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Abstract
Miniature GPS devices now allow for measurement of the movement of animals in real 
time and provide high- quality and high-resolution data. While these new data sets are 
a great improvement, one still encounters some measurement errors as well as device 
failures. Moreover, these devices only measure position and require further recon-
struction techniques to extract the full dynamical state space with the velocity and 
acceleration. Direct differentiation of position is generally not adequate. We report on 
the successful implementation of a shadowing filter algorithm that (1) minimizes meas-
urement errors and (2) reconstructs at the same time the full phase-space from a posi-
tion recording of a flying pigeon. This filter is based on a very simple assumption that 
the pigeon's dynamics are Newtonian. We explore not only how to choose the filter's 
parameters but also demonstrate its improvements over other techniques and give 
minimum data requirements. In contrast to competing filters, the shadowing filter's 
approach has not been widely implemented for practical problems. This article 
addresses these practicalities and provides a prototype for such application.
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1  | INTRODUCTION

One of the most conceptual and challenging problems in animal be-
havior is understanding how animals move within a group or flock. 
In other words, what we call “animal collective behavior” (Sumpter, 
2010). In fact, understanding the principles of animal behavior has nu-
merous benefits to mankind. To name a few, studying animal collective 
behavior allows (1) design of optimal algorithms simulation and fore-
casting of animal dynamics which are significantly important for farms 
and wildlife sanctuaries management and (2) develops a coherent en-
gineering machine dynamics of groups of microrobots.

Despite the importance of understanding animal movement, it has 
only been during the last two decades that researchers and scientists 
have been able to directly study and understand animal collective mo-
tion and behavior (Sumpter, 2010). The difficulty has been a lack of 
real data of sufficient precision and frequency with which to verify 
models. However, in the last few years, particularly because of new 

technology such as Global Positing System (GPS) devices and video 
recording systems, the interest in studying animal motion and collec-
tive behavior in vertebrates has increased—both from biology (Godley, 
Broderick, Glen & Hays, 2003; Ryan, Petersen, Peters & Gremillet, 
2004) and from physics (Kattas, Xu & Small, 2012; Kattas, Perez-
Barberia, Small, Xu & Walker, 2013). In particular, this new technology 
allows researchers to record large spatial data sets of animal motion, 
which then opens the door for better validated models and better un-
derstanding of collective and individual animal dynamics (Bonabeau, 
Dorigo & Theraulaz, 1999).

While these new data sets are a substantial improvement, we 
are still faced with significant challenges due to measurement errors 
and device failures. Moreover, these devices only record information 
about position, while exploring animal behavior in detail requires 
the full phase-state, including velocity and acceleration. Therefore, 
before using a such raw motion data for further investigations, it is 
important to clean and analyze the data properly. In this study, we 
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introduce a new versatile tracking methodology to overcome all these 
challenges. Specifically, the focus of our article is GPS data tracking 
pigeons’ behavior. We look at the problem of how best to interpret 
and filter the raw data from an avian-mounted GPS transponder (the 
individual pigeons carry a small GPS “backpack”) to provide a mean-
ingful flight trajectory. The GPS data are provided by (Nagy, Akos, Biro 
& Vicsek, 2010). In their study, they explored the leadership relation 
in the flock, they used the same GPS data; however, they cleaned data 
set and interpolated the missing points using a statistical filter, and 
they then estimated the velocity and acceleration using direct differ-
entiation.1 Consequently, the data include some unusual or unrealistic 
measurements.

Our main purpose is to understand the flocking phenomena of 
pigeons (Zaitouny, Stemler & Small, 2017). However, before we are 
able to examine the collective behavior of the flock, it is important to 
analyze the raw GPS data from each pigeon. The fundamental prob-
lem we wish to address is how well we can rely on this data set for 
further investigations. Standard filtering methods do exist; however, 
in this article, we will argue that the shadowing filter is the correct 
approach and provides superior results to these standard methods. In 
what follows we implement a shadowing filter to verify the reliability 
of the data set. The reasons behind choosing shadowing filters are that 
they follow a very simple but powerful paradigm; that is, if the model 
we construct is a good one, then the estimations must be consistent 
with the observations. Shadowing filters approach problems from the 
point of view of dynamical systems—they have been shown to provide 
better results when dealing with incomplete information and nonlinear 
problems than Kalman or Particle filters (Judd, Reynolds & Rosmond, 
2004; Judd & Stemler, 2009; Stemler & Judd, 2009). Therefore, the 
motion-tracking problem we are faced with is particularly well suited 
to the shadowing filter approach.

In this article, for potential users, we provide a guide to employing 
the proposed tracking methodology. Consequently, it is implemented 
and applied to real data sets of flying pigeons in order to investigate 
the capability and applicability of the method for such applications 
on animal movement as well as to investigate the reliability of the 
GPS data—certainly, we expect errors in these raw data. Moreover, 
our tracking technique applied to these data provides a robust and 
direct estimate of the corresponding acceleration within the trajec-
tory. While our particular interest is in the flocking dynamics of pi-
geons, these methods are, of course, generic and equally well suited to 
a wide range of biological tracking problems where GPS data are now 
routinely collected (Steiner et al., 2000; Godley et al., 2003; Gremillet, 
Dell’Omo, Ryan, Peters, Ropert-Coudert & Weeks, 2004; Ryan et al., 
2004; DeCesare, Squires & Kolbe, 2005; Kattas et al., 2012, 2013).

2  | MATERIALS AND METHODS

2.1 | Data overview: Pigeon data analysis

The data we are using is provided by the authors of (Nagy et al., 2010). 
The data provide preprocessed and high- resolutions trajectories of 
pigeons flying in a flock. The pigeon's roost is in Budapest, north of 

the city center on the island of Obudaiziget in the Danube. These data 
have been obtained from original location observations provided by 
miniature GPS devices carried by each pigeon in the flock. The GPS 
devices were designed to log data points of latitude, longitude and 
altitude coordinates with a time resolution of 0.2 s.

The flight trajectories were smoothed and filtered by Gaussian fil-
ter with σ2 = 0.4s2. In case of missing data points due to failure of the 
GPS devices, the missing positions were interpolated by averaging the 
before and after recorded data points, and the cubic B-spline method 
was used to fit curves onto the points obtained with the 0.2 s sampling 
rate. The GPS signal was provided for each pigeon, where signal 1 re-
fers to a data point measured by the device, while signal 0 refers to an 
interpolated data point. We are working only from the data obtained 
after this filtering.

The data files include two different patterns of flight: free flights 
and homing flights. In each case, the flocking pigeons were labeled by 
letters from A to M (the identifiers are unique and fixed between data 
sets). Despite the GPS devices only measuring position, the recorded 
data file of each single pigeon also includes data of the velocity and 
the acceleration, which have been estimated using methods described 
in (Nagy et al., 2010).

The behavior of all pigeons is similar, but pigeon A is the most 
active bird and therefore gives us the longest flight trajectories. 
Consequently, we focus on this data set as our primary example 
throughout the text of this article.

2.1.1 | Free flight

Figure 1 shows a single pigeon trajectory (pigeon A) from a free 
flight file. The red stars refers to interpolated data points. The 
length of the trajectory is 18,061 points with 6,568 interpolated 
points due to the failure of the GPS; that is, almost 36% of the tra-
jectory points are not measured and must be interpolated. Figure 1a 
shows the general behavior of a pigeon in free flight, as it flies along 
a circular trajectory. Obviously from Figure 1b,d we notice that the 
data include two different patterns of behavior: flight and nonflight; 
that is, when the pigeon is flying, large and fast changes occur on 
x and y coordinates. Otherwise, when the changes on x and y are 
small, the pigeon is not airborne and we can see the noise of the 
GPS devices. Figure 1f does not exhibit this feature to the same 
extent in the z coordinates. Additionally, if we compare the range of 
x and y components with z component, which is shown in Table 1, 
we conclude that when a pigeon is flying, it flies approximately in 
the xy-plane.

Figure 1c presents the estimated velocity of pigeon A. Again it 
shows the two different states (flying or nonflying). Moreover, Table 1 
confirms our previous assertion that the pigeon flies approximately 
in xy-plane. That is, the variation of the x and y velocity components 
is almost 30m/s, while in the z direction, it is only 4m/s. For our lat-
ter investigations, the criterion that we will use to distinguish be-
tween these two different behaviors is the velocity magnitude (see 
Figure 1c); that is, we consider a pigeon flying if this magnitude ex-
ceeds 4m/s.
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Acceleration is the component that controls the dynamics. 
Therefore, to understand and explore the behavior of a pigeon in 
a flock, we have to understand its acceleration. As mentioned pre-
viously, the data provide an estimation of acceleration – an esti-
mation conducted by (Nagy et al., 2010) using a Gaussian kernel 
smoothing algorithm to approximate the acceleration from the 
position data of the GPS device. Figure 1e,g presents these esti-
mates of the magnitude of acceleration and the x component of 

acceleration, respectively. Again, we see two states (flying and non-
flying) and that the flying dynamics can be considered essentially 
on xy-plane (compare the ranges of the acceleration's components 
from Table 1).

In the next section, we will introduce our tracking methodology 
to estimate the instantaneous position using shadowing filters. This 
method will enable us to compute corresponding velocities and ac-
celerations based on the estimated positions. Then, we will present a 

F IGURE  1 Free Flight: Pigeon A position, velocity, and acceleration. Blue shows the whole trajectory, while red indicates the interpolated 
data points not logged by the GPS device. (a) Whole trajectory. (b) X coordinates. (c) Velocity magnitude. (d) Y coordinates. (e) Acceleration 
magnitude. (f) Z coordinates. (g) X coordinates acceleration
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comparison between the provided data accelerations and our estima-
tions. Thus, we will be able to check the reliability of the data.

2.1.2 | Homing flight

In this subsection, we analyze homing flight data of pigeon A. In 
Figure 2, the red stars illustrates the interpolated data points when 
the GPS device failed to log data. Again, the ratio of non-GPS to GPS 
data points is approximately 1:3.

Figure 2a shows that the trajectory of a homing pigeon is almost 
a linear trajectory, unlike the circular trajectory of a free flight pigeon. 
Figure 2b,d,f which represents the changes along x,y, and z coordi-
nates, respectively, shows that there are two distinct behaviors as be-
fore (flying and nonflying). Moreover, from Table 2, we observe that 
the range of change along x coordinates during the flying period varies 
from approximately 2,900 to 9,100 m, and along y coordinates from 
2,000 to 1,4000 m, while along the z coordinates the approximate 
range is 100 to 230 m. Hence, we can assume that during the flying 
period the pigeon moves in xy-plane—comparatively little motion in 
the z-direction. Notice that in Figure 2f, the sharp changes along the z 
coordinates occur when the pigeon starts flying or is landing.

Figure 2c represents the velocity estimated by Nagy et al. (2010), it 
confirms our conclusion as it clearly demarcates the flying and nonfly-
ing periods. Moreover, our ad hoc criterion for flight is consistent with 
these data: A pigeon is deemed to be flying if its velocity magnitude is 
greater than 4m/s. Furthermore, a comparison among the ranges of 
the velocity components (Table 2) validates our assumption of flying 
in the xy-plane. However, in the last quarter of the estimated velocity 
data, there appear sudden spikes, when no flying motion is supposed 
to occur (compare Figure 2b,d,f with 2c). This raises some uncertainty 
over the validity of the estimation method used in (Nagy et al., 2010).

Additionally, Figure 2e,g shows the dynamic acceleration and its 
x component as estimated based on the GPS position data. Again the 
sharp spikes contribute to our unease over these estimations, espe-
cially when some calculated accelerations appear to exceed 80 m/s2 
(or 9 g). Consequently, it is important to determine to what extent we 
can rely on these data for further investigation, particularly the GPS-
recorded position data and the estimated acceleration data. Therefore, 
in the following section, we introduce the main subject of this article: 
a tracking methodology using the shadowing filter. This method will 
enable us to estimate the corresponding acceleration of the tracked 
positions; then, a comparison will be given to check the reliability of 
the data and our estimates.

2.2 | Object tracking methodology

In this section, we introduce a method of tracking a moving object, 
that is, finding the closest plausible and realistic trajectory to noisy ob-
servations of the target's position. This is exactly our situation as the 
GPS devices only recorded data of the pigeons’ positions. The reason 
why we choose this tracking approach, rather than standard filtering 
(Jazwinski, 1970), is due to the inaccuracies in the data as discussed 
in the previous section. We see two major problems with the data at 
hand: (1) a large number of data points are not recorded but interpo-
lated, due to the GPS device's failure, and (2) some of the estimated 
velocities and accelerations have unreasonably large values. In par-
ticular, acceleration is of great importance because it will be used later 
to verify our estimated forces that keep the flock together. These two 
problems, coupled with standard particle or Kalman filter approaches, 
will lead to systematic biases in the filtered signal. The assumptions 
driving the shadowing filter approach will avoid these problems.

The tracking methodology we use is based on the idea of the 
shadowing filter (Stemler & Judd, 2009), which solves the problem 
from a dynamical system point of view. However, the data were col-
lected and previously analyzed using Hierarchical models (Nagy et al., 
2010), which approach the problem from a statistical point of view 
(Xu, Kattas & Small, 2012). As any object moves under Newton's laws, 
our methodology aims to find the closest Newtonian trajectory to the 
observed positions. The robustness of our approach is that it requires 
only a minimum data length, which means we can exclude the missing 
GPS data points and still implement our tracking methodology suc-
cessfully. Moreover, our method enables us to estimate the accelera-
tion based on Newton's laws which we can trust and are used in our 
latter study.

This tracking method has been introduced previously in 
(Zaitouny, 2012; Judd, 2015). However, here we provide a brief 
summary of our methodology including source code (Zaitouny, 
2016) and suggestions for appropriate usage. Our objective is to 
track the position of a point object moving in one dimension, given 
a sequence of noisy observations. Let yi∈R be the real states, let 
Pi∈R be the noisy observation of its position at time ti for i = 0,…,n 
and σ2

i
∈R be the variance of the observational error. The ob-

ject's dynamics is modeled by its observed position Pi∈R , veloc-
ity νi∈R, and constant acceleration ai∈R for ti≤ t≤ ti+1. Our goal 
is to estimate pi∈R close to yi. We will minimize the total square 
error (

n∑
i=0

σ−2
i
‖Pi−pi‖2). We assume that the acceleration is con-

stant for one time interval (Ti = ti+1− ti) and is bounded over 
the entire trajectory by the relation (

n−1∑
i=0

Tia
2
i
≤ (tn− t0)ξ

2). In  
addition, we assume Newton's laws and Galilean coordinate transfor-
mation; therefore, we have two additional constraints:

We can solve this problem using the Lagrange multipliers method 
(Press, 2007). An appropriate Lagrange function for our tracking prob-
lem is as follows:

pi+1−pi=
1

2
aiT

2
i
+ νiTi,

νi+1−νi = aiTi.

TABLE  1 Free flight: Ranges of x, y and z components of position, 
velocity and acceleration

Position (m) x y z

Range 2,920→3,060 1,760→1,940 110→145

Velocity m/s ẋ ẏ ż

Range −15→15 −15→15 −2→2

Acceleration m/s2 ẍ ÿ z̈

Range −8→8 −8→8 −2→2
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where expression (1) is the total square error we want to minimize, 
expression (2) is related to the constraints from Newton's first law, the 
term (3) expresses the constraints from Newton's second law, and (4) 
represents the acceleration constraint. For (i = 1,…,n), λi∈R, �i∈R, and 
η ∈ R are our Lagrange multipliers.

The solution occurs where the partial derivatives are zero:

We solved the system using matrix forms and singular value decom-
position (Golub & Loan, 1984) method to obtain the least-squares 

(1)L =
1

2

n�

i=0

σ−2‖Pi−pi‖2

(2)+

n−1∑

i=0

λi+1(pi+1−pi−
1

2
aiT

2
i
−νiTi)

(3)+

n−1∑

i=0

�i+1(νi+1−νi−aiTi)

(4)+η

(
n−1∑

i=0

Tia
2

i
− (tn− t0)ξ

2

)
,

(5)
∂L

∂pi
=

∂L

∂νi
=

∂L

∂ai
=

∂L

∂λi
=

∂L

∂�i
=

∂L

∂η
=0

F IGURE  2 Homing Flight: Pigeon A position, velocity, and acceleration Blue shows the whole trajectory, while red indicates the interpolated 
data points not logged by the GPS device. (a) Whole trajectory. (b) X coordinates. (c) Velocity magnitude. (d) Y coordinates. (e) Acceleration 
magnitude. (f) Z coordinates. (g) X coordinates acceleration
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approximate solution p for the observed positions P and their corre-
sponding acceleration for a given smoothing parameter η. For more 
details, see the Supplementary Materials. Our proposed method is 
computationally fast, efficient and allows for effective optimization. 
The provided code (Zaitouny, 2016) demonstrates the applicability 
of our method to noisy data with missing observations and irregularly 
sampled trajectories. Although the code is provided for scalar case, it is 
easy to extend to multiple dimensions or multiple objects. Alternatively, 
our method is sufficiently robust that the error correlation among dif-
ferent dimensions can be ignored (Zaitouny, 2012). That is, one can 
treat a high-dimensional problem as independent scalar problems.

3  | RESULTS

In this section, we will implement our methodology for a single flying 
pigeon (both in free flight and in homing) to verify our model perfor-
mance and judge the reliability of the data set. The tracking will be 
applied to the flight period (the most interesting and nontrivial behav-
ior pattern). We down-sample with a variety of different decimation 
factors to illustrate the robustness of our algorithm when presented 
with more sparsely sampled time series. We will show how powerful 
our tracking technique is, and how it works successfully even when 
we exclude the data points that the GPS device failed to observe.

In order to investigate the model performance and optimize its pa-
rameters, we compute the root-mean-square error (RMS) along the 
entire trajectory to be our measurement:

where S is the size of the down-sample observations, Xi,Yi and Zi are the 
observed coordinates, and xi,yi, and zi are our estimated coordinates.

3.1 | Tracking free-flying pigeon

In this subsection, we will consider one pigeon from the free-flying 
flock where the free-flying pattern has a length of 1,500 points. 
Specifically, we will consider a subtrajectory of pigeon A shown in 
the previous section (Figure 1) and focus on the period from [8,500, 
10,000) which is obviously a period of flying. While in flight our track-
ing methodology will be implemented in three different situations: 
(1) taking the whole subtrajectory (1,500 points), that is, the time 

resolution is 0.2 s; (2) taking each fifth point, which means a sub-sub-
trajectory of length (300 points) and time resolution 1 s; and (3) we 
extend the considered subtrajectory to include 200 extra points, then 
down-sample it to a time resolution of 2 s (170 points). The reason be-
hind choosing different down-sample sizes is to show the robustness 
of our tracking method and illustrate how the missing data points will 
not affect the performance of our tracking technique.

As we only aim to explore our tracking method performance, we 
can use a simple numerical scheme. We take a broad parameter sweep 
with η between 10 and 10−6 and calculating E (Equation 6 for both posi-
tion and acceleration) for different time resolutions as described above.

Table 3 shows the results of our numerical experiments. Where “E-
position” is calculated from the position data points and our estimated 
positions, and “E-acceleration” is the root-mean-square error between 
the acceleration from the data and the acceleration we estimate via 
our model. It is apparent from the table that there are optimal val-
ues of the smoothing parameter η for each time resolution. With time 
resolution as 0.2 s, it has been found that the optimum value of η lies 
in the interval (10−6,10−5) with E-position ≈7.3510 × 10−5 m and E-
acceleration ≈ 0.0469m/s2. The corresponding results are illustrated 
in Figure 3a,c,e, where the smoothing parameter η is chosen to be 
5 × 10−6. Figure 3a shows a comparison between our position track-
ing estimations and the data, it represented for the whole trajectory. 

(6)E=

����1

S

S�

i=0

(‖Xi−xi‖2 + ‖Yi−yi‖2 + ‖Zi−zi‖2)

TABLE  2 Homing flight: Ranges of x, y and z components of 
position, velocity and acceleration

Position m x y z

Range 2,900→9,100 2,000→14,000 100→230

Velocity m/s ẋ ẏ ż

Range −18→15 −18→15 −2→2

Acceleration m/s2 ẍ ÿ z̈

Range −8→8 −8→8 −2→2

TABLE  3 Numerical experiments results of free flight to 
determine the optimum value of η for different time resolution. 
Given are the root-mean-square errors for position (E-Pos. in m) and 
acceleration (E-Acc. in per m/s2)

η

Time 
resolution = 0.2 s

Time 
resolution = 1 s

Time 
resolution = 2 s

E-Pos. E-Acc. E-Pos. E-Acc. E-Pos. E-Acc.

10 5.57 2.11 13.9 3.07 19.1 3.37

5 3.43 1.82 9.58 2.66 14.0 2.95

1 1.09 1.33 3.37 1.94 5.35 2.15

0.5 0.68 1.14 2.09 1.72 3.33 1.92

0.1 0.23 0.74 0.73 1.30 1.17 1.56

0.05 0.14 0.59 0.47 1.14 0.80 1.45

0.01 0.042 0.31 0.18 0.85 0.38 1.23

5×10
−3 0.025 0.23 0.12 0.75 0.28 1.16

10−3 0.0062 0.12 0.049 0.60 0.14 1.05

5 × 10−4 0.003 0.09 0.036 0.56 0.12 1.03

10−4 7.8×10−4 0.058 0.021 0.498 2.34 2.41

5 × 10−5 4.2 ×10−4 0.052 0.017 0.48 16.9 16.4

10−5 1.1 ×10−4 0.047 2.78 10.6 235 232

5 × 10−6 7.35 × 10−5 0.047 17.0 65.5 407 403

10−6 1.0 ×10−4 0.047 222 880 707 702

5 ×10−7 2.1 ×10−4 0.05 432 1.7 ×103 766 760

10−7 0.051 48.4 990 3.9 ×103 818 811

Bold values highlight the optimal values of the smoothing parameter and 
the corresponding minimal errors.
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It can be easily noticed how close the estimations are to the observa-
tions. Figure 3c,e compare between the data's acceleration and our 
tracking estimated acceleration, the former shows for the accelera-
tion's magnitude, while the latter shows the acceleration x component. 
It is clear that our acceleration approximations are very close to those 
of the original data—except at some sharp spikes where our estima-
tions have eliminated these spikes, which is more realistic.

While for time resolution 1 s, it has been found the minimum of E-
position ≈ 0.0171 m and the minimum of E-acceleration ≈ 0.4838m/s2 
occur at an optimal value of η inside the interval (10−5,10−4). The increase 
in the minimum values of E-position and E- acceleration comparing 
with their values in 0.2 s time resolution is not surprising, because the 
number of points used for the tracking with 1 s time resolution is much 
smaller. Figure 3b,d,f shows the results of our tracking filter with this 
time resolution and a smoothing parameter η = 5 × 10−5 lies in the 
optimal interval. In these figures, the solid blue lines refer to the whole 
data trajectory from which we extract the down-sampled version, the 
down-sample points which are used in the filter are indicated as green 
stars, the outcomes of our tracking using the down sample are repre-
sented as red squares. Figure 3b compares the positions, we observe 
that our filter still gives very good results even with using just a down 
sample and not the whole data set. While Figure 3d,f compares the ac-
celeration estimated using the down sample with data's acceleration, 
here the mismatching at the spikes is much more noticeable.

Finally, for time resolution of 2 s, as expected we found larger min-
imum E-position ≈ 0.1163 m and E-acceleration ≈ 1.0261m/s2 corre-
sponding to an optimal value of η in the interval (10−4, 10−3). However, 
our position estimations are still very close to the observations, as well 
as the estimated accelerations despite the expected gaps occurring at 
the sharp spikes.

3.2 | Tracking homing flying pigeon

Following from the previous subsection, we now apply our shadowing 
filter to homing flight. That is, we will choose pigeon A from homing 
flight and consider a subtrajectory of length 1,500 points of its flying 
pattern; particularly, we consider the period of points [2,500, 4,000] 
of its trajectory. When analyzing the remaining flying segments, we 
obtained similar results. Along this subtrajectory, we implement our 
tracking filter for the three different situations (time resolution = 0.2 s, 
1 s and 2 s).2 The implementation has been performed for the same 
broad parameter sweep as above.

Table 4 illustrates the outcomes of these numerical investigations. 
It has been found for 0.2 s time resolution that the optimum value 
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F IGURE  3 Free Flight: Tracking pigeon A position and 
acceleration with optimal values of η corresponding to two different 
time resolution 0.2 s and 1 s. (a) Whole trajectory: η = 5 × 10−6,  
Δ T = 0.2 s. (b) Whole trajectory: η = 5 × 10−5, Δ T = 1 s. (c) 
Acc. magnitude: η = 5 × 10−6, Δ T = 0.2 s. (d) Acc. magnitude: 
η = 5 × 10−5, Δ T = 1 s. (e) Acc. x-component: η = 5 × 10−6,  
Δ T = 0.2 s. (f) Acc. x-component: η = 5 × 10−5, Δ T = 1 s
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of the smoothing parameter η lies in the interval (5 ×10−6, 5 ×10−5), 
where the approximation of the corresponding minimum errors are E-
position≈9.4705 × 10−5 m and E-acceleration ≈ 0.0389m/s2. For time 
resolution = 1 s, it can be seen from Table 4 that the minimum of E-
position ≈ 0.0122 m and the minimum of E-acceleration ≈ 0.3733m/s2 
correspond to an optimal value of the smoothing parameter η lies in 
the interval (5 × 10−5, 5 × 10−4). Lastly, as expected for 2 s time res-
olution, the minimum values of the errors are slightly increased such 
that E- position ≈ 0.0564 and E-acceleration ≈ 0.6091, which occur 
at an optimal value of η inside the interval (10−4, 10−3). Note that, by 
comparing these results with the results from free flying in the previ-
ous section, we find that the tracking filter's performance is consistent 
between these two very different behaviors.

Additionally, to show our results graphically, Figure 4 represents 
comparisons between our filter estimations and data observations for 
both positions and accelerations along two different periods—the filter 
has been applied for η = 10−4 and time resolution = 1 s. In order to con-
firm that our tracking filter estimations are closer to reality than the data 
observations, especially for acceleration, the two periods have been 
chosen as follows (see Figure 4a): The red down sample includes 700 
points of a flying interval (each fifth point of the interval [1,500, 5,000]). 
While the green down sample has been chosen purposely to include 
an episode of rather doubtful acceleration in the data set as mentioned 
before in subsection (3.2), this down sample includes 700 points of the 
last quarter of the trajectory (each fifth point of the interval [10,000, 

13,500]). It can be seen from Figure 4b,d,f how the estimations are close 
to the observations for both position and acceleration along the flying 
period. On the other hand, for the doubtful region, we can notice from 
Figure 4c that the matching between our position tracking estimations 
and data observations is almost perfect. However, Figure 4e,g shows 
how our estimated accelerations avoid the unrealistic states shown in 
the last quarter of the data set, where the data set includes accelera-
tions around 80 m/s2, while our estimations of acceleration does not 
exceed 40 m/s2 , which supports our assumption that our tracking esti-
mated accelerations are closer to reality than the data's accelerations.

3.3 | Reliability of the data

The data set we used is a filtered GPS data with 0.4 m2 error variance 
due to the device inaccuracy; moreover, as mentioned before, the ve-
locity and acceleration provided in the data are calculated using the 
GPS position information. Therefore, it is important for our further in-
vestigations to verify the reliability of these data especially the accel-
eration and optimize the performance of our filter and the significance 
of its impact on the calculation of acceleration. To do that, we propose 
two numerical experiments. The first one is to optimize the smoothing 
parameter η according to the error variance of the GPS device using 
simulation data. Such an optimization is needed because we do not 
know the true trajectory of the bird but only the recorded position 
data. The second numerical experiment determines the minimum tra-
jectory length required to implement our tracking filter. In addition, we 
give some comparison between our method and a sliding window filter.

3.3.1 | Simulation data optimization

In our previous numerical investigations, we found that there exists an 
optimal value of the smoothing parameter η that implies the closest 
estimations to the data observations (c.f. Tables 3 and 4). However, 
we now ask whether this achieves our objective, or can we do some-
thing better? In fact, as we only have noisy observations from the GPS 
device, we should aim to find the closest (most plausible) trajectory 
to the unknown reality. Plausibility in our case means that the tra-
jectory we are looking for is consistent with our model of the flying 
pigeon. Therefore, we will use a scaling relationship between the error 
variance and the corresponding optimal value of the smoothing pa-
rameter η which (we claim) gives the closest trajectory to reality from 
the simulation data. The idea can be described briefly as follows: we 
generate a true trajectory and for each noise level in a certain range 
we also generate 100 noisy trajectories that we use as observations. 
Obviously the noise level range is chosen such that it fits with the 
measurement uncertainty of the equipment used in the real experi-
ment. Starting from a broad parameter sweep of η, we estimate a tra-
jectory for the observations. Measuring the error between the 100 
estimated sequences and the true trajectory allows us to narrow our 
parameter sweep around the minimum error. Several sweeps and con-
sequent limiting of the range of η around the new minimum results in a 
simple optimization of the η parameter. It has been found in (Zaitouny, 
2012; Zaitouny, Stemler & Judd, In press) that the best value of η is 

TABLE  4 Numerical experiments results of homing flight to 
determine the optimum value of η for different time resolution. Again 
the errors of the position (E-Pos. m) and the acceleration (E-Acc. m/s2)  
are given

η

Time 
resolution = 0.2 s

Time 
resolution = 1 s

Time 
resolution = 2 s

E-Pos. E-Acc. E-Pos. E-Acc. E-Pos. E-Acc.

10 3.09 1.73 6.02 2.19 6.03 1.60

5 2.13 1.54 4.65 2.03 4.41 1.52

1 0.85 1.10 2.22 1.61 2.15 1.34

0.5 0.56 0.92 1.53 1.42 1.61 1.25

0.1 0.19 0.56 0.59 1.02 0.78 1.02

0.05 0.11 0.44 0.39 0.88 0.56 0.94

0.01 0.033 0.24 0.13 0.62 0.27 0.77

 5×10−3 0.019 0.18 0.085 0.55 0.19 0.71

10−3 0.005 0.094 0.033 0.440 0.08 0.63

 5×10−4 0.003 0.072 0.024 0.41 0.056 0.61

10
−4 5.8 ×10−4 0.05 0.012 0.373 11.0 10.5

 5×10
−5 3.0 ×10−4 0.042 0.014 0.37 80 78

10
−5 9.5 × 10−5 0.039 13.2 50.4 1.1 ×103 1.1 ×103

5×10
−6 1.2 ×10−4 0.040 81 312 1.9 ×103 1.9 ×103

10−6 4.1 ×10−4 0.056 1.1 ×103 4.2 ×103 3.4 ×103 3.3 ×103

 5×10
−7 10−3 0.11 2.1 ×103 8.2 ×103 3.6 ×103 3.6 ×103

10−7 2.45 230 4.7 ×103 1.×104 3.9 ×103 3.9 ×103
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proportional to the noise's standard deviation cubed. An approxi-
mated relationship for high sampling rates is found to be

where ηb is the desired optimal value of η and β is the noise's variance.
Such a relationship allows us to no longer optimize η based on 

some interpretation of being close to the observations (as we have 
done so far for example in Tables 3 and 4), but instead choose η 

according to the device's error variance of 0.4 m2. Accordingly, we can 
conclude that implementing our tracking technique on this data set 
with a value of the smoothing parameter η ≈ 0.05 will result in estima-
tions closer to the reality. In Table 3, we can find E-position = 0.14 m 
and E-acceleration = 0.59 m/s2 corresponding to η = 0.05, which are 
further from the observations but according to Equation 7 should be 
close to the true trajectory. Figure 5 represents the results of this ap-
plication for the free flying pigeon A's subtrajectory of length 1,500 

(7)ηb ≈ 0.046
√
β
3
+ 0.054,

F IGURE  4 Homing Flight: Tracking pigeon A position and acceleration with η = 10−4 and time resolution = 1 s. (a) Position: Whole trajectory. 
(b) Position: X coordinates. (c) Position: X coordinates. (d) Acceleration: magnitude. (e) Acceleration: magnitude. (f) Acceleration: X component. (g) 
Acceleration: X component
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points and time resolution = 0.2 s. Figure 5a shows how the position 
estimations are close to observations, the differences are not obvious, 
but Figure 5b shows that corrections varying between 0 and 0.1 m 
have been observed. Actually an improvement occurred at the spikes 
in the data. This improvement can be seen better when we compare 
the estimated acceleration (Figure 5c,d). It is noticeable how our 
tracking filter, corresponding to the optimum η = 0.05, tries to avoid 
strong and sharp changes in acceleration and therefore gives more 
realistic estimates. The corrections in the acceleration magnitude vary 
between 0 and 1 m/s2. Figure 5e,f show the estimations and the cor-
rections of the acceleration's x component in order to emphasis on 
the significant improvements made by our tracking technique. We see 
how our filter treats the sudden and strong changes in acceleration, 
and how it modifies the estimations to be closer to real dynamics.

3.3.2 | Windowing test

The widowing test is a useful procedure to address questions of pre-
dictability and data requirements arising in real-world applications. 
The test was introduced in (Stemler & Judd, 2009), and the basic idea 
of this test is to apply the shadowing filter to data sequences of in-
creasing length. By examining the filter's convergence, we can find a 
minimum measurement or window length that is needed to get ap-
propriate approximations. Consistency of convergence beyond that 
minimum length also provides a good guide to reliability of the filter in 
the particular application setting.

A basic application of the widowing test is to determine a minimum 
window length of observations that is required to obtain a good tracking 
of the positions of the travelled object, that is, one is interested in a good 
convergence along the whole trajectory. The widowing test can be ap-
plied to real measurements or artificial data. In our case, we do have a real 
data set but we do not know the true states of the pigeons; therefore, we 
will use the windowing test to verify the reliability of the data set.

For the first application when the true states are unknown, the 
widowing test is applied as follows. Given a long trajectory of noisy ob-
servations N = (P1,… ,PN), apply the shadowing filter at the optimal 
parameter η to the length n subtrajectories n = (PN−n+1,… ,PN), for 
0 ≤ n ≤ N, to obtain approximated trajectories η,n = (qN−n+1,… ,qN).  
As n is decreased the lengths of the subtrajectories are decreased, 
therefore, we compare the estimated subtrajectories η,n to the cor-
responding observations of N = (P1,… ,PN). That is, we compare the 
distances Dj,n =∥PN−j−qN−j,η,n ∥ for 0 ≤ j < n.

Figure 6 represents an application of the widowing test using an 
initial down-sample sequence from the recorded flight pattern with 
time resolution 2 s and a length of 200 observations. We compare the 
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F IGURE  5 Free flight: Tracking pigeon A position with an 
approximation of the best value of η = 5 × 10−3 gives the closest 
estimates to reality and time resolution = 0.2 s. (a) Whole trajectory. 
(b) Trajectory corrections. (c) Acceleration magnitude. (d) Acceleration 
corrections. (e) Acceleration X coordinates. (f) X acceleration 
corrections
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estimation of this 200 observation long sequence with the ones re-
sulting from subtrajectories of lengths n = 150, 100, 80, 60, 40, 20, 
10. For all cases, we used the optimal parameter η = 0.05. Each line in 
Figure 6a plots the distances Dj,n between observations PN and corre-
sponding states η,n. Observe the convergence of the N to η,n, the 
convergence at the last state3 occurs for all n ≥ 20; therefore, we con-
clude that the minimum length of the observational trajectory that is 
required for position tracking is n = 20 and therefore about 40 s.

Figure 6b represents the logarithm of the previous distances. From 
this figure, we can observe that the minimum error in the observed 
data set is about 0.3 m.

Moreover, according to Figure 1 by observing the nonflying po-
sitions, we can say that the data have a maximum error of 3 m. 
Therefore, we can confirm that the position data set we have is suf-
ficiently reliable (error ∈  (0.3, 3) m) and it can be used to extend our 
work. However, we observe above that the acceleration provided with 
the data set is not reliable. Therefore, it is more appropriate to use our 
tracking filter to estimate new accelerations closer to reality to be used 
in our further investigations.

4  | DISCUSSION

We have shown in (Zaitouny, 2012; Zaitouny et al., submitted, under 
review) that our tracking methodology (1) is able to minimize the error 

F IGURE  6 Application of the 
windowing test: Estimates for different 
length of observation sequences. (a) Dj,n as 
a function of the position. (b) The logarithm 
of Dj,n as a function of the position
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F IGURE  7 Comparison between the shadowing filter and 
the sliding average filter for two segments of the homing flight. 
In the upper panel, we see that the sliding average filter leads to 
unreasonable high spikes in the acceleration, while in the lower panel, 
we find that the turning points of the time series are underestimated 
by this filter

350 400 450 500 550 600 650 700 750
−50

0

50

Time

Time

A
cc

el
er

at
io

n 
x−

co
m

po
ne

nt
A

cc
el

er
at

io
n 

x−
co

m
po

ne
nt

Data
Tracking
Moving Avg.

Data
Tracking
Moving Avg.

0 200 400 600 800 1,000 1,200 1,400
−6

−4

−2

0

2

4

6



4430  |     ZAITOUNY et al.

and can be optimized corresponding to the observational error and 
time resolution, (2) is easy to adjust for one dimension or higher di-
mensions, (3) is robust enough to consider or ignore the error corre-
lation, (4) works successfully for regular or irregular time resolution, 
(5) is capable to be extended to track rigid bodies and (6) is able to 
reconstruct the full dynamical state space only from position observa-
tions. In this article, we have seen our shadowing filter tracking ap-
proach is able to track the dynamics of an individual pigeon very well 
and applying the filter improved the quality of the data. Conversely, 
we should also justify the introduction of this new filter when popu-
lar alternatives are already well accepted. In the literature, one can 
find a variety of filter methods, including variational filters (Swanson, 
Vautard & Pires, 1998) Kalman filters (Bar-Shalom, Li & Kirubarajan, 
2001; Hartikainen, Solin & Särkkä, 2011), and other statistical filters 
(Jazwinski, 1970). The variational filters start to be no longer useable 
if the time series get too long (Stemler & Judd, 2009), while the other 
two approaches are rather widely used nowadays. These statistical 
filters are both sequential, that is, instead of using all the available 
time series information at once the next state is optimized based on 
the value of the current state. As we have seen the shadowing filter 
uses the time series as a whole and optimization is done not on neigh-
boring states but on the complete time series. We argue that this 
leads to better results as it more appropriately used all the available 
information. Note that the shadowing filter framework has already 
been tested against a variety of alternative filter techniques, including 
all the usual suspects (see Judd, 2003; Judd & Stemler, 2009; Stemler 
& Judd, 2009), and shown to outperform. While it seems to be a major 
drawback that we need a minimum time series length to apply our fil-
ter, it should be noted that this minimum length is similar to the length 
required for good estimates from sequential filters like the Kalman fil-
ter or other Bayesian filters. In addition, we want to also point out that 
while other filters lead to good position approximations and therefore 
can provide good tracking results, the other filters require some post-
processing to reconstruct the full phase-space consisting of position, 
velocity and acceleration. On the other hand, for the specific track-
ing application of these filters, in (Zaitouny et al., submitted, under 
review), a direct comparison has been conducted among our method, 
Kalman , extended Kalman, and particle filters’ tracking approaches 
(Gustafsson et al., 2002; Gustafsson, 2010; Hartikainen et al., 2011). 
The results support the superiority of our method in terms of per-
formance (accuracy) and computational complexity (speed). In the 
following subsection, we introduce an additional simple comparison 
with the sliding average filter.

4.1 | Comparison with a sliding average filter

The simplest possible sequential filter is the sliding average filter (Wei, 
1994). In this filter, the position is stimated by averaging n-observations 
to get an estimate of the current state, that is pi = 1∕n

∑i+(n−1)∕2

j=i−(n−1)∕2
Pj.  

If the noise level is small and unbiased, this filter gives reasonable ap-
proximations of the true position. For our experiment, we used the 
data from the homing flight. Given that these data have a high tempo-
ral resolution (0.02 s.) and that the measurement noise is comparably 

small, we can directly apply this filter and we do so with n = 5. As with 
the Kalman filters or any other sequential filter reconstruction of the 
full phase-space requires us to numerically differentiate the position 
data, so that vi = (pi+1−pi)∕Δt and ai = (vi+1−vi)∕Δt. It is well known 
that even if there is very little noise in the position estimates pi, the de-
rivatives will amplify the noise. In addition sliding average filters tend 
to underestimate the turning points of the time series.

In Figure 7, we show the comparison between the two methods. 
As expected, the sliding average filter performs much worse than the 
shadowing filter (η = 0.05). Not only does this lead this method to sev-
eral unreasonable high values for the acceleration (for example, seven 
spikes in the upper panel of Figure 7) but in addition the turning points 
in the lower panel of Figure 7 are underestimated. As mentioned 
above, this result does not only apply to this particular filter but is a 
generic property of all sequential filters, that require numerical differ-
entiation to reconstruct the full phase-space. On the other hand, the 
shadowing filter is not prove to this problem, because the full phase-
space is reconstructed based on the whole time series and a postpro-
cessing therefore is not needed.

5  | CONCLUSION

In this article, we have shown how the shadowing filter framework 
can be applied to track the motion of a pigeon. Due to the measure-
ment error associated with the GPS tracking device, significant data 
analysis is needed to get a better understanding of the motion of such 
targets (birds pose a particularly challenging test case for tracking al-
gorithms). Moreover, we have shown that our method does not need 
such a high sampling rate and can deal with down-sampled data hav-
ing a 10 times longer resolution easily. In addition—as the code shows 
(Zaitouny, 2016)—the time resolution does not have to be regular and 
therefore our algorithm can deal with irregularly sampled trajectories. 
In fact, in several applications mostly with coarse time resolution and 
also missing data our method provides an excellent alternative to the 
traditional statistical filters. In addition, we have shown using the win-
dowing test that our method is also applicable for much shorter time 
series than the one at hand.

It is important that our tracking method does not require any input 
in terms of biological parameters. Just making the (valid) assumption 
that pigeons obey Newtonian mechanics is sufficient. This allows us to 
improve the data quality without any questionable assumptions that 
might underlay a biological model.

While we see our contribution as a first, important step to im-
prove the data quality before modeling the flock's dynamics, it is clear 
that our method could be applied in other problems too. While im-
plementation of our filter for already existing GPS data (Steiner et al., 
2000; Gremillet et al., 2004; DeCesare et al., 2005) is an obvious ap-
plication, it should be noted that our method could also be applied 
to position data resulting from visual methods of tracking animals 
(Ballerini, Cabibbo, Candelier, Cavagna, Cisbani, et al., 2008; Gautrais, 
Ginelli, Fournier, Blanco, Soria, et al., 2012; Bhagavatula, Claudianos, 
Ibbotson & Srinivasan, 2014; Boos, Pritz, Lange & Belz, 2014).
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NOTES
1	Direct differentiation estimates the velocity as the difference (distance) 
between consecutive positions divided by the corresponding time interval; 
similarly, the acceleration is the difference between consecutive velocities 
divided by the time interval. The primary problem with direct differentiation 
is that numerical differencing will amplify the effect of noise.

2	Again with time resolution = 2 s, we extend the subtrajectory to 1,700 points
3	Remember that our filter show large errors at the very beginning of the 
sequence.
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