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ABSTRACT With the development of intelligent transportation systems, the estimation of traffic flow in
urban areas has attracted a great attention of researchers. The timely and accurate travel information of
urban residents could assist users in planning their travel strategies and improve the operational efficiency
of intelligent transportation systems. Currently, the origin-destination (OD) flows of urban residents are
formulated as an OD matrix, which is used to denote the travel patterns of urban residents. In this paper,
a simple and effectivemodel, calledNMF-AR, is proposed for predicting theODmatrices through combining
the nonnegative matrix factorization (NMF) algorithm and the Autoregressive (AR) model. The basic
characteristics of travel flows are first revealed based on the NMF algorithm. Then, the nonlinear time
series coefficient matrix, extracted from the NMF algorithm, is estimated based on the AR model. Finally,
we predict OD matrices based on the estimated coefficient matrix and the basis matrix of NMF. Extensive
experiments have been implemented, in collected real data about taxi GPS information in Beijing, for
comparing our proposed algorithm with some known methods, such as different kinds of K -nearest neighbor
algorithms, neural network algorithms and classification algorithms. The results show that our proposed
NMF-AR algorithm have a more effective capability in predicting OD matrices than other models.

INDEX TERMS Origin-destination matrix, nonnegative matrix factorization, autoregressive model, GPS,
prediction.

I. INTRODUCTION
In recent years, the estimation and prediction of traffic flows
has become an important issue for the traffic management
and traffic control in intelligent transportation systems [1].
An important input for estimating the traffic flows and pat-
terns of urban residents is the demand for travel, which is
commonly formulated as the origin-destination (OD) matrix.
An ODmatrix is extracted based on the counts of travels from
one area to another [2]. As an input data in transport engi-
neering, the OD matrix has attracted lots of research in the
last years. Moreover, an accurate and timely prediction of OD
matrix can provide reliable travel information for residents,
and can help traffic management departments to optimize the
traffic signals and emergency dispatch [3]. Therefore, how to

predict the ODmatrix accurately and timely has become a hot
topic in the field of intelligent transportation design.

Many models and methods have been proposed for esti-
mating and predicting the OD matrix. Based on different
techniques for obtaining the OD information, these models
andmethods can be broadly classified into two categories: the
static and the dynamic OD matrix prediction. Traditional OD
information is collected and extracted directly by conducting
surveys, which is time-consuming and high in cost [1].
Additionally, such method ignores the temporal informa-
tion of a trip and the measurements may quickly become
outdated. Therefore, the studies on OD matrix prediction
are subject to a static model analysis [4]. Lots of statistical
models and formulations, such as information minimization,
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entropy maximization, maximum likelihood, Bayesian
inference and generalized least squares for networks without
congestion, and bi-level programming for networks with
congestion, were proposed for estimating and predicting
the OD matrix [3], [5], [6]. However, these models are not
suitable for estimating and predicting the ODmatrix in short-
term and dynamic traffic networks, but for that in long-term
and stable traffic networks (e.g., trip rates over a long period
of time on a network are stationary). That is because these
static approaches and models require that all trips should be
finished in the same time period or in the same time windows,
such as one week, one month, month to date, year to date and
more.

On the other hand, somemodels for estimating the dynamic
OD matrices relax the assumptions of stationary demand
and incorporate stochasticity in their models, i.e., the trip
rates change dynamically in a network. Therefore, the esti-
mated and predicted OD matrix is more suitable for real
traffic networks. One of the most commonly used models for
estimating the OD matric is based on the prior information
(e.g., the historical OD information) and the observed traffic
flows. The dynamic nature of the problem is formulated
as an autoregressive process [7]. Considering the temporal
characteristics and sparse features of the dynamic ODmatrix,
some techniques, such as theKalman filter approach [8] or the
least-square modeling approach [7], are used to predict the
traffic information. The stochastic stacking of historical data
is used to verify the proposed model [9], [10]. For example,
Ying et al. have combined a polynomial trend model and
the Kalman filtering theory for estimating and predicting
the dynamic OD flows [11]. Based on the dynamic flows
of Bluetooth and Wi-Fi, Barceló et al. have applied the
optimized Kalman filtering approach to estimating the OD
matrix [8]. Meanwhile, a general benchmark platform for
estimating the dynamic ODflows is proposed [12]. Some typ-
ical algorithms, such as LSQR, SPSA AD-PI, SPSA CG-TR
and the Kalman filter approach, are included and compared in
this platform.Moreover, some enhanced SPSAmethods, such
as weighted simultaneous perturbation stochastic approxima-
tion (W-SPSA) [13] and cluster-wise simultaneous perturba-
tion stochastic approximation (c-SPSA) [14], are proposed
for improving the stability of SPSA and reducing the noise
generated by the uncorrelated measurements in the gradient
approximation. Kostic et al. have implemented some exper-
iments on various kinds of traffic flows in order to discuss
the advantages and disadvantages of datasets, as well as the
efficiency of optimization algorithms [15]. However, with
the development of urban transportation, an explosive growth
of the scale of traffic flows occurs. Therefore, an accurate
and timely estimation and prediction for the large-scale and
high-dimension OD matrix has become the focus of recent
research [13]. Although some research has applied the prin-
cipal component analysis (PCA) to reducing the dimension
of the OD matrix, this method cannot still guarantee the
nonnegative feature of the OD matrix in the analysis
process [16]. The negative values in the OD matrix disobey

the initial physical meaning and further disturb the accuracy
of prediction.

In order to overcome the high-dimension feature and
ensure that the values of the OD matrix are nonnegative,
some techniques, such as nonnegative matrix factorization,
have attracted the attention of researchers. On the one hand,
such techniques can reveal the characteristics of large-scale
data under the condition of keeping the nonnegative feature
of a matrix [17], [18]. On the other hand, some methods
(e.g., regression and neural networks) for predicting the short-
term traffic flows can be used to estimate the dynamic OD
matrix, because both problems have the same input data
extracted fromGPS data, and the same type of output, i.e., the
prediction of traffic situation in the future. Although such
methods provide effective traffic information for drivers,
it is not enough for providing travel information of resi-
dents for taxi drivers [19]. In this paper, we propose an
integrated model by combining nonnegative matrix factoriza-
tion and autoregressive model, called NMF-AR. Such model
is designed to overcome the high dimensional problem of
the OD matrix, and reveal travel characteristics of residents
through maintaining the nonnegative characteristics of the
OD matrix.

More specifically, for the problem of reducing dimension
of the OD matrix, the NMF algorithm is more effective
than PCA in maintaining the original characteristics of the
OD matrix and providing physical meaning of resident trip
information. To solve the problem of traffic flow prediction,
a nonparametric model is used to estimate the OD matrix.
Combining the revealed feature of travel flow based on
NMF, our proposed NMF-AR algorithm has a better predic-
tion capability than other nonparametric models. Therefore,
the results, returned by our model, can provide more valu-
able pick-up hotspots information for taxi drivers and further
reducing the empty loading ratio of taxi. Moreover, two kinds
of strategies based on temporal and spatial information are
applied to dividing the collected data about taxi GPS trajecto-
ries into different datasets. Extensive experiments are imple-
mented in these datasets in order to analyze and estimate the
performance of our proposed method.

The rest of the paper is organized as follows. Sec. II
presents the related work. Sec. III gives the NMF-AR algo-
rithm in detail. Sec. IV displays some experiments conducted
to illustrate the efficiency of our proposed algorithm. Sec. V
concludes the main results of this paper.

II. RELATED WORK
In the era of big data, more and more data are generated from
our use of public facilities, such as the social media or scien-
tific papers. These data are stored in the datacloud and easy
accessibility. Some techniques, such as the general attribute-
based cryptography framework for urban data sharing [20],
can ensure data security with limited computational cost
and help us developing various of data-based engineering.
In the filed of urban transportation, accurate and timely traffic
flow prediction has been an important issue for constructing

678 VOLUME 6, 2018



X. Li et al.: Hybrid Algorithm for Estimating OD Flows

intelligent transportation systems (ITS) [21], [22]. Therefore,
based on the current and past traffic information, how to
predict upcoming traffic flow is a hot topic in the field
of ITS [23]. Some basic traffic information (e.g., volume,
density and speed) should be considered and simulated in
the prediction model in order to meet the requirement of real
traffic conditions. Generally, these models are based on para-
metric, nonparametric and hybrid integration techniques [24].

Parametric techniques include time-series model
(e.g., moving average), autoregressive moving average model
and Kalman filter [25]. Although time-series models have
an effective prediction capability under the condition of
stable traffic flow, these models do not address the dynamic
and nonlinear features of traffic flows [26]. The prediction
results, returned by the Kalman filter, would be postponed
compared with real situations [27]. Therefore, more andmore
nonparametric techniques have been developed to improve
the forecast accuracy of traffic flows, such as neural network,
k-nearest neighbor (KNN), and support vector regres-
sion [28]–[30]. As one of the typical nonparametric tech-
niques, neural networks have been used for estimating traffic
flows and improving the prediction capability. For example,
Xia et al. have proposed an extended KNN model based
on spatial-temporal features of traffic flows and estimated
its performance [24], [31]. Abadi et al. have applied an
autoregressive model to predicting the traffic flows based on
real-time and estimated traffic data of a traffic network in
San Francisco [32]. However, getting stuck in the local min-
imization will affect the performance of such models [33].
In order to overcome such shortcomings, hybrid integration
techniques aim to combine nonparametric techniques with
the advantages of parametric techniques, such as the statistics
and neural network [34]. For example, a hybrid method
combining a genetic algorithm with cross-entropy was pro-
posed for estimating the short-term traffic congestion [35].
Autoregressive integrated moving average and genetic pro-
gramming are combined for traffic flow prediction [36].
A deep-learning based approach is further applied to pre-
dicting the in-flow and out-flow of crowds in the urban area
based on historical trajectory data, weather and events [38].
Although KNN-based methods are robust to noise and main-
taining the randomness of traffic data, the temporal-spatial
feature and inter-relationships of traffic flows are not consid-
ered in these models. Meanwhile, the traffic flow information
in roads is not enough for taxi drivers to obtain the traffic
flow of passengers. Therefore, the accurate travel willingness
information or the travel trajectory of the urban residents
should be considered in the prediction model.

The origin-destination (OD) matrix is widely used to
record the travel trajectory of the urban residents, which helps
taxi drivers to obtain traffic flow of passengers. However, it is
difficult to deal with the high-dimension feature of an OD
matrix. Currently, the principal component analysis (PCA)
was used to overcome such features of an OD matrix [16].
Such technique reduces the dimension of the OD matrix
through performing a linear mapping of the data to a lower

dimensional space. However, the negative values, returned by
PCA, cannot reflect the physical meaning of the real situation,
and they disturb the explanation of the prediction results [17].
Therefore, some studies have proposed some methods based
on the nonnegative matrix factorization (NMF) algorithm.
In detail, the NMF algorithm can reveal the integrated feature
of data by ensuring the nonnegative values in the analysis
process, which has been widely used in the field of text
mining, spectral data analysis and classification [17], [18].
For example, Shahnaz et al. have applied NMF to analyze
textual data and reveal semantic features or topics through
reducing the base vector of semantic features in the PCA
method [39]. Additionally, NMF techniques have been suc-
cessfully used to solve image classification [40], and reveal
features of music and audio data [37]. Although some studies
try to apply the NMF algorithm to decomposing the regional
OD matrix in order to identify the function of a urban region,
the travel willingness of residents are not addressed in their
models [19].

To sum up, the traditional OD matrix estimation can pro-
vide traffic information for residents, but it cannot satisfy
the increasing demand of traffic managers to carry more and
more residents. Based on the physical meaning recorded and
reflected by the ODmatrix, i.e., the human mobility in urban
areas and nonnegative characteristic, a hybrid algorithm is
proposed in this paper. Combining the nonnegative matrix
factorization with an autoregressive model, the proposed
algorithm estimates the OD matrix in different temporal and
spatial scales, and it reveals the dynamic changes of pick-up
hotspots, which is crucial for reducing the empty loading ratio
of taxi.

III. NMF-AR ALGORITHM
The framework of our proposed NMF-AR algorithm is shown
in Fig. 1. It consists of three steps: (i) Data collection and
cleaning are implemented in Sec. III-A. The OD matrix of
each period in one day is constructed based on theGPS data of
taxi obtained from the intelligent traffic management system.
As the input data of NMF-AR algorithm, the OD matrix is
used to reveal the travel patterns of residents in the urban area.
(ii) The nonnegative matrix factorization (NMF) is applied to
extracting the fundamental matrix and the temporal feature
of the coefficient matrix in Sec. III-B. (iii) An autoregressive
model is implemented in Sec. III-C for estimating the coef-
ficient matrix in the (t + 1)th period. Based on the estimated
coefficient matrix and the fundamental matrix, the ODmatrix
in the (t + 1)th period is generated by the decomposition-
reduction method of NMF algorithm.

A. DATA PREPROCESSING
GPS data, collected from intelligent traffic systems, contain
lots of track information and other noise messages. We just
use some information (i.e., the id of a taxi, longitude and lati-
tude, the current time of GPS, the status of a taxi) to construct
an OD matrix of each period in one day. More specifically,
there are three steps for us to extract an ODmatrix from GPS.
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FIGURE 1. The flow chart of NMF-AR algorithm. The whole process is divided into GPS data preprocessing, nonnegative matrix factorization
(i.e., NMF (S, k)), auto-regressive model (i.e., AR (λ)) and the prediction of OD matrix. As the input of NMF-AR, an OD matrix is extracted
from the GPS data. The nonnegative matrix factorization (NMF) is used to reveal the pattern of OD matrix, and to extract the fundamental matrix
and coefficient matrix. Based on the output of NMF, an autoregressive model (AR) is implemented to estimate the coefficient matrix in
the (t + 1)th period and predict the OD matrix in the (t + 1)th period.

First, two kinds of division strategies are defined from the
viewpoint of temporal and spatial features of residents trips.
The two strategies, presented in Sec. IV-A, are used for
screening the original GPS data. Then, the basic getting-
on and getting-off hotspots information of travel flows are
extracted and formulated. Eventually, different kinds of OD
matrices are constructed with the temporal and spatial labels.
To represent our method more formally, some terms are
defined as follows.
Definition 1: The origin-destinationmatrix (ODmatrix) is

formulated as X ij = [xi′j′ ]n×n, where X ij represents an OD
matrix of the jth period in the ith day. xab is the total count of
trips from a zone a to b (a, b ⊆ [1, n]).
Definition 2: The ODmatrix prediction is represented for-

mally as XH+1 = F(YH )+WH , which predicts the count of
residents trips in the future time based on the current or his-
torical OD matrix. XH+1 denotes the predicted OD matrix.
YH is a set of historical matrices and F denotes the selected
prediction function. In addition,WH is a corresponding set of
parameters for the historical matrix.

Currently, the autoregressive model is widely used as tem-
poral prediction model, which will also be used to predict and
estimate the ODmatrix in this paper. The prediction results of
the OD matrix provide accurate information about the travel
flows of urban residents, which can help passengers reducing
the waiting time for a taxi, and help drivers reducing the
empty loading ratio of taxis.
Definition 3: The measures of effectiveness (MOEs) for

a prediction result include four metrics, i.e., mean abso-
lute error (MAE), mean absolute percentage error (MAPE),
root mean square error (RMSE) and maximum error (ME),

as given in Eqs. (1) - (4).

MAPE =
1
n

n∑
t=1

|Ot − Ft |
Ot

× 100% (1)

RMSE =

√√√√1
n

n∑
t=1

(Ot − Ft)2 (2)

MAE =
1
n

n∑
t=1

|Ot − Ft | (3)

ME = max
t=1,...,n

|Ot − Ft | (4)

where Ft and Ot denote the prediction and the actual OD
matrices in the th time period, respectively. n is the number
of elements in the OD matrix.
MOEs provide an in-depth and comprehensive understand-

ing of the nature of the forecast errors [37]. More specifically,
MAE and RMSE denote the statistical differences of the
forecasting results. High values of RMSE and MAE indicate
that there exist major changes in the prediction errors [41].
Based on existing studies, MAPE is an important indicator
to estimate the prediction accuracy of a model [24]. The
lower MAPE is, the higher prediction accuracy a model has.
Generally speaking, the prediction capability of a model can
be identified based on the range ofMAPE .MAPE ≤ 10% and
11% < MAPE ≤ 20% suggest that a model has a high and
good prediction capability, respectively. 20% < MAPE ≤
50% means that a model shows a reasonable prediction capa-
bility. But MAPE ≥ 50% presents an inaccurate prediction
capability of a model [21].
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B. NMF(S,K) ALGORITHM
The patterns of traffic flows vary with time. In particular,
some specific features of traffic flows emerge during the
rush hours on weekday. In order to reveal the characteristics
of traffic flows, the NMF algorithm is used to analyze and
decompose the OD matrix. The patterns of residents trips
can be described by the fundamental matrix and coefficient
matrix of the NMF algorithm. In detail, the principle of
the matrix deformation is applied to constructing the initial
information matrix S as shown in Eq. (5), which reflects the
real-time residents trips.

Sn2×(m∗h+h) = (s1 · · · si∗h+j · · · sm∗h+h) (5)

The rule of matrix deformation is further formally repre-
sented in Eq. (6).

si∗h+j =


(x ij (1))

T

(x ij (2))
T

...

(x ij (n))
T

 (6)

To represent our method formally, a basis matrix B =
[bij]n2×k (i ⊆ [1, n2], j ⊆ [1, k]) is defined for depicting
the trip patterns of the urban residents. A coefficient matrix
P =

[
pij
]
k×(m∗h+h) (i ⊆ [1, k], j ⊆ [1,m ∗ h+ h]) is used to

denote the weights of the basis matrix during various periods.
Therefore, the initial information matrix S can be written as
Eq. (7).

S = BP (7)

The twomatricesB andP are unknown in Eq. (7). Although
there are many matrix decomposition methods that can be
used to decompose S, all elements in B and P should be
nonnegative because of the restriction of the physical mean-
ing of B and P. Hence, the NMF(S, k) algorithm is applied
to decomposing S and detecting the feature of residents
trips. Under the condition of known S and a positive integer
k < min {m, n}, the matrix decomposition problem can
be formulated as minimization problem of the nonnegative
factorization [17], as formulated in Eq. (8).

f (B,P) = argmin
{B,P}

‖S − BP‖2 (8)

More specifically, the detailed steps are as follows. First,
Bn×j and Pj×m are initialized in order to keep the nonnegative
values during the iterative process. Then, based on the cost
function, as shown in Eq. (9), the two matrices are updated
based on Eqs. (10) and (11), respectively. The whole iteration
process will stop until Eq. (8) obtains a minimum value.

‖S − BP‖2 =
∑
i,j

(Sij − (BP)ij)
2 (9)

Bn×j ∼ Bn×j
(SPT )n×j
(BPPT )n×j

(10)

Pj×m ∼ Pj×m
(BT S)j×m
(BTBP)j×m

(11)

Based on the NMF algorithm, we obtain a basis matrix B
and a corresponding coefficient matrix P. In the next section,
a time series model is applied to analyzing and predicting the
feature of P.

C. AR (λ) MODEL
In this section, we aim to reveal the temporal feature of the
coefficient matrix P based on an autoregressive (AR) model,
in order to predict the residents trips. More specifically, based
on the AR model Eq. (12) and k ≥ 1 in the coefficient
matrix P, a series of AR models for each dimension in the
coefficient matrix P are implemented based on Eq. (13).
Moreover, the vector of the coefficient matrix in the (t + 1)th

period is estimated based on the prediction function Eq. (14).

zt = ψt ∗ Ht + at (12)

where zt is the observed value in the t th period. Ht denotes
the λ order independent variable in the t th period, i.e., the
observed variable from the t−1 to t−λ.ψt is the coefficient of
the observed value in the t th period. at is an independent and
identically distributed (iid) constant noise following a normal
distribution.

p1t
p2t
...

pit
...

pkt


=



ϕ11p1t−1+ · · ·+ϕ1λp1t−λ + a1t
ϕ21p2t−1+ · · ·+ϕ2λp2t−λ + a2t
...

ϕi1pit−1+ · · ·+ϕiλpit−λ + ait
...

ϕk1pkt−1+ · · ·+ϕkλpkt−λ + akt


(13)



p1t+1
p2t+1
...

pit+1
...

pkt+1


=



ϕ11p1t+ · · ·+ϕ1λp1t−λ+1 + a1t+1
ϕ21p2t+ · · ·+ϕ2λp2t−λ+1 + a2t+1
...

ϕi1pit+ · · ·+ϕiλpit−λ+1 + ait+1
...

ϕk1pkt+ · · ·+ϕkλpkt−λ+1 + akt+1


(14)

Based on the coefficient matrix Pt+1 in the (t+1)th period
and the basis matrix B returned by AR model and NMF
algorithm, respectively, a prediction function is proposed to
estimate the OD matrix Sn2×(t+1) in the (t + 1)th period as
follows:

Sn2×(t+1) = BPt+1 (15)

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL PREPARATION
In this section, some preparations for experiments are imple-
mented for validating the accuracy of our proposed model.
First, two kinds of division strategies are introduced based
on the temporal and spatial features of traffic flows. Based
on these strategies, six datasets are extracted from taxi GPS
traces, and shown in Tab. 1 and Tab. 2. Then, some parameters
and their values used in models are listed in Tab. 3.
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TABLE 1. Time period division strategies.

TABLE 2. Filter conditions of urban OD counts.

1) DATASETS AND DIVISION STRATEGIES
In order to verify the performance of the NMF-AR algorithm,
a public dataset with 1.3 billion taxi GPS traces is down-
loaded from DATATANG.1 These GPS traces, belonging to
12,000 taxis in Beijing, are collected from November 1, 2012
to November 30, 2012. Most of them are sampled at a fre-
quency of about 1 minute. Each trace is stored as ASCII
text with a comma separator, such as id, trigger, status
(i.e, occupied or idle) , GPS time, longitude, latitude, GPS
speed, GPS direction, and GPS state. An example trace is
123456, 0, 0, 20110414160613, 116.4078674, 40.2220650,
21, 274, 1.

Based on the taxi GPS data within the fifth ring road of
Beijing, a chessboard is used to denote the map of the urban
area. The length of each square is 200 meters [19] and the
wholemap is divided into 129*129 squares. Based on getting-
on and getting-off information recorded by the status of a
taxi, an original OD matrix is constructed, which is used to
analyze the prediction accuracy of NMF-AR in Sec. IV-B.
Moreover, two kinds of strategies are implemented to divide
the dataset into some subgroups in order to analyze the robust-
ness of NMF-AR in different temporal and spatial scales in
Sec. IV-C.

The first kind of division strategy aims to reflect the time-
varying feature of traffic flows. Such strategy contains three
divisions and obtains three datasets as shown in Tab. 1:
(i) One day is divided into six periods based on the rush
hours in the announcement of the Beijing Traffic Manage-
ment Bureau,2 i.e., 00:00-07:00, 07:00-09:00, 09:00-13:00,
13:00-17:00, 17:00-20:00, 20:00-24:00. (ii) One day is
divided into 24 time slices. Each hour stands for a time slice.
(iii) One day is uniformly divided into 144 time slices based
on the period division of the Di-Tech Challenge.3 Each time
slice stands for 10 minutes.

The second kind of strategy aims to reflect the spatial fea-
ture of traffic flows. The OD matrices with different dimen-
sions are constructed based on the statistics of hotspots within
the fifth ring road of Beijing. The filter condition, i.e., the
cumulative quantity of trips in one urban area, is shown
in Tab. 2. More specifically, we just keep those regions

1http://www.datatang.com/data/44502
2http://www.bjjtgl.gov.cn/zhuanti/20140328wr.html
3https://www.saikr.com/32943

FIGURE 2. Comparisons of the prediction capability of different
algorithms. Four metrics of MOEs, i.e., MAPE, RMSE, MAE and ME are
plotted in (a), (b), (c) and (d), respectively. The box charts are the
averaged results returned by the NMF-AR and other algorithms for all
prediction time periods of five days in the last week of November 2012.
More specifically, the bottom and top of the box denote the first and third
quartiles respectively. The band and small square inside the box
represent the median and the mean of the MOEs. From these statistics,
we can conclude that the accuracy of our proposed algorithm is higher
than that of other models.

FIGURE 3. Comparisons of prediction capability of different algorithms in
three temporal-based datases. Four metrics of MOEs, i.e., MAPE , RMSE ,
MAE and ME are shown in (a), (b), (c) and (d), respectively. From these
results, we find that the computational efficiency of NMF-AR algorithm is
sensitive to the the granularity of time division. The smaller the
granularity of time division is, the lower prediction accuracy the NMF-AR
algorithm has. More specifically, the NMF-AR algorithm can achieve a
better prediction capability during the rush hours on weekday through
comparing the MAPE values in three datasets.

(i.e, hotspots) whose number of trips (i.e, getting-on
or getting-off points) is larger than the values of the filter
condition.

2) PARAMETERS SETTINGS
For verifying the prediction capability of our proposed
NMF-AR, some parameters are listed in Tab. 3. The values
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FIGURE 4. Comparisons of prediction capability of different algorithms in
three spatial-based datases. Four metrics of MOEs, i.e., MAPE , RMSE ,
MAE and ME are shown in (a), (b), (c) and (d), respectively. From these
results, we can conclude that the computational efficiency of NMF-AR
algorithm is not sensitive to the scales of the urban areas. More
importantly, the NMF-AR algorithm achieves a better prediction capability
with the increase of urban areas.

FIGURE 5. The sensitivity analysis of parameter k for NMF-AR in D1. The
dynamic changes of four metrics of MOEs with the k eigenvectors
extracted from the initial travel information matrix are plotted in
(a) MAPE , (b) RMSE , (c) MAE and (d) ME , respectively. From these
analyses, we find that the prediction errors are gradually stable as k is
larger than 6. The same phenomenon can be observed in other datasets.
Such results show that NMF-AR algorithm has a high exploration
capability.

of parameters used in our model is based on the parameter
analysis in Sec IV-D. The values of the parameters, used in
other models, are based on the previous work in [35].

B. PREDICTION ACCURACY
In order to evaluate the prediction capability of our
proposed NMF-AR algorithm, some experiments are imple-
mented to compare NMF-AR with six other prediction mod-
els, i.e., SWT-KNN, KNN, BP, NB, RF and C4.5 [24].

FIGURE 6. The sensitivity analysis of parameter λ for NMF-AR in D1. The
dynamic changes of four metrics of MOEs with the λ are plotted
in (a) MAPE , (b) RMSE , (c) MAE and (d) ME , respectively. The average
MAPE is less than 4% if λ < 3, which means that the NMF-AR algorithm
achieves a high prediction capability. With the increase of λ, the MAPE
tend to be stable around 21.23%. Results show that NMF-AR algorithm
has an effective prediction capability and stability in most cases.

TABLE 3. Parameter setting and defining of all models.

The comparison results are plotted in Fig. 2. Specifically,
the box charts of the prediction results show the first and
third quartiles, median and mean value of MOEs, which
provide a comprehensive comparison of NMF-AR with other
prediction models.

Due to the randomness of maximum and minimum values,
the quartiles and means in the box charts are the core
indicators for comparing different algorithms. Fig. 2 shows
that all metrics of the NMF-AR are better than those of
the other models. Moreover, the average of MAPE ranges
from 5% to 20%, and the lengths of boxes (i.e., the maxi-
mum and minimum values) of the NMF-AR are shorter than
those of the other models, which means that the NMF-AR
has a stronger prediction capability and verifies that the
robustness of the NMF-AR is better than that of the other
models.
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FIGURE 7. Illustration of the hotspots distribution recorded by OD matrix. The first and second rows show the prediction
values and the real values during 6 time periods on 26 November, 2012, respectively. Results show that NMF-AR algorithm has
a higher accuracy for predicting hotspots distribution.

C. PREDICTION SCALABILITY
In order to estimate the scalability of different algorithms,
the whole dataset is divided into some subgroups through
adjusting the temporal and spatial scales of the urban area.
Based on two kinds of division strategies in Sec. IV-A,
6 subsets are obtained. The comparison results of MOEs
are plotted in Fig. 3 and Fig. 4, respectively. The box
charts of results returned by NMF-AR for all prediction time
periods of five days in the last week of November 2012,
in which the bottom and top of box are the first and third
quartiles, respectively. The band inside the box denotes the
median value of MOEs, and the small square inside the box
stands for the mean value of MOEs. The ends of whiskers

represent the minimum and maximum values of MOEs,
respectively.

The comparison results in Fig. 4 show that MAPE goes
down with the increase of hotspots, i.e., the improvement of
prediction accuracy. Therefore, we can conclude that the pre-
diction capability of NMF-AR is not affected by the increas-
ing spatial scales. On the other hand, we further analyze the
relationship between the prediction capability of NMF-AR
and the granularity of time. As plotted in Fig. 3, the error
indices returned by the NMF-AR algorithm increases with
the decrease of the granularity of time, i.e., the prediction
capability of NMF-AR is sensitive to the division of tem-
poral scales. Especially, the NMF-AR algorithm can achieve
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FIGURE 8. Illustration of the pick-up hotspots in the real map. The first and second rows show the real values and the prediction values during 6 time
periods on 26 November, 2012, respectively. The colors varying from lavender to red denote the density level of pick-up locations ranging from low to
high. Results show that the prediction errors of our proposed model are lower, which can provide an effective and timely travel information of residents
for taxi drivers.

FIGURE 9. Comparison of the real trips and the prediction trips based on NMF-AR algorithm in the 6 time periods on 26, November 2012.
The red and blue squares denote the destination locations and original locations, respectively. The thickness of the black lines represents
the number of trips. More specifically, some differences between the real and predicted values are highlighted by circles with the nattier
blue. Results show that NMF-AR algorithm has an effective prediction capability, which is very useful for providing timely
recommendation information for taxi drivers.

a better prediction capability in D1, in which the division
strategy is based on the definition of rush hours released by
the government.

D. PARAMETERS ANALYSIS
Some important parameters, i.e., the k in the NMF algorithm
and λ in the AR model, are analyzed in this section. Fig. 5
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shows that the prediction errors are gradually stable with the
increasing k , i.e., our proposed model is not sensitive to k .
The fluctuation of NMF-AR at the initial stage is caused by
the randomness of k basic patterns revealed from the initial
information matrix S. With the increase of k , the prediction
result tends to be stable.

The same phenomenon occurres in Fig. 6. Because of the
low-order of the AR model at the initial stage, the useful
information is missing, which further causes a certain fluc-
tuation on the condition that λ < 5. With the increase of λ,
the metrics of MOEs are gradually stable. Therefore, we can
conclude that the NMF-AR algorithm has a high exploration
capability and stability.

E. A CASE STUDY
In this section, we use the NMF-AR algorithm to estimate
the OD matrix of the 6 periods on November 26, 2012. The
hotspot distribution between the predicted value and actual
value is shown in Fig. 7. The grayscale of color ranges from
shallow to deep, which denotes that the number of trips ranges
from small to large. The white color represents that a region
does not include any flow. From this result, we find that our
proposed model has a high prediction capability if there are
enough traffic flows as shown in Figs. 7(c)-(f).
Additionally, illustrations of the pick-up hotspots and trips

are shown in Figs. 8 and 9, respectively. The lavender in Fig. 8
means that the density level of the pick-up locations is low.
On the contrary, the red point denotes a high density level
of pick-up locations. Fig. 9 further visualizes the difference
between the real resident trips and the prediction results.
We clearly find show that our proposed model can achieve
a good prediction result and recommend suitable pick-up
locations to drivers for reducing the empty loading ratio
of taxis.

V. CONCLUSION
Based on the traffic information in roads, it is an important
problem on how to provide a timely and accurate prediction
about traffic conditions to facilitate the traffic control and
overcome traffic jams during rush hours. Based on the anal-
ysis of OD matrix estimation problem, a hybrid algorithm,
called NMF-AR, is proposed by combining the nonnegative
matrix factorization (NMF) algorithm and the Autoregres-
sive (AR) model. Based on real taxi GPS data in Beijing,
some experiments are implemented for estimating the perfor-
mance of NMF-AR. Comparing our proposed algorithm with
other prediction models, such as SWT-KNN, KNN, BP, NB,
RF andC4.5, we find that our algorithm has a better capability
and scalability. Additionally, our proposed algorithm has a
high exploration capability and stability based on the param-
eter analysis. Moreover, some visualization results show that
our algorithm can provide timely and efficient information
about pick-up locations, which are very useful for both res-
idents and taxis drivers. In the future, more external factors,
such as weather conditions, will be taken into consideration
for improving the prediction accuracy of OD flow.
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