assumption of ‘myopic’ agents appears to be more realistic than implying157

market clearance immediately. Second, accounting for price effects becomes important for large scale disasters158

(Hallegatte, 2008), and, at the same time, opens up the possibility to study welfare impacts of disasters.159

Third, offer prices provide a means to rank potential new suppliers and compare them to the existing supplier160

base paving the way towards a flexible network that can restructure in the disaster aftermath. Fourth, profit161

and cost calculations open up the possibility to include growth dynamics by introducing inter-temporal162

budgets and investment decisions. These steps towards an agent-based growth model will be undertaken in163

follow-up papers.164

3. Model description165

In this section, we provide an overview of the dynamic agent-based network model acclimate. First, we166

discuss its mathematical structure in Section 3.1. Next, we introduce its economic agents, firms and regional167

consumers in Sections 3.1.1 and 3.1.2, respectively. We then discuss the baseline equilibrium of the economy168

in Section 3.2, before eventually introducing its response dynamics to local, unanticipated and idiosyncratic169

production shocks in Section 3.3. Overall, we focus on giving an overview of the model’s structure and170

motivate the underlying modeling assumptions. A detailed mathematical description of the model can be171

found in Appendix A, and a list of all parameters, exogenous as well as endogenous variables to the model, is172

provided in Tables B.1, B.2, and B.3, respectively.173

3.1. Model structure174

We consider an economy consisting of firms under monopolistic competition and regional consumers.175

These economic agents are interlinked by trade flows forming a complex network of supply chains as sketched176

in Fig. 1. The nodes of this trade network are the economic agents. Their trade relations are represented by177

weighted, directed links. In each region, we consider two types of agents: firms, each representing one of the178

different economic sectors located in the region, as well as a consumer representing the region’s final demand.179

The latter accounts for household consumption, governmental spending, and private investments. We label180

each economic agent by an index-pair ir, where the first index i denotes a sector in the set of all sectors I and181

the second index r specifies a region in the set of all regions R. As the model describes anomalies induced by182

production shocks, its dynamics evolves around a dynamically stable baseline state of the economy. In the183

remainder of this section, we first discuss, how we derive the latter from multi-regional input-output (MRIO)184

tables. From there, we describe the model’s disequilibrium dynamics and discuss the additional underlying185

assumptions.186

Baseline state. The baseline trade flows connecting the economic agents are derived from MRIO-tables. The187

flows in these tables are usually given in units of USD/year and thus have to be divided by the number of188

timesteps per year to obtain the set of baseline flows {Z∗ir→js}i,r,j,s in units of USD/timestep. Here, Z∗ir→js189

denotes the monetary flow from firm ir to economic agent js. The superscript (·)∗ denotes variables in190

the baseline state. For a firm js, the sum of all outgoing flows determines its baseline production level191

X∗js ≡
∑
ir Z

∗
ir→js, and for a regional consumer js the sum of all incoming flows determines its baseline192

consumption level C∗i→js ≡
∑
r Z
∗
ir→js.193

Next, we introduce the notion of demand requests in order to define the demand side of the baseline194

state. Since we focus on losses induced via supply shortages, we assume that the economy is demand-driven.195

Thus, in each timestep (t− 1), each economic agent ku decides (i) on the demand {D(t−1)
js←ku}j,s (measured in196

USD/timestep) that it addresses to each of its suppliers {js} and (ii) on the corresponding (dimensionless)197

reservation prices {n(t−1)
js←ku}j,s, i. e., the prices it is willing to pay. Only afterwards, in the next timestep198
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(t), its suppliers can decide to which extent they are willing to fulfill the received demand. We define the199

tuple of quantity demanded and reservation price as demand request. As depicted in Fig. 1, supplier js

...

Figure 1: Sketch of the demand-driven economy from the local perspective of a firm. Examples for the sectors and flows under
consideration are given above the figure.

200

responds, in timestep (t), to the demand request
(
D

(t−1)
js←ku, n

(t−1)
js←ku

)
it has received from purchaser ku in the201

previous timestep (t− 1) by sending the flow-price tuple
(
Z

(t)
js→ku, n

(t−1)
js←ku

)
via the transport chain. Since202

firms produce at most the demanded quantities, no production-to-stock is possible, i. e., X(t)
js ≤ D

(t−1)
js← ∀j, s203

holds true, where204

D
(t−1)
js← ≡

∑
ku

D
(t−1)
js←ku (1)

denotes the incoming demand js receives in timestep (t). We then postulate that, in the baseline state of the205

economy, each demand is fulfilled, i.e., D∗js←ku = Z∗js→ku ∀j, s, k, u holds true. This implies that markets206

clear in the baseline state, i.e., each production sites fulfills its incoming demand D∗js← = X∗js ∀j, s and, thus,207

supply equals demand locally as well as globally. Further, we may deduce from market clearance that (i)208

there is only one equilibrium (world market) price per commodity, and that (ii) all of a firm’s purchasers209

offer the same reservation price. This permits us to choose the units, in which the commodities are measured,210

such that the baseline prices for all products are equal. For simplicity, but without loss of generality, we211

choose a baseline price of 1 USD. In the following, we only discuss prices, denoted by the letter n, which are212

normalized with respect to this value. To allege notation, time indices will be dropped in the following when213

it is clear from the context to which timestep a variable belongs.214

Timing and severity of a disaster are unpredictable for economic actors – at least to a certain extent.215

In acclimate this is reflected by modeling ‘myopic’, bounded rational agents. They neither have temporal216

foresight, nor perfect network oversight since they communicate only with their direct business partners. As217

already mentioned in the introduction, we aim to resolve the cascading of disaster induced indirect losses218

along supply chains. For short-term loss absorption three flexibilities of the production system appear to be219

most important: (i) warehousing, (ii) demand adaptation and redistribution, and (iii) idle capacities. We220

discuss their implementation in acclimate in the following three paragraphs, before explaining in the last two221
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paragraphs of this section why we assume the economy to be demand-driven and the network topology to be222

static.223

Warehousing. For the short-term economic recovery in the disaster aftermath, inventories acting as buffer224

stocks are key (Hallegatte, 2014). Therefore, in acclimate every agent has input-inventories for the commodities225

it needs for production or consumption (blue boxes in Fig. 1). Further, since in the last decades lean- and226

just-in-time production schemes have become established, the commodities ‘en route’ are nowadays – at least227

in some sectors – managed as rolling inventory (Shah and Ward, 2007). In acclimate, commodities ‘en route’228

are modeled as transport stock. The number of transport chain links is given by the number of timesteps229

needed to transport a delivery from supplier to producer (cf. Fig. 1). In each timestep, a delivery is shifted230

by one transport chain link until it arrives in the corresponding input-inventory of the supplier.231

Demand adaptation and distribution. Firms can adapt their upstream demand for input commodities. On232

the one hand, they can increase it if demand for their product is high or in order to restock their inventories.233

On the other hand, they can decrease it if (i) their product is less demanded, if (ii) they have to reduce234

production due to supply shortages of other input commodities that cannot be substituted, or if (iii) they235

can produce less because they are affected by a disaster. Further, agents can shift their demand from affected236

to non-affected suppliers as discussed in Section 3.1.1.237

Idle capacities. Shifting of demand is most effective if non-affected suppliers have idle capacities that they238

can activate to meet the increased demand. Empirical evidence for the importance of idle capacities is,239

for instance, provided by a World Bank report on the Marmara earthquake (World Bank, 1999). Whereas240

the caused destruction significantly reduced Turkey’s Gross Domestic Product (GDP) by 1.5% to 3%, only241

relative low production losses were observed. This has been explained with the strong recession that had242

reduced Turkish GDP by 7% in the year before the disaster generating idle capacities.243

Demand-driven economy. From a modeling perspective, assuming the economy to be demand-driven is244

consistent with the assumption that economic agents are ‘myopic’. To decide if production-to-stock will245

increase their profit in the long-term, firms would need to form more far-reaching expectations on the246

development of their incoming demand or the development of the prices for input commodities. For instance,247

if the firms expected prices for input commodities to rise in the future and demand to remain unchanged,248

production-to-stock would increase their future profit. Further, we think that neglecting production-to-stock249

does not significantly reduce the model’s performance. Since firms have the possibility to activate idle250

capacities, they can buffer outages of competitors in the same way as if they had stocks of unsold products.251

It appears more important to consider stocks at all than to distinguish between input and output stocks.252

Static network topology. Moreover, we make the assumption that the supply network is static, i. e., demand253

can only be shifted between existing connections and no new connections can be established. From a modeling254

point of view, this aligns well with the assumption that firms have monopolistic markups as discussed in255

Section 3.2. From an empirical point of view, this is a strong simplification. However, at least in some sectors,256

high product specialization renders it more difficult for firms to switch to new suppliers in the short-term.257

Empirical evidence for this hypothesis is, for instance, provided by a study of Boehm et al. (2015) on firms258

in the US having strong import dependencies to the Japanese economy. The authors found production losses259

after the 2011 Tōhoku earthquake to be similar to the drop in imports suggesting that firms were not able to260

replace import commodities by switching to new suppliers in the short-term, i. e., in the months following the261

disaster. Further anecdotal evidence was given by Carvalho (2014) with respect to the automobile industry262

in the United States. Another recent example is the production interruption in Volkswagen production plants263

in 2016 due to a supplier dispute. The firm stopped production in six sites taking important economic losses,264

because switching to new suppliers was not possible in the short term (Financial Times, 2016). However, it265

is worthy to note that in the longer-term network evolution provides an important adaptation mechanism,266

which will be addressed in upcoming versions of the acclimate modeling framework. For the purposes of267

this paper focusing on modeling the direct disaster aftermath, where supply-chain interruptions appear,268

accounting for inventories and transport times appears to be more important. Also, in the data used, firms269
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and consumers usually have several suppliers per commodity among which they can redistribute their demand270

to replace affected suppliers in the disaster aftermath.271

3.1.1. Firms272

We model profit-maximizing firms under monopolistic competition. Thus, in each timestep (t), firms273

decide upon their production level by maximizing profit while respecting constraints imposed by their limited274

productive capacity and by the limited availability of input commodities. For computational simplicity, each275

timestep is divided into three subsequent decision points or sub-steps. Profit maximization is assured by276

applying local optimization principles in each of them. First, firms decide upon their production level by277

maximizing profit. Second, firms determine the production level that they expect to be profit-maximizing in278

the next timestep. Afterwards, they communicate this production level and the corresponding offer price279

to their purchasers to permit them to take a sound decision on how to distribute their upstream demand.280

Third, after having received these information from their suppliers, firms decide by minimizing purchasing281

costs (i) how to distribute their own upstream demand and (ii) what their reservation prices are. In the282

following, these decision points will be referred to as production step, expectation step, and purchasing step,283

respectively.284

Production step. In the production step, each firms determines its profit maximizing production level by285

taking its limited productive capacity into account. We consider idle capacities in the economy by assuming286

that each firm js has the possibility to extend its production above baseline level X∗js by a factor βj ≥ 1,287

which may vary among sectors. Further, js’s production level can be reduced by an exogenous factor288

λjs ∈ [0, 1] representing the disaster’s forcing. If no forcing is present, λ∗js = 1 holds true.

n
j
s
←

(k
u

) 1
,2
,3

=
1
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ce
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X̂js
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va
lu

e
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(a) equilibrium
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a
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o
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Xjs

Djs←
λjsX

∗
js

X̂js

production quantity X̆
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costs Cjs(X̆)

Πjs(Xjs)

(b) disequilibrium

Figure 2: Illustration of how a firm js determines its profit-maximizing production level Xjs (a): in economic equilibrium and
(b): in disequilibrium situations arising in the disaster aftermath. Upper panel: Purchaser’s reservation prices as a function
of cumulative demand. Lower panel: Revenue curves Rjs (orange lines) and cost curves Cjs (blue lines) as function of js’s
production level under consideration. Gray shadings denote the range of production extension.

289
At the beginning of the production step, firms receive the demand request their suppliers have issued in the290

previous timestep. In the following, we note that the monetary value of a demand request
(
Djs←ku, njs←ku

)
291

that purchaser ku has issued to supplier js is given by the product of the demanded quantity and corresponding292

reservation price,293

v(Djs←ku) ≡ njs←kuDjs←ku.

From its incoming demand requests a firm js can derive its revenue curve by first ranking demand requests294

from high to low reservation prices as depicted in the upper panel of Fig. 2. The revenue curve Rjs(X̆js)295

(cf. solid orange lines in the lower panel of Fig. 2) then describes the functional relationship between the296
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cumulative values of the demand requests and js’s production level X̆js (we use the notation (̆·) to distinguish297

control variables from the actual values variable assume, i. e., to denote that js’s revenue is a function298

of production level, we use the notation Rjs(X̆js) whereas Xjs denotes the actual production level in the299

present timestep). Thus, if the incoming demand Djs← is satisfied, js cannot increase its revenue further by300

extending production, and the revenue curve is constant for X̆js ≥ Djs←.301

As in I-O models, we assume that the production function is linear with respect to commodity inputs.302

All commodity inputs are perfect complements and therefore substitution is not possible among them –303

an assumption that is supported by a recent study by Boehm et al. (2015) suggesting that elasticities of304

substitution are very low in the months following a disaster. Thus, in the case of supply limitation, the305

input commodity with the lowest availability limits productive capacity. Prices of input commodities do not306

depend on the production level, but vary with purchasing costs. Further, we neglect fixed costs for simplicity,307

but we account for variable production costs of labor, capital depreciation, and variable overhead. Since the308

latter are usually not contained in MRIO-tables, we do not consider these factors of production explicitly as309

inputs into the production function, i.e., in our model these factors cannot limit productive capacity3. We310

assume marginal variable costs to be constant up to the baseline production level and to increase linearly311

above this level to account for extra costs arising for long-hours of workers, etc. In consequence, firm js’s312

cost curve may be written as the sum of linear commodity costs Cljs and variable production costs Cvjs,313

Cjs(X̆js) ≡ Cljs(X̆js) + Cvjs(X̆js). (2)

Up to the baseline production level, the cost curve increases linearly with production. Above this level, it314

increases super-linearly due to the nonlinear increase of variable production costs in production extension315

(see blue lines in the lower panel of Fig. 2).316

Firm js determines its actual production level Xjs by maximizing its profit under the constraint that317

production may not exceed productive capacity X̂js reading318

Xjs ≡ argmax
X̆js

[
Πjs(X̆js)

]
subject to 0 ≤ X̆js ≤ X̂js, (3)

where profit is defined as the difference of revenue and costs,319

Πjs(X̆js) ≡ Rjs(X̆js)− Cjs(X̆js). (4)

Note that, in times of crisis, productive capacity can either be reduced by a disaster limiting a firm’s ability320

to produce or by shortages of input commodities.321

After production, js distributes its output among those purchasers with sufficiently high reservation prices.322

Each purchaser has to pay its reservation price. The reservation prices determine js’s average production323

price n̄js ≡ Rjs(Xjs)
Xjs

. In disequilibrium, however, not necessarily all purchasers are served (Xjs ≤ Djs←).324

Consequently, n̄js does not always equal the average reservation price of the purchasers n̄pjs ≡
Rjs(Djs←)
Djs←

.325

Finally, firms put their output into the transport chains, and, at the same time, receive the next deliveries326

from their suppliers.327

Expectation step. After receiving their deliveries, firms know if supply shortages will limit their productive328

capacity in the next timestep and what their production costs will be. Thus, they can form sound expectations329

on their upcoming production level and the corresponding average offer price: by forming the ‘naive330

expectation’ that (i) the level of external forcing and (ii) their incoming demand will remain unchanged with331

respect to the current timestep, firms can determine both, expected optimal production level and average offer332

price by profit maximization as in the production step. They then communicate these quantities together333

with their expected productive capacity for the next timestep as guidance values to their purchasers.334

3We are aware that especially not explicitly accounting for a labor market is a restriction of our model because, for instance,
disaster impacts on the unemployment rate cannot be described.
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Purchasing step. At this third decision point, each firm js first decides upon its total demand for each input335

commodity i,336

Di←js ≡ min
[
EUi→js

+ ∆Si→js
τi→js

, EjsDmax
i←js

]
. (5)

Here, EUi→js denotes the amount of commodity i that js expects to use in the next timestep4. This is derived337

from js’s expected profit-maximizing production level. Further, ∆Si→js denotes the deviation from the338

baseline filling level of js’s inventory for commodity i. In times of scarcity (∆Si→js > 0) or abundance339

(∆Si→js < 0), js increases or decreases its demand, respectively. The timescale at which js aims to balance340

storage anomalies is given by the parameter τi→js. Further, the minimum condition in Eq. (5) expresses that341

demand can be limited by the maximal demand js expects to be able to source from its suppliers EjsDmax
i←js

342

in the next timestep5. The latter is derived from the expected productive capacities communicated by js’343

suppliers in the expectation step.344

The expected purchasing costs345

ECi→js

(
{D̆ir←js}r

)
≡
∑
r

Ejsn̆ir
(D̆ir←js)D̆ir←js︸ ︷︷ ︸

expected costs for purchases

+ ECpen
i→js

(
{D̆ir←js}r

)
,︸ ︷︷ ︸

expected additional costs
for transport

(6)

are a function of the demanded quantities {D̆ir←js}r firm js addresses to its suppliers and depend on the346

expected supply curves {Ejsn̆ir
}r of js’s suppliers. Also, transport comes at costs. We assume that transport347

costs arising in the baseline state are already included in commodity costs, and that extra costs, described348

by the term ECpen
i→js

(
{D̆ir←js

)
arise only if the demanded quantities deviate from their baseline values. This349

can, for instance, occur when means of transportation are not used to capacity. Further, we assume transport350

costs to increase with the relative deviation of the delivery from its baseline level.351

The expected production levels and offer prices communicated by its suppliers permit js to form352

expectations on its suppliers’ supply curves for the next timestep {Ejsn̆ir
}r, i. e., it estimates what price it353

will have to pay to each of its suppliers for a certain amount of a commodity. To this end, it makes the354

assumption that if the share it demands from the expected production of a supplier remains unchanged (with355

respect to the share it has received from the supplier’s present production), it has to bid the supplier’s offer356

price. Further, a firm does not expect to be able to crowd out its competitors. Thus, it has to expect to357

drive the supplier into production extension if it increases its share. In this case, it expects that it must358

compensate the supplier for the extra costs arising from the higher marginal variable costs in production359

extension. In the opposite case, where the firm expects to reduce its share, it reduces also its reservation360

price linearly down to the suppliers production costs for a zero-share.361

In line with the local profit maximization in production and expectation steps, firm js decides upon the362

optimal distribution of its demand requests among its suppliers by minimizing expected purchasing costs,363

separately for each commodity i, under the constraints that (i) cumulative demand Di←js is met, and (ii)364

individual demand requests must not exceed the amounts {EjsDmax
ir←js

}r its suppliers are expected to be able to365

deliver in the next timestep,366

4We use the notation E(·) to describe the expectation an agent forms at time (t) on the value of its own property (·) in the
next timestep (t+ 1). For instance, EXjs

denotes js’s expectations at time (t) on its production level in timestep (t+ 1).
5Here, the notation E(·)

(·) denotes the expectation that an agent – indicated by the upper index – makes in timestep (t) on the
value of another agent’s property in timestep (t+ 1) – indicated by the lower index. For instance, Ejs

n̆ir
denotes the expectation

that js has at time t on ir’s supply curve in the next timestep (t+ 1).
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{Dir←js}r ≡ argmin
{D̆ir←js}r

ECi→js

(
{D̆ir←js}r

)
subject to

∑
r

D̆ir←js = Di→js and 0 ≤ D̆ir←js ≤ EjsDmax
ir←js

∀ r. (7)

Here, EjsDmax
ir←js

denotes the maximum value js expects supplier ir to be able to deliver in the next timestep6.367

The reservation price corresponding to a demanded quantity Dir←js is then given by nir←js ≡ Ejsn̆ir
(Dir←js).368

3.1.2. Consumers369

The second type of economic agent considered in acclimate, the consumers, have, in each timestep, to370

decide (i) upon their consumption level and (ii) upon their demand distribution and corresponding reservation371

prices. Whereas consumption is done in parallel to the production step of firms, demand requests are372

distributed during the purchasing step.373

Since commodities are perfect complements, a consumer js7 has a separate consumption for each input374

commodity i,375

Ci→js ≡ min

C∗i→js ·
(
n̄li→js
n̄∗i→js

)εc
i→js

, Ûi→js

 . (8)

The consumption for each commodity i varies isoelastically with the corresponding consumer price n̄li→js.376

This is the price at which js can currently consume commodity i. Further, εci→js ∈ [−1, 0[, and n∗i→js377

denote consumption price elasticity, and the normalized consumer price in the baseline state, respectively.378

Consumption price elasticities may differ among commodities, which permits to distinguish consumption379

from investment goods. Consumption goods are needed for immediate consumption and therefore have a380

lower consumption price elasticity than investment goods. The purchase of investment goods can be delayed381

if prices are high in the disaster aftermath. Note that, in principle, more complex consumption behaviors382

could be considered, e. g., in order to account for increased governmental spending subsidizing the sectors383

most affected by the disaster. Further, the minimum condition in Eq. (8) reflects that consumption may be384

limited by a reduced availability Ûi→js of commodity i if supply shortages arise in the disaster aftermath.385

Having ‘naive expectations’, consumers assume that their consumer prices for input commodities remain386

unchanged in the next timestep. For that, they calculate their demand for commodity i by assuming that they387

will consume (use) the amount EUi→js
≡ C∗i→js ·

(
n̄l

i→js

n̄∗
i→js

)εc
i→js

in the next timestep. For each commodity, they388

then calculate their demand as well as the optimal demand distribution from Eqs. (5) and (7), respectively.389

3.2. Baseline equilibrium390

The MRIO-tables provide data of an economy that is not in a (long-term) perfectly competitive equilibrium,391

in which firms’ marginal production costs equal their marginal revenue. Instead, they describe imperfectly392

competitive markets. In these markets, firms of the same sector differentiate each other not only in price393

but also by other factors such as existing trade relations8, product differentiation, regional tax differences,394

and other trade barriers. Accordingly, we assume that, in the baseline state, the economy is in a dynamical395

monopolistically compeditive equilibrium, in which firms have monopolistic markups – as in standard models396

of monopolistic competition (Ethier, 1982; Romer, 1989).397

6It is worthy to note that transport costs remain ‘virtual’; even if transport costs arise, the firm’s demand remains unchanged.
Thus, transport costs play the role of a penalty function. They are merely a means to ensure the stability of the baseline
equilibrium as discussed in Appendix A.2.3.

7Note that in Fig. 1 the regional consumer is denoted by ku because it represents at the same time the purchaser of the firm
js.

8Note that this assumption aligns well with the assumption of a static network.
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Whereas monopolistic markups and variable production costs are usually not available, the value added398

– given in acclimate by the sum of commodity costs, variable production costs, and profit – as well as399

commodity costs can, for the baseline state, be calculated from the MRIO-tables. Thus, we may obtain400

variable production costs by exogenously specifying firms’ monopolistic markups. The latter may vary among401

firms. Further, data on inventories are usually not provided by MRIO-tables. Therefore, we set inventory402

levels in the baseline state exogenously. These may vary among firms. Note that due to market clearance,403

firms do not refer to their inventories in the baseline state. Thus, market clearance implies that the inventory404

levels in this state constitute the optimal trade-off between preparedness for production disruptions and405

efficiency in normal times. If this were not the case, firms would empty or replenish their inventory until406

reaching the profit-maximizing inventory level.407

The baseline equilibrium is locally stable which can be understood as follows. First, the baseline production408

level X∗js maximizes profit. Below X∗js, marginal production costs are by the markup smaller than the409

marginal revenue given by the purchasers’ reservation price of unity (see discussion of revenue and cost410

curves in Appendix A.2.1). Above X∗js, the marginal revenue is zero if the firm receives only the baseline411

level of incoming demand D∗js← = X∗js (see flat part of revenue curve (solid orange line) in Fig. 2(a)). In412

consequence, marginal revenue is smaller than marginal production costs.413

Second, the distribution of the demand request in the baseline state {Dir←js}r is cost minimizing. That is414

because, when deviating from the baseline demand distribution while keeping outgoing demand fixed, a firm415

has to drive at least one of its suppliers into production extension and demand less from others. Whereas the416

expected marginal purchasing costs for buying from the former are zero (see details on suppliers’ expected417

supply curves in Sec. Appendix A.2.3), the marginal costs for purchasing from the latter decrease with the418

markup. If the transport penalties are chosen as discussed in Appendix A.2.3, it is guaranteed that the extra419

costs arising from the marginal penalties overcompensate the decrease in marginal costs, and, in consequence,420

the baseline equilibrium is locally stable.421

3.3. Dynamics422

In this paper, we discuss the response dynamics of the economic system under local production shocks.423

Adverse events are modeled as exogenous disturbances temporally reducing the ability of firms to produce.424

In addition, the economic linkages between agents can be altered to describe impacts on the infrastructure.425

As discussed above, we want shocks to be not foreseeable for the economic agents. Therefore, the model is426

solved recursive dynamically and economic agents do not know when they will be forced externally and how427

long the forcing will subsist.428

When a disaster strikes, a disequilibrium state of the economy arises, and, in consequence, production429

and consumption of the economic agents, and therefore the economic flows may change in time. On the one430

hand, these perturbations cause supply shortages propagating downstream along the supply chains. On the431

other hand, they evoke demand anomalies that propagate upstream. If the ability of firms to produce is432

limited by direct forcing or due to supply shortages in the disaster aftermath, they also reduce their demand433

for input commodities to avoid an overfilling of their input inventories. This propagation of losses in the434

opposite direction of the economic flow is also known as backward-ripple effect of the economy (Hallegatte,435

2008, 2014). Both supply and demand anomalies constitute cascading deviations from the baseline state of436

the network. We aim to study the indirect production and consumption losses they induce.437

As already mentioned in the introduction, general equilibrium models, which are widely employed to438

assess the economic impacts of disasters (Kousky, 2014; Lazzaroni and van Bergeijk, 2014), assume a global439

equilibrium in each timestep, i. e., they adjust prices to obtain immediate market clearance. In the direct440

disaster aftermath, these immediately adjusted prices should not be interpreted as real observable prices,441

but should rather be understood as scarcity indicators (Hallegatte, 2014). In acclimate, we explicitly allow442

for (local) price anomalies in the disaster aftermath and temporally resolve their decay back to the market443

clearing equilibrium. If a firm affected by a local disaster has to reduce or stop production, it cannot fulfill444

all the demand it receives, i. e., a local scarcity situation for its product arises. In general, each purchaser445

perceives a different scarcity of the affected good and is thus offering different reservation prices for it (see446

Fig. 2(b)). A well-connected agent may be able to easily replace the affected firm by re-directing its demand447

to its other suppliers of the same good. Thus, its reservation prices are lower than those of a less connected448
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agent. In consequence, reservation prices of different purchasers of the same supplier may differ while supply449

and demand are unbalanced. Three main drivers determine the timescale of the decay back to market450

clearing equilibrium: (i) the topology of the economic network, (ii) the ability of the remaining suppliers451

to mitigate scarcity situations by activating idle capacities, and (iii) the time for storage recovery. If the452

recovery time is large compared to the timestep, agents refill their inventories slowly, driving their suppliers453

less into production extension than for smaller values of the recovery time.454

4. Model performance455

In this section, we analyze the response of the model to production interruptions triggered by unexpected456

adverse events. To this end, we focus on the direct and indirect economic effects of stylized disasters. We457

study scenarios that are not meant to be realistic but are chosen to illustrate the model performance. The458

economic network used is based on the Eora-MRIO database (Lenzen et al., 2012) with 2009 as the base459

year. This permits to account for 27 different sectors including final demand (see Table B.5), and a regional460

resolution on the country level (see Table B.4). Thus, in this study firms and consumers are represented461

by national sectors9 and country level final demand, respectively. These economic agents correspond to462

the nodes in the network, which are connected by input and output flows (measured in USD/year). Flows463

below a threshold value of 1 million USD/year are neglected to avoid numeric instabilities. If this results in464

agents without in-going connections, then these are removed from the network; likewise firms with negative465

value added (cf. Eq. (A.23)) are excluded10. After this cleanup, the network consists of 4, 836 firms and466

186 consumers (one for each country) interlinked by about 500, 000 connections. The transport times are467

derived from distances between centroids of the regions. For short distances less than 3, 000 kilometers,468

road transport with an average speed of 35 km/h is considered, whereas for longer distances a transport by469

vessel at 20 km/h is assumed11. All variables whose baseline values are derived from MRIO-data are listed in470

Table B.2. Other parameter values used in the numerical simulations are given in Table B.1. Please note471

that the model is well suited to operate on more refined data depending on the kind of scenario that is to be472

analyzed12. Our model implementation is openly available (Willner and Otto, 2017).473

In this paper, we focus on scenarios in which the Japanese manufacturing sector (manu:jpn) is hit by474

an unexpected disaster reducing its productive capacity. For our simulation, we choose a daily resolution475

to model the economic response at the same timescale as the disaster. Note that with the timescale under476

consideration, also the observed price effects change. The coarser the temporal resolution, the smaller is477

the observed price volatility. There are three parameters that govern the model’s response dynamics with478

regard to price changes: idle capacities (parameters {βi→js}i,j,s, cf. Eq. (A.15)), the increase of the firms’479

marginal variable production costs in production extension (parameters {∆nin,v,>
i }i, cf. Eq. (A.28)), and the480

timescales at which agents aim to balance storage anomalies with respect to the chosen timestep (parameters481

{τi→js}i,j,s, cf. Eq. (5)). The interplay of all three parameters determines the magnitude of price effects.482

First, with the amount of idle capacities that can be activated in the economy, the scarcity perceived in the483

disaster aftermath decreases, and price effects, such as demand surge, become less pronounced. Second, the484

magnitude of these price effects is determined by the increase of the firms’ marginal variable production costs485

in production extension. If a short timestep is chosen, we expect this price increase to be larger – in relative486

terms – than for a longer timestep. This is because, in a short time-frame, it is more expensive for firms to487

9In the following, we will use the notation of firms and national sectors, interchangeably.
10In our modeling setup, this situation may arise if the input commodities of a national sector are in the baseline state more

expensive than its produce rendering cost-effective production impossible. Since our model does not consider subsidies, we
exclude these national sectors. However, this affects only 11 out of 4, 847 national sectors. Hence, the effect of this exclusion on
the observed dynamics is expected to be negligible.

11The average transport velocities of the different means of transportation have been taken from the Sea Rates project
(searates.com).

12For future studies, we plan to incorporate spatially refined data using a newly developed refinement algorithm (Wenz et al.,
2015), which handles non-homogeneous regional and sectoral resolutions. For instance, the region directly hit by the disaster can
be modeled with a high regional resolution to account for small scale disasters and with a high sectoral resolution to account for
the heterogeneity of sectors.
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activate idle capacities; the production system is stiffer. Third, the timescale at which agents’ aim to balance488

inventory anomalies determines to which extent idle capacities are activated because shorter balancing times489

imply higher demand (cf. Eq. (5)). If agents aim to balance their inventory anomalies slowly with respect490

to the chosen timestep, price effects are less pronounced than for the case of rapid balancing of inventories.491

However, in the former case economic recovery takes many timesteps, whereas it takes only a few in the492

latter case.493

We model the impact of the disaster in a stylized way, which permits us to sketch a clear picture of the494

underlying dynamics and economic principles. For the duration of the disaster, the productive capacity of495

manu:jpn is evenly reduced, and, after the disaster, the full productive capacity is restored immediately.496

That is, no gradual increase of the productive capacity during the reconstruction phase is considered. Further,497

we assume that no other national sectors are directly affected. The manufacturing sector in Japan was chosen498

because it is a major sector in the Japanese economy. Therefore, a complete shutdown of this national sector499

constitutes a non-marginal shock for the Japanese economy with potential global repercussions. The highly500

industrialized Japanese economy is strongly interlinked with other national economies rendering it a good501

paradigm to study the indirect effects of disasters on the global supply network. Furthermore, Japan is highly502

exposed to natural disasters as, for example, the East Japanese earthquake and the subsequent Tsunami in503

2011 (Kajitani and Tatano, 2014) or the Kobe earthquake in 1995 (Okuyama, 2014). This renders supply504

interruptions caused by natural disasters more probable than in other developed economies.505

4.1. Local production and price dynamics506

In this section, we first concentrate on the local recovery dynamics of Japan’s manufacturing sector507

(manu:jpn) in the disaster aftermath in Section 4.1.1. Then, we discuss how an economic agent that had508

strongly depended on manu:jpn’s deliveries before the disaster redistributes its demand for manufacturing509

among its remaining suppliers in Section 4.1.2.510

4.1.1. Local recovery dynamics of the national sector directly hit by the disaster511

We consider a scenario, where initially the economy is in the monopolistically competitive, locally stable512

baseline equilibrium, before an unpremeditated production shock reduces manu:jpn’s productive capacity513

close to zero for three days. The recovery dynamics of key local variables in response to this outage is514

shown in Fig. 3. Pre-disaster baseline values are marked by horizontal gray dashed lines, and the beginnings515

of timesteps are denoted by vertical black dashed lines. Figure 3(a) depicts the recovery dynamics of516

incoming demand, production, and expected production, whereas Fig. 3(b) depicts relative deviations of517

the corresponding prices from their common baseline value of unity. The timeseries have been shifted to518

emphasize the timing of events within each timestep. At first (light shading), the national sector receives its519

incoming demand Dmanu:jpn← (see Eq. (A.20)) from its purchasers, which have an average reservation price520

of n̄pmanu:jpn (see Eq. (A.39)). Incoming demand and the corresponding average purchasers’ reservation price521

are denoted by gray dashed lines in Fig. 3(a) and (b). Then (medium dark shading), the national sector522

determines its production level by profit maximization according to Eq. (A.35). Production and average per523

unit selling price n̄manu:jpn (see Eq. (A.38)) are depicted by blue solid lines in Figs. 3(a) and (b)). Eventually524

(dark shading), the national sector determines its expected production level EXmanu:jpn (see Eq. (A.43)) and its525

offer price En̄manu:jpn (see Eq. (A.40)), which are denoted by red dash-dotted lines in Figs. 3(a) and (b), and526

communicates them to its purchasers.527

In the baseline equilibrium state, for t < 0, markets clear and manu:jpn’s production equals its incoming528

demand. Since the equilibrium is stable, manu:jpn expects to have the same production in the next as in529

the current timestep, and its present production equals the one it expects to have in the next timestep. The530

disaster strikes at day 0 reducing manu:jpn’s productive capacity close to zero13 until day 2 (blue shaded531

areas in Fig. 3), i. e., λ(t)
manu:jpn = 0.001 for t ∈ [0, 2] (cf. Eq. (A.15)). Since manu:jpn’s purchasers cannot532

predict the arrival of the disaster, manu:jpn’s incoming demand and the purchasers’ reservation prices533

13Note that we do not consider a complete shutdown because it constitutes a special case, in which the purchasers do not
send any demand requests and the national sector directly hit communicates neither an average selling price nor an offer price.
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Figure 3: Local recovery dynamics of the manufacturing sector in Japan (manu:jpn). Parameters: λ(t)
manu:jpn = 0.001 for t ∈ [0, 2],

others as in Table B.1.

remain at their baseline levels for this timestep. However, being affected by the disaster manu:jpn can fulfill534

only a small share of the incoming demand since its productive capacity X̂manu:jpn – and with it its actual535

production level Xmanu:jpn – is strongly reduced by the external forcing. To calculate its expected production536

level EXmanu:jpn and offer price En̄manu:jpn , manu:jpn assumes that the incoming demand will remain unchanged537

in the next timestep (cf. assumption (ii) in Appendix A.2.2). By taking its reduced productive capacity538

into account, manu:jpn determines expected production level and offer price by maximizing its expected539

profit (see Eq. (A.41)). manu:jpn’s purchasers in turn perceive a stock deficit in the transport chains540

connecting them with manu:jpn as the deliveries of manu:jpn are much smaller than in the baseline state541

(see Eq. (A.46)). Consequently, they try to compensate the shortfall of manu:jpn by shifting their demand542

to other business partners. However, they are confronted with transport penalties because manu:jpn’s543

deliveries are smaller than in the baseline state (cf. Eq. (A.55)). In order to reduce this penalty they offer544

a higher reservation price to manu:jpn than in the baseline state aiming to increase their expected shares545

on manu:jpn’s upcoming production (see Eq. (A.48)). This causes an increase of the average purchasers’546

reservation price from day 1 to day 3.547

When manu:jpn determines its offer price at day 2, it expects the external forcing to remain unchanged548

and to still limit its production in the next timestep. However, at day 3, its productive capacity is restored549

instantly. In response, manu:jpn’s purchasers react to this change by redirecting more demand back to550

manu:jpn. Aiming to refill their inventories, they even address more demand to manu:jpn than in the551

baseline state. However, they remain with their expected demand shares, in average, below the shares expected552

to lead to production extension of manu:jpn (see Eq. (A.51)). In consequence, they offer a reservation price553

that is smaller than the offer price manu:jpn has communicated (cf. Eq. (A.53)). Accordingly, at day 4,554

manu:jpn receives an above-baseline demand, but the average purchaser’s price drops below its baseline555

level of unity. manu:jpn responds to the incoming demand by producing more than in the baseline state and556

by diminishing its monopolistic markup below its baseline value. This causes manu:jpn’s average selling557

price to drop below its baseline value of unity, too. However, since in the calculation of expected production558

and offer price manu:jpn respects its baseline monopolistic markup, manu:jpn’s offer price at day 4 only559

reduces down to its baseline value of unity. In the direct disaster aftermath, from day 4 onward, economic560

agents that were indirectly affected by the disaster, e. g., by the resulting supply shortages, aim to restock561

their inventories. Thus, also manu:jpn perceives a higher incoming demand and is able to sell its production562

– in average – to higher prices than in the baseline state (see also discussion in Section 4.2).563
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4.1.2. Demand redistribution of a national sector indirectly affected by the disaster564

In this section, we consider the same scenario as in the previous section. However, here we discuss how565

a purchaser of the forced national sector manu:jpn shifts its demand to unaffected suppliers in order to566

mitigate manu:jpn’s outage. Figure 4(a) depicts the demand requests that the machinery sector in Hong567

Kong (mach:hkg) addresses to its suppliers for manufacturing: Japan (jpn, green shading), the United568

States of America (usa, orange shading), and others (row, blue shading)14. In the baseline state, before569

day 0, manu:jpn is mach:hkg’s second most dominant supplier for manufacturing. However, in the presence570

of the disaster, mach:hkg compensates the (close-to-)outage of manu:jpn by demanding larger quantities571

from its remaining suppliers. Additionally, mach:hkg withdraws from its input inventory (dark gray shading572

in Fig. 4(b)) at day 2. It determines the optimal distribution of demand requests by minimizing its expected573

purchasing costs according to Eq. (6). We see from Fig. 4(a) that, from day 2 onward, manu:jpn needs to574

source from its inventory but demands larger quantities from its remaining suppliers than in the baseline575

state. The success of manu:jpn’s purchasing strategy can be deduced from Fig. 4(b) depicting the deliveries576

of manu:jpn’s suppliers as well as the change in mach:hkg’s storage content; plotted are the contents of577

the first sections of the transport chains connecting mach:hkg with its suppliers. The anomaly of that578

inventory content is shown in Fig. 4(c). For instance, at day 0, mach:hkg tries to compensate for the lack579

of delivery from manu:jpn by increasing its demand to its largest supplier, manu:usa. It even increases its580

overall demand to compensate for the losses already perceived in the transport chain. However, since the581

transport time from usa to hkg is 26 days, mach:hkg has to wait for the additional delivery and starts582

to resort to its storage at day 2. Accordingly, it keeps its demand to its suppliers (especially to those not583

directly affected) high to refill its inventory. The distribution slowly returns back to the baseline state after584

the inventory can successfully be replenished after day 26. Overall, mach:hkg can keep up its production585

level (not shown). This indicates that mach:hkg’s strategy for demand redistribution can effectively buffer586

the close-to-outage of its second largest supplier.587

At day 3, directly after the disaster, manu:jpn communicates to its purchasers that it has recovered588

from the disaster and regained its full productive capacity. Together with a comparatively low offer price589

(not shown) this ‘persuades’ mach:hkg to request even more from manu:jpn than in the baseline state590

(green shaded areas in Fig. 4(a) at day 3 compared to days before day 0). However, since all of manu:jpn’s591

purchasers respond in this way, manu:jpn cannot fulfill all demand requests. For instance, mach:hkg592

receives less than requested at day 4, because it was outbid by other purchasers of manu:jpn beforehand.593

This supply-demand mismatch gradually relaxes until the deficit in the transport chain connecting manu:jpn594

and mach:hkg vanishes and eventually manu:jpn fulfills the demand request by mach:hkg like in the595

baseline state. In consequence, mach:hkg returns to its baseline demand distribution.596

4.2. Global response dynamics597

In this section, we study the impact that a local production reduction of Japan’s manufacturing sector598

has on the global economy. Figures 5(a), (b) and (c) depict production anomaly, the anomaly of incoming599

demand, and storage anomaly for the forced national sector (manu:jpn, blue solid line), the manufacturing600

sector manu:row aggregated over the rest of the world (without manu:jpn; gray dashed line), and the601

global economy without the manufacturing sector (red dash-dotted line), respectively. For simplicity, we602

refer to the latter as the global economy in the following. Anomalies are measured as absolute deviations603

from their respective baseline values (horizontal gray dashed lines). The storage anomaly is given by the604

sum of the anomalies of all input storage levels. Figure 5(d) depicts the corresponding relative deviations605

of manu:jpn’s, manu:row’s, and the global economy’s average selling prices. Again, the disaster strongly606

reduces manu:jpn’s ability to produce from day 0 to day 2 (blue shaded areas). Detail enlargements are607

depicted in Figs. 5(e)–(h) focusing on the timesteps, at which the disaster directly impacts on manu:jpn, as608

well as the first few days in the disaster aftermath. Here, subsequent timesteps are marked by alternating609

light and dark gray shadings.610

14It is worthy to note that the outgoing demand requests depicted in Fig. 4(a) are received by the respective suppliers only
one timestep later. For instance, the large demand addressed by mach:hkg to manu:jpn at day 3 enhances manu:jpn’s incoming
demand only at day 4 (see gray dashed line in Fig. 3(a)).
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Figure 4: Demand and delivery dynamics in the disaster aftermath. Shown are the demand requests for manufacturing of the
machinery producing sector in Hong Kong (mach:hkg) (a), the corresponding deliveries (b), and the anomaly of mach:hkg’s
input storage level for manufacturing goods (c). Parameters as in Fig. 3.
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Figure 5: Response dynamics of the manufacturing sector in Japan manu:jpn, the manufacturing sector aggregated over the
rest of the world manu:row (global except manu:jpn) and the overall global economy without the global manufacturing sector.
Parameters as in Fig. 3.
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From Figs. 5(a) and (d), we see that, already during the disaster, manu:row extends its production611

above the baseline level, revealing that purchasers of manu:jpn shift demand away from the affected producer612

towards their remaining manufacturing suppliers driving them into production extension (see enhanced613

incoming demand of manu:row in Figs. 5(b) and (f)). While the demand is immediately communicated614

to upstream suppliers, it takes some time until the supplies arrive at their destination. Thus, manu:row615

and the rest of the global economy source from their input inventories to extend production, which reduces616

their storage levels below their baseline values as depicted in Figs. 5(c) and (g). In contrast, the storage617

level of the affected national sector manu:jpn increases as it cannot cancel ordered commodities. In the618

disaster aftermath, manu:row as well as the rest of the global economy remain in production extension619

to replenish their inventories, and manu:jpn is now driven into production extension, too. The timescale620

of this storage replenishment is either determined by the timescale at which agents aim to replenish their621

inventories (cf. Eq. (A.44)) or the availability of idle capacities in the economy, depending on which of these622

constraints is binding.623

From the price timeseries depicted in Figs. 5(d) and (h), we gather that price effects decrease in magnitude624

from the forced national sector manu:jpn, via manu:row, to the global economy. This can be understood by625

analyzing the timeseries of the average selling prices in Figs. 5(d) and the corresponding detail enlargement in626

Fig. 5(h). Locally, the outage of manu:jpn is a strong perturbation for manu:jpn’s direct purchasers; they627

have to readdress their demand to their remaining manufacturing suppliers. The commodity manufacturing628

becomes scarcer, which results in an inflation of its price – demand surge occurs. However, for the global629

manufacturing sector, and especially for the global economy, the outage of manu:jpn is a rather small630

perturbation. This is why global price increases are smaller than local ones.631

Concerning production anomalies it is worthy to note from the detail enlargement in Fig. 5(e) that,632

during the disaster, the production anomaly of the global economy is larger than that of the forced national633

sector. This implies that the production interruption of manu:jpn causes further disturbances along the634

supply chains. Since the input inventories permit firms to sustain the production level of the baseline state635

for 15 days, these additional production reductions cannot arise from shortages in input commodities, i. e.,636

supply shortages. In contrast, they are induced by a reduction of the demand manu:jpn addresses to its637

suppliers. It can be seen from Figs. 5(c) and (g) that the input inventories of manu:jpn fill up during638

the disaster. Though it cannot operate, the input quantities it has already ordered before the disaster are639

delivered successively. As a consequence, manu:jpn reduces its demand requests to avoid an overfilling of its640

input inventories. Thus, its suppliers produce less and, in consequence, also have a reduced demand. This641

results in demand reductions propagating upstream along the supply chains from purchaser to supplier. As642

mentioned above, this propagation of disturbances in the opposite direction of the economic flows is known643

as backward-ripple effect (Hallegatte, 2008, 2014).644

5. Importance of indirect losses645

In this section, we focus on the global repercussions of a local, disaster-induced production reduction646

by discussing direct and indirect production losses as well as loss cascades. Losses are measured in units647

of USD/day. The direct daily losses are given by the production reductions of the directly affected firms,648

{js}j,s, for the time span of the disaster impact, from day t = tb to day t = te,649

lD,(t) ≡
∑

ml∈{js}j,s

[
X∗ml −X

(t)
ml

]
. (9)

Total daily losses are given by the deviation of global production X(t) ≡
∑
mlX

(t)
ml from its baseline level650

X∗ ≡
∑
mlX

∗
ml and therefore read651

lT,(t) ≡ X∗ −X(t). (10)
Indirect daily losses are then calculated from the difference of total and direct losses,652

lI,(t) ≡ lT,(t) − lD,(t). (11)
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Finally, cumulative losses are obtained by subsequently summing daily losses over time, i. e., cumulative653

direct LD,(t), total LT,(t), and indirect LI,(t) losses read654

LD,T,I,(t) ≡ ∆t
t∑

t′=tb

lD,T,I,(t
′). (12)

Loss cascades occur when direct production losses cannot be buffered by inventories. 1st-order cascades655

of indirect losses arise when the direct purchasers of the forced national sector have to interrupt production656

because their input inventories are depleted, and they consequently cannot buffer its outage any longer. More657

generally, loss cascades of nth-order arise when the forcing is long enough to deplete the input inventories of658

firms linked to the forced national sector by n− 1 business partners. These loss cascades were discussed in659

detail in Bierkandt et al. (2014) describing the first version of the acclimate model, which did not take the660

demand side of the economy into account. For several reasons, the situation becomes more complex if the661

demand side is considered as discussed in detail in Wenz et al. (2014). First, in addition to supply shortages,662

demand shortages may occur leading to backward ripple effects as discussed in Section 4.2. Second, economic663

agents can readdress their demand to non-affected suppliers. Since, here, the unaffected suppliers have the664

ability to extend production – the economy has idle capacities – indirect losses can be mitigated effectively.665

This reduces the risk of supply chain interruptions and therefore increases the economy’s resilience. Third,666

in this model version, firms can reduce or stop production when the average purchasers’ price is too low667

thereby enhancing indirect losses.668

At first, we discuss loss propagation in the global supply network in Section 5.1, before studying the669

dependence of indirect losses upon disaster duration and size in Section 5.2.670

5.1. Propagation of direct and indirect losses671

As in Section 4, we choose a very stylized disaster affecting only one node in the economic network to672

illustrate the model performance. Again, the production level of manu:jpn is forced close to zero, but, here,673

a considerably longer disaster duration of 20 days is chosen (λ(t)
manu:jpn = 0.001 for t ∈ [0, 19]). It is now long674

enough to potentially deplete input inventories of some of manu:jpn’s direct purchasers since these last only675

for 15 days at baseline production level. As a consequence, loss cascades occur from day 15 onward.676

Figure 6(a) shows the temporal evolution of daily total losses (gray solid line and circles), and direct677

and indirect losses are indicated by blue and red shadings, respectively. Alternating light and dark shadings678

highlight subsequent timesteps (days), and the onset of 1st-order loss cascades is denoted by a vertical679

black dashed line. Indirect daily losses increase during the first four days of the disaster, then they slightly680

decrease and almost saturate. Due to the appearance of 1st-order loss cascades at day 15, indirect losses681

increase significantly until the direct forcing ceases. In the disaster aftermath, indirect losses, and total losses682

accordingly, become negative indicating that idle capacities are activated to restock inventories. At day 40683

losses peak again revealing that supply shortages cannot be buffered completely by the direct purchasers684

of the forced national sector. Instead, they continue to propagate along the supply chains and peak at685

bottlenecks. In consequence, the shape of the loss peaks strongly depends on the topology of the underlying686

trade network and the corresponding transport delays. In summary, it is important to note from Fig. 6(a)687

that the temporal evolution of indirect and therefore of total losses is strongly nonlinear. Thus, we may688

conclude that, for a precise loss assessment, it is advantageous to use a model describing the economic689

impacts on the disaster’s timescale.690

For a better understanding of the relation between direct and indirect losses, Fig. 6(b) shows indirect691

cumulative losses in terms of direct cumulative losses. Each data-point depicts direct versus indirect losses692

up to a certain disaster duration (see upper x-axis). From day 15 onward (gray shaded area), the first loss693

cascades occur increasing the slopes of the curves for cumulative losses. We can derive two main messages694

from Fig. 6(b). First, it reveals that, for non-marginal perturbations of the economy, indirect losses can be of695

the same order of magnitude as cumulative direct disaster losses, and should therefore be comprised in a696

comprehensive disaster assessment. Second, inventory holding has a mitigating effect on indirect losses. This697

is why in the gray shaded area, where inventories are depleted, indirect losses are strongly enhanced.698
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Figure 6: Losses evoked by a strong production reduction of the Japanese manufacturing sector from days 0 to 19. Dark shaded
areas highlight disaster durations for which loss cascades occur. (a): Timeseries of daily production losses. (b): Indirect
versus direct cumulative production losses. (c): Ratio of total to direct production loss (economic amplification ratio (EAR)).
Parameters: λ(t)

manu:jpn = 0.001 for t ∈ [0, 19]; others as in Table B.1.
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These two main messages are also underlined by Fig. 6(c) depicting the ratio of total to direct losses,699

which is plotted as a function of direct cumulative losses and disaster duration. This ratio, known as economic700

amplification ratio (EAR), was introduced by Hallegatte et al. (2007) representing the factor by which total701

losses outstrip direct ones. Thus, the EAR is a measure for the importance of indirect losses with respect to702

direct ones. An EAR significantly larger than unity indicates that direct losses are insufficient to estimate703

the overall consequences of a disaster (Hallegatte, 2008). It increases rapidly within the first four days of the704

disaster and then saturates at a value of about 1.6, before increasing again from day 15 onward – in the705

time-frame where loss cascades occur. This confirms the conclusion of Hallegatte et al. (2007) that indirect706

losses are important to assess the overall losses of large scale disasters.707

5.2. Dependence of indirect losses upon disaster duration and disaster size708

In this section, the dependence of cascading losses on disaster duration and disaster size is discussed.709

To ensure comparability with the previous sections, we again consider disasters affecting only the Japanese710

manufacturing sector (manu:jpn). Figure 6(a) depicts the timeseries of total losses for close-to-outages711

(λmanu:jpn = 0.001 like in the previous sections) of manu:jpn for different durations. In Figure 6(b) the disaster712

duration is fixed to 20 days and the disaster size is varied instead, ranging from small to large reductions of713

productive capacity. To permit better comparability of the system’s responses, time is normalized to disaster714

duration and total losses are normalized to direct ones. This normalization permits us to depict direct losses715

by gray shaded rectangles in Figs. 7(a) and (b).716
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Figure 7: Timeseries of total loss evoked by production reductions of the Japanese manufacturing sector. Time and total losses
are normalized with respect to disaster length and direct losses, respectively. The gray rectangle denotes the direct losses. (a):
Total losses for close-to-outages of the Japanese manufacturing sector (λ(t)

manu:jpn = 0.001 for t ∈ [0, 19]) for different durations.
(b): Total losses for disasters of different sizes, i. e., different values of λmanu:jpn; disaster duration is fixed to 20 days. Parameters
as in Table B.1.

By comparing, losses arising from short disasters with those arising from longer ones in Fig. 6(a), we717

note that with increasing disaster duration the economy is driven further in production extension. Also, the718

regime of production extension is entered sooner relative to disaster duration. This is because storage deficits719

increase with disaster duration and agents are therefore willing to increase their reservation prices to replenish720

their inventories, driving their suppliers further into production extension. Moreover, as already discussed in721

Section 5.1, we see that large indirect losses occur if inventories of the direct purchaser of manu:jpn are722

depleted (disaster duration larger than 15 days) and 1st-order loss cascades are triggered. Further, for longer723

disasters higher-order effects occur well after the disasters have ceased, indicating that supply shortages724

propagate further downstream in the supply network. This is very pronounced in the timeseries for disaster725

durations equal to and larger than 10 days. It is worthy to note that these higher-order effects arise already726

for disasters not long enough to trigger 1st-order loss cascades as seen from the disaster of 10 days duration.727

Thus, we conclude that already relatively small supply disturbance can accumulate at bottlenecks further728

downstream in the supply network and cause supply disruptions.729
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Eventually, from Fig. 6(b) depicting the dependence of total losses on the size of direct losses, we note730

that for small disasters, which are not large enough to trigger 1st-order cascades, towards the end of the direct731

forcing, total losses can even become somewhat smaller than direct losses (see loss timeseries for remaining732

capacities ranging between 80% to 30%). This reveals that even relatively large capacity reductions can be733

mitigated efficiently. The local cost minimization enables agents to efficiently activate idle capacities of their734

suppliers. For larger disasters, however, this loss mitigation mechanism reaches its limit, and loss cascades735

occur. Overall, Fig. 7 highlights the strongly nonlinear relationship between the size and the duration of736

direct losses on the one hand, and the size as well as the temporal evolution of total losses on the other. To737

keep the analysis concise, we here concentrate on a very aggregate view of the whole economy. With the738

setup of the acclimate model, however, we can also analyze regional differences in loss distribution to be739

addressed in subsequent studies.740

6. Discussion741

With the acclimate modeling framework, we aimed to tackle some important limitations of other modeling742

approaches prevalently used for the assessment of indirect disaster effects. In particular we tried to find743

middle ground between I-O and CGE modeling frameworks with their often opposing assumptions and foci.744

In the following, we discuss our findings highlighting differences and similarities to these two model types as745

well as to other ABM approaches.746

Spatial and sectoral resolution. Being based on I-O tables, acclimate has been designed to account for a large747

number of heterogeneous economic agents in order to reflect the economic inter-dependencies in high detail.748

As in I-O and CGE models, its spatial and sectoral resolution is, in principle, only limited by data availability.749

Modeling the interplay of multiple heterogeneous agents and considering the network structure of their750

interlinkages allows to describe complex effects such as cascading losses and lock-in situations (Acemoglu751

et al., 2012, 2015). Yet, considering national sectors, this study still lacks a realistic representation of the752

firm size distribution. For a local economy, this was done by Henriet et al. (2012) revealing that indirect753

losses strongly depend on the topology of the firm network, and an aggregate perspective – as assumed in754

this study – still tends to underestimate losses. However, often in disaster impact studies only the local755

economy of the affected region is modeled in detail. Since the supply chain network is globally integrated756

(Lenzen et al., 2013), and value added chains span the globe (Boehm et al., 2015), this limits the potential of757

these studies to describe the impacts that local disasters have on the global economy.758

Flexibility of the economic system. The amount of indirect losses observed in an economic model is governed759

by the flexibility of its production system. This is why acclimate aims to find a reasonable balance between760

the fixed production system in I-O models and the highly flexible one in CGE approaches. We decided to761

incorporate microfoundations for the agents’ behavior. In that, agents have the possibility to respond to762

their current situation, up-stream by demand re-distribution (cf. Fig. 4), and down-stream by adaptation of763

their production levels (cf. Figs. 5(a) and (e)). The practical importance of these adaptation mechanisms has764

been highlighted in a study by van der Veen and Logtmeijer (2005) revealing that an economy’s vulnerability765

with respect to supply interruptions is strongly reduced when demand re-addressing is possible and idle766

capacities are present. Further, in acclimate, supply disruptions are mitigated by the economic agents’ input767

inventories acting as buffer stocks. At the same time, substitution among different input commodities as in768

CGE models is not possible.769

As discussed in Section 4.2, price inflation in the disaster aftermath activates prior idle production770

capacities in the economic system enabling the agents to restock their inventories. The extent to which771

warehousing can enhance the resilience of the global economy to local production disruptions was revealed by772

our analysis of the economic amplification ratio in Section 5.1. We found that the baseline inventory level773

determines the disaster size that can be absorbed by the economic system. If this threshold is exceeded,774

indirect losses attain the same order of magnitude as direct losses. These findings are in line with earlier775

studies by Hallegatte (2014) and MacKenzie et al. (2012) indicating that the interplay of both, inventories and776

idle capacities, constitutes a powerful strategy for disaster impact mitigation. However, since stock-holding777
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is costly, the chosen inventory level is always a trade-off between economic robustness against production778

interruptions and efficiency in normal times (Henriet et al., 2012).779

Summing up, the production system in acclimate is less rigid than the one of I-O models, but it remains,780

at the same time, less flexible than the one of CGE models. Our modeling approach is therefore suited best781

for the timescale of months following a disaster – too short for the economic system to restructure and to782

substitute scarce commodities, but long enough to adjust its productive capacities. On longer timescales of783

years, accounting for the restructuring of the economic network in the aftermath of a disaster appears to be784

important in order to realistically describe the evolution of firm size distributions (Gualdi and Mandel, 2016)785

or disaster impacts on long-term growth (Mandel, 2012).786

Temporal resolution. I-O and CGE modeling frameworks either statically compare pre- and post-disaster787

states of the economy, or, in the case of dynamic CGEs, have a coarse temporal resolution of 5 to 10 years788

(Okuyama, 2007). In consequence, scarcity situations arising from supply chain disruptions in the immediate789

disaster aftermath cannot be temporally resolved, rendering a comprehensive loss assessment difficult. This790

is why, in acclimate, we opted for a high temporal resolution to study the disaster impacts on the same791

timescale as the shock occurs, which is in the order of days to months. This permitted us to resolve the792

cascading of indirect losses and to dynamically detect bottlenecks of the supply network that are responsible793

for large indirect losses (cf. Fig. 6). Further, acclimate enabled us to systematically study the dependence of794

cascading losses upon disaster duration and disaster size (cf. Figs.7).795

Since real world economic actors have to cope with uncertainties on future events (Babiker et al., 2009),796

the myopic agents in acclimate provide a more realistic setting for disaster impact analyses than dynamic797

CGEs with inter-temporal optimization assuming perfect foresight of all economic actors. However, the latter798

are more favorable to determine optimal policies in the long-run (Chen et al., 2016).799

Disequilibrium dynamics. In comparison to I-O models, CGE models have the advantage that they can800

account for price effects. The representation of prices opens up the possibility to base the agents’ decision801

rationale on clear and simple optimization principles.802

There is one further major difference between acclimate and CGE models worthy to discuss. Since803

the agents in acclimate optimize independently, there is no need to imply a market clearing equilibrium804

in each timestep as it is done in CGE approaches; in the short-term, disequilibrium situations with local805

supply-demand mismatches may arise (cf. Fig. 4). In disequilibrium, reservation prices of different purchasers806

sourcing from the same supplier may differ according to the scarcity each of the purchasers perceives. We find807

that these differences decrease over time, when the system decays back to the market clearing equilibrium.808

7. Conclusions809

In this paper, we presented the model acclimate, which has been designed to assess the economic impacts of810

unanticipated production disruptions, caused, for instance, by extreme weather events. Since a comprehensive811

disaster analysis is beyond the scope of this model description paper, we studied the impact of stylized812

disasters of different sizes affecting the Japanese manufacturing sector. In our analysis we adopted a global813

perspective and showed that, in the supply network, disruptions can spread from one national sector to814

the next causing cascading indirect losses. Over the last decades, firms have increasingly eliminated cost815

inefficiencies by reducing their warehousing and by striving for a smaller supplier base. Our analyses suggest816

that these trends may have to be reversed in the future if meteorological extreme events are to intensify as817

projected in a warming world. We find warehousing to be a central adaptation option to reduce indirect818

losses; a higher redundancy in the supplier base may help to avoid supply shortages. However, more research819

is needed to provide a sound understanding of the global supply chains’ vulnerability in order to enable820

individual firms to estimate their supply chain risk, and to provide guidelines for risk reduction. Our821

preliminary analysis suggests that it is crucial to not only focus on first-tier suppliers, but to analyze the822

supply chain as a whole. Enhancing the resilience of the global supply network cannot be achieved by823

single countries, but requires an international effort to facilitate the development and implementation of824

international standards, programs and guidelines to render supply chains climate-proof.825
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Appendix A. Detailed model description1057

This Appendix provides a detailed technical description of the acclimate modeling framework. It is written1058

as a comprehensive stand-alone description. First, we introduce the basic model setup in Appendix A.1.1059

Then, we discuss firms and consumers in Appendix A.2 and Appendix A.3, respectively, before explaining1060

the first-order condition for a locally stable baseline equilibrium in Appendix A.4.1061

Appendix A.1. Basic model setup1062

We consider an economy consisting of monopolistic competitive firms and regional consumers. These1063

economic agents are interlinked by trade flows forming a complex network of supply chains as sketched in1064

Fig. 1. The nodes of this trade network are the economic agents and their trade relations are represented by1065

weighted, directed links. In each region we consider two types of agents: firms, each representing one of the1066

different economic sectors located in the region, as well as a consumer representing the region’s final demand.1067

The latter accounts for household consumption, governmental spending, and private investments. We label1068

each economic agent by an index-pair ir, where the first index i denotes a sector in the set of all sectors I1069

and the second index r specifies a region in the set of all regions R.1070

In the absence of external perturbations, the economy is in a stable monopolistically competitive1071

equilibrium state, the baseline state. Quantities in this state are time constant and are denoted by a1072

superscript (·)∗. This baseline state can be disturbed by exogenous local disasters, which we define as1073

idiosyncratic production shocks. They cannot be anticipated by the agents. When a disaster strikes, a1074

disequilibrium state of the economy arises, and, in consequence, production and consumption of the economic1075

agents, and therefore the economic flows, may change in time. In general, time-dependent quantities are1076

denoted by a superscript (·)(t) marking the timestep t ∈ N0 to which they belong.1077

The baseline trade flows connecting these agents are derived from multi-regional input-output (MRIO)1078

tables. These are usually given in units of USD/year and have, thus, to be divided by the number of timesteps1079

per year to obtain the set of baseline flows1080

{Z∗ir→js}i,r,j,s, (A.1)

where Z∗ir→js denotes the monetary flow from firm ir to economic agent js. In principle, the level of regional1081

and sectoral detail of the modeled economy is limited by data availability only. We aggregate these to derive1082

the baseline production level of firm ir,1083

X∗ir ≡
∑
ir

Z∗ir→js (A.2)

and the baseline consumption level of consumer js,1084

C∗i→js ≡
∑
r

Z∗ir→js. (A.3)

We assume a demand-driven economy, which implies that economic agents first decide what demand they1085

address to each of their suppliers and what their reservation prices are. Only afterwards, in the next timestep,1086

their suppliers can decide to which extent they are willing to fulfill the received demand. More precisely, a1087

demand request a purchaser js addresses to a supplier ir is a tuple
(
D

(t−1)
ir←js, n

(t−1)
ir←js

)
of demanded quantity1088

D
(t−1)
ir←js and corresponding dimensionless reservation price1089

n
(t−1)
ir←js ≡

P
(t−1)
ir←js

P ∗
, (A.4)
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which is obtained by normalizing the offered price P (t−1)
ir←js with respect to the baseline price P ∗ = 1. The1090

monetary value of such a tuple is given by the product of the demanded quantity and its dimensionless1091

price15,1092

v(D(t−1)
ir←js) ≡ n

(t−1)
ir←jsD

(t−1)
ir←js.

Note that, in the following, we denote values of flows and values of stocks by v(·) and V (·), respectively.1093

Supplier ir responds to js’s demand requests by sending a flow Z
(t)
ir→js at price n(t−1)

ir←js in the next timestep1094

(t) (see Fig. 1). It cannot negotiate the price, but only decides to which extent it is willing to fulfill the1095

demand request at that price. Since we postulate a demand-driven economy, supply flows must not exceed1096

demand flows. The model is constructed such that the baseline state of the economy is a monopolistically1097

competitive market clearing equilibrium, where supply flows equal demand flows,1098

Z∗ir→js = D∗ir←js ∀ r, i. (A.5)

Besides flows, the model accounts for two types of commodity stocks acting as buffers under supply shocks:1099

the rolling inventory (see ‘transport chain’ in Fig. 1) and inventories for the agents’ input commodities (blue1100

boxes in Fig. 1) to be discussed in the following.1101

Rolling inventories. Transport of commodities from producers to purchasers can be time consuming; the1102

commodities ‘en route’ form the rolling inventory. Let τir→js ≡ dir→js∆t denote the time needed for the1103

transport of commodity i from producer ir to purchaser js, where dir→js ∈ N denotes the number of1104

timesteps needed for the shipping. We conceptualize the commodities on the way as a transport chain with1105

dir→js transport sections16 (see Fig. 1). Then, for d ∈ {0, . . . , dir→js − 1} the amount of commodity i that1106

is, at time t, contained in section d of the transport chain from ir to js is given by ∆tZ(t−d)
ir→js. Summing1107

the commodities in the transport boxes along the transport chain then yields the rolling inventory for this1108

business connection, which may be written as1109

T
(t)
ir→js ≡ ∆t

dir→js−1∑
d′=0

Z
(t−d′)
ir→js . (A.6)

Further, the total rolling inventory of js for commodity i is obtained by adding up the rolling inventories of1110

js’s suppliers for commodity i, yielding1111

T
(t)
i→js ≡

∑
r′

T
(t)
ir′→js. (A.7)

Input inventories. Besides the rolling inventory, the economic agents employ input inventories for the1112

commodities that they need for production or consumption to buffer supply failures. Let S(t)
i→js denote the1113

content of agent js’s inventory (or ‘storage’) for input commodity i. It varies with the difference of the input1114

flow I
(t−1)
i→js and the use U (t−1)

i→js of commodity i in the previous timestep.1115

The input flow I
(t)
i→js is calculated by summing up the flows that arrive in the current timestep,1116

I
(t)
i→js ≡

∑
r′

Z
(t−(dir′→js−1))
ir′→js , (A.8)

and the value of I(t)
i→js is given by1117

15In the baseline state, the value of each demand request equals the demanded quantity, i. e., v(D∗ir←js) = D∗ir←js, since
price normalization in Eq. (A.4) implies n∗ir←js = 1 ∀i, r, j, s.

16This description also permits us to study transport disturbances by damaged or destroyed infrastructure in later model
versions.
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v(I(t)
i→js) ≡

∑
r′

v(Z(t−(dir′→js−1))
ir′→js ) =

∑
r′

n
(t−dir′→js)
ir′←js Z

(t−(dir′→js−1))
ir′→js .

In the baseline state, the input flow I∗i→js of each commodity i equals its use in the production process U∗i→js,1118

i. e., we have1119

I∗i→js ≡ U∗i→js ≡
∑
r′

Z∗ir′→js. (A.9)

The storage content in the baseline state is assumed to be a multiple of the baseline input flow I∗i→js,1120

S∗i→js ≡ ΨiI
∗
i→js. (A.10)

From Eq. (A.12), we note that, since I∗i→js = U∗i→js holds true in the baseline state, the agents only have1121

to refer to their input inventories if supply shortages occur in the aftermath of a disaster. The factor Ψi1122

describes the number of days that js can keep up its baseline production level if the supply with input1123

commodity i is interrupted.1124

Further, baseline storage content may be exceeded at most by a factor ωi. This implies that the maximum1125

storage content may be written as1126

Smax
i→js ≡ ωiS∗i→js. (A.11)

Additionally, we employ the factor µ(t)
i→js ∈ [0, 1] describing the impact of a perturbation reducing the1127

maximum storage capacity. In absence of any forcing, we have µ(t)
i→js = µ∗i→js = 1. The total inventory is1128

then capped by the maximum capacity µ(t)
i→jsS

max
i→js and its content at time t is given as1129

S
(t)
i→js ≡ min

[
∆t
(
I

(t−1)
i→js − U

(t−1)
i→js

)
+ S

(t−1)
i→js , µ

(t)
i→jsS

max
i→js

]
. (A.12)

We can rewrite this equation as1130

S
(t)
i→js ≡ ∆t

[
r

(t)
i→jsI

(t−1)
i→js − U

(t−1)
i→js

]
+ S

(t−1)
i→js ,

where r(t)
i→js ∈ [0, 1] describes the share of the last input flow I

(t−1)
i→js that could be stored given storage1131

limitations, i. e.,1132

r
(t)
i→js ≡


1

I
(t−1)
i→js

min
[
µ

(t)
i→jsS

max
i→js − S

(t−1)
i→js + U

(t−1)
i→js , I

(t−1)
i→js

]
if I

(t)
i→js 6= 0,

0 else.

Then, the value V (S(t)
i→js) of the storage content S(t)

i→js at time (t) can be calculated as1133

V (S(t)
i→js) ≡ ∆t

[
r

(t)
i→jsv(I(t−1)

i→js )− v(U (t−1)
i→js )

]
+ V (S(t−1)

i→js )

= ∆t
t−1∑
t′=1

[
r

(t)
i→jsv(I(t′−1)

i→js )− v(U (t′−1)
i→js )

]
+ S∗i→js,

where we have employed that in the baseline state V (S∗i→js) = S∗i→js ∀i, j, s holds true.1134

This permits us to calculate the costs to which js can use input good i. These are given by the weighted1135

average of the unit costs of products arriving in the current timestep v(I(t)
i→js)/I

(t)
i→js and the unit costs of1136

commodities stored in the input inventory at the beginning of the timestep V (S(t−1)
i→js )/S(t−1)

i→js . Thus, we may1137

calculate these unit costs as1138
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n̄
l,(t)
i→js ≡

r
(t)
i→jsv(I(t)

i→js)∆t+ V (S(t−1)
i→js )

r
(t)
i→jsI

(t)
i→js∆t+ S

(t−1)
i→js

, (A.13)

This equation has two important implications. First, since v(I(t)
i→js) as well as V (S(t−1)

i→js ) depend on the1139

purchasing price of commodity i in the last timestep, the input inventory acts also as a buffer for the unit1140

costs n̄l,(t)i→js. Even if js has to pay a high price for the purchase of commodity i in one timestep, unit costs1141

n̄
l,(t)
i→js will, in general, not increase abruptly. Second, unit costs n̄l,(t)i→js are calculated only on the basis of1142

commodities that are actually available for firm js, and commodities that are still in the transport chain are1143

not considered. It is worthy to note that, in the baseline state, n̄l,∗i→js = 1∀ i, j, s holds true. Further, the1144

value of the use U (t)
i→js is then given by1145

v(U (t)
i→js) ≡ n̄

l,(t)
i→jsU

(t)
i→js.

Finally, the possible use of commodity i, i. e., the maximum amount of i that the agent can use for1146

production or consumption, in the current timestep is obtained from I
(t)
i→js and S

(t)
i→js as1147

Û
(t)
i→js ≡ I

(t)
i→js +

S
(t)
i→js

∆t . (A.14)

Appendix A.2. Firms1148

We model profit maximizing firms under monopolistic competition. Thus, in each timestep, firms1149

decide upon their production level by maximizing profit while respecting constraints imposed by the limited1150

availability of input commodities and their limited productive capacity. For computational simplicity, each1151

timestep is divided into three subsequent decision points or sub-steps. Profit optimization is assured by1152

applying local optimization principles in each of them. In each sub-step, firms exchange information with1153

their business partners, which they need for making decisions in the following sub-step. Figure A.8 depicts1154

the mutual dependencies of variables within one timestep. The three sub-steps are marked by different1155

shadings.1156

First, in the production step (blue shading in Fig. A.8), firms decide on their production level by maximizing1157

profit. Second, in the expectation step (green shading in Fig. A.8), firms determine the production level that1158

they expect to be profit-maximizing in the next timestep by maximizing expected profit, and third, in the1159

purchasing step (red shading in Fig. A.8), firms decide how to distribute their own upstream demand and1160

what their reservation prices are by minimizing purchasing costs. Production, expectation, and purchasing1161

steps will be discussed in Appendix A.2.1, Appendix A.2.2, and Appendix A.2.3, respectively. To allege1162

notation, in the following, time indices (t) belonging to quantities of the current timestep (t) are suppressed1163

along with time indices (t− 1) belonging to demand requests of the previous timestep.1164

Appendix A.2.1. Production step1165

This section provides details of the production step. At first, we discuss how a firm js determines its1166

productive capacity. Then we describe the firm’s revenue curve Rjs and its cost curve Cjs, before deriving1167

an analytic formula for js’s profit-maximizing production level Xjs (cf. Eq. (3).1168

Productive capacity. Similar to I-O models, we assume that the production function is linear with respect to1169

commodity inputs. All commodity inputs are perfect complements and therefore no substitution is possible1170

among them. Thus, in the case of supply limitation, the input commodity i with the lowest quantity available1171

for production, Ûi→js (see Eq. (A.14) for its definition), determines the production of firm js. Reducing this1172

quantity by a certain factor then reduces the productive capacity X̂js by the same factor (constant returns1173

to scale). Further, we assume that a firm js has the possibility to extend its production above the baseline1174

level X∗js by a factor βj ≥ 1, which may vary among sectors. Moreover, js’s production level can be reduced1175
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Figure A.8: Flow diagram for a firm depicting the mutual dependencies of variables within one timestep. Black arrows mark
dependencies between variables of the same agents. Orange ones depict dependencies on other agent’s variables or those of the
connection between them. Variables and dependencies that are repeated for other agents or timesteps are grayed out.

by an exogenous factor λjs ∈ [0, 1] representing the disaster’s forcing; in the baseline state, no forcing is1176

present, i. e., λ∗js = 1. In consequence, productive capacity1177

X̂js ≡ min
[

min
i

[
Ûi→js
U∗i→js

]
, λjsβj

]
X∗js (A.15)

is constrained by js’s maximum production ratio λjsβj and by the minimum relative availability of its input1178

commodities i. The latter is the lowest ratio of the available quantity Ûi→js and the quantity used in the1179

baseline state U∗i→js (see Eq. (A.9)). Prices of input commodities do not depend on production level, but1180

vary with purchasing costs.1181

The technology of a firm is given by the technology coefficients. These describe how many units of input1182

commodity i a firm js needs to produce one unit of output,1183

ai→js ≡
Ui→js
Xjs

. (A.16)

Thus, the technology coefficients are a measure for the efficiency of a firm. Since we are interested in the1184

short-term economic development in the first months following a disaster, no technological development is1185

taken into account, and we assume the technology coefficients to be constant, i. e., we have a(t)
i→js = a∗i→js ∀t.1186

Revenue curve. The revenue curve of a firm js is constructed from the demand requests {(Djs←k′u′ , njs←k′u′)}k′,u′1187

it has received from its purchasers {k′u′}k′,u′ at the beginning of the production sub-step (cf. Figs. A.8 and1188
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Section 3.1.1). Away from equilibrium, different purchasers of js have, in general, sent different reservation1189

prices. For bookkeeping purposes, it is thus useful to arrange the demand requests in an ordered set1190

Jjs ≡ ({ku}k,u, >), (A.17)

where the relation > orders the demand requests {(Djs←ku, njs←ku)}ku with respect to their reservation1191

prices, i. e., (ku)1 > (ku)2 means that njs←(ku)1 > njs←(ku)2 . Then, js’s revenue curve may be expressed as1192

Rjs(X̆js) ≡



∑
b′≤lmax

js

v(Djs←(ku)b′
)

+ njs←(ku)lmax
js

+1

(
X̆js −

∑
b′≤lmax

js
Djs←(ku)b′

)
 for X̆js ≤ Djs←

Rjs(Djs←) for X̆js > Djs←,

(A.18)

where the index1193

lmax
js ≡ max

l′∈Jjs

∑
b′≤l′

Djs←(ku)b′
≤ X̆js

 (A.19)

denotes the largest element of the ordered set Jjs for which the accumulated demand of the elements b ≤ lmax
1194

is smaller than or equal to a given production level X̆js, and1195

D
(t)
js← ≡

∑
k′u′

D
(t)
js←k′u′ (A.20)

denotes total incoming demand.1196

Cost curve. The production costs of a firm js consists of (i) linear commodity costs Cljs and (ii) (other)1197

variable production costs Cvjs. Fixed costs are neglected for simplicity, which permits us to write the cost1198

curve as1199

Cjs(X̆js) ≡ Cljs(X̆js) + Cvjs(X̆js).

These contributions are discussed separately in the following.1200

Commodity costs. Since we assume the production function to be linear with respect to commodity inputs,1201

commodity costs are given by the sum of the values {v(Ŭi→js)}i of the commodity inputs {Ŭi→js}i needed1202

for the production of X̆js and therefore read1203

Cljs(X̆js) ≡
∑
i′

v(Ŭi′→js) =
∑
i′

v(ai′→jsX̆js) = n̄ljsX̆js. (A.21)

Here, we have introduced the unit commodity costs for js, which are given by sum of the average unit costs1204

of the input commodities weighted by the technology coefficients reading1205

n̄ljs ≡
∑
i′

n̄li′→jsa
∗
i′→js,

where n̄li→js denote the average unit costs for input commodity i (see Eq. (A.13)). Since, in the baseline1206

state, we have n̄l,∗i→js = 1∀ i, the baseline commodity costs equal the sum of the technology coefficients1207

n̄l,∗js ≡
∑
i′

a∗i′→js ≤ 1.
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Variable production costs. Variable production costs comprise costs for labor, capital depreciation, and1208

variable overhead. We assume marginal variable production costs to be constant up to the baseline production1209

level and to increase linearly above. Further, we assume that the increase of marginal costs in production1210

extension does not depend on the firm’s size, but only on the ratio X̆js/λjsX
∗
js of its current production1211

level X̆js with respect to the (forced) baseline production level λjsX∗js. This assumption is important for1212

demand redistribution, because it guarantees that suppliers are driven uniformly into production extension.1213

Assuming variable production costs to be at least one time continuously differentiable then permits to write1214

them as1215

Cvjs(X̆js) ≡

n
v
jsX̆js for X̆js ∈ [0, λjsX∗js],

nvjsX̆js + ∆nin,v,>
j

λjsX∗js

(
X̆js − λjsX∗js

)2
for X̆js ∈ ]λjsX∗js, λjsβjX∗js],

(A.22)

where nvjs denotes the unit variable production costs below production extension, and ∆nin,v,>
j is the1216

coefficient for the cost increase in production extension. While the former may vary from firm to firm the1217

later is assumed to vary among sectors only.1218

Whereas commodity costs in the baseline state can be directly derived from the flows comprised in the1219

MRIO-tables, variable production costs usually cannot. This is the reason why we calculate these costs from1220

the value added in the baseline state. The latter may be written as the difference of revenue and commodity1221

costs, on the one hand, and as the sum of variable production costs and profit, on the other hand,1222

VAjs(X̆js) ≡ Rjs(X̆js)− Cljs(X̆js) = Cvjs(X̆js) + Πjs(X̆js). (A.23)

By inserting Eqs. (A.18), (A.21), and (A.22) in the above equation and dividing by the production level X̆js,1223

we obtain an expression for the value added per unit produced1224

VAjs(X̆js)
X̆js

= n̄js − n̄ljs = nvjs + πjs, (A.24)

where πjs denotes the firm’s monopolistic markup. In the baseline state, the average unit price equals unity1225

n̄∗js = 1, and, thus, Eq. (A.24) simplifies to1226

VA∗js
X∗js

= 1− n̄l,∗js = nv,∗js + π∗js, (A.25)

where VA∗js ≡ VAjs(X∗js), n
v,∗
js ≥ 0, and π∗js ≥ 0 denote the baseline values of value added, variable production1227

costs per unit produced, and monopolistic markup, respectively. Note, that since nv,∗js and π∗js are both1228

non-negative, the right-hand-side of the last equality in Eq. (A.25) is always positive. This implies that only1229

firms with positive baseline value added are considered, and, for instance, heavily subsidized sectors with1230

negative value added are removed from the network. However, in practice this constraint affects only very1231

few firms.1232

Next, we discuss how to determine the variable production costs nvjs. For that, we first employ Eq. (A.25)1233

to calculate the value added per unit produced in the baseline state VA∗js /X∗js from the MRIO-tables, which1234

determines the value of nv,∗js + π∗js. Setting π∗js exogenously as detailed below and additionally assuming that1235

nvjs does not change in disequilibrium permits to write the latter as1236

nvjs = nv,∗js ≡
VA∗js
X∗js

− π∗js. (A.26)

To calculate π∗js, we introduce the monopolistic markup in the baseline state π∗j as an exogenous parameter1237

that may differ among sectors. Depending on the value of π∗j , this monopolistic markup may not be achievable1238

for all firms of sector j, because for the less efficient ones the difference of baseline product price, n̄∗j = 1,1239

and unit commodity costs n̄l,∗js may be smaller than π∗j . Therefore, we see from Eq. (A.25) that1240
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π∗js ≡ min
[
π∗j , 1− n̄l,∗js

]
(A.27)

is a meaningful definition of the baseline monopolistic markup that guarantees π∗js to be positive. Note that1241

away from the baseline state, the profit realized, and, thus, the monopolistic markup depend on prices. In1242

consequence, πjs can differ from its baseline value π∗js.1243

With the above assumption for commodity and variable production costs, we obtain the following cost1244

curve1245

Cjs(X̆js) ≡

n
c
jsX̆js for X̆js ∈ [0, λjsX∗js],

ncjsX̆js + ∆nin,v,>
j

λjsX∗js

(
X̆js − λjsX∗js

)2
for X̆js ∈ ]λjsX∗js, λjsβjX∗js],

(A.28)

which is depicted by blue solid lines in the lower panels of Fig. 2. Below production extension, it increases1246

linearly with production level X̆js, and its slope is given by the unit production costs1247

ncjs ≡ n̄ljs + nvjs. (A.29)

However, in production extension, the slope of the cost curve increases smoothly due to a linear increase in1248

marginal variable production costs. More precisely, by taking the derivative of Eq. (A.28) with respect to1249

X̆js, denoted by (·)′, we obtain the marginal cost curve as1250

C ′js(X̆js) ≡

n
c
js for X̆js ∈ [0, λjsX∗js],

ncjs + 2∆nin,v,>
j

λjsX∗js

(
X̆js − λjsX∗js

)
for X̆js ∈ ]λjsX∗js, λjsβjX∗js].

(A.30)

For subsequent calculations, we eventually define the extra variable production costs arising in production1251

extensions as1252

∆C ,v,>(X̆js) ≡

0 for X̆js ∈ [0, λjsX∗js],
∆nin,v,>

j

λjsX∗js

(
X̆js − λjsX∗js

)2
for X̆js ∈ ]λjsX∗js, λjsβjX∗js].

(A.31)

Profit maximizing production level. In the production step, each firm js determines its actual production1253

Xjs by maximizing its profit1254

Πjs(X̆js) ≡ Rjs(X̆js)− Cjs(X̆js) (A.32)

under the constraint that production must not exceed productive capacity X̂js, which reads1255

Xjs ≡ argmax
X̆js

[
Πjs(X̆js)

]
subject to 0 ≤ X̆js ≤ X̂js. (A.33)

The simple forms of revenue and costs curves permit to determine Xjs analytically. For this, js first1256

determines its profit maximizing production level Xopt
js without taking its productive capacity into account.1257

It follows from Eq. (A.32) that the first-order condition for a production level to be profit maximizing is1258

that marginal revenue equals marginal costs. Further, we see from the definitions of revenue curve Rjs in1259

Eq. (A.18) and marginal cost curve C ′js in Eq. (A.30) that, below production extension (X̆js ≤ λjsX∗js), the1260

profit maximizing production level is reached, when all purchasers are served that have bid reservation prices1261

at least equal to js’s unit production costs ncjs (see Eq. (A.29)). In the following, this subset of the order set1262

of purchasers Jjs (see Eq. (A.17)) is denoted by1263

Jopt
js ≡ {l ∈ Jjs | njs←(ku)l

≤ ncjs} ⊆ Jjs.

In production extension, i. e., X̆js ∈ ]λjsX∗js, λjsβjsX∗js], the super-linear increase of variable production1264

costs (cf. Eq. (A.22)) renders the shape of the cost curve Cjs more complex. However, since Cjs remains1265
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concave ( C ′′js(Xjs) ≥ 0), and Rjs is convex (R′′js(Xjs) ≤ 0), we may still obtain Xopt
js by equating marginal1266

revenue and marginal costs yielding1267

R′js(X
opt
js ) = C ′js(X

opt
js )

⇔ nopt
js← = ncjs +

2∆nin,v,>
j

λjsX∗js

(
X̆js − λjsX∗js

)
⇔ Xopt

js = λjX
∗
js

[
1 +

nopt
js← − ncjs

2∆nin,v,>
j

]
,

where nopt
js← denotes the price of the lowest priced purchaser that would obtain a non-zero share of Xopt

js .1268

Concluding, the optimal production level is given by1269

Xopt
js ≡


∑
l′∈Jopt

js
Djs←(ku)l′

for Xopt
js ≤ λjsX∗js,

λjX
∗
js

[
1 + nopt

js←−n
c
js

2∆nin,v,>
j

]
for Xopt

js > λjsX
∗
js.

(A.34)

To determine its actual production level1270

Xjs ≡ min
[
Xopt
js , X̂js

]
, (A.35)

js caps Xopt
js with its productive capacity X̂js (see Eq. (A.15)). For the production js uses, as determined1271

by its technology, an amount of input commodity i of1272

Ui→js = ai→jsXjs. (A.36)

After production, firms distribute their output among those purchasers with sufficiently high reservation1273

prices, starting with the highest-bidding purchaser,1274

Zir→js =


0 for nir←js < nir←(ku)lmax

ir

(see Eq. (A.19))
Dir←js for nir←js > nir←(ku)lmax

ir

(see Eq. (A.19))
Xir −

∑
b′≤lmax

ir
Dir←(ku)b′

otherwise (see Eq. (A.18)).
(A.37)

Note that the reservation prices of its purchasers determine firm’s js average production price, i. e., its1275

selling price1276

n̄js ≡
Rjs(Xjs)
Xjs

. (A.38)

Since in disequilibrium it can happen that not all purchasers are served, n̄js does not necessarily equal the1277

average reservation price of the purchasers1278

n̄pjs ≡
Rjs(Djs←)
Djs←

. (A.39)

Appendix A.2.2. Expectation step1279

In the expectation step, each firm js determines the production level EXjs
it expects to be profit-1280

maximizing in the next timestep as well as the corresponding offer price En̄js , i. e., the average price to1281

which it expects to be able to sell its product in the next timestep. Note that we use the notation E(·) to1282

describe the expectation an agent forms at time (t) on the value of its own property (·) in the next timestep1283

(t+ 1). First, js has to form expectations on its revenue and cost curves in the next timestep. Then, js can1284

determine the production level that it expects to be profit-maximizing.1285
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Expected revenue curve. To derive its expected revenue curve, js has to make assumptions on exogenous1286

forcing and incoming demand in the next timestep. For that, it assumes that1287

(i) the exogenous forcing λjs remains at its current level, and that,1288

(ii) the structure of incoming demand requests, with respect to demanded quantities and reservation prices,1289

remains unchanged.1290

Assumption (i) expresses that arrival and exact duration of extreme events are considered to be unpredictable.1291

Assumption (ii) accounts for the very limited network overview of the agents.1292

Firm’s js offer price En̄js is calculated analogously to the average selling price n̄js defined in Eq. (A.38)1293

and, therefore, reads1294

En̄js
≡
ERjs

(EXjs
)

EXjs

. (A.40)

Further, it is worthy to note that, according to assumption (ii), ERjs is simply identical to Rjs (cf. Eq. (A.18)).1295

Expected cost curve. To obtain the cost curve ECjs firm js expects to have in the next timestep, it firstly has1296

to determine the unit costs Enc
js

it expects to have. This is done analogously to the calculation of ncjs in1297

Eq. (A.29). Note that, nevertheless, Enc
js

can differ from ncjs due to the input flows js received in the current1298

timestep as well as changes in js’s input inventory levels. Eventually, ECjs is obtained from Eq. (A.28) by1299

substituting ncjs with Enc
js

.1300

Maximization of expected profit. Analogously to profit Πjs (see Eq. (A.32)), the expected profit of a firm js1301

is defined as the difference of expected revenue and cost curves reading1302

EΠjs
(EX̆js

) ≡ ERjs
(EX̆js

)− ECjs
(EX̆js

). (A.41)

Before js can determine the production level EXjs
it expects to be profit-maximizing in the next timestep,1303

js first has to estimate its productive capacity EX̂js
for the next timestep. For this, we first note that, at1304

the end of the production step, js has received the input commodities it can use for production in the next1305

timestep. Knowing input flow and storage content, js can then calculate the quantity EÛi→js
of each input1306

commodity i that it expects to use. This is done analogously to the calculation of Ûi→js in Eq. (A.14). Next,1307

js determines its expected productive capacity EX̂js
by evaluating whether EX̂js

is limited by the input1308

commodity with the lowest possible use or by the expected external forcing on the productive capacity (cf.1309

Eq. (A.15)) reading1310

EX̂js
≡ min

[
min
i

[
EÛi→js

Û∗i→js

]
, λjsβj

]
X∗js. (A.42)

The expected production level EXjs may be determined, analogously to the current production level Xjs (see1311

Eq. (A.33)), by a constrained maximization of expected profit, which reads1312

EXjs ≡ argmax
EX̆js

[
EΠjs(EX̆js

)
]

subject to 0 ≤ EX̆js
≤ EX̂js

and π∗js −
EΠjs

EXjs

≤ 0. (A.43)

Comparing Eq. (A.43) to the constrained profit maximization of Eq. (A.33), we note one structural difference:1313

in the optimization problem of Eq. (A.43) it is implied that js’s expected monopolistic markup EΠjs
/EXjs

has1314

to be at least equal to its markup in the baseline state π∗js (2nd constraint in Eq. (A.43)), which is assumed1315

to be the target markup. This additional constraint prevents js from communicating low offer prices, which1316

would entail demand requests with reservation prices too low to permit js keeping up a margin of π∗js.1317
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The offer price En̄js may then be calculated according to Eq. (A.40). Eventually, each firm js communicates1318

EXjs and En̄js to its purchasers {ir}i,r. These parameters will enable js’s purchasers to form expectations on1319

the shape of js’s supply curve in the next timestep as discussed in Appendix A.2.3.1320

A special case arises, when js has not received any demand, i. e., Djs← = 0. Then js cannot estimate an1321

expected revenue curve. In consequence, js is not able to employ Eqs. (A.40) and (A.43) to determine En̄js
1322

and EXjs
, respectively. In this case, we assume that js communicates its expected production costs as offer1323

price En̄js = Enc
js

, and the minimum of possible and forced baseline production level as expected production1324

level EXjs = min
[
λjsX

∗
js , X̂js

]
.1325

Appendix A.2.3. Purchasing step1326

In the purchasing step, firms decide on their distribution of demand requests (with respect to quantities1327

and reservation prices) among their purchasers by minimizing their expected purchasing costs. First, we1328

discuss the firms’ outgoing demand. Next, we detail how firms form expectations on their suppliers’ supply1329

curves. Then, we consider the additional costs for transportation arising in non-equilibrium situations, before1330

eventually discussing the cost minimization.1331

Outgoing demand. The cumulative outgoing demand of firm js for commodity i reads1332

Di←js ≡ min
[
EUi→js

+ ∆Si→js
τi→js

, EjsDmax
i←js

]
. (A.44)

Here, EUi→js
denotes the amount of commodity i that js expects to use in the next timestep. It is derived1333

from js’s expected profit-maximizing production level (see Eq. (A.42)). The demand changes if the inventory1334

level for commodity i deviates from its baseline value S∗i→js. This is described by the storage deviation1335

∆Si→js ≡ S∗i→js − Si→js + T def
i→js, (A.45)

which also accounts for a deviation1336

T def
i→js ≡ Ti→js − T ∗i→js. (A.46)

of the rolling inventory Ti→js (see. Eq. (A.7)) from its baseline value T ∗i→js. In times of scarcity (∆Si→js > 0)1337

or abundance (∆Si→js < 0), js increases or decreases its demand, respectively. The timescale at which1338

js aims to balance storage anomalies is given by τi→js. Further, the minimum condition in Eq. (A.44)1339

expresses that demand is limited by the maximal demand js expects to be able to source from its suppliers1340

EjsDmax
i←js
≡
∑
r′ E

js
Dmax

ir′←js

in the next timestep17. The latter is the sum of the productive capacities {EjsDmax
ir←js

}r1341

that js expects its suppliers to have in the next timestep (see next section).1342

Estimates on suppliers’ supply curves. To estimate its purchasing costs, each firm js has to form expectations1343

on its suppliers’ supply curves {Ejsn̆ir
}i,r in the next timestep. To obtain Ejsn̆ir

of a supplier ir, js may refer to1344

ir’s delivery in the production step as well as the expected upcoming production level EXir
and the offer1345

price En̄ir that ir has communicated in the expectation step (cf. Appendix A.2.2). However, js is lacking1346

information on the demand requests of its purchasing competitors. For a sound estimation of those, js would1347

need, for instance, information on the importance of the common supplier ir for each of js’s competitors.1348

This would require, on the one hand, that js has information on the rest of their business connections,1349

i. e., on the network topology. On the other hand, js would need information on its competitors’ current1350

market situations, e. g., if they suffer from other supply shortages. Unfortunately, due to its limited network1351

oversight, js has too little information for such kinds of assessment. In consequence, js has to make educated1352

17Here, the notation E(·)
(·) denotes the expectation that an agent – indicated by the upper index – makes in timestep (t) on the

value of another agent’s property in timestep (t+ 1) – indicated by the lower index. For instance, Ejs
n̆ir

denotes the expectation
that js has at time t on ir’s supply curve in the next timestep (t+ 1).

39



guesses on its competitors’ demand requests regarding quantities and prices. With respect to the quantities,1353

js assumes that1354

(i) its purchasing competitors keep their demand distributions fixed, i. e., from the common supplier ir1355

they demand the same share of its expected production in the next timestep EXir
as they expect to1356

have received from its current production Xir.1357

Furthermore, js forms expectations on ir’s production level in the current timestep Xir, ir’s production level1358

in the baseline state X∗ir, ir’s forcing level in the next timestep λ
(t+1)
ir , and sector i’s production extension1359

factor βi. These expectations are denoted by Ejs
X

(t)
ir

, EjsX∗
ir

, Ejsλir
, and Ejsβi

, respectively. As shown below, they1360

permit js to form an expectation Ejs
X̆ir

= Ejs
X̆ir

(D̆ir←js) on ir’s production in the next timestep in terms of1361

the demand D̆ir←js that js addresses to ir. In addition, they enable js to obtain the minimum demand that1362

would drive ir into production extension as well as the maximum demand it can expect to be fulfilled by ir.1363

To keep the model simple, we assume that js’s expectation on the above quantities are as straightforward as1364

possible, i. e., we assume that js knows X(t)
ir , X∗ir, and βi exactly:1365

Ejs
X

(t)
ir

= X
(t)
ir , EjsX∗

ir
= X∗ir, and Ejsβi

= βi.

Further, we assume that js has the same expectation on the forcing λ(t+1)
ir its supplier ir will perceive in the1366

next timestep as ir has itself. This can be written as1367

Ejsλir
= Eλir = λir,

where we have employed the assumption that ir expects the forcing to remain at its current level (see1368

Appendix A.2.2).1369

Next, we may conclude from assumption (i) that Ejs
X̆ir

can be written as1370

Ejs
X̆ir

(D̆ir←js) = D̆ir←js + EXir

Xir − Zir→js
Xir

(A.47a)

=
(

1 + Ejss̆ir←js
(D̆ir←js)− sir←js

)
EXir . (A.47b)

This can be seen as follows: the second term on the right-hand-side of Eq. (A.47a) describes the share js’s1371

competitors have received from ir’s current production. According to assumption (i), this is also the share1372

js expects those to obtain from EXir
. In Eq. (A.47b), Ejs

X̆ir
has been rewritten as a function of the share1373

Ejss̆ir←js
(D̆ir←js) ≡

D̆ir←js

EXir

(A.48)

that js expects to obtain from ir’s next production if it demands the quantity D̆ir←js; sir←js ≡ Zir←js/Xir1374

denotes js’s share of ir’s current production.1375

From Eq. (A.47b), we may note two important findings. First, Ejs
X̆ir

= Ejs
X̆ir

(Ejss̆ir←js
) may be expressed as1376

a function of js’s expected share Ejss̆ir←js
. This is helpful to argue that also js’s expectation on ir’s upcoming1377

demand curve Ejsn̆ir
= Ejsn̆ir

(Ejss̆ir←js
) depends only upon Ejss̆ir←js

. Second, if js’s share remains unchanged1378

(Ejss̆ir←js
= sir←js), the expectation js has on ir’s upcoming production level equals ir’s own expectation,1379

i. e., we have1380

Ejs
X̆ir

(sir←js) = EXir
. (A.49)

By inserting Ejs
X̆ir

= λirβiX
∗
ir into Eq. (A.47a), the maximum demand request EjsDmax

ir←js
that js expects to1381

be fulfilled by ir reads1382
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EjsDmax
ir←js

≡ λirβiX∗ir − EXir

Xir − Zir→js
Xir

. (A.50)

From Eq. (A.47b) then follows that EjsDmax
ir←js

corresponds to a maximum share of1383

Ejssmax
ir←js

≡ sir←js − 1 + λirβiX
∗
ir

EXir

.

Similarly, by inserting Ejs
X̆ir

= λirX
∗
ir into Eq. (A.47b), it follows directly that the minimum share that js1384

expects to drive supplier ir into production extension, is given by1385

Ejs
s<

ir←js

≡ max
[
0 , sir←js − 1 + λirX

∗
ir

EXir

]
. (A.51)

Next, we derive the supply curve Ejsn̆ir
that js expects ir to have in the next timestep. Since js has no1386

information on the reservation prices of its purchasing competitors it has to make two additional assumptions.1387

Firstly, js assumes that1388

(ii) by bidding the offer price En̄ir
communicated by supplier ir, it will receive the same share of ir’s1389

production as in the current timestep.1390

Note that this is a meaningful strategy, since according to assumption (i) its purchasing competitors keep1391

their shares fixed. If additionally they have the same strategy as js to determine their reservation price, they1392

offer En̄ir , too, and js’s demand request will be successfully fulfilled. Secondly, js assumes that1393

(iii) ir’s supply curve for the next timestep is based on its production costs, which is a reasonable assumption1394

if the market is competitive. This implies that if js aims to increase its share beyond sir←js, supplier1395

ir would have to extend its production. In consequence, js would have to compensate ir for potential1396

additional expenses such as long hours of workers. In reverse, for Ejss̆ir←js
< Ejs

s<
ir←js

, it expects that1397

supplier ir will be willing to fulfill its demand D̆ir←js to a price lower than En̄ir
.1398

Here, we assume that Ejsn̆ir
increases linearly starting from the unit production costs Ejsnc

ir
that js expects1399

supplier ir to have in the next timestep, i. e., Ejsn̆ir
(0) = Ejsnc

ir
, up to the unit costs Ejs

n<
ir

≡ Ejsn̆ir
(Ejs
s<

ir←js

)1400

that js expects ir to have if it demands the share Ejs
s<

ir←js

.1401

0 Ejs
s<ir←js
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Figure A.9: Sketch of the supply curve Ejs
n̆ir

that economic agent js expects its supplier ir to have in the next timestep.

The resulting curve Ejsn̆ir
= Ejsn̆ir

(Ejss̆ir←js
) is depicted in Fig. A.9. In production extension (Ejss̆ir←js

> Ejs
s<

ir←js

), it1402

has the same shape as supplier ir’s cost curve (cf. Eq. (A.28)) with Ejs
n<

ir

taking the role of ncir. From Eq. (A.28)1403
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for the cost curve, we see that, to estimate the shape of ir’s cost curve, js needs to form expectations on1404

sector i’s price increase in production extension ∆nin,v,>
i , and ir’s unit production costs below production1405

extension in the next timestep n
c,(t+1)
ir . These expectations are denoted by Ejs∆nin,v,>

i

, and Ejsnc
ir

, respectively.1406

For simplicity, we assume that js expectations on ∆nin,v,>
i are perfect, i. e., Ejs∆nin,v,>

i

= ∆nin,v,>
i , and that1407

js has the same expectations on n
c,(t+1)
ir as ir itself, i. e., Ejsnc

ir
= Enc

ir
.1408

Next, we derive an expression for Ejs
n<

ir

. For that, we first note from the expression for ir’s cost curve (see1409

Eq. (A.28)) that assumption (iii) permits us to write js’s expectation on ir’s revenue in the next timestep as1410

Ejsn̆ir
(Ejs
X̆ir

)Ejs
X̆ir

= Ejs
n<

ir

EjsXir
+ ∆C ,v,>ir

(
Ejs
X̆ir

)
,

⇔ Ejsn̆ir
(Ejs
X̆ir

) = Ejs
n<

ir

+
∆C ,v,>ir

(
Ejs
X̆ir

)
Ejs
X̆ir

, (A.52a)

where ∆C ,v,>ir denotes the cost increase in production extension introduced in Eq. (A.31). If js’s share1411

remains unchanged (Ejss̆ir←js
= sir←js), then Ejs

X̆ir
= EXir

(cf. Eq. (A.49)), and, according to assumption (ii),1412

also Ejsn̆ir
= En̄ir

hold true. Inserting these into Eq. (A.52a) permits to derive Ejs
n<

ir

as1413

Ejs
n<

ir

= En̄ir
− ∆C ,v,>ir (EXir )

EXir

.

Concluding, agent js’s estimate on ir’s supply curve in the next timestep reads1414

Ejsn̆ir
(Ejss̆ir←js

) ≡


Enc

ir
+
Ejs

n<
ir

−Ejs

nc
ir

Ejs

s<
ir←js

Ejss̆ir←js
for Ejss̆ir←js

∈ [0, Ejs
s<

ir←js

],

Ejs
n<

ir

+
∆C,v,>

ir

(
Ejs

X̆ir

(
Ejs

s̆ir←js

))
Ejs

X̆ir

(
Ejs

s̆ir←js

) for Ejss̆ir←js
∈ ]Ejs

s<
ir←js

, Ejssmax
ir←js

].

(A.53)

For the optimization procedure of the purchasing step (see Section 3.1.1), it is convenient to write Ejsn̆ir
=1415

Ejsn̆ir
(D̆ir←js) in terms of D̆ir←js by concatenating Eq. (A.53) with the function defined in Eq. (A.47b), which1416

yields1417

Ejsn̆ir
(D̆ir←js) ≡

(
Ejsn̆ir
◦ Ejss̆ir←js

)
(D̆ir←js).

Transport penalty. To render the baseline state of the economy stable with respect to idiosyncratic shocks,1418

penalties in form of extra costs have to be assumed if one or more demands deviate from their baseline values.1419

The corresponding penalty function for firm js and input commodity i may be written as1420

ECpen
i→js

(
{D̆ir′←js}r′

)
≡
∑
r′

∆ TPir′→js(D̆ir′←js), (A.54)

where ECpen
i→js

is a function of the demand requests {D̆ir′←js}r′ that js addresses to its suppliers {ir′}r′ and1421

∆ TPir→js denotes the transport penalty to be discussed in the following.1422

We assume that the transportation costs in the baseline state are negligible compared to the value of the1423

transported commodities. Extra costs only arise in non-equilibrium situations if agent js’s demand requests1424

fluctuate, and means of transportation, e. g., vessels or trucks, cannot be used to their capacity. We assume1425

that the transport penalties for each input commodity i assume the form1426

∆ TPir→js(D̆ir←js) ≡ ∆ntp
j

(
Z∗ir→js − D̆ir←js

Z∗ir→js

)2

+ ∆ntp,min
j |Z∗ir→js − D̆ir←js| (A.55)
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where the coefficients ∆ntp
j and ∆ntp,min

j are allowed to vary among sectors. For large relative deviations,1427

the quadratic term in Eq. (A.55) dominates and ensures the system to be stable, whereas the linear term in1428

this equation guarantees the baseline equilibrium to be stable with respect to small deviations. For that,1429

∆ntp,min
i has to be chosen sufficiently large as discussed in Appendix A.4.1430

Cost minimization. The expected purchasing costs of a firm js read1431

ECi→js

(
{D̆ir′←js}r′

)
≡
∑
r′

Ejsn̆ir′
(D̆ir′←js)D̆ir′←js︸ ︷︷ ︸

expected costs for purchases

+ ECpen
i→js

(
{D̆ir′←js}r′

)
.︸ ︷︷ ︸

expected additional costs
for transport

(A.56)

They are a function of the demand requests {D̆ir←js}r firm js addresses to its suppliers and depend upon1432

the expected supply curves {Ejsn̆ir
}r of js’s suppliers as well as upon transport costs ECpen

i→js
.1433

A firm js decides on the optimal distribution of its demand requests among its suppliers by minimizing1434

expected purchasing costs, separately for each commodity i, under the constraints that (i) its cumulative1435

demand Di←js is met, and (ii) individual demand requests must not exceed the amounts {EjsDmax
ir′←js

}r′ (see1436

Eq. (A.50)) that js expects its suppliers to be able to deliver in the next timestep,1437

{Dir′←js}r′ = argmin
{D̆ir′←js}r′

ECi→js

(
{D̆ir′←js}r′

)
subject to

∑
r′

D̆ir′←js = Di→js and 0 ≤ D̆ir←js ≤ EjsDmax
ir←js

∀ r. (A.57)

The reservation price corresponding to a demanded quantity Dir←js is then given by1438

nir←js ≡ Ejsn̆ir
(Dir←js). (A.58)

The purchase is done by sending each demand request (Dir←js, nir←js) to each supplier ir.1439

Appendix A.3. Consumers1440

Since commodities are perfect complements, consumer js has a separate consumption for each input1441

commodity i, which may be written as1442

Ci→js ≡ min

C∗i→js ·
(
n̄li→js
n̄∗i→js

)εc
i→js

, Ûi→js

 . (A.59)

It varies isoelastically with the corresponding consumer price n̄li→js (see Eq. (A.13)) for commodity i. Further,1443

in the above equation, C∗i→js, εci→js ∈ [−1, 0[, and n∗i→js denote baseline consumption, consumption price1444

elasticity, and the normalized consumer price in the baseline state, respectively. Consumption price elasticities1445

may differ among input commodities, which permits to distinguish consumption from investment commodities,1446

and due to price normalization, we have n∗i→js = 1 according to Eq. (A.13). The minimum condition in1447

Eq. (A.59) reflects that consumption may be limited by a reduced availability Ûi→js of commodity i (see1448

Eq. (A.14)) if supply shortages arise in the disaster aftermath.1449

For consumers, besides consumption, which is done in parallel with the production step of firms only1450

the purchasing step, is relevant, where they decide upon their demand and its distribution. Having ‘naive1451

expectations’, regional consumers’ assume that their consumer prices for input commodities remain unchanged1452

in the next timestep. For that, they calculate their demand for input commodity i by assuming that they will1453

consume (use) the amount EUi→js
≡ C∗i→js ·

(
n̄l

i→js

n̄∗
i→js

)εc
i→js

in the next timestep. For each input commodity,1454

they may then calculate their demand as well as the optimal demand distribution from Eqs. (A.44) and1455

(A.57), respectively.1456
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Appendix A.4. First-order condition for locally stable baseline equilibrium1457

Since the economy is demand-driven, the baseline equilibrium is locally stable if for each agent js and1458

each input commodity i, the baseline demand distribution {D∗ir′←js}r′ minimizes expected purchasing costs1459

with respect to all perturbations of this baseline state keeping cumulative demand D∗i←js =
∑
r′ D

∗
ir′←js1460

unchanged. In the following, we restrict ourselves to a firm js that has only two suppliers of commodity i to1461

which it addresses the demands D1 and D2. We then have to ensure that D∗1 and D∗2 are the solutions of the1462

following constraint optimization problem1463

argmin
{D̆1,D̆2}

ECi→js subject to D̆1 + D̆2 = D∗i←js.

Taking into account that the constraint in the above equations permits to write D2 in terms of D1, the1464

first-order condition may be written as1465

0 ≤
∂+ECi→js

∂D1

∣∣∣∣
∗

(A.55),(A.56)⇔ 0 ≤
∂+Ejsn̆i1

∂D1

∣∣∣∣∣
∗

D∗1 + Ejsn̆i1

∣∣∣
∗

+
∂+ECpen

i→js

∂D1

∣∣∣∣∣
∗

+ ∂D2

∂D1

∣∣∣∣
∗

[
∂−Ejsn̆i2

∂D2

∣∣∣∣∣
∗

D∗2 + Ejsn̆i2

∣∣∣
∗

+
∂−ECpen

i→js

∂D2

∣∣∣∣∣
∗

]
(A.25),(A.29),(A.54),(A.53)⇔ 0 ≤ 0 + 1 + ∆ntp,min

js −
[
π∗i2 + 1−∆ntp,min

js

]
⇔ ∆ntp,min

js ≥ πi2
2 . (A.60)

Here, ∂+(·)/∂D and ∂−(·)/∂D denote right-hand side and left-hand side partial derivatives, respectively.1466

And |∗ denotes that variables are evaluated and derivatives are taken at the baseline state. We see from1467

Eq. (A.60) that the first-order condition can be fulfilled by choosing ∆ntp,min
js ≥ π∗i /2 ≥ π∗ir/2 ∀ r, where,1468

in the last equality, we have taken into account that, according to Eq. (A.27), the exogenously set sectoral1469

monopolistic markup π∗i may be larger than the one of the individual supplier π∗ir.1470
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Appendix B. Tables1471

Table B.1: Parameters of acclimate; values used in the numerical simulations unless stated otherwise.1472

1473

Variable Description Unit Scope Eq. Value

∆t timestep time global 1 day

ωi upper storage limit – sector (A.11) 3

Ψi storage fill factor time sector (A.10) 15 days

βi prod. extension factor – sector (A.15) 1.1

π∗i baseline monopolistic markup price sector (A.27) 0.05

∆nin,v,>
i unit extra variable prod. costs in prod. extension price sector (A.22) 5

∆ntp
i coefficient of quadratic transport penalty value sector (A.55) 0.08 USD

∆ntp,min
i coefficient of linear transport penalty price

quantity sector (A.55) 0.025 USD−1

τi→js storage balance time scale time storage (A.44), (5) 2 days

εc
i→js consumption price elasticity – storage (consumer) (A.59), (8) −0.5

λ
(t)
js production forcing – firm (A.15) 0.001

1474

1475

Table B.2: Exogenous variables of acclimate; values derived from MRIO-tables.1476

Variable Description Unit Scope Eq.

Z∗ir→js baseline flow quantity
time connection (A.1)

D∗ir←js baseline demand request quantity
time connection (A.5)

I∗i→js baseline input flow quantity
time storage (A.9)

U∗i→js baseline use quantity
time storage (A.9)

S∗i→js baseline storage content quantity storage (A.10)

Smax
i→js maximum storage content quantity storage (A.11)

X∗js baseline production level quantity
time firm (A.2)

ai→js technology coefficient – firm (A.16)

nv,∗
js baseline unit variable production costs price firm (A.26)

π∗js baseline monopolistic markup price firm (A.27)

VA∗js baseline value added value
time firm (A.25)

C∗i→js baseline consumption quantity
time consumer (A.3)

1477
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Variable Description Unit Scope Eq.1478

Table B.3: Endogenous variables of acclimate.1479

Variable Description Unit Scope Eq.

lD,T,I,(t) direct/total/indirect daily losses quantity
time global (9), (10), (11)

LD,T,I,(t) direct/total/indirect cumul. losses quantity global (12)

D
(t)
ir←js demand request quantity

time connection (A.57), (7)

n
(t)
ir←js reservation price price connection (A.58)

Z
(t)
ir←js supply flow quantity

time connection (A.37)

T
(t)
ir→js transport stock quantity connection (A.6)

I
(t)
i→js input flow quantity

time storage (A.8)

S
(t)
i→js storage content quantity storage (A.12)

Û
(t)
i→js possible use from storage quantity

time storage (A.14)

U
(t)
i→js use from storage quantity

time storage (A.36)

n̄
l,(t)
i→js unit commodity costs price agent (A.13)

T
def,(t)
i→js transport deficit quantity

time agent (A.46)

∆ TP(t)
ir→js transport penalties value

time agent (A.55)

∆ntp,min
j linear coeff. of trans. penalty value

time agent (A.55)

∆S(t)
i→js storage shortage value

time agent (A.45)

E(t)
C

pen
i→js

transport penalties value
time agent (A.54)

Ejs,(t)
n̆ir

expected supply curve price agent (A.53)

Di←js total demand quantity
time agent (A.44), (5)

ECi→js
expected purchasing costs value

time agent (A.56), (6)

n̄
p,(t)
js average reservation price price firm (A.39)

D
(t)
js← incoming demand quantity

time firm (A.20), (1)

n̄
(t)
js selling price price firm (A.38)

R
(t)
js revenue value

time firm (A.18)

n
c,(t)
js unit production costs price firm (A.29)

C
l,(t)
js costs for commodity inputs value

time firm (A.21)

1480
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Variable Description Unit Scope Eq.

n
v,(t)
js unit variable production costs price firm (A.26)

C
v,(t)
js variable production costs value

time firm (A.22)

C
(t)
js total costs value

time firm (A.28), (2)

∆Cv,>,(t)
js extra variable production costs in prod. extension value

time firm (A.31)

Π(t)
js profit value

time firm (A.32), (4)

VA(t)
js value added value

time firm (A.23)

X
opt,(t)
js optimal production level quantity

time firm (A.34)

X̂
(t)
js productive capacity quantity

time firm (A.15)

X
(t)
js production level quantity

time firm (A.35), (3)

E(t)
n̄js

offer price price firm (A.40)

E(t)
Rjs

expected revenue price firm (A.41)

E(t)
Πjs

expected profit value
time firm (A.41)

E(t)
X̂js

expected productive capacity quantity
time firm (A.42)

E(t)
Xjs

expected optimal production level quantity
time firm (A.43)

C(t)
i→js consumption quantity

time consumer (A.59), (8)

1481
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Table B.4: Countries used in the numerical simulations.1482

ISO3-Code Country Name

AGO Angola

BEN Benin

BWA Botswana

BFA Burkina Faso

BDI Burundi

CMR Cameroon

CPV Cap Verde

CAF Central African Republic

TCD Chad

CIV Côte d’Ivoire

ERI Eritrea

GAB Gabon

GMB Gambia

GHA Ghana

GIN Guinea

KEN Kenya

LSO Lesotho

LBR Liberia

MDG Madagascar

MWI Malawi

MLI Mali

MRT Mauritania

MUS Mauritius

MOZ Mozambique

NAM Namibia

NER Niger

NGA Nigeria

COG Republic of the Congo

1483

ISO3-Code Country Name

RWA Rwanda

SEN Senegal

SYC Seychelles

SLE Sierra Leone

SOM Somalia

ZAF South Africa

LKA Sri Lanka

SUR Suriname

SWZ Swaziland

TGO Togo

UGA Uganda

ZMB Zambia

ZWE Zimbabwe

CHN China

MNG Mongolia

VNM Vietnam

AUT Austria

BEL Belgium

BGR Bulgaria

HRV Croatia

CYP Cyprus

CZE Czech Republic

DNK Denmark

EST Estonia

FIN Finland

FRA France

DEU Germany

GRC Greece

HUN Hungary

IRL Ireland

1484
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ISO3-Code Country Name

ITA Italy

LVA Latvia

LTU Lithuania

LUX Luxembourg

MLT Malta

NLD Netherlands

POL Poland

PRT Portugal

ROU Romania

SVK Slovakia

SVN Slovenia

ESP Spain

SWE Sweden

GBR United Kingdom

ARM Armenia

AZE Azerbaijan

BLR Belarus

EST Estonia

GEO Georgia

KAZ Kazakhstan

KGZ Kyrgyzstan

LVA Latvia

LTU Lithuania

RUS Russia

TJK Tajikistan

TKM Turkmenistan

UKR Ukraine

UZB Uzbekistan

ARG Argentina

BOL Bolivia

1485

ISO3-Code Country Name

BRA Brazil

CHL Chile

COL Colombia

ECU Ecuador

GUY Guyana

PRY Paraguay

PER Peru

SUR Suriname

URY Uruguay

VEN Venezuela

DZA Algeria

BHR Bahrain

CYP Cyprus

DJI Djibouti

EGY Egypt

IRN Iran

IRQ Iraq

ISR Israel

JOR Jordan

KWT Kuwait

LBN Lebanon

LBY Libya

MRT Mauritania

MAR Morocco

OMN Oman

PSE Palestine

QAT Qatar

WSM Samoa

SAU Saudi Arabia

SYR Syria

1486
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ISO3-Code Country Name

TUN Tunisia

TUR Turkey

ARE United Arab Emirates

YEM Yemen

ATG Antigua and Barbuda

ABW Aruba

BHS Bahamas

BRB Barbados

BLZ Belize

BMU Bermuda

VGB British Virgin Islands

CAN Canada

CYM Cayman Islands

CRI Costa Rica

CUB Cuba

DOM Dominican Republic

SLV El Salvador

GRL Greenland

GTM Guatemala

HTI Haiti

HND Honduras

JAM Jamaica

MEX Mexico

ANT Netherlands Antilles

NIC Nicaragua

PAN Panama

TTO Trinidad and Tobago

USA United States of America

AUS Australia

JPN Japan

1487

ISO3-Code Country Name

NZL New Zealand

KOR South Korea

BRN Brunei

KHM Cambodia

IDN Indonesia

LAO Laos

MYS Malaysia

MDV Maldives

NPL Nepal

PNG Papua New Guinea

PHL Philippines

LKA Sri Lanka

THA Thailand

AFG Afghanistan

BGD Bangladesh

BTN Bhutan

IND India

1488
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Table B.5: Sectors used in the numerical simulations.1489

1490

Code Name

AGRI Agriculture
FISH Fishing
MINQ Mining and Quarrying
FOOD Food & Beverages
TEXL Textiles and Wearing Apparel
WOOD Wood and Paper
OILC Petroleum, Chemical and Non-Metallic Mineral Products
METL Metal Products
MACH Electrical and Machinery
TREQ Transport Equipment
MANU Other Manufacturing
RECY Recycling
ELWA Electricity, Gas and Water
CONS Construction
REPA Maintenance and Repair
WHOT Wholesale Trade
RETT Retail Trade
GAST Hotels and Restaurants
TRAN Transport
COMM Post and Telecommunications
FINC Financial Intermediation and Business Activities
ADMI Public Administration
EDHE Education, Health and Other Services
HOUS Private Households
OTHE Others
REXI Re-export & Re-import
FCON Final consumption

1491
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