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ABSTRACT
In recent years sampling approaches have been used more widely than optimization algorithms to find
parameters of conceptual rainfall–runoff models, but the difficulty of calibration of such models remains
in dispute. The problem of finding a set of optimal parameters for conceptual rainfall–runoff models is
interpreted differently in various studies, ranging from simple to relatively complex and difficult. In
many papers, it is claimed that novel calibration approaches, so-called metaheuristics, outperform the
older ones when applied to this task, but contradictory opinions are also plentiful. The present study
aims at calibration of two simple lumped conceptual hydrological models, HBV and GR4J, by means of a
large number of metaheuristic algorithms. The tests are performed on four catchments located in
regions with relatively similar climatic conditions, but on different continents. The comparison shows
that, although parameters found may somehow differ, the performance criteria achieved with simple
lumped models calibrated by various metaheuristics are very similar and differences are insignificant
from the hydrological point of view. However, occasionally some algorithms find slightly better solu-
tions than those found by the vast majority of methods. This means that the problem of calibration of
simple lumped HBV or GR4J models may be deceptive from the optimization perspective, as the vast
majority of algorithms that follow a common evolutionary principle of survival of the fittest lead to sub-
optimal solutions.
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1 Introduction

The problem of calibration of conceptual rainfall–runoff
models has been discussed in hydrology for at least
50 years. Initially, manual calibration prevailed, with the
objective of fitting the model parameters to minimize the
simulation or prediction error for the observed data
(Pechlivanidis et al. 2011). Although such manual calibration
is sometimes still in use (Kim et al. 2007, Vansteenkiste
et al. 2014, Willems 2014), the so-called automatic optimiza-
tion procedures have gained popularity in line with the
dramatic increase in computational resources. A number of
automatic calibration procedures were proposed during
1960s to 1980s, many of them (e.g. Rosenbrock 1960,
Nelder and Mead 1965, Kirkpatrick et al. 1983) did not
require the objective function to be differentiable, as the
gradient optimization methods did. This allowed their appli-
cation to a wide range of conceptual rainfall–runoff models.
However, problems with finding a good and unique set of
parameters were soon reported (Ibbitt and O’Donnell 1971,
Johnston and Pilgrim 1976, Pickup 1977) and became widely
acknowledged following the work of Duan et al. (1992). In
recent decades, the attention of hydrologists has shifted to
uncertainty of data, models and their parameters, rather
than being focused on minimization of the prediction error

alone. As a result, instead of optimization algorithms aimed
at a search for the (possibly global) optimum, sampling
methods, especially Markov chain Monte Carlo (MCMC)
ones, such as the Metropolis-Hastings algorithm
(Metropolis et al. 1953, Hastings 1970), SCEM-UA (Vrugt
et al. 2003) or DREAM (Vrugt et al. 2009a, 2012, Vrugt
2016), have become widely used. Somehow in parallel the
automatic multi-objective optimization of rainfall–runoff
models has become popular. One may mention the works
by Yapo et al. (1998), Madsen (2000), Madsen et al. (2002)
and Tang et al. (2006). For detailed reviews of the more
recent studies the reader is referred to Efstratiadis and
Koutsoyiannis (2010) and Reed et al. (2013).

Although among the hydrological community popularity
has shifted to multi-objective optimization and MCMC sam-
pling, optimization methods that search for the global opti-
mum are still used and compared in various studies aimed at
calibration of rainfall–runoff models (Blasone et al. 2007,
Goswami and O’Connor 2007, Kim et al. 2007, Tolson and
Shoemaker 2007, Wang et al. 2010, Romanowicz et al. 2013,
Xu et al. 2013, Willems et al. 2014, Tigkas et al. 2015). The
ability to find near-optimum solutions of real-world problems
in a reasonable length of time was considered to be one of the
main challenges in Maier et al. (2014). Unfortunately, in most
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papers the number of optimization methods compared is very
small (usually between two and six) and the conclusions differ
significantly. In some studies the superiority of some
approaches over others is claimed, while in other studies
very similar performance is shown for all tested algorithms.
For example, Wang et al. (2010) found that shuffled complex
evolution (SCE) and two different variants of genetic algo-
rithms (GA) perform very similarly when applied to calibra-
tion of a distributed rainfall–runoff model for a small
catchment located in Taiwan. Goswami and O’Connor
(2007) found very slight superiority of simulated annealing
over particle swarm optimization (PSO), GA, shuffled com-
plex evolution–University of Arizona (SCE-UA), Nelder-
Mead simplex (NMA) and Rosenbrock algorithm (RA) in
calibration of a soil moisture accounting and routing model
for rainfall–runoff simulation at two catchments of very dif-
ferent size, located in Ireland and China. Minor differences
between various tested optimization methods were also
reported by Gan and Biftu (1996), Blasone et al. (2007) and
Kavetski and Clark (2010). On the other hand, superiority of
some optimization methods over others was claimed, for
example, in Tolson and Shoemaker (2007), Xu et al. (2013),
Tigkas et al. (2015) and a few older studies (Cooper et al.
1997, Kuczera 1997, Franchini et al. 1998). Note that similarly
contradictory conclusions are given by different authors when
comparing MCMC approaches (Laloy and Vrugt 2012, Chu
et al. 2014, Vrugt and Laloy 2014). There may be several
reasons for such differences. For example, recently it was
shown that improper choice of control parameters of the
optimization method itself affects the quality of solutions
found by a particular algorithm in the case of rainfall–runoff
modelling (Qi et al. 2016). Such contradictory results may
have been achieved because particular studies used various
implementations of different models tested on various rivers
with various amounts and quality of available data, and so on.
This may be of great importance, as discussed by Kavetski
and Clark (2011). The discussion of such a litany of reasons is
beyond the scope of this paper. Nonetheless, irrespective of
the reasons, this variety of opinions shows the need for a
wider comparison of a larger number of optimization algo-
rithms. Indeed, over the past two decades one could observe
an influx of such methods, especially so-called metaheuristics,
i.e. heuristics that are applicable to versatile kinds of problems
(Glover 1986).

In the present paper, over 20 optimization algorithms are
tested on calibration of two simple lumped conceptual rain-
fall–runoff models—HBV (Bergström 1976, Lindström 1997)
and GR4J (Perrin et al. 2003)—applied to daily runoff fore-
casting at four catchments located in temperate climate
zones. As shown in Vansteenkiste et al. (2014), simple
lumped conceptual models are still a reasonable alternative
to distributed models; tests on higher-parameterized, distrib-
uted models are left for the future. Between the two chosen
models, GR4J was initially proposed without any snow rou-
tine (Perrin et al. 2003), which allowed the number of
parameters to be kept as low as four, but led to unsatisfac-
tory performance in some applications (Pokhrel et al. 2014).
Only recently (Valery et al. 2014a, 2014b) have snow mod-
ules been added to the GR4J model. As snow accumulation

and melting play an important role in three out of the four
considered catchments, in this paper GR4J is also imple-
mented with a very simple snow routine, which extends the
number of its parameters to seven. However, the original
name GR4J is retained throughout the paper. The variant of
the second model tested in this study (HBV) requires 13
parameters to be optimized. As both models are frequently
used in forecasting mode, their performance is improved
here by using classical linear regression with exogenous
inputs as the data assimilation procedure for error correc-
tion, as suggested by Refsgaard (1997) and Madsen and
Skotner (2005). In this study, the updating procedure is
performed for the final solutions only, after termination of
the calibration procedures (Refsgaard 1997).

2 Conceptual rainfall–runoff models

Models developed to characterize the rainfall–runoff process
in catchments are usually classified as physically-based, con-
ceptual or empirical. This paper considers two lumped con-
ceptual models, HBV and GR4J, that involve a configuration
of interconnected stores with mathematical transfer functions
used to direct the movement of water between stores and into
the stream. In both models, elevation correction is not taken
into account.

2.1 HBV model

The HBV model, introduced by Bergström and Forsman
(1973), is a standard tool for runoff simulations and flood
forecasting in Scandinavia, and has been applied in over 50
countries worldwide. A large majority of these applications
make use of various modified versions of the original HBV
model (Bergström 1995, Bergström and Lindström 2015);
therefore, a detailed description of HBV components, includ-
ing subroutines for snow accumulation and melting, soil
moisture accounting and response generation of runoff, for
the version adopted in this paper is given in the Appendix.
The 13 parameters to be calibrated are denoted by capital
letters.

The input variables to the HBV model are daily precipita-
tion totals (Precip), mean air temperature (Temp) and esti-
mated potential evapotranspiration (Pet) calculated by the
Thornthwaite method (Thornthwaite 1948). The model has
five state variables representing storage of snow pack (ssp),
snowmelt water (ssw), soil moisture (ssm), fast runoff (sfr)
and base flow (sbf).

2.2 GR4J model

The GR4J conceptual model was introduced by Perrin (2000)
as an extension of the GR3J approach proposed by Edijatno
et al. (1999). The detailed mathematical description of the
GR4J model may be found in Perrin et al. (2003), so readers
are referred to that paper. The model performs well even for
data collected within short time intervals (Ficchi et al. 2016)
or almost ungauged catchments (Rojas-Serna et al. in press).
Since our study is concerned with catchments located in
temperate climatic conditions, the original model is extended
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by adding a snow module (as suggested in Valery et al. 2014a,
2014b). The snow module used in this study is a simplified
version of that used in the HBV model (see Appendix), but
with water holding capacity of snow set to zero. The inputs to
the GR4J model include daily precipitation (Precip), mean air
temperature (Temp) and potential evapotranspiration (Pet).
Although this extended version of GR4J has seven parameters
instead of four, i.e. three parameters in the snow routine (TT,
TTI, CFMAX) and four original parameters representing
maximum capacity of production store (x1, mm), ground-
water exchange coefficient (x2, mm), one-day-ahead maxi-
mum capacity of routing store (x3, mm) and time base of unit
hydrograph UH1 (x4, days), the original name GR4J is
retained in this paper.

2.3 Updating procedure

The forecasting performance of both conceptual models may
be significantly improved by means of data assimilation pro-
cedures (Refsgaard 1997, Madsen et al. 2000, Madsen and
Skotner 2005). In the present paper, after termination of the
calibration procedure, the results from the HBV and GR4J
models are updated by means of linear regression with exo-
genous inputs, as in Piotrowski and Napiorkowski (2012).
The past forecasts from “classical” HBV and GR4J models
are added as exogenous inputs to the linear regression error
model εptþ1 ¼ Lðεpt ; εpt�1; :::; ε

p
t�δþ1; y

Model
tþ1 ; yModel

t ; :::; yModel
t�δ Þ

where Model denotes HBV or GR4J and εpt ¼ yt � yModel
t is

the prediction error. The forecast flow for both considered
models is calculated as yptþ1 ¼ yModel

tþ1 þ εptþ1. The number of
required previous observations δ used in HBV and GR4J has
been set to three.

3 Study catchments and data

The present study is based on data collected from four catch-
ments that, although located in different countries and clearly
differing in topography, have roughly similar climatic condi-
tions and size. Although testing a large number of algorithms
on a larger database, such as the one available within the
MOPEX project (Duan et al. 2006), would strengthen the
results (Gupta et al. 2014), some trade-off between the num-
ber of catchments, the number of algorithms and runs per-
formed by each algorithm has to be coined. The main
information on the four chosen catchments is given in
Table 1 and briefly discussed below.

In the Annapolis River catchment (Nova Scotia, Canada),
snowfall occurs from November to April and peak rainfalls
are observed between September and November. A detailed,
even if not the most recent, description of the catchment may
be found in Trescott (1968). The daily runoff data for the

gauge station situated in Wilmot settlement are available from
the Water Survey of Canada and Canada’s National Climate
Data and Information Archive. The daily air temperature and
precipitation data used in this study were measured at a single
site, the meteorological station located at the Greenwood
Airfield, 9 km to the east of Wilmot.

The Biala Tarnowska catchment shares climatic conditions
during winter months with the similar Annapolis catchment,
but the highest rainfalls are observed in summer. One lead-day
runoff forecasting in Koszyce Wielkie is based on air tempera-
ture, precipitation and runoff measurements. Runoff measure-
ments were recorded at Koszyce Wielkie village, while
precipitation was measured at 12 locations within, or close to,
the catchment. The catchment average daily rainfall time series
was created by means of the Thiessen polygons method.

The Allier River enjoys a mild oceanic climate. Rainfall is
noted throughout the year, but although snow is not uncom-
mon at higher elevations in winter, this is the only studied
catchment for which it plays a very limited role. Highest runoff
is observed in late spring and in autumn. A detailed description
of the catchment may be found in Thirel et al. (2015). Daily
runoff forecasts performed in the present study for the Allier
catchment are based on river discharge, air temperature, poten-
tial evapotranspiration and precipitation data available from
www.hydro.eaufrance.fr (Vidal et al. 2010).

In the Nysa Klodzka catchment, snow plays an important
role in the flow regime during winter and spring and, due to
the specific orographic and climatic conditions of the area,
flooding is frequent. Precipitation is available for five loca-
tions within the catchment and the time series of the average
precipitation has been formed by means of the Thiessen
polygons method.

For each catchment, the first 365 days of the training sets
were used as a warm-up period and did not have an impact
on the objective function.

4 Metaheuristics used and comparison criteria

Although mathematical programming and direct search
methods (Kolda et al. 2003) have been known for many
years, today the popularity of so-called metaheuristics is also
soaring in hydrology (Maier et al. 2014). Metaheuristics
usually draws from biological inspiration. A large number of
such methods (a review may be found in Boussaid et al.
2013), including genetic algorithms (GA) (Holland 1975),
evolution strategies (ES) (Bäck and Schwefel 1993), genetic
programming (GP) (Koza 1992), differential evolution (DE)
(Storn and Price 1995), particle swarm optimization (PSO)
(Eberhart and Kennedy 1995) or ant colony optimization
(Dorigo et al. 1996), are well established in the literature
and have turned out to be successful in many real-world
applications in different fields of science. However, in recent

Table 1. Main catchment data.

Catchment Location Size (km2)/Closing station Orography/Highest altitude Calibration period Validation period

1 Annapolis Nova Scotia, Canada 546/Wilmot (NS) Hilly/275 01/01/1980–31/12/1999 01/01/2000–31/12/2009
2 Biala Tarnowska Poland 956/Koszyce Wielkie (near Tarnow) Mountainous/997 01/01/1971–31/12/1989 01/01/1990–31/10/2000
3 Allier France 2269/Veille-Brioude Mountainous/1565 01/08/1978–31/07/1998 01/08/1999–31/07/2008
4 Nysa Klodzka Poland 1061/Klodzko Mountainous/1425 01/01/1971–31/12/1995 01/01/1996–31/10/2010

608 A. P. PIOTROWSKI ET AL.

http://www.hydro.eaufrance.fr


years, many approaches with very “exotic” motivations and
names have been proposed (see for example a list in Xing and
Gao 2014, Biswas et al. 2013), resulting in critical papers
showing that at least some such methods mimic the older
ones, lack any true novelty except for a spectacular name, or
are developed without scientific rigour (Weyland 2010,
Crepinsek et al. 2012, Piotrowski et al. 2014, Sorensen 2015).

Due to the observed abundance of emerging metaheuris-
tics, a general comparison among them is, in fact, infeasible.
As a result, some, usually subjective, initial selection of meth-
ods is needed. Due to the reasons mentioned, the algorithms
with “novel” inspirations are not considered in this paper, as
the choice among variants of widely accepted methods is wide
enough. A list of the 26 algorithms tested in this study, with
brief descriptions, is presented in Table 2.

From Table 2 one can see that most attention is drawn to
variants of DE algorithms that have already been used in
various hydrological applications (e.g. Kisi 2004, Zheng
et al. 2011, Piotrowski and Napiorkowski 2012, Dokou and
Karatzas 2013, Elci and Ayvaz 2014, Ren et al. 2016,
Piotrowski et al. in press) and become the basis of MCMC
approaches within the DREAM family of methods (ter Braak
and Vrugt 2008, Vrugt et al. 2009a, Vrugt 2016). In-depth
discussion of DE algorithms may be found in review papers
by Neri and Tirronen (2010), Das and Suganthan (2011) and
Das et al. (2016). The crucial point in application of DE
algorithms is the proper choice of population size
(Piotrowski in press). In this study, the population size of
the majority of applied DE variants is set to 5D, where D is
the dimensionality of the problem. However, some DE var-
iants require different population sizes: such cases are clearly
described in the above list of applied algorithms. Apart from
DE algorithms, seven approaches from among other kinds of
evolutionary algorithms, swarm intelligence and direct search
methods are also tested in this study.

The population size of non-DE algorithms depends on the
specific characteristics of each method. The maximum num-
ber of function evaluations is set to 30 000 for both HBV and
GR4J models. To get a large enough sample to justify con-
clusions from the tests performed, each algorithm is run
independently 30 times for every model and catchment, start-
ing from different, randomly-generated, initial solutions.

In addition to classical optimizers, for comparison purpose,
one MCMC method is used, namely DE-based DREAM_ZS
(Laloy and Vrugt 2012, Vrugt 2016) with parameter settings
suggested in Vrugt et al. (2008) for HYMODmodel calibration.
In the case of DREAM_ZS, in this study only the performance
of the best solution (in terms of calibration criterion defined in
Equation (1) given below, determined for the training period)
in each run is used for comparison with solutions determined
by optimization metaheuristics. Note that 30 runs are per-
formed by DREAM_ZS, as in the case of standard optimization
algorithms. Comparison of classical optimizers with the
MCMC method was motivated by Laloy and Vrugt (2012),
who, using a similar approach, tested DREAM_ZS against two
optimization algorithms, namely SP-UCI (a variant discussed in
Chu et al. 2010) and PEST (Doherty 2009) and found
DREAM_ZS to outperform SP-UCI and be comparable with
PEST. Hence we wish to verify the applicability of DREAM_ZS

for calibration purposes against a large number of modern
optimization algorithms.

The techniques for handling bounds may have some
impact on the results achieved. In the case of NMA, RA,
PMS and DE-based approaches (including DCMA, but not
CLPSO-DEGL) the classical rebounding (or reflection)
approach is used (as in Helwig et al. 2013, Piotrowski 2013).
For the hybrid CLPSO-DEGL algorithm, two different
bound-handling approaches are implemented: for CLPSO
the one suggested in Liang et al. (2006), while for DEGL,
the rebounding method. In the case of other metaheuristics,
techniques suggested in the source papers are implemented.

For all metaheuristics except AMALGAM, which uses its
own initialization procedure (see Vrugt et al. 2009b), and
DREAM_ZS, which uses latin hypercube sampling, the initial
values of HBV and GR4J parameters are drawn randomly from
the uniform distributions within the defined upper and lower
parameter bounds (Tables 3 and 4). The parameter ranges are
based on experience and literature review (e.g. Bergström 1976,
Perrin et al. 2003) and are kept fixed for all four catchments in
the GR4J model. However, when the HBV model was used on
the Allier catchment, slightly wider parameter ranges were
required than those used for the other three catchments.

All metaheuristics considered in this study are used for
calibration of both HBV and GR4J models for 1 lead-day runoff
forecasting in the Annapolis, Biala Tarnowska, Allier and Nysa
Klodzka catchments. Denoting the number of data in each set
(training or validation, note that in the case of training data the
365-day warm-up period is excluded) by N, the lead time (equal
to 1 day) by LT, and the forecast and observed runoff as yn

P and
yn, respectively, the mean square error (MSE) is defined as:

MSE ¼ 1
N

XN
n¼1

yPn � yn
� �2

(1)

MSE is also used as the objective function (to be minimized)
duringmodel calibration. The quality of the results is also checked
using the persistence index (PI) (Kitanidis and Bras 1980):

PI ¼ 1�

PN
n¼LTþ1

yPn � yn
� �2

PN
n¼LTþ1

yn � yn�LT

� �2 (2)

A value of PI equal to 1 means a perfect fit, while negative
values suggest that it is better to accept the last measured flow
as a forecast (i.e. the so-called conservative forecast) rather
than using the tested model.

5 Results

The statistics obtained by the HBV and GR4J models
calibrated by means of each of 26 metaheuristics are,
due to space restrictions, given in the Supplementary
material (Tables S1–S8). They include a 30-run averaged
MSE and PI for training and validation data, accompanied
by appropriate standard deviations, the lowest MSE found
during 30 runs according to training sets and the lowest
MSE found during 30 runs according to validation sets
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Table 2. Optimization algorithms used. DE: differential evolution; PSO: particle swarm optimization; NP: population size.

Abbreviation Full name Reference Comments

1 NMA Nelder-Mead algorithm with
re-initialization

Nelder and Mead
1965; Lagarias et al.
1998

The classical NMA with added possibility of re-initialization of all points but the
best one. Re-initialized solutions are generated randomly from uniform
distribution within parameter bounds. By definition NP equals D + 1. Algorithm
is re-initialized when either the maximum difference between coordinates of the
best and the worst point is less than 10–4, or the difference in fitness between
the best and the worst point is less than 10–4.

2 RA Rosenbrocck’s algorithm with
re-initialization

Rosenbrock 1960 This is a non-“population based” algorithm (one may say that population size is
equal to 1) and the only local search procedure tested. It is used in this study
with re-initialization. After every 100D (where D is the dimensionality of the
problem) function calls it is verified if during the last 100D function calls the
solution was improved by more than 10–4. If not, the location of the RA point is
randomly re-initialized, the value of the step length is re-set to 0.1 (see
Rosenbrock 1960) and the coordinates are re-set to the initial system. The
following parameter settings are used: α = 3, β = −0.5, initial estep = 0.1
(variable during search).

3 SADE Self-adaptive DE Qin et al. 2009 Probably the most popular adaptive DE variant.
4 RB-SADE Ranking-based SADE Gong and Cai 2013 RB-SADE is a modified SADE variant, in which better vectors are more frequently

used as a base and terminal points in DE mutation schemes.
5 DEGL DE with global and local

neighbourhood mutation
operators

Das et al. 2009 DEGL variant with self-adaptive weight values is used, as suggested in Das et al.
2009.

6 AM-DEGL Adaptive memetic DEGL Piotrowski 2013 Adaptive memetic DE variant, based on DEGL, SADE and NMA.
7 CLPSO Comprehensive learning PSO Liang et al. 2006 State-of-the-art PSO variant. The velocity of each particle is restricted within 20% of

every parameter range, and initialized within this range. The population size is
set to 30 particles in this paper.

8 CLPSO-DEGL Hybrid CLPSO and DEGL
approach

Epitropakis et al. 2012 Algorithm merges the benefits of both classical PSO and DE variants. More
specifically, at each generation the algorithm initially performs the search by
means of CLPSO, then the best positions of each particle form the DE population
and such a population is managed by means of DEGL. The CLPSO and DEGL
moves are implemented alternately. The specific control parameter settings of
both CLPSO and DEGL algorithms are adopted (but population size is set to 30,
following CLPSO).

9 DE-SG DE with separated groups Piotrowski et al.
2012a, 2012b

Distributed DE variant, which is an updated version of grouping DE (Piotrowski and
Napiorkowski 2010). The population size is set to the closest number lower than
or equal to 5D that, when divided by 10, produces a quotient without
remainder. As in previous papers aimed at artificial neural network training
(Piotrowski and Napiorkowski 2012, Piotrowski et al. in press), to speed up
convergence of DE-SG, the parameter named pre-defined number of iterations
(PNI) is reduced to 10 and the parameter that defines migration probability
(MigProb) is set to 1/PNI;

10 SspDE Self-adaptive DE Pan et al. 2011 Self adaptive DE variant.
11 JADE JADE Zhang and Sanderson

2009
Variant with archive is used, as suggested by Zhang and Sanderson 2009.

12 AdapSS-JADE JADE with adaptive strategy
selection

Gong et al. 2011 The variant with normalized average reward is used, as the best among four
proposed in Gong et al. 2011.

13 DECLS DE with chaotic local search Jia et al. 2011 Memetic DE variant based on chaotic local search.
14 DEahcSPX DE with adaptive crossover-

based local search
Noman and Iba 2008 One of the earliest memetic DE algorithms.

15 CoDE Composite DE Wang et al. 2011 Unusual DE variant that creates three offspring for each parent.
16 EPSDE DE with ensemble of mutation

strategies and control
parameters

Mallipeddi et al. 2011 DE variant based on a novel concept of self-adaptation.

17 SFMDE Super-fit Memetic DE Caponio et al. 2009 This DE variant hybridizes DE, PSO, RA and NMA algorithms.
18 CDE Clustering-based DE Cai et al. 2011 Probably the first DE approach based on the concept of clustering.
19 IMDE DE with intersect mutation

operator
Zhou et al. 2013 IMDE introduces novel DE mutation and crossover schemes. The variant defined as

“1st process” is used.
20 MDE_pBX Modified DE with p-best

crossover
Islam et al. 2012 MDE_pBX introduces another novel DE crossover and mutation operators.

21 DCMA Differential covariance matrix
adaptation evolution
strategy

Ghosh et al. 2012 A hybrid of DE and CMA-ES (Hansen and Ostermeier 1996). As suggested by Ghosh
et al. (2012), DCMA is applied with population size equal to 50 (independent of
dimensionality of the problem). The initial value of the control parameter σ is set
to 50% of the maximum range among all model parameters.

22 PMS Parallel memetic structures Caraffini et al. 2013 A kind of memetic computing approach that is a modified version of a simple non-
population-based heuristic algorithm designed following the philosophy of
Ockham’s razor.

23 jDElscop Self-adaptive differential
evolution algorithm using
population size reduction
and three strategies

Brest and Maucec
2011

Self-adaptive DE variant with variable population size, which is periodically
diminished during the search. jDElscop starts from NP = 10D, and finishes with
NP = ceil(1.25D).

24 AMALGAM A multi-algorithm genetically
adaptive method for single
objective optimization

Vrugt et al. 2009b AMALGAM variant that merges CMA-ES, GA and PSO, as suggested in Vrugt et al
2009. AMALGAM makes a number of sub-runs within the time budget. The
population size starts from 15 in the first sub-run and in each consecutive sub-
run, within the time budget, is increased by a factor of 2 (but not to a value
larger than 480).

(Continued )
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(note that the best solution for training data is not neces-
sarily the best for validation). Selected results, which
include only averaged MSE and PI values for each river,
are presented here as Tables 5 and 6. As for other opti-
mizers, only the best solution found by DREAM_ZS

during each run (there are 30 runs, hence 30 best solu-
tions) is used to calculate the mentioned statistics.

5.1 Comparison of GR4J and HBV performance

One may note that GR4J outperforms HBV for data collected
at the Annapolis River catchment according to the validation
but not for the training set. On the contrary, for the Biala
Tarnowska River catchment, GR4J is better than HBV on
training, but not on validation data. For the Allier and Nysa
Klodzka catchments, HBV outperforms GR4J on both train-
ing and validation sets. Such differences in results are not

Table 2. (Continued).

Abbreviation Full name Reference Comments

25 SP-UCI Shuffled complex evolution
with principal components
analysis – University of
California at Irvine

Chu et al. 2011 A modified version of shuffled complex evolution (Duan et al. 1992) that uses a
number of NMA simplexes to move through the search space. SP-UCI with four
simplexes is used in this study.

26 DREAM_
TS

Differential evolution adaptive
metropolis

Laloy and Vrugt 2012 The only MCMC method tested. A modified version of DREAM (Vrugt et al. 2008)
with only three chains (see ter Braak and Vrugt 2008 and Laloy and Vrugt 2012)
and density function defined as the sum of square errors (Vrugt et al. 2008).
Note that only the performance of the best solution found by DREAM in each
run is used for comparison with classical optimizers.

Table 3. Parameter ranges of the HBV model. L and U refer to lower and upper bounds, respectively.

FC
(mm)

BETA
(–)

LP
(–)

ALPHA
(–)

KF
(1/d)

KS
(1/d)

PERC
(mm/d)

CFLUX
(mm/d)

TT
(°C)

TTI
(°C)

CFMAX
(mm/°C d)

CFR
(–)

WHC
(–)

Annapolis, Biala Tarnowska, Nysa Klodzka catchments
L 10.0 0.3 0.1 −0.5 0.01 0.01 0.01 0.01 −3.0 0.01 0.5 0.001 0.001
U 500.0 4.0 0.95 2.0 0.5 0.08 10.0 10.0 3.0 8.0 5.0 0.300 0.300

Allier catchment
L 10.0 0.01 0.1 −0.5 0.0001 0.01 0.01 0.0001 −3.0 0.01 0.5 0.0001 0.0001
U 500.0 4.0 0.999 2.0 0.5 0.3 10.0 10.0 3.0 8.0 5.0 0.300 0.300

Table 4. Parameter ranges of the GR4J model (the same for each catchment). L
and U refer to lower and upper bounds, respectively.

x1
(mm)

x2
(mm)

x3
(mm)

x4
(d)

TT
(°C)

TTI
(°C)

CFMAX
(mm/°C d)

L 0.1 −7.0 0.1 0.5 −3.0 0.01 0.5
U 1500.0 5.0 500.0 5.0 3.0 8.0 5.0

Table 5. Mean results achieved by every algorithm used to calibrate the HBV and GR4J models for rivers Annapolis and Biala Tarnowska. The lowest mean square
error results are in bold. MSE: mean square error ((m3/s)2); PI: persistence index; t: training; v: validation.

Annapolis River – HBV Annapolis River – GR4J Biala Tarnowska River – HBV Biala Tarnowska River – GR4J

MSE(t) MSE(v) PI(t) PI(v) MSE(t) MSE(v) PI(t) PI(v) MSE(t) MSE(v) PI(t) PI(v) MSE(t) MSE(v) PI(t) PI(v)

DEGL 11.275 16.534 0.574 0.650 11.379 12.889 0.570 0.727 41.264 37.388 0.815 0.777 40.227 42.458 0.819 0.747
JADE 11.284 16.546 0.573 0.650 11.380 12.896 0.570 0.727 41.036 36.947 0.816 0.780 40.167 42.482 0.819 0.747
AdapSS-JADE 11.284 16.544 0.573 0.650 11.380 12.895 0.570 0.727 40.981 36.950 0.816 0.780 40.167 42.482 0.819 0.747
AM-DEGL 11.281 16.538 0.573 0.650 11.380 12.895 0.570 0.727 40.935 36.855 0.816 0.780 40.167 42.482 0.819 0.747
CDE 11.274 16.521 0.574 0.651 11.380 12.893 0.570 0.727 41.153 37.156 0.815 0.778 40.182 42.476 0.819 0.747
CoDE 11.285 16.788 0.573 0.645 11.381 12.903 0.569 0.727 42.062 38.104 0.811 0.773 40.167 42.482 0.819 0.747
DCMA 11.283 16.541 0.573 0.650 11.382 12.903 0.569 0.727 41.136 37.283 0.815 0.778 40.167 42.482 0.819 0.747
DEahcSPX 11.294 16.790 0.573 0.645 11.381 12.902 0.569 0.727 42.358 38.240 0.810 0.772 40.167 42.482 0.819 0.747
DECLS 11.275 16.576 0.574 0.650 11.381 12.898 0.570 0.727 41.462 38.133 0.814 0.773 40.167 42.482 0.819 0.747
DESG 11.280 16.564 0.573 0.650 11.381 12.902 0.569 0.727 41.441 37.855 0.814 0.774 40.167 42.482 0.819 0.747
EPSDE 11.277 16.526 0.573 0.651 11.380 12.896 0.570 0.727 40.961 36.786 0.816 0.781 40.167 42.482 0.819 0.747
IMDE 11.284 16.545 0.573 0.650 11.380 12.893 0.570 0.727 41.179 37.350 0.815 0.777 40.167 42.482 0.819 0.747
jDElscop 11.283 16.542 0.573 0.650 11.381 12.898 0.570 0.727 40.937 36.780 0.816 0.781 40.167 42.482 0.819 0.747
MDE_pBX 11.267 16.500 0.574 0.651 11.379 12.880 0.570 0.728 40.916 36.736 0.816 0.781 40.227 42.458 0.819 0.747
RB-SADE 11.270 16.505 0.574 0.651 11.379 12.890 0.570 0.727 40.960 36.783 0.816 0.781 40.197 42.470 0.819 0.747
SADE 11.266 16.500 0.574 0.651 11.380 12.893 0.570 0.727 41.025 36.924 0.816 0.780 40.167 42.482 0.819 0.747
SFMDE 11.373 16.974 0.570 0.641 11.646 13.719 0.559 0.710 48.069 44.339 0.784 0.736 40.202 42.471 0.819 0.747
SspDE 11.261 16.515 0.574 0.651 11.380 12.892 0.570 0.727 41.081 37.065 0.815 0.779 40.167 42.482 0.819 0.747
SP-UCI 11.280 16.533 0.573 0.650 11.380 12.891 0.570 0.727 40.861 36.680 0.816 0.781 40.167 42.482 0.819 0.747
NMA 11.319 16.580 0.572 0.649 11.401 12.881 0.569 0.728 41.708 38.140 0.813 0.773 38.654 42.669 0.818 0.745
RA 11.414 17.763 0.568 0.624 11.377 12.877 0.570 0.728 44.041 40.664 0.802 0.757 40.174 42.507 0.819 0.746
PMS 11.266 17.100 0.574 0.638 11.298 12.629 0.573 0.733 42.657 39.308 0.808 0.766 40.486 42.599 0.818 0.746
CLPSO 11.311 16.843 0.572 0.644 11.374 12.864 0.570 0.728 40.191 42.456 0.819 0.747 40.191 42.456 0.819 0.747
CLPSO-DEGL 11.353 17.395 0.571 0.632 11.375 12.867 0.570 0.728 43.256 39.507 0.806 0.764 40.193 42.494 0.819 0.747
AMALGAM 11.297 16.635 0.573 0.648 11.374 12.874 0.570 0.728 41.371 37.743 0.814 0.775 40.183 42.483 0.819 0.747
DREAM_ZS 11.271 16.561 0.574 0.650 11.382 12.894 0.569 0.727 41.099 37.380 0.815 0.777 40.165 42.518 0.819 0.746
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surprising, as over decade ago Perrin et al. (2001) showed that
various conceptual rainfall–runoff models may perform very
differently for different catchments, even those located in
relatively similar climatic conditions. It is also known that
the modelling performance may differ noticeably for training
and independent validation periods (Amoussou et al. 2014).
Such differences could also result from differences in climatic
conditions in the calibration and validation periods (Osuch
et al. 2015).

5.2 Comparison of optimization algorithms

Considering various optimization methods, the results
obtained show that the average performance of almost all
optimizers tested is similar and none of the methods could
be regarded as superior to the others. This is especially clear
when tests (with both HBV and GR4J models) are done on
data for the Annapolis and Nysa Klodzka catchments, or
when GR4J is applied to Allier catchment data. When the
Biala Tarnowska catchment is considered, or when the HBV
model is applied to Allier River data, some small differences
may be found, but they are still meaningless from the hydro-
logical point of view, and in each case they point to another
optimization algorithm as the slightly better one. Hence, the
experiments on simple conceptual models show that the vast
majority of optimization algorithms perform similarly well.
This is also true for the two oldest methods, NMA and local
search RA, which are considered rather “historical”
approaches and are rarely compared with modern metaheur-
istics. As a large number of optimization methods are tested
in this study, including some widely praised approaches (such
as SADE, JADE, CLPSO, AMALGAM), such a result is

probably not due to inadequate selection of optimization
algorithms. As similar conclusions were drawn by Gan and
Biftu (1996), who tested just a few methods that were avail-
able 20 years ago (including NMA), this means that the use of
modern metaheuristics adds little to the practical problem of
calibration of simple lumped rainfall–runoff models. The
search for the best set of such model parameters turns out
to be relatively simple, as suggested by Perrin et al. (2003) or
Kavetski and Clark (2010).

However, according to 30-run averaged performance, a
few methods may be termed slightly poorer than the others,
at least for some catchments and models. For example,
SFMDE turns out to be slightly poorer than all other algo-
rithms on GR4J calibration for the Annapolis River, and is
more clearly inferior to others on HBV calibration for the
Biala Tarnowska and Allier rivers. CLPSO-DEGL performs
poorly when used to calibrate HBV for the Allier and Nysa
Klodzka rivers. The PMS is the only approach showing very
uneven performance—it cannot be recommended for calibra-
tion of either model for Nysa Klodzka, but leads to marginally
the best results when GR4J is applied to Allier and Annapolis
catchment data.

It must also be noted here that MCMC DREAM_ZS
does indeed find solutions of similar quality to those
found by classical optimization algorithms, and in one
case (calibration of the GR4J model on Nysa Klodzka
data) it even turns out to be marginally the best optimizer
according to training data. Such a result confirms that, at
least for relatively simple conceptual rainfall–runoff mod-
els, DREAM_ZS may indeed be used not only for sampling,
but also for calibration purposes, as suggested by Laloy and
Vrugt (2012).

Table 6. Mean results achieved by every algorithm used to calibrate the HBV and GR4J models for rivers Allier and Nysa Klodzka. The lowest mean square error
results are in bold. MSE: mean square error ((m3/s)2); PI: persistence index; t: training; v: validation.

Allier River – HBV Allier River – GR4J Nysa Klodzka River – HBV Nysa Klodzka River – GR4J

MSE(t) MSE(v) PI(t) PI(v) MSE(t) MSE(v) PI(t) PI(v) MSE(t) MSE(v) PI(t) PI(v) MSE(t) MSE(v) PI(t) PI(v)

DEGL 101.705 57.173 0.718 0.723 108.230 62.661 0.700 0.696 21.426 61.372 0.708 0.728 23.947 65.526 0.673 0.709
JADE 101.469 56.856 0.719 0.724 108.235 62.665 0.700 0.696 21.460 59.936 0.707 0.734 23.824 64.835 0.675 0.712
AdapSS-JADE 101.565 56.811 0.718 0.724 108.235 62.665 0.700 0.696 21.462 59.992 0.707 0.734 23.823 64.817 0.675 0.712
AM-DEGL 101.637 56.973 0.718 0.724 108.235 62.665 0.700 0.696 21.453 60.221 0.707 0.733 23.823 64.833 0.675 0.712
CDE 101.423 56.997 0.719 0.723 108.235 62.665 0.700 0.696 21.468 60.002 0.707 0.734 23.831 64.868 0.675 0.712
CoDE 104.613 58.219 0.710 0.717 108.235 62.665 0.700 0.696 21.488 62.824 0.707 0.721 23.823 64.834 0.675 0.712
DCMA 101.804 56.495 0.718 0.726 108.235 62.665 0.700 0.696 21.467 59.747 0.707 0.735 23.824 64.834 0.675 0.712
DEahcSPX 104.973 59.121 0.709 0.713 108.235 62.665 0.700 0.696 21.463 60.767 0.707 0.730 23.824 64.834 0.675 0.712
DECLS 102.993 57.450 0.714 0.721 108.235 62.665 0.700 0.696 21.476 59.891 0.707 0.734 23.822 64.801 0.675 0.712
DESG 101.750 57.441 0.718 0.721 108.235 62.665 0.700 0.696 21.474 59.948 0.707 0.734 23.823 64.833 0.675 0.712
EPSDE 101.350 56.887 0.719 0.724 108.235 62.665 0.700 0.696 21.468 59.727 0.707 0.735 23.824 64.835 0.675 0.712
IMDE 101.500 56.781 0.719 0.724 108.235 62.665 0.700 0.696 21.466 59.982 0.707 0.734 23.822 64.827 0.675 0.712
jDElscop 101.464 56.867 0.719 0.724 108.235 62.665 0.700 0.696 21.468 59.908 0.707 0.734 23.824 64.834 0.675 0.712
MDE_pBX 101.426 56.875 0.719 0.724 108.191 62.630 0.700 0.696 21.449 59.909 0.707 0.734 23.825 64.841 0.675 0.712
RB-SADE 101.586 57.137 0.718 0.723 108.230 62.661 0.700 0.696 21.444 60.555 0.707 0.731 23.829 64.859 0.675 0.712
SADE 101.469 57.077 0.719 0.723 108.235 62.665 0.700 0.696 21.458 60.003 0.707 0.734 23.824 64.835 0.675 0.712
SFMDE 111.376 61.840 0.691 0.700 108.238 62.930 0.700 0.695 21.616 62.692 0.705 0.722 23.860 64.935 0.674 0.712
SspDE 101.818 57.525 0.718 0.721 108.235 62.665 0.700 0.696 21.453 60.162 0.707 0.733 23.820 64.820 0.675 0.712
SP-UCI 101.859 57.094 0.718 0.723 108.235 62.665 0.700 0.696 21.380 62.095 0.708 0.724 23.813 64.777 0.675 0.713
NMA 102.896 57.855 0.715 0.719 109.002 63.488 0.698 0.692 21.399 63.347 0.708 0.719 23.898 64.930 0.674 0.712
RA 106.715 58.848 0.704 0.714 108.229 62.671 0.700 0.696 21.621 62.929 0.705 0.721 23.821 64.637 0.675 0.713
PMS 106.696 58.594 0.704 0.716 108.177 62.538 0.700 0.697 21.570 70.329 0.706 0.688 24.289 67.024 0.669 0.703
CLPSO 104.160 59.417 0.711 0.712 108.179 62.837 0.700 0.695 21.511 57.468 0.706 0.745 23.858 65.097 0.674 0.711
CLPSO-DEGL 109.483 60.263 0.696 0.708 108.178 63.284 0.700 0.693 22.448 64.063 0.694 0.716 23.907 65.076 0.674 0.711
AMALGAM 101.510 56.937 0.719 0.724 108.235 62.658 0.700 0.696 21.540 59.496 0.706 0.736 23.871 65.005 0.674 0.712
DREAM_ZS 102.081 57.483 0.717 0.721 108.239 62.795 0.700 0.695 21.485 60.903 0.707 0.730 23.809 64.771 0.675 0.713
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5.3 Convergence speed

As almost all algorithms converge to solutions of similar
quality, one may ask whether they are similarly quick. In
other words, one may wonder how the convergence speed
of various algorithms varies. It is difficult to show conver-
gence of so many methods graphically; however, convergence
plots of a sample composed of 10 representative algorithms
for each model and catchment are given in Figs 1–4. Note

that in such figures convergence plots for training data in
simulation mode are illustrated, without an using updating
procedure (which is applied to the final solutions only in this
study), hence the differences between values found in Figs 1–
4 and Tables 5 and 6 (accordingly, Tables S1–S8). One may
note that for almost every catchment and model, 8 out of 10
methods converge with roughly similar speed, one algorithm
(jDElscop) is slightly slower and one (CLPS-DEGL) is much
slower than the majority of the methods. The slower

Annapolis – GR4J Training 

Annapolis – HBV Training 

Figure 1. Convergence plots of 10 selected optimization methods (Annapolis River).
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convergence of jDElscop may be easily explained by its
method of adapting population size (for detailed procedures,
see Brest and Maucec 2011), which depends on the number of
allowed function calls. In other words, jDElscop focuses
attention on exploration of the search space at earlier stages
of the search, hence converges slowly, and at the later stages
of the search focuses on exploitation, speeding up conver-
gence to the best local optima found so far. This allows

reasonable management of all function calls allowed, but
prevents quick convergence of the algorithm, which is seen
in almost all plots included in Figs 1–4. We are unable to
explain the slow convergence of CLPS-DEGL. However, the
main conclusion from Figs 1–4 is that the majority of meth-
ods converge with roughly similar speed. Hence, comparing
the convergence speed also does not allow identification of
the best approach.

Biala Tarnowska - GR4J Training 

Biala Tarnowska - HBV Training 

Figure 2. Convergence plots of 10 selected optimization methods (Biala Tarnowska River).
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5.4 Methodological and hydrological perspective: a
discussion

One may look at the results from another perspective.
Detailed inspection of the results shown in Tables 5 and 6
and Tables S1–S8 (Supplementary material) reveals that the
best solution for training data found during 30 runs by one
among the tested methods may be slightly better than both
30-run averaged performance and the best solution found by

any other approach. The most evident, but not the sole
example of such a case is provided by the GR4J results for
the Annapolis catchment data and the PMS approach. This
means that, although all algorithms reach similar average
performance, they are unable to converge to the global opti-
mum, hence calibration of HBV or GR4J models may be
considered as a so-called deceptive problem (Goldberg 1989,
Weise et al. 2012), in which a common evolutionary principle
of survival of the fittest leads to sub-optimal solutions, driving

Allier - GR4J Training 

Allier - HBV Training 

Figure 3. Convergence plots of 10 selected optimization methods (Allier River).
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the algorithm away from the global optimum. In fact, in some
papers it was empirically shown that for deceptive problems a
random search may outperform popular metaheuristics
(Oltean 2004, Piotrowski 2013), as should be expected
according to the no-free-lunch theorems for optimization
(Wolpert and Macready 1997). Interestingly, in the example
discussed above, PMS used for GR4J calibration on the
Annapolis River found not only the best solution according
to training, but also for validation data. Similar deceptive

problems, for which the vast majority of methods find solu-
tions of almost equal quality but are unable to determine the
global one, are widely used within common problems defined
for benchmarking metaheuristics. Probably the best known
examples are two artificial multimodal benchmark problems,
F8 and F24, from the IEEE Competition on Evolutionary
Computation 2005 (Suganthan et al. 2005), for which the
global optimum is very hard to find by any method, and
almost all algorithms end up in the same local optimum.

Nysa Klodzka - GR4J Training 

Nysa Klodzka - HBV Training 

Figure 4. Convergence plots of 10 selected optimization methods (Nysa Klodzka River).
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This suggests that the problem of HBV or GR4J calibration
may turn out to be useful for showing the deficiencies of
various metaheuristics. However, from a practical hydrologi-
cal point of view, such marginal differences have to be con-
sidered meaningless.

As the results shown in Tables 5 and 6 indicate that the
average performance of each optimization method is approxi-
mately the same, the question arises whether a good fit of the
output from the models to the observed data implies conver-
gence of HBV and GR4J model parameters to one set of “best
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Figure 5. Histogram showing the distribution of GR4J and HBV model parameters obtained during 30 runs by means of six selected optimization algorithms
(Annapolis River).
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values”. Because the identification of the parameters of both
catchment runoff models is a typical example of an ill-posed
problem (Napiorkowski 1986), there are different parameter
sets within chosen HBV or GR4J model structures that may
be acceptable as far as reproducing the observed rainfall–
runoff system is concerned.

In Figs 5–8, the histograms of model parameters obtained
during 30 runs by six chosen algorithms (including one DE
(DEGL), one PSO (CLPSO), one multi-algorithm
(AMALGAM), a novel simplex approach (SP-UCI) and
two non-population-based approaches—historical RA and
novel PMS) are illustrated. As we put most attention on
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Figure 6. Histogram showing the distribution of GR4J and HBV model parameters obtained during 30 runs by means of six selected optimization algorithms (Biala
Tarnowska River).
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optimizers in this study, DREAM_ZS results are skipped
here. One may note that the spread of parameter values
depends on the algorithm: DEGL, AMALGAM and SP-
UCI show the most consistent results, while non-popula-
tion-based approaches and CLPSO show the wider spread

ones. Hence, although the final results are of similar quality,
some algorithms (often those population based) almost
always terminate in the same local optimum, while others
(often non-population based, or based on PSO concepts)
lead to more scattered solutions.

ALLIER

HBV GR4J

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

FC [mm]

0

5

10

15

20

25

30

35

N
um

be
r 

of
 o

bs
er

va
tio

ns

 CLIPSO
 DEGL
 RA
 SPU-CI
 PMS
 AMALGAM

220 225 230 235 240 245 250 255 260 265 270 275 280 285 290

x1 [mm]

0

5

10

15

20

25

30

35

N
um

be
r 

of
 o

bs
er

va
tio

ns

 CLIPSO
 DEGL
 RA
 SPU-CI
 PMS
 AMALGAM

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

BETA [-]

0

5

10

15

20

25

30

35

N
um

be
r 

of
 o

bs
er

va
tio

ns

 CLIPSO
 DEGL
 RA
 SPU-CI
 PMS
 AMALGAM

-0.40 -0.39 -0.38 -0.37 -0.36 -0.35 -0.34 -0.33 -0.32 -0.31

x2 [mm]

0

5

10

15

20

25

30

35

N
um

be
r 

of
 o

bs
er

va
tio

ns

 CLIPSO
 DEGL
 RA
 SPU-CI
 PMS
 AMALGAM

0.5 0.6 0.7 0.8 0.9 1.0 1.1

LP[-]

0

5

10

15

20

25

30

35

N
um

be
r 

of
 o

bs
er

va
tio

ns

 CLIPSO
 DEGL
 RA
 SPU-CI
 PMS
 AMALGAM

94.5 95.0 95.5 96.0 96.5 97.0 97.5 98.0

x3 [mm]

0

5

10

15

20

25

30

35

N
um

be
r 

of
 o

bs
er

va
tio

ns

 CLIPSO
 DEGL
 RA
 SPU-CI
 PMS
 AMALGAM

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

ALPHA [-]

0

5

10

15

20

25

30

35

N
um

be
r 

of
 o

bs
er

va
tio

ns

 CLIPSO
 DEGL
 RA
 SPU-CI
 PMS
 AMALGAM

2.044 2.046 2.048 2.050 2.052

x4 [days]

0

5

10

15

20

25

30

35

N
um

be
r 

of
 o

bs
er

va
tio

ns

 CLIPSO
 DEGL
 RA
 SPU-CI
 PMS
 AMALGAM

Figure 7. Histogram showing the distribution of GR4J and HBV model parameters obtained during 30 runs by means of six selected optimization algorithms (Allier
River).
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6 Conclusions

In this study, 26 optimization algorithms, including a number
of modern evolutionary or swarm intelligence methods, two
historical direct search heuristics and one MCMC sampling

approach, have been tested on calibration of simple lumped
HBV and GR4J models for four catchments located in
roughly similar temperate climatic conditions on two
continents.
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Figure 8. Histogram showing the distribution of GR4J and HBV model parameters obtained during 30 runs by means of six selected optimization algorithms (Nysa
Klodzka River).
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It has been shown that, with very few exceptions, almost all
algorithms perform similarly on each calibration problem and
no method may be called superior to the others in terms of the
final performance. Although a few methods reach satisfactory
solutions slower than the others, the difference in convergence
speed among the majority of algorithms is small enough to be
of no practical importance. It has also been shown that both
historical direct search methods (algorithms proposed by
Nelder and Mead 1965, Rosenbrock 1960) and the MCMC
sampling approach DREAM_ZS (Laloy and Vrugt 2012) per-
form equally well in finding the best solutions as modern
optimizers, at least where simple lumped conceptual rainfall–
runoff models are concerned. Hence there is little room to
search for better optimization methods for such models.

On the other hand, it was found that the vast majority of
methods, although finding solutions of almost equal quality,
do not converge to the global optimum. This is irrelevant
from the hydrological perspective, but may be of interest to
the optimization community and allows calibration of HBV
and GR4J to be termed a deceptive problem (Goldberg 1989);
i.e. a problem that lures almost all optimizers to specific local
minima, preventing them from finding the global one.

Finally, it was confirmed that neither the HBV nor the
GR4J model may be termed superior for all four catchments
tested, as should be expected after the tests performed by
Perrin et al. (2001).
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APPENDIX

Applied HBV model version

The input variables to the HBV version used in this study include: daily
precipitation (Precip), mean air temperature (Temp) and estimated
potential evapotranspiration (Pet) calculated by the Thornthwaite
method (Thornthwaite 1948). HBV has five state variables representing
storages of snow pack (ssp), snowmelt water (ssw), soil moisture (ssm),
fast runoff (sfr) and base flow (sbf). Precipitation may occur in the form
of rainfall (r), snowfall (s) or a mixture of snowfall and rainfall. In the
model, the threshold temperature (TT, °C) is used to distinguish rainfall
from snowfall. It is assumed that at the TT half of the precipitation
consists of snow. The TT is extended to an interval TTI (°C) and within
this interval precipitation is assumed to be a mix of rain and snow,
decreasing linearly from 100% snow at the lower bound to 0% at the
upper bound, i.e.:

sðtÞ ¼ PrecipðtÞ � ðTTþ 0:5 � TTI� TempðtÞÞ=TTI
rðtÞ ¼ PrecipðtÞ � ðTempðtÞ � ðTT� 0:5 � TTIÞÞ=TTI (A1)

Precipitation is assumed to be in the form of snowfall if Temp(t) remains
below the interval. If Temp(t) is above the interval only rain occurs,
otherwise precipitation is considered to be a mix of snow and rain.
Snowfall is added to the snow reservoir and rainfall is added to the
free water reservoir, which represents the liquid water content of the
snow pack.

Daily snowmelt water (sw) is computed by means of the degree-day
method:

swðtÞ ¼ minðCFMAX � ðTempðtÞ � TTÞ; sspðtÞÞ (A2)

where CFMAX is the degree-day factor (mm/°C d).
The snowpack retains meltwater as long as the amount of water does

not exceed a certain fraction of the snow (WHC, mm/mm). When the
temperature decreases below TT, this water refreezes gradually according
to the refreezing factor (CFR, dimensionless), which reflects the fraction
of water that will freeze after being released from the melting snow (sr):

srðtÞ ¼ minðCFR � CFMAX � ðTT� TempðtÞÞ; sswðtÞÞ (A3)
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The precipitation routine generates inflow (in) to the soil moisture
routine:

inðtÞ ¼ maxðsswðtÞ þ swðtÞ þ rðtÞ � srðtÞ �WHC � sspðtÞ; 0Þ (A4)

where WHC is the water holding capacity of snow.
The main part of the HBV model is the soil moisture routine. This

module receives inflow (in) calculated by means of Equation (A4) and
computes the state of soil moisture (ssm) based on the direct runoff (qd),
the ground water recharge (qin) and the actual evapotranspiration (ea).
In addition, water can be drawn up from the groundwater zone to the
soil moisture zone. This routine is based on the three parameters, BETA
(–), LP (–) and FC (mm), being, respectively: the shape coefficient that
describes the discharge from the unsaturated zone to the fast runoff
reservoir; the soil moisture value above which evapotranspiration
reaches its potential value; and the maximum soil moisture storage in
the model. The parameter LP is given as a fraction of FC.

If inflow generated from the precipitation routine is greater than the
empty part of the soil moisture reservoir, i.e. in(t) > FC – ssm(t), then
the direct runoff (qd) is transferred directly to the fast runoff reservoir:

qdðtÞ ¼ maxððinðtÞ þ ssmðtÞ � FCÞ; 0Þ (A5)

and the groundwater recharge from the soil moisture routine is calcu-
lated as:

qinðtÞ ¼ ssmðtÞ
FC

� �BETA

� ðinðtÞ � qdðtÞÞ (A6)

Potential evapotranspiration (Pet) is reduced to the actual values (ea)
according to the simple function of the total computed soil moisture
conditions:

eaðtÞ ¼
PetðtÞ � ssmðtÞ

FC if ssmðtÞ=FC < LP
PetðtÞ if ssmðtÞ=FC � LP

�
(A7)

Capillary flow from the upper reservoir to the soil moisture zone is given by:

qcðtÞ ¼ CFLUX � ðFC� ssmðtÞÞ
FC

(A8)

where CFLUX is the maximum capillary flow.
The version of the HBV model applied in this paper has a response

function represented by means of two reservoirs. Excess water enters the
upper zone and then leaves as runoff through its outlet or percolate, at a
constant rate (PERC) down to the lower zone.

The upper reservoir (a part of the fast runoff routine) is nonlinear
and its outflow is given by

qfðtÞ ¼ KF � sswðtÞð1þALPHAÞ (A9)

where ALPHA (–) can be considered as a measure of nonlinearity and
KF (1/d) is the recession coefficient.

The other reservoir is used to simulate the baseflow and its outflow
depends linearly on retention (sgw):

qsðtÞ ¼ KS � sgwðtÞ (A10)

where KS (1/d) is the recession coefficient for the slow runoff reservoir.
The outflow from the HBV model is formed by a sum of runoff
components qf and qs.

To summarize, the adapted version of the HBV model used in this
paper has 13 parameters to calibrate: five in the snow routine (TT, TTI,
CFMAX, CFR, WHC), three in the soil moisture routine (FC, LP, BETA)
and five in the response function (PERC, KF, KS, ALPHA, CFLUX).
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