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Reconstruction of Complex 
Network based on the Noise via QR 
Decomposition and Compressed 
Sensing
Lixiang Li   1,2, Dafei Xu1,2, Haipeng Peng1,2, Jürgen Kurths3 & Yixian Yang1,4

It is generally known that the states of network nodes are stable and have strong correlations in a linear 
network system. We find that without the control input, the method of compressed sensing can not 
succeed in reconstructing complex networks in which the states of nodes are generated through the 
linear network system. However, noise can drive the dynamics between nodes to break the stability 
of the system state. Therefore, a new method integrating QR decomposition and compressed sensing 
is proposed to solve the reconstruction problem of complex networks under the assistance of the 
input noise. The state matrix of the system is decomposed by QR decomposition. We construct the 
measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed 
by compressed sensing. We also discover that noise can build a bridge between the dynamics and the 
topological structure. Experiments are presented to show that the proposed method is more accurate 
and more efficient to reconstruct four model networks and six real networks by the comparisons 
between the proposed method and only compressed sensing. In addition, the proposed method can 
reconstruct not only the sparse complex networks, but also the dense complex networks.

Complex networks show a high degree of complexity and they can abstractly describe a large number of real sys-
tems in the fields of biology, economy, society, physics and etc. At present, the link prediction1–3, the structure4–7, 
the dynamical behavior8,9 and etc. are hot research issues in the field of complex network. Especially, the topolog-
ical structure of networks is crucial for the research on dynamic properties of complex networks. It is very impor-
tant to study the relationship between the topological structures and various dynamical behaviors of complex 
networks for understanding and controlling complex network systems. The reconstruction of complex networks 
is a challenging inverse problem. In general, the network structure and the node dynamics are unknown, and only 
the time series can be measured. At times like that only limited data can be obtained from the dynamics of indi-
vidual units of the networks, it is impossible to directly measure the interactions between nodes, which leads that 
the network topology can not be obtained directly. The reconstruction of complex networks plays an important 
role in many areas, such as inferring gene regulatory networks from expression data in biological networks10,11, 
predicting information dissemination and virus transmission in social network12 and so on.

Many methods were developed to deal with the problem of the network reconstruction, such as Bayesian rea-
soning13, ODE14, Lasso15 and so on. The linear model has received a lot of attentions in the network reconstruc-
tion, because many real systems can be described as linear or approximate linear equations16. For a linear system 
with deterministic inputs, Gonçalves and Warnick17 considered that a certain number of inputs were needed to 
solve the reconstruction problem. Materassi and Innocenti18 also mentioned that reliable estimations could be 
obtained with sufficient data. For linear systems, Chang and Tomlin19 used the single-perturbation time series 
to stimulate all the distinct states, and used a data-driven reasoning method to identify biological networks. The 
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disadvantage of their approaches was that enough data were needed to be observed. How to reduce measurement 
data to achieve accurate network reconstruction is an important research problem.

Noise is ubiquitous in physical and natural systems, and the data measured from linear systems are inevitably 
influenced by the noise. However, Madni did not consider the noise in solving the reconstruction problem of 
sparse networks20. The presence of noise may be a double-edged sword. On the one hand, many people believed 
that the existence of noise was harmful to the network reconstruction. Experimental results of Shen et al.12  
showed that the success rate of reconstruction was reduced by the fraction nf of states in the time series that 
flipped due to noise. Minimum data increased for achieving at least 0.95 AUROC (area under the receiver operat-
ing characteristic curve) and AUPR (area under the precision-recall curve) simultaneously with the increment of 
noise15. On the other hand, the proper use of noise may be beneficial to the network reconstruction. The existence 
of noise led to a general, one-to-one correspondence between the dynamical correlation and the connections 
among the oscillators for a variety of node dynamics and network structures21. Thus, the states of network nodes 
in the linear network system can be changed greatly by the stimulation of noise.

For the network reconstruction with less measurement data, the compressed sensing is an efficient method 
and it only acquires a smaller amount of sample data to recover the sparse signal. Shen et al.12 introduced in detail 
the reconstruction of diverse propagation networks and the identification of hidden sources based on compressed 
sensing. Wang et al.22 proposed the reconstruction of complex networks based on the evolutionary game data via 
compressed sensing. Besides, the reconstruction of dynamical network based on compressed sensing was stud-
ied23,24. Most of the existing researches studied the sparse networks. However, there are not only sparse networks, 
but also dense networks. How to efficiently reconstruct the dense networks is an urgent problem to be solved. 
Currently, the relevant research is still very few.

This paper presents a new method to solve the reconstruction problem of complex networks whose node 
states are generated by the linear network system. The state of simple linear systems is stable, and it has a strong 
coherence, which brings difficulty to the reconstruction of complex networks generated by the linear system. 
Therefore, Gaussian noise is used as the input to make the linear system oscillate and it breaks the stability of the 
system state. We decompose the state matrix of the linear system by QR decomposition, construct the measure-
ment matrix by Gaussian noise, and reconstruct the input sparse matrix based on compressed sensing. Thus, the 
structure of complex network can be reconstructed. We discover that the noise can build the bridge between the 
dynamics and the topological structure in order to realize the network reconstruction. The proposed approach 
can efficiently reconstruct both the sparse and dense networks. We validate the applicability and the efficiency of 
the proposed approach for the sparse and dense networks by utilizing four different model networks and several 
real networks. We discover that only less measurement data are required by the proposed method to reconstruct 
the network after adding the Gaussian noise, which will increase the success rate of network reconstruction.

Results
Network reconstruction without control input.  We consider the reconstruction problem of complex 
networks whose node states are generated by the following linear network system without control input

=X t AX t( ) ( ) (1)

where the vector = X t x t x t x t( ) ( ( ), ( ), , ( ))N
T

1 2  is the state of N nodes for a network system at time t, and this 
×N N-dimensional matrix A is the network structure between nodes. From Equation (1), we have

= ĀY X (2)T T T

where XT, YT represent the input and output matrices which are generated by P experiments, XT is the ×P N
-dimensional matrix of the system, YT is a ×P N-dimensional matrix. For the detailed explanation of A

T
, please 

see Eq. (15) in the Methods section.
Now we consider the reconstruction problem of six different real networks and four model networks, namely, 

a network of books about US politics (Polbooks)12, a neural network of the nematode C. Elegans 
(Celegansneural)25, a social network of dolphins (Dolphins)26, the network of American football games in the Fall 
of the year 2000 (Football)27, a network of jazz musicians (Jazz)28, a social network of friendships of a karate club 
(ZK)29, the Newman-Watts small-world network (NW)30, the Watts-Strogatz small-world network (WS)31, the 
Erdos-Renyi random network (ER)32, and the Barabasi-Albert scale-free network (BA)33. The nodes states of these 
networks are generated though the linear network system (1). These networks are sparse (the sparsity k N ), 
and the average sparsity of each network is shown in Table 1. In Table 1, N is the size of the network, L is the links 
number of network nodes, k  is the average sparsity of the network, and nt is the ratio between the row and the 
column of matrix XT in Eq. (2), i.e. = . ≤ ≤nt P N N P N/ (0 1 4 ).

Due to the rows of matrix XT can be controlled, we consider reconstructing these networks in three different 
methods according to three cases of nt. Table 1 shows the success rate of the reconstruction for each network at 
. ≤ ≤nt0 1 4. From Table 1, we can see that

	 i.	 When XT is an underdetermined matrix (i.e. . ≤ <nt0 1 1), we reconstruct these networks by the 
compressed sensing method. For the detailed explanation of compressed sensing, please see the Methods 
section. And the success rates of networks reconstruction are 0;

	 ii.	 When XT is an ×N N-dimensional matrix (i.e. =nt 1), we reconstruct these networks by solving the 
inverse matrix method. But the reconstruction success rates of these networks are all 0;

	 iii.	 When XT is an overdetermined matrix (i.e. < ≤nt1 4), we reconstruct these networks by the least square 
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method, which is implemented directly in a function provided by MATLAB simulation software. But the 
success rates of these networks are still 0.

In other words, these networks can not be reconstructed in these three cases of nt.
We analyze the reasons why these networks can not be reconstructed though the linear network system. When 

the system has no control input, the state X t( ) of the system will eventually present a stable state and have a strong 
correlation. In order to verify the strong coherence of the state X t( ) for the linear network system without control 
input, we select the measurement data from the time =t 350, gradually increase nt (that is, we increase the exper-
iments number P, and the size N of the network is fixed) and obtain the coherence changes of the state matrices 
XT generated by these networks. The coherence is calculated according to Eq. (8). In Fig. 1(a, c), the curves with 
different marks represent the coherence changes of the state matrices for six real networks and four model net-
works. The values of N are shown in Table 1, and the range of P is . ≤ ≤N P N0 2 . It can be seen from Fig. 1(a) 
that the coherence of the state matrix for ZK network presents the volatility, while the coherences of state matrices 
for the rest five networks appear in a decreasing trend with the increment of nt. But in a whole, the coherences of 
these six state matrices are still close to one (since the coherence of the state matrix is relatively strong when nt is 
too small, the simulation of Fig. 1 starts with = .nt 0 2). The coherence curves of the state matrices for BA, NW 
and WS networks appear at a decreased trend with the increment of nt in Fig. 1(c), where the coherence of the 
state matrix for BA network changes more greatly, but the coherences of these four model networks are all close 
to one. These simulation results in Fig. 1(a) and Fig. 1(c) present the stable and strong coherence state of the linear 
network system without control input. So we can not reconstruct these networks through the linear network 
system without control input.

Network reconstruction with control input.  When there is no input (namely =u 0), for example, a 
simpler network with five observational states x x x x x( , , , , )1 2 3 4 5 , and the states of network nodes have strong 
coherences in Fig. 2(a). At the same time, the noise leads to a general, one-to-one correspondence between the 
dynamical coherence and the connections among oscillators for a variety of node dynamics and network struc-
tures21. In order to reduce the states coherence of the network nodes, we choose the standard Gaussian noise as 
the input vector u, and we expect to achieve the result as that in Fig. 2(b), i.e., the coherences between various 
states are decreased, so that the reconstruction problem of complex networks whose states are generated by the 
linear system can be solved. So the linear network system with control input is

= +X t AX t Bu t( ) ( ) ( ) (3)

where B is an ×N M-dimensional input matrix. This system is controlled using a M-dimensional input vector 
= u t u t u t u t( ) ( ( ), ( ), , ( ))M

T
1 2  imposed by the controller, where in general the same signal u t( )i  may drive 

multiple nodes. From the derivation process of Eqs (11–16) in the Methods section, we have













=
¯
¯

X U A
B

Y[ ]
(4)

T T
T

T
T

We decompose the state matrix XT of the linear network system by QR decomposition (For the detailed explana-
tion of QR decomposition, please see the derivation process of Eqs (20–21) in the Methods section), and we can 
obtain

=̄S U B S y (5)T T T T
2 2

Networks N L k
Success rates as 
. ≤ ≤nt0 1 4

Polbooks 105 441 8.4 0

Celegansneural 297 2359 14.5 0

Dolphins 62 159 5.1 0

Football 115 613 10.7 0

Jazz 198 5484 27.7 0

ZK 34 78 4.6 0

NW 100 416 4.2 0

WS 100 400 4.0 0

ER 100 406 4.1 0

BA 100 390 3.9 0

Table 1.  In the linear network system without control input, the reconstruction success rates by three different 
methods for some networks, i.e. Polbooks, Celegansneural, Dolphins, Football, Jazz, ZK, NW, WS, ER and BA, 
where N is the size of the network, L is the links number of network nodes, k  is the average sparsity of the 
network, nt is the ratio between the row and the column of matrix XT in Eq. (2), i.e. =nt P N/ , and P is the 
number of experiments ( . ≤ ≤N P N0 1 4 ).
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= −− ̄Ā R S y U B( ) (6)T T T T
1

1
1

where S UT T
2  is the − ×P N M( ) -dimensional measurement matrix which is constructed by Gaussian noise, and it 

should satisfy some conditions such as coherence, RIP, zero space and etc. Then we can reconstruct matrix B 
based on compressed sensing, and reconstruct the network structure A. For the detailed explanation of 
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Figure 1.  Coherence of measurement matrices as a fraction of nt. The networks size N is shown in Table 1, P is 
the number of experiments, and we select the measurement data from the time =t 350. (a) When the input 
vector =u 0, the coherences of six measurement matrices for these six networks, i.e. Celegansneural, Dolphins, 
Football, Jazz, ZK, Polbooks vary with the increment of nt (now =nt P N/ , . ≤ ≤N P N0 2 ). (b) When the input 
vector u is the standard Gaussian noise, the coherences of six measurement matrices for these six real networks 
change with the increment of nt (now = −nt P N M( )/ , . ≤ ≤N P N1 2 2 , and we fix =M N). (c) When the input 
vector =u 0, the coherence values of measurement matrices for these four networks (i.e. Erdos-Renyi random 
network (ER), Newman-Watts small-world network (NW), Barabási-Albert scale-free network (BA) and Watts-
Strogatz small-world network (WS)) created through the linear network system change with the increment of nt 
(now =nt P N/ , . ≤ ≤N P N0 2 ). (d) When the input vector u is the standard Gaussian noise, the coherence 
values of these four measurement matrices for these four model networks change with the increment of nt (now 

= −nt P N M( )/ , . ≤ ≤N P N1 2 2 , and we fix =M N).

Figure 2.  Intensity changes of states coherence for a linear network system. (a) When the input vector =u 0, 
the coherence between the states is strong. (b) When the input vector u is the standard Gaussian noise, the 
coherence between the states is weakened. The thickness degree of the interconnection between nodes 
represents the strength or the weakness of states coherence.
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compressed sensing, please see the Methods section. From Eq. (6), we also discover that the noise can build the 
bridge between the dynamics and the topological structure in order to realize the network reconstruction.

In the presence of control input, the coherences of measurement matrices for six real networks and four model 
networks are strong, and these networks can not be reconstructed based on compressed sensing. However, the 
Gaussian noise is linearly independent, which makes it is possible for the measurement matrix S UT T

2  to meet the 
coherence conditions. When the input vector u uses the standard Gaussian noise, the coherence changes of the 
measurement matrices constructed by Eq. (5) in six real networks (Polbooks, Celegansneural, Dolphins, Football, 
Jazz and ZK) and four model networks (NW, WS, ER and BA) are shown in Fig. 1(b,d) as nt (now = −nt P N M( )/ , 
. ≤ ≤N P N1 2 2 , and we fix =M N ) increases. The values of the size N for these networks are given in Table 1, 

and the measurement data are selected from the time =t 350. In Fig. 1(b,d), the curves with different marks show 
the coherence changes of different measurement matrices for six real networks and four model networks. From 
Fig. 1(b), we can see that the coherence curves of these six constructed measurement matrices for six real net-
works (Polbooks, Celegansneural, Dolphins, Football, Jazz and ZK) jump in the linear network system with the 
control input, but the overall trend is declining. Compared with Fig. 1(a), it is obvious that the coherence values 
of these six constructed measurement matrices in Fig. 1(b) are reduced. The coherence values of these six con-
structed measurement matrices are between 0.3 and 0.6 where ≥ .nt 0 3. Figure 1(d) shows that the coherence 
curves of these four constructed measurement matrices for the model networks (NW, WS, ER and BA) present a 
smooth jump, and the overall trend is also declining. When ≥ .nt 0 3, the coherence values of these four measure-
ment matrices are maintained between 0.35 and 0.6. Therefore, the measurement matrix constructed by Gaussian 
noise has a smaller coherence, the noise drives the states of network nodes oscillate which breaks the states stabil-
ity of the linear network system, and the network can be reconstructed using the compressed sensing method. In 
other words, after adding the Gaussian noise as the control input, it is possible to reconstruct matrix B by the 
compressed sensing method, and then we can reconstruct the network structure A. Thus, the proper use of noise 
can bring advantage to the reconstruction of complex networks whose nodes states are generated from the linear 
network system.

Factors and success rates of networks reconstruction.  From the detailed introduction of compressed 
sensing in the Methods section, we can see that when the sparse signal is reconstructed with compressed sensing, 
the sparsity of the signal should meet k M, and the measurement matrix should meet − <P N M( ) . Therefore, 
we study the relationship among the reconstruction success rates of WS, NW, ER and BA networks, the sparsity k 
of the input matrix and the column M of matrix B in Fig. 3. In the experiments, the sizes N of these four model 
networks are 50, the elements of matrix B are randomly selected as 0 or 1, the input vector u is the standard 
Gaussian noise, and we select =M 100 and =P 150. When the success rates of these four networks achieve 
100%, the graphs in Fig. 3(a–d) appear substantially the same. In Fig. 3, the measurement matrix constructed 
according to Eq. (5) is an underdetermined matrix when >M 100. Based on compressed sensing, these networks 
can be reconstructed with a small amount of measurement data. When the sparsity is ≤k 50 and >M 100, the 
complex networks can be reconstructed, and the sparsity of the signal satisfies both − ≥P N k( ) 2  and k M. But 
the network can not be successfully reconstructed when >k 50 and >M 100. At this time, the added noise will 
disturb the state of the system which leads that the network can not be reconstructed. So we should select suitable 

Figure 3.  Success rates versus different columns M and different sparsities k of matrix B for WS, NW, ER and 
BA networks with network size =N 50. These experiments select measurement data from the time =t 350, the 
input vector u is the ×M P-dimensional standard Gaussian noise, =M 100 and =P 150. The success rate is 
defined as the ratio between the simulation number of successful reconstruction α and the simulation number 
β. In these experiments, 20 simulations are performed, and the error of each simulation is ε < −10 6.
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values of the sparsity for matrix B which should be chosen as ≤ ≤k1 25 for the network reconstruction. The 
measurement matrix is an overdetermined matrix when ≤M 100. The range of the sparsity for matrix B is 

< ≤k M0  when the success rate of network reconstruction obtains 100%. Why is it only required that the spar-
sity of matrix B can be selected as a value less than or equal to M for networks reconstruction when ≤M 100? The 
problem is whether we only should consider the choice of ≤M 100 to simplify the network reconstruction. We 
will continue to discuss this important issue in future studies.

It can be seen from the theoretical derivation process of Eqs (19–23) in the Methods section, the input matrix 
B plays an important role in the process of network reconstruction. Firstly we need to reconstruct the input 
matrix B based on the method of compressed sensing, and then we reconstruct the network A according to Eq. 
(6). Therefore, we should study the effect of the reconstruction of input matrix B on the reconstruction of network 
A. In Fig. 4, we adopt the BA, ER, NW and WS networks with average node sparsity =k 4, and the sizes of these 
four networks are 100. The elements of matrix B are randomly selected as 0 or 1, the sparsity of controlled matrix 
B is 4 (namely =̄B 4T

0
), and the input vector u is the ×M P-dimensional standard Gaussian noise matrix, 

where = −nt P N M( )/ , + ≤ ≤N P N1 3 , and =M 200. The measurement data are selected from the time 
=t 350. The success rate is defined as the ratio between the simulation number of successful reconstruction α and 

the simulation number β. In these experiments, 20 simulations were performed, and the error of each simulation 
is ε < −10 6. We reconstruct matrix B at two different values of nt in Fig. 4(a,c,e,g), from which we can see that the 
elements of matrix B have overlapping parts at = .nt 0 1, but the elements of matrix B have been clearly distin-
guished at = .nt 0 3. Furthermore, in order to analyze the relationship between the reconstructed matrix B and the 
reconstructed structure A of ER, NW, BA and WS networks, we give the curves of reconstruction success rates for 
matrices B and A of these four networks (ER, NW, BA and WS networks) with the increment of nt in 
Fig. 4(b,d,f,h). For those matrices B that are selected in these four networks in Fig. 4(b,d,f,h), ≥ .nt 0 2 is required 
for all these four networks so that the success rate of matrix B achieves 100%. However, ≥ .nt 0 4 is required for 
the reconstructions of ER, NW, WS networks and ≥ .nt 0 35 is needed for the reconstruction of BA network so 

Figure 4.  Network reconstruction performances. (a,c,e,g) Element values Bij vs. different nt for the linear 
network system. (b,d,f,h) Relationship between reconstruction success rate and nt of network structure matrix 
A and matrix B for four model networks (i.e. ER, NW, BA and WS networks). The networks size N is 100 with 
average node sparsity =k 4. The elements of matrix B are randomly selected as 0 or 1, and the sparsity of 
controlled matrix B is 4 (namely =̄B 4T

0
). The input vector u is the ×M P-dimensional standard Gaussian 

noise. These experiments select measurement data from the time =t 350, nt is the ratio between the row and 
the column of the measurement matrix ( = −nt P N M( )/ ), P is the number of experiments + ≤ ≤N P N( 1 3 ), 
and =M 200. The success rate is defined as the ratio between the number of successful simulation α and the 
simulation number β. In these experiments, 20 simulations were performed, and the error of each simulation is 
ε < −10 6.
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that the reconstruction success rate of network structure A can reach 100%. For the minimal measurement data 
needed to reconstruct matrix B, the ER, NW, BA and WS networks can not be reconstructed. For the reconstruc-
tion of these four networks, it is required that the system state XT should be firstly resolved by QR decomposition, 
and then these networks can reconstructed according to Eq. (6). But the inverse matrix of R1 can not be solved 
when the measurement data are not enough. Therefore, it should use more measurement data to reconstruct ER, 
NW, BA and WS networks.

Comparison of two reconstruction methods.  In the above sections, we mentioned that we could not 
reconstruct network structure A from Eq. (2) by CS method. In addition, we also try to reconstruct network 
structure A from Eq. (4) by directly using CS method, and find that the success rates of networks reconstruction 
are all 0. However, if the state matrix X is replaced by the stochastic Gaussian matrix, we show that network 
structure A can be solved in a certain amount of measurement data by CS method. Here, we compare the QR-CS 
method with the CS method (where state matrix X is replaced by the stochastic Gaussian matrix) to observe the 
effects of these two methods on the reconstruction of complex networks.

The proposed method can reconstruct not only the sparse networks but also the dense networks. We compare 
the reconstruction success rates of the QR-CS method with those of the CS method for the reconstruction of NW, 
WS, BA, and ER networks in Fig. 5. We select different three average sparsities (i.e. =k 20, =k 50, =k 100) 
for these four model networks to simulate, and =M 100, =N 100. In the QR-CS method, = −nt P N M( )/  

+ ≤ ≤ .N P N( 1 2 2 ), but in the CS method (where state matrix X is replaced by the stochastic Gaussian matrix), 
=nt P N/  ≤ ≤ .P N(1 1 2 ). And other parameters are the same as those in Fig. 4. The average node sparsities of 

these four model networks are 20 in Fig. 5(a–d), from which we can see that the reconstruction success rates of 
these four model networks with QR-CS method achieve 100% when ≥ .nt 0 57, and they present stable trends. 
However, the CS method requires larger nt to achieve 100% success rates of these networks, compared with the 
QR-CS method. When nt approaches 1, the reconstruction success rate of the CS method increases. The average 
node sparsities of these four model networks are 50 in Fig. 5(e–h). We can see from Fig. 5(e–h) that the success 
rates of these four networks reconstructed by QR-CS method all reach 100% when ≥ .nt 0 61, and they are in the 
stable trends. While using the CS method, it needs >nt 1 to reconstruct these networks. We select the dense NW, 
WS, BA and ER networks to compare these two methods in Fig. 5(i–l), where =k 100. It can be seen from 
Fig. 5(i–l) that based on QR-CS method dense networks only require ≥ .nt 0 5 to make the success rates of net-
works reconstruction reach 100%, but using CS method we still needs >nt 1 to reach 100% success rates of net-
works reconstruction. The random initial state vector is selected in each experiment, so at the initial period the 
curves of the success rates of network reconstruction present the jumps. In these three groups of experiments 
with three different sparsities in Fig. 5, the success rates of networks reconstruction by QR-CS method are 
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Figure 5.  Reconstruction success rates as a fraction of nt for NW, WS, BA and ER networks to compare two 
methods. The networks size N is 100. The elements of matrix B are randomly selected as 0 or 1, and the sparsity 
of the controlled matrix B is 4 (namely =̄B 4T

0
). The input vector u is the ×M P-dimensional standard 

Gaussian noise. These experiments select measurement data from the time =t 350, nt is the ratio between the 
row and the column of the measurement matrix (in the QR-CS method, = −nt P N M( )/ , + ≤ ≤ .N P N1 2 2 , 
and in the CS method (where state matrix X is replaced by stochastic Gaussian matrix), =nt P N/ , 

≤ ≤ .P N1 1 2 ), and =M 100. The success rate is defined as the ratio between the simulation number of 
successful reconstruction α and the simulation number β. In these experiments, 20 simulations are performed, 
and the error of each simulation is ε < −10 6. (a–d) For these four model networks, the average node sparsity is 

=k 20. (e–h) =k 50. (i–l) =k 100.
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basically stable when > .nt 0 61. The comparison results for these three groups of experiments in Fig. 5 show that 
the QR-CS reconstruction method is better than the CS reconstruction method.

In order to further verify the performance of QR-CS method described in this paper for the reconstruction of 
sparse networks, we give the curves of reconstruction success rates for six real networks (namely, Celegansneural, 
Dolphins, Football, Jazz, ZK and Polbooks) by QR-CS method and CS method with the increment of nt in Fig. 6. 
In the experiment, we choose =M N , where N is the size of the network. The values of the size N and the average 
sparsities of the networks are shown in Table 1, and other parameters are selected the same as those in Fig. 5. In 
this paper, when reconstructing the networks with the proposed QR-CS method, different sizes of the networks 
require different nt so that the success rates of networks reconstruction can reach 100%. For the Celegansneural 
and Jazz networks whose sizes are larger, nt is required to be about 0.25 so that the reconstruction success rates 
can achieve 100%, but for the Dolphin and ZK networks whose sizes are smaller, nt is required to be about 0.8 so 
that the reconstruction success rates can achieve 100%. For Football and Polbooks networks, when nt is about 0.4, 
the reconstruction success rates can reach 100%. Compare with QR-CS method, relatively larger nt is required for 
networks reconstruction by CS method. That is, compare with CS method, less measurement data are required by 
the proposed QR-CS method to construct the networks after adding the noise as the control input. In Fig. 6, the 
success rates of the reconstruction present the transitions, because the initial random state vector is chosen in 
each experiment.

In a word, it is clear that the QR-CS method proposed in this paper is more efficient than the CS method by the 
comparisons of experimental results for the reconstructions of four model models and six real networks.

Conclusions and Discussion
In summary, we proposed a reconstruction method of complex networks from measurable time series. Different 
with the existing methods that considered enough data were needed to achieve the reconstruction and the noise 
often harmed the network reconstruction, we discovered that less measurement data were required by the pro-
posed QR-CS method to reconstruct the network after adding the Gaussian noise, which would increase the 
success rate of network reconstruction.

By the discretization of the continuous variable, the model of complex networks generated by the linear sys-
tem was transformed into a mathematical form that could be solved by the theory of compressed sensing. We 
discovered that without the control input, the method of compressed sensing could not succeed in reconstructing 

Figure 6.  Comparisons between these two methods (i.e. QR-CS and CS methods) on the reconstruction 
success rates as function nt changes in Celegansneural, Dolphin, Football, ZK, Jazz and Polbooks networks. The 
values of networks size N and their average sparsities are shown in Table 1. These experiments select the 
measurement data from the time =t 350, nt is the ratio between the row and the column of the measurement 
matrix (in the QR-CS method, = −nt P N M( )/ , + ≤ ≤N P N1 2 , and in the CS method (where state matrix X 
is replaced by stochastic Gaussian matrix), =nt P N/ , ≤ ≤P N1 ), and =M N . The input vector u is the 

×M P-dimensional standard Gaussian noise. The success rate is defined as the ratio between the simulation 
number of successful reconstruction α and the simulation number β. In these experiments, 20 simulations are 
performed, and the error of each simulation is ε < −10 6.



www.nature.com/scientificreports/

9SCIENTIfIC REPOrTS | 7: 15036  | DOI:10.1038/s41598-017-15181-3

such complex networks in which the states of nodes were generated through the linear network system. We 
took the simulation results for the reconstruction of six different real networks and four model networks as 
examples and analyzed the reason why these networks without the control input could not be reconstructed 
by only compressed sensing. The state of simple linear systems is stable and it has a strong correlation, which is 
unfavourable to the reconstruction of complex networks generated by the linear system. However, the noise can 
drive the dynamics between nodes to break the stability of the system state. In order to decrease the coherence 
of the system states, the noise was introduced as the control input and it was beneficial for the reconstruction of 
such complex networks whose node states were generated by the linear network system. We presented the curves 
of coherence changes for four model networks and six real networks with Gaussian noise as the input to verify 
that the noise could decrease the coherence of networks states generated by the linear network system. A new 
method integrating QR decomposition and compressed sensing was proposed to solve the reconstruction prob-
lem of complex networks under the assistance of the input noise. The state matrix of the system was decomposed 
by QR decomposition. And we constructed the measurement matrix with the aid of Gaussian noise so that the 
sparse input matrix could be reconstructed by compressed sensing. Furthermore, the structure of complex net-
work could be reconstructed. Experiments were presented to show that the proposed method was more accurate 
and more efficient to reconstruct four model networks and six real networks by the comparisons between the 
proposed method and only compressed sensing. We found that the input matrix was vital to the reconstruction 
process of complex networks, and we studied the influences of input matrix on the reconstruction of networks. 
The proposed method is still more accurate and more efficient to reconstruct the dense networks. We compared 
the success rates of the proposed QR-CS method with those of CS method for the reconstruction for four model 
networks with different sparsities. Although some problems remain in this article, it is important for us to further 
study complex networks reconstruction in a linear network system.

There are many sparse networks in complex networks, and there are many dense networks correspondingly. 
Complex networks reconstructed based on compressed sensing should be sparse in the existing studies, which 
has some limitations on the reconstruction of dense complex networks. If the dense network is reconstructed 
by compressed sensing, some measures must be taken to make it sparse. Some errors can occur in this process, 
which leads to erroneous network reconstruction results. However, these important aspects have received little 
attention in the existing studies. This paper breaks through the limitations of using compressed sensing to recon-
struct sparse networks with smaller amount of measurement data. The proposed method can reconstruct not 
only sparse complex networks, but also dense complex networks. In addition, we do not need to take measures to 
make complex networks sparse. Obviously, our method provides a new way to solve the reconstruction of dense 
complex networks which can be used to infer the dense subgraphs from the gene expression data in the biological 
network or to infer the layout of the dense traffic network, and so on. Further, the relationship networks between 
people become unprecedented dense by Facebook, Twitter and other social networking site, and our proposed 
method can be used to better analyze the interpersonal relationships. At the same time, noise is also an unavoid-
able factor in the reconstruction of complex networks. Previous works suggested that noise had influences on 
the reconstruction of complex networks, which could disturb the measurement data or reduce the success rate of 
networks reconstruction. However, we found that the linear network system that introduced noise was capable 
of reconstructing complex networks, and the proposed method has a high success rate. It shows from a side view 
that noise can build the bridge between the dynamics and the topological structure in order to realize complex 
networks reconstruction.

Methods
Compressed sensing.  As a theory of signal processing, compressed sensing was firstly proposed by Donoho 
et al.34. Once it was put forward, compressed sensing has received highly concerns in many fields, such as infor-
mation theory, image processing, network control, computer science, and wireless communication35. The main 
idea of compressed sensing is to observe and compress an N-dimensional signal η (if this signal is sparse or can be 
compressed), and thus obtain an M-dimensional observational value y, whose main form is

ηΦ = y (7)

where Φ is an ×M N-dimensional measurement matrix and <M N . From the theory of linear equations, we can 
know that the above mentioned Eq. (7) is an ill-conditioned equation or an underdetermined equation. If the 
signal η is k-sparse, k N , and the measurement matrix satisfies some conditions such as coherence35, RIP36, 
zero space37 and etc., then the signal η can be recovered from the observational value y.

The coherence of measurement matrix Φ, µ Φ( ), is the largest absolute inner product between any two columns 
Φi, Φj of Φ

µ Φ =
Φ Φ

Φ Φ≤ ≤
( ) max

,

(8)i j N

i j

i j1 , 2 2

The smaller the coherence of the measurement matrix is, the higher the accuracy of the reconstructed signal η 
achieves. When the measurement matrix satisfies the coherence condition, since the signal η is sparse, Equation 
(7) can be solved by l0-norm

η ηΦ = ymin subject to (9)0
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However, finding the solution of l0-norm is an NP-hard problem. So we use l1-norm optimization to approxi-
mately solve the problem

η ηΦ = ymin subject to (10)1

Then, Equation (7) can be solved by OMP38, BP39 and other algorithms. Our goal is to reconstruct complex net-
works in this paper. We transform the problem of network reconstruction into the solution problem of underde-
termined equations. This underdetermined equation can be solved by the l1-norm, and then solved by the OMP 
algorithm. Thus, we can reconstruct complex networks from the observational matrix and the measurement 
matrix.

Linear network system model.  We consider the following linear network system

= +X t AX t Bu t( ) ( ) ( ) (11)

where the vector = X t x t x t x t( ) ( ( ), ( ), , ( ))N
T

1 2  is the state of N nodes for a network system at time t, and the 
×N N -dimensional matrix A is the network structure between nodes. The gene regulation network10,11, the 

propagation network12 and etc. can be written in the form of Eq. (11). In this linear network system, B is an 
×N M-dimensional input matrix. And the system is controlled using a M-dimensional input vector 

= u t u t u t u t( ) ( ( ), ( ), , ( ))M
T

1 2  imposed by the controller, where in general the same signal u t( )i  may drive 
multiple nodes.

For x t( )i , we have

∑ ∑= +
= =

x t a x t b u t( ) ( ) ( )
(12)

i
j

N

ij j
k

M

ik k
1 1

where aij represents the element of matrix A, bik represents the element of matrix B. If the continuous system (12) 
is computed on a digital computer, it must be discretized40. Similar with the existing works40,41 about discretiza-
tion, we have the following formula

=
−

∆
+

 ( ) ( ) ( )
x t

x t x t

t (13)i q
i q i q1

where ∆ = −+ t t t 1q q1 , and q is an integer. Then, we have

∑ ∑= ∆ + + ∆+
= =

( ) ( ) ( ) ( )x t ta e x t tb u t
(14)

i q
j

N

ij ij j q
k

M

ik k q1
1 1

where =





=
≠

e
i j
i j

1
0ij .

The system is represented compactly in the matrix form as follows

= + ̄ĀY X B U (15)i i i( ) ( ) ( )

where = +( )Y X ti
i q

( )
1 , = ( )X X ti

i q
( ) , = ∆ +̄A tA E: , = ∆̄B tB: , and = ( )U U ti

i q
( ) . U i( ) and Y i( ) represent the 

input and output vectors and X i( ) is the state vector in the i th experiment. It is assumed that at each time a differ-
ent vector U i( ) is selected for P experiments, but the rest vectors of X i( ) for the rest experiments are generated by 
the system after selecting the vector X i( ) in the first experiment. The input matrix, the output matrix and the state 
matrix for these P experiments are given as follows

=

=

=







U U U U
Y Y Y Y
X X X X

: [ ]
: [ ]
: [ ]

P

P

P

(1) (2) ( )

(1) (2) ( )

(1) (2) ( )

So = + ̄ĀY X B U can be written as

















=X U
A

B
Y[ ]

(16)
T T

T

T
T

where X U[ ]T T  is a × +P N M( )-dimensional matrix. Thus, we convert the linear system model into the form of 
Eq. (7), and assume that the dynamical structure ̄Ā B( , ) can be estimated from Eq. (16) by the method of com-
pressed sensing.

Network reconstruction without control input.  For the linear network system model, when there is no 
external input, that is, the input vector =u 0, the linear network system is

=Y A X (17)
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Then, Equation (17) can be written as

= ĀY X (18)T T T

Here, we consider the reconstruction problem of six different real networks, namely, Polbooks12, 
Celegansneural25, Dolphins26, Football27, Jazz28, and ZK29 without control input. We also investigate on the recon-
struction of four model networks, i.e. Newman-Watts small-world network (NW)30, Watts-Strogatz small-world 
network (WS)31, Erdos-Renyi random network (ER)32, and Barabasi-Albert scale-free network (BA)33 without 
control input. Numerical simulation results of Table 1, Fig. 1(a,c), and the corresponding detailed analyses in the 
Results section show that the networks whose node states are generated by the linear network system can not be 
reconstructed only by the method of compressed sensing when the input vector =u 0.

Network reconstruction with control input.  A dynamical system is controllable if it has suitable inputs, 
then its states can be driven from any initial states to any desired final states within a finite time42. At the same 
time, the noise leads to a general, one-to-one correspondence between the dynamical coherence and the con-
nections among oscillators for a variety of node dynamics and network structures21. Therefore, we can add the 
noise to change the status of nodes in the linear networks system. There is a strong coherence between the states 
of network nodes without input in Fig. 2(a) (please see the Results section), and the coherence between the states 
of network nodes is reduced by adding the noise as the input in Fig. 2(b).

When the input vector ≠u 0, Equation (16) and Equation (7) are similar in the mathematical form, so 
Equation (16) can be written as

ηΦ = y (19)

where Φ = ∈ × +
X U R: [ ]T T P N M( ), η =

















∈ + ×A

B
R:

T

T
N M N( ) , and = ∈ ×y Y R: T P N . Here, Φ and y can be meas-

ured by time series. So we choose the method of compressed sensing to reconstruct the matrix η. The input 
matrix B can be controlled, assuming =̄B kT

0
 ( k M), but ĀT

0
 is unknown. It is necessary to know the 

sparsity of the matrix to reconstruct the network by compressed sensing43–45. Here, we can not directly apply 
the compressed sensing into Eq. (19) to reconstruct the network structure A. So we should use the following 
QR method.

QR decomposition can decompose matrix XT into the product of an orthogonal matrix and an upper triangu-
lar matrix, so that we can make full use of the sparse property of matrix B and the compressed sensing method to 
solve matrix B. Take the QR decomposition of ∈ ×X RT P N , we get

=












X S S R[ ]
0 (20)

T
1 2

1

where ∈ ×S S R[ ] P P
1 2  is an orthogonal matrix and ∈ ×R RN N

1  is an upper triangular matrix.
Pre-multiply Eq. (16) by S S[ ]T1 2 , we have

































=
















R S U

S U
A

B

S y

S y0 (21)

T T

T T

T

T

T

T
1 1

2

1

2

According to the multiplication of the second row of the first matrix in Eq. (21) and the second matrix in Eq. (21), 
we can get

=̄S U B S y (22)T T T T
2 2

where ∈ − ×S U RT T P N M
2

( )  ( − P N M), and =̄B kT
0

 ( k M). We solve ̄B T according to Eq. (22). It is only 
required to make sure that the measurement matrix S UT T

2  in Eq. (22) satisfies some conditions such as coherence, 
RIP, zero space and etc., then we can accurately reconstruct matrix ̄B T by the reconstruction algorithm of com-
pressed sensing. Meanwhile, Candès et al.36 pointed out that if − ≥P N k2  and all the subsets of the k2  columns of 
the measurement matrix were linearly independent, then the k-sparse signal could be reconstructed by com-
pressed sensing. Gaussian noise is linearly independent46, which makes it is possible for the measurement matrix 
S UT T

2  to meet the coherence condition. When the vector u uses the standard Gaussian noise, the coherence 
changes of the measurement matrices constructed by Eq. (22) in six networks (Polbooks, Celegansneural, 
Dolphins, Football, Jazz and ZK) are studied by the proposed QR-CS method. We also investigate on the recon-
struction of four model networks, i.e. Newman-Watts small-world network (NW)30, Watts-Strogatz small-world 
network (WS)31, Erdos-Renyi random network (ER)32, and Barabasi-Albert scale-free network (BA)33 when the 
control input is the standard Gaussian noise. From the experimental results of Fig. 1(b,d) and the corresponding 
detailed analyses in the Results section, we find that it is possible to reconstruct matrix B by the reconstruction 
algorithm of compressed sensing.

If R1 is full rank which requires XT to be full column rank, we can solve the network ĀT according to the mul-
tiplication of the first row of the first matrix in Eq. (21) and the second matrix in Eq. (21), we can get
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= −− ̄Ā R S y U B( ) (23)T T T T
1

1
1

From Equation (23), we understand that the noise can build the bridge between the dynamics and the topological 
structure in order to realize the network reconstruction. In the derivation process of Eqs (19–23), not only the 
reconstruction algorithm of compressed sensing but also the QR decomposition are used. With the assistance 
of the noise, the network can be reconstructed accurately from the measurable time series. From the derivation 
process of Eqs (19–23), it can be concluded that the network is not necessarily required to be sparse when recon-
structing the network, and the dense networks also can be reconstructed.

In summary, we have given a general method to solve the problem of complex networks generated through a linear 
network system. However, besides the linear continuous system, for a linear discrete system + = +x t Ax t Bu t( 1) ( ) ( ), 
we can also consider using the proposed method to realize the reconstruction of complex networks.

Reconstruction algorithm.  The reconstruction algorithm based solely on compressed sensing (CS 
method) can not solve the problem of network reconstruction in linear network systems. So we propose the 
QR-CS reconstruction algorithm to solve the network reconstruction in linear network systems according to Eqs 
(19–23). The pseudocode of this QR-CS algorithm is given in Table 2. The process of QR-CS algorithm is given as 
follows. Input matrices U and B, set the sparsity of matrix B in the first step, and calculate X and Y in Steps 2–5. 
Then X is resolved by QR decomposition in Step 6, and reconstruct B based on the reconstruction algorithm of 
compressed sensing in Steps 7–9. Finally recover A in Steps 10–12. This algorithm is terminated.
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