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Abstract
Miniature	GPS	devices	now	allow	for	measurement	of	the	movement	of	animals	in	real	
time	and	provide	high-	quality	and	high-resolution	data.	While	these	new	data	sets	are	
a	great	improvement,	one	still	encounters	some	measurement	errors	as	well	as	device	
failures.	Moreover,	 these	devices	only	measure	position	and	 require	 further	 recon-
struction	techniques	to	extract	 the	full	dynamical	state	space	with	the	velocity	and	
acceleration.	Direct	differentiation	of	position	is	generally	not	adequate.	We	report	on	
the	successful	implementation	of	a	shadowing	filter	algorithm	that	(1)	minimizes	meas-
urement	errors	and	(2)	reconstructs	at	the	same	time	the	full	phase-space	from	a	posi-
tion	recording	of	a	flying	pigeon.	This	filter	is	based	on	a	very	simple	assumption	that	
the	pigeon's	dynamics	are	Newtonian.	We	explore	not	only	how	to	choose	the	filter's	
parameters	but	also	demonstrate	 its	 improvements	over	other	 techniques	and	give	
minimum	data	 requirements.	 In	contrast	 to	competing	 filters,	 the	shadowing	 filter's	
approach	 has	 not	 been	 widely	 implemented	 for	 practical	 problems.	 This	 article	
	addresses	these	practicalities	and	provides	a	prototype	for	such	application.
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1  | INTRODUCTION

One	of	the	most	conceptual	and	challenging	problems	in	animal	be-
havior	 is	 understanding	 how	 animals	move	within	 a	 group	 or	 flock.	
In	 other	words,	what	we	 call	 “animal	 collective	 behavior”	 (Sumpter,	
2010).	In	fact,	understanding	the	principles	of	animal	behavior	has	nu-
merous	benefits	to	mankind.	To	name	a	few,	studying	animal	collective	
behavior	allows	(1)	design	of	optimal	algorithms	simulation	and	fore-
casting	of	animal	dynamics	which	are	significantly	important	for	farms	
and	wildlife	sanctuaries	management	and	(2)	develops	a	coherent	en-
gineering	machine	dynamics	of	groups	of	microrobots.

Despite	the	importance	of	understanding	animal	movement,	it	has	
only	been	during	the	last	two	decades	that	researchers	and	scientists	
have	been	able	to	directly	study	and	understand	animal	collective	mo-
tion	and	behavior	 (Sumpter,	2010).	The	difficulty	has	been	a	 lack	of	
real	 data	 of	 sufficient	 precision	 and	 frequency	with	which	 to	verify	
models.	However,	 in	 the	 last	 few	years,	particularly	because	of	new	

technology	 such	as	Global	Positing	System	 (GPS)	devices	and	video	
recording	systems,	the	interest	in	studying	animal	motion	and	collec-
tive	behavior	in	vertebrates	has	increased—both	from	biology	(Godley,	
Broderick,	 Glen	 &	 Hays,	 2003;	 Ryan,	 Petersen,	 Peters	 &	 Gremillet,	
2004)	 and	 from	 physics	 (Kattas,	 Xu	 &	 Small,	 2012;	 Kattas,	 Perez-
Barberia,	Small,	Xu	&	Walker,	2013).	In	particular,	this	new	technology	
allows	researchers	to	record	large	spatial	data	sets	of	animal	motion,	
which	then	opens	the	door	for	better	validated	models	and	better	un-
derstanding	of	collective	and	 individual	animal	dynamics	 (Bonabeau,	
Dorigo	&	Theraulaz,	1999).

While	 these	 new	 data	 sets	 are	 a	 substantial	 improvement,	 we	
are	still	faced	with	significant	challenges	due	to	measurement	errors	
and	device	failures.	Moreover,	these	devices	only	record	information	
about	 position,	 while	 exploring	 animal	 behavior	 in	 detail	 requires	
the	 full	 phase-state,	 including	 velocity	 and	 acceleration.	 Therefore,	
before	using	a	 such	 raw	motion	data	 for	 further	 investigations,	 it	 is	
important	 to	 clean	 and	 analyze	 the	 data	 properly.	 In	 this	 study,	we	
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introduce	a	new	versatile	tracking	methodology	to	overcome	all	these	
challenges.	Specifically,	 the	 focus	of	our	article	 is	GPS	data	 tracking	
pigeons’	behavior.	We	 look	at	 the	problem	of	how	best	 to	 interpret	
and	filter	the	raw	data	from	an	avian-mounted	GPS	transponder	(the	
individual	pigeons	carry	a	small	GPS	“backpack”)	to	provide	a	mean-
ingful	flight	trajectory.	The	GPS	data	are	provided	by	(Nagy,	Akos,	Biro	
&	Vicsek,	2010).	In	their	study,	they	explored	the	leadership	relation	
in	the	flock,	they	used	the	same	GPS	data;	however,	they	cleaned	data	
set	 and	 interpolated	 the	missing	points	 using	 a	 statistical	 filter,	 and	
they	then	estimated	the	velocity	and	acceleration	using	direct	differ-
entiation.1	Consequently,	the	data	include	some	unusual	or	unrealistic	
measurements.

Our	main	 purpose	 is	 to	 understand	 the	 flocking	 phenomena	 of	
pigeons	 (Zaitouny,	 Stemler	&	Small,	 2017).	However,	 before	we	 are	
able	to	examine	the	collective	behavior	of	the	flock,	it	is	important	to	
analyze	the	raw	GPS	data	from	each	pigeon.	The	fundamental	prob-
lem	we	wish	to	address	 is	how	well	we	can	rely	on	this	data	set	for	
further	 investigations.	Standard	filtering	methods	do	exist;	however,	
in	 this	 article,	we	will	 argue	 that	 the	 shadowing	 filter	 is	 the	 correct	
approach	and	provides	superior	results	to	these	standard	methods.	In	
what	follows	we	implement	a	shadowing	filter	to	verify	the	reliability	
of	the	data	set.	The	reasons	behind	choosing	shadowing	filters	are	that	
they	follow	a	very	simple	but	powerful	paradigm;	that	is,	if	the	model	
we	construct	is	a	good	one,	then	the	estimations	must	be	consistent	
with	the	observations.	Shadowing	filters	approach	problems	from	the	
point	of	view	of	dynamical	systems—they	have	been	shown	to	provide	
better	results	when	dealing	with	incomplete	information	and	nonlinear	
problems	than	Kalman	or	Particle	filters	(Judd,	Reynolds	&	Rosmond,	
2004;	Judd	&	Stemler,	2009;	Stemler	&	Judd,	2009).	Therefore,	 the	
motion-tracking	problem	we	are	faced	with	is	particularly	well	suited	
to	the	shadowing	filter	approach.

In	this	article,	for	potential	users,	we	provide	a	guide	to	employing	
the	proposed	tracking	methodology.	Consequently,	it	is	implemented	
and	applied	to	real	data	sets	of	flying	pigeons	in	order	to	investigate	
the	 capability	 and	 applicability	 of	 the	method	 for	 such	 applications	
on	 animal	 movement	 as	well	 as	 to	 investigate	 the	 reliability	 of	 the	
GPS	data—certainly,	we	 expect	 errors	 in	 these	 raw	data.	Moreover,	
our	 tracking	 technique	 applied	 to	 these	data	 provides	 a	 robust	 and	
direct	 estimate	 of	 the	 corresponding	 acceleration	within	 the	 trajec-
tory.	While	 our	 particular	 interest	 is	 in	 the	 flocking	dynamics	 of	 pi-
geons,	these	methods	are,	of	course,	generic	and	equally	well	suited	to	
a	wide	range	of	biological	tracking	problems	where	GPS	data	are	now	
routinely	collected	(Steiner	et	al.,	2000;	Godley	et	al.,	2003;	Gremillet,	
Dell’Omo,	Ryan,	Peters,	Ropert-Coudert	&	Weeks,	2004;	Ryan	et	al.,	
2004;	DeCesare,	Squires	&	Kolbe,	2005;	Kattas	et	al.,	2012,	2013).

2  | MATERIALS AND METHODS

2.1 | Data overview: Pigeon data analysis

The	data	we	are	using	is	provided	by	the	authors	of	(Nagy	et	al.,	2010).	
The	data	provide	preprocessed	and	high-	 resolutions	 trajectories	of	
pigeons	flying	in	a	flock.	The	pigeon's	roost	 is	 in	Budapest,	north	of	

the	city	center	on	the	island	of	Obudaiziget	in	the	Danube.	These	data	
have	been	obtained	from	original	 location	observations	provided	by	
miniature	GPS	devices	carried	by	each	pigeon	in	the	flock.	The	GPS	
devices	were	designed	 to	 log	data	points	of	 latitude,	 longitude	and	
altitude	coordinates	with	a	time	resolution	of	0.2	s.

The	flight	trajectories	were	smoothed	and	filtered	by	Gaussian	fil-
ter	with	σ2 = 0.4s2.	In	case	of	missing	data	points	due	to	failure	of	the	
GPS	devices,	the	missing	positions	were	interpolated	by	averaging	the	
before	and	after	recorded	data	points,	and	the	cubic	B-spline	method	
was	used	to	fit	curves	onto	the	points	obtained	with	the	0.2	s	sampling	
rate.	The	GPS	signal	was	provided	for	each	pigeon,	where	signal	1	re-
fers	to	a	data	point	measured	by	the	device,	while	signal	0	refers	to	an	
interpolated	data	point.	We	are	working	only	from	the	data	obtained	
after	this	filtering.

The	data	files	include	two	different	patterns	of	flight:	free	flights	
and	homing	flights.	In	each	case,	the	flocking	pigeons	were	labeled	by	
letters	from	A	to	M	(the	identifiers	are	unique	and	fixed	between	data	
sets).	Despite	the	GPS	devices	only	measuring	position,	the	recorded	
data	file	of	each	single	pigeon	also	includes	data	of	the	velocity	and	
the	acceleration,	which	have	been	estimated	using	methods	described	
in	(Nagy	et	al.,	2010).

The	 behavior	 of	 all	 pigeons	 is	 similar,	 but	 pigeon	A	 is	 the	most	
active	 bird	 and	 therefore	 gives	 us	 the	 longest	 flight	 trajectories.	
Consequently,	 we	 focus	 on	 this	 data	 set	 as	 our	 primary	 example	
throughout	the	text	of	this	article.

2.1.1 | Free flight

Figure	1	 shows	 a	 single	 pigeon	 trajectory	 (pigeon	 A)	 from	 a	 free	
flight	 file.	 The	 red	 stars	 refers	 to	 interpolated	 data	 points.	 The	
length	 of	 the	 trajectory	 is	 18,061	 points	with	 6,568	 interpolated	
points	due	to	the	failure	of	the	GPS;	that	is,	almost	36%	of	the	tra-
jectory	points	are	not	measured	and	must	be	interpolated.	Figure	1a	
shows	the	general	behavior	of	a	pigeon	in	free	flight,	as	it	flies	along	
a	circular	trajectory.	Obviously	from	Figure	1b,d	we	notice	that	the	
data	include	two	different	patterns	of	behavior:	flight	and	nonflight;	
that	 is,	when	the	pigeon	is	flying,	 large	and	fast	changes	occur	on	
x	and	y	coordinates.	Otherwise,	when	the	changes	on	x	and	y	are	
small,	 the	pigeon	 is	not	airborne	and	we	can	see	 the	noise	of	 the	
GPS	 devices.	 Figure	1f	 does	 not	 exhibit	 this	 feature	 to	 the	 same	
extent	in	the	z	coordinates.	Additionally,	if	we	compare	the	range	of	
x	and	y	components	with	z	component,	which	is	shown	in	Table	1,	
we	conclude	that	when	a	pigeon	is	flying,	 it	flies	approximately	 in	
the	xy-plane.

Figure	1c	 presents	 the	 estimated	velocity	 of	 pigeon	A.	Again	 it	
shows	the	two	different	states	(flying	or	nonflying).	Moreover,	Table	1	
confirms	our	previous	assertion	that	 the	pigeon	flies	approximately	
in	xy-plane.	That	is,	the	variation	of	the	x	and	y	velocity	components	
is	almost	30m/s,	while	in	the	z	direction,	it	is	only	4m/s.	For	our	lat-
ter	 investigations,	 the	 criterion	 that	we	will	 use	 to	 distinguish	 be-
tween	these	two	different	behaviors	 is	 the	velocity	magnitude	 (see	
Figure	1c);	that	is,	we	consider	a	pigeon	flying	if	this	magnitude	ex-
ceeds	4m/s.
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Acceleration	 is	 the	 component	 that	 controls	 the	 dynamics.	
Therefore,	 to	understand	and	explore	 the	behavior	of	a	pigeon	 in	
a	flock,	we	have	to	understand	its	acceleration.	As	mentioned	pre-
viously,	 the	 data	 provide	 an	 estimation	 of	 acceleration	 –	 an	 esti-
mation	 conducted	 by	 (Nagy	 et	al.,	 2010)	 using	 a	 Gaussian	 kernel	
smoothing	 algorithm	 to	 approximate	 the	 acceleration	 from	 the	
position	 data	 of	 the	GPS	 device.	 Figure	1e,g	 presents	 these	 esti-
mates	 of	 the	magnitude	 of	 acceleration	 and	 the	 x	 component	 of	

acceleration,	respectively.	Again,	we	see	two	states	(flying	and	non-
flying)	and	 that	 the	 flying	dynamics	can	be	considered	essentially	
on	xy-plane	(compare	the	ranges	of	the	acceleration's	components	
from	Table	1).

In	 the	next	 section,	we	will	 introduce	our	 tracking	methodology	
to	estimate	 the	 instantaneous	position	using	 shadowing	 filters.	This	
method	will	 enable	us	 to	 compute	 corresponding	velocities	 and	 ac-
celerations	based	on	the	estimated	positions.	Then,	we	will	present	a	

F IGURE  1 Free	Flight:	Pigeon	A	position,	velocity,	and	acceleration.	Blue	shows	the	whole	trajectory,	while	red	indicates	the	interpolated	
data	points	not	logged	by	the	GPS	device.	(a)	Whole	trajectory.	(b)	X	coordinates.	(c)	Velocity	magnitude.	(d)	Y	coordinates.	(e)	Acceleration	
magnitude.	(f)	Z	coordinates.	(g)	X	coordinates	acceleration
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comparison	between	the	provided	data	accelerations	and	our	estima-
tions.	Thus,	we	will	be	able	to	check	the	reliability	of	the	data.

2.1.2 | Homing flight

In	 this	 subsection,	 we	 analyze	 homing	 flight	 data	 of	 pigeon	 A.	 In	
Figure	2,	 the	 red	 stars	 illustrates	 the	 interpolated	data	points	when	
the	GPS	device	failed	to	log	data.	Again,	the	ratio	of	non-GPS	to	GPS	
data	points	is	approximately	1:3.

Figure	2a	shows	that	the	trajectory	of	a	homing	pigeon	is	almost	
a	linear	trajectory,	unlike	the	circular	trajectory	of	a	free	flight	pigeon.	
Figure	2b,d,f	which	 represents	 the	 changes	 along	 x,y,	 and	 z coordi-
nates,	respectively,	shows	that	there	are	two	distinct	behaviors	as	be-
fore	 (flying	and	nonflying).	Moreover,	 from	Table	2,	we	observe	that	
the	range	of	change	along	x	coordinates	during	the	flying	period	varies	
from	approximately	2,900	to	9,100	m,	and	along	y	coordinates	from	
2,000	 to	 1,4000	m,	while	 along	 the	 z	 coordinates	 the	 approximate	
range	is	100	to	230	m.	Hence,	we	can	assume	that	during	the	flying	
period	 the	pigeon	moves	 in	xy-plane—comparatively	 little	motion	 in	
the	z-direction.	Notice	that	in	Figure	2f,	the	sharp	changes	along	the	z 
coordinates	occur	when	the	pigeon	starts	flying	or	is	landing.

Figure	2c	represents	the	velocity	estimated	by	Nagy	et	al.	(2010),	it	
confirms	our	conclusion	as	it	clearly	demarcates	the	flying	and	nonfly-
ing	periods.	Moreover,	our	ad	hoc	criterion	for	flight	is	consistent	with	
these	data:	A	pigeon	is	deemed	to	be	flying	if	its	velocity	magnitude	is	
greater	 than	4m/s.	Furthermore,	 a	 comparison	among	 the	 ranges	of	
the	velocity	components	 (Table	2)	validates	our	assumption	of	 flying	
in	the	xy-plane.	However,	in	the	last	quarter	of	the	estimated	velocity	
data,	there	appear	sudden	spikes,	when	no	flying	motion	is	supposed	
to	occur	(compare	Figure	2b,d,f	with	2c).	This	raises	some	uncertainty	
over	the	validity	of	the	estimation	method	used	in	(Nagy	et	al.,	2010).

Additionally,	Figure	2e,g	 shows	 the	dynamic	acceleration	and	 its	
x	component	as	estimated	based	on	the	GPS	position	data.	Again	the	
sharp	spikes	contribute	to	our	unease	over	these	estimations,	espe-
cially	when	some	calculated	accelerations	appear	 to	exceed	80	m/s2 
(or	9	g).	Consequently,	it	is	important	to	determine	to	what	extent	we	
can	rely	on	these	data	for	further	investigation,	particularly	the	GPS-
recorded	position	data	and	the	estimated	acceleration	data.	Therefore,	
in	the	following	section,	we	introduce	the	main	subject	of	this	article:	
a	tracking	methodology	using	the	shadowing	filter.	This	method	will	
enable	us	to	estimate	the	corresponding	acceleration	of	the	tracked	
positions;	then,	a	comparison	will	be	given	to	check	the	reliability	of	
the	data	and	our	estimates.

2.2 | Object tracking methodology

In	 this	section,	we	 introduce	a	method	of	 tracking	a	moving	object,	
that	is,	finding	the	closest	plausible	and	realistic	trajectory	to	noisy	ob-
servations	of	the	target's	position.	This	is	exactly	our	situation	as	the	
GPS	devices	only	recorded	data	of	the	pigeons’	positions.	The	reason	
why	we	choose	this	tracking	approach,	rather	than	standard	filtering	
(Jazwinski,	1970),	is	due	to	the	inaccuracies	in	the	data	as	discussed	
in	the	previous	section.	We	see	two	major	problems	with	the	data	at	
hand:	(1)	a	large	number	of	data	points	are	not	recorded	but	interpo-
lated,	due	to	the	GPS	device's	failure,	and	(2)	some	of	the	estimated	
velocities	 and	 accelerations	have	unreasonably	 large	 values.	 In	par-
ticular,	acceleration	is	of	great	importance	because	it	will	be	used	later	
to	verify	our	estimated	forces	that	keep	the	flock	together.	These	two	
problems,	coupled	with	standard	particle	or	Kalman	filter	approaches,	
will	 lead	to	systematic	biases	 in	the	filtered	signal.	The	assumptions	
driving	the	shadowing	filter	approach	will	avoid	these	problems.

The	 tracking	 methodology	we	 use	 is	 based	 on	 the	 idea	 of	 the	
shadowing	 filter	 (Stemler	&	 Judd,	 2009),	which	 solves	 the	 problem	
from	a	dynamical	system	point	of	view.	However,	the	data	were	col-
lected	and	previously	analyzed	using	Hierarchical	models	(Nagy	et	al.,	
2010),	which	approach	 the	problem	 from	a	 statistical	point	of	view	
(Xu,	Kattas	&	Small,	2012).	As	any	object	moves	under	Newton's	laws,	
our	methodology	aims	to	find	the	closest	Newtonian	trajectory	to	the	
observed	positions.	The	robustness	of	our	approach	is	that	it	requires	
only	a	minimum	data	length,	which	means	we	can	exclude	the	missing	
GPS	data	points	and	still	 implement	our	 tracking	methodology	suc-
cessfully.	Moreover,	our	method	enables	us	to	estimate	the	accelera-
tion	based	on	Newton's	laws	which	we	can	trust	and	are	used	in	our	
latter	study.

This	 tracking	 method	 has	 been	 introduced	 previously	 in	
(Zaitouny,	 2012;	 Judd,	 2015).	 However,	 here	 we	 provide	 a	 brief	
summary	 of	 our	 methodology	 including	 source	 code	 (Zaitouny,	
2016)	 and	 suggestions	 for	 appropriate	 usage.	 Our	 objective	 is	 to	
track	the	position	of	a	point	object	moving	in	one	dimension,	given	
a	 sequence	 of	 noisy	 observations.	 Let	yi∈R	 be	 the	 real	 states,	 let	
Pi∈R	be	the	noisy	observation	of	its	position	at	time	ti	for	 i	=	0,…,n 
and	 σ2

i
∈R	 be	 the	 variance	 of	 the	 observational	 error.	 The	 ob-

ject's	 dynamics	 is	modeled	 by	 its	 observed	 position	Pi∈R	 ,	 veloc-
ity	 νi∈R,	 and	 constant	 acceleration	 ai∈R	 for	 ti≤ t≤ ti+1.	 Our	 goal	
is	 to	 estimate	pi∈R	 close	 to	yi.	We	will	minimize	 the	 total	 square	
error	 (

n∑
i=0

σ−2
i
‖Pi−pi‖2).	 We	 assume	 that	the		acce	leration	is	con-

stant	 for	 one	 time	 interval	 (Ti = ti+1− ti)	 and	 is	 	boun	ded	 over	
the	 entire	 trajectory	 by	 the	 relation	 (

n−1∑
i=0

Tia
2
i
≤ (tn− t0)ξ

2).	 In	 
addition,	we	assume	Newton's	laws	and	Galilean	coordinate	transfor-
mation;	therefore,	we	have	two	additional	constraints:

We	can	solve	this	problem	using	the	Lagrange	multipliers	method	
(Press,	2007).	An	appropriate	Lagrange	function	for	our	tracking	prob-
lem	is	as	follows:

pi+1−pi=
1

2
aiT

2
i
+ νiTi,

νi+1−νi = aiTi.

TABLE  1 Free	flight:	Ranges	of	x,	y	and	z	components	of	position,	
velocity	and	acceleration

Position (m) x y z

Range 2,920→3,060 1,760→1,940 110→145

Velocity	m/s ẋ ẏ ż

Range −15→15 −15→15 −2→2

Acceleration	m/s2 ẍ ÿ z̈

Range −8→8 −8→8 −2→2
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where	expression	 (1)	 is	 the	 total	 square	error	we	want	 to	minimize,	
expression	(2)	is	related	to	the	constraints	from	Newton's	first	law,	the	
term	(3)	expresses	the	constraints	from	Newton's	second	law,	and	(4)	
represents	the	acceleration	constraint.	For	(i	=	1,…,n),	λi∈R,	�i∈R,	and	
η ∈ R	are	our	Lagrange	multipliers.

The	solution	occurs	where	the	partial	derivatives	are	zero:

We	solved	the	system	using	matrix	forms	and	singular	value	decom-
position	 (Golub	 &	 Loan,	 1984)	 method	 to	 obtain	 the	 least-squares	

(1)L =
1

2

n�

i=0

σ−2‖Pi−pi‖2

(2)+

n−1∑

i=0

λi+1(pi+1−pi−
1

2
aiT

2
i
−νiTi)

(3)+

n−1∑

i=0

�i+1(νi+1−νi−aiTi)

(4)+η

(
n−1∑

i=0

Tia
2

i
− (tn− t0)ξ

2

)
,

(5)
∂L

∂pi
=

∂L

∂νi
=

∂L

∂ai
=

∂L

∂λi
=

∂L

∂�i
=

∂L

∂η
=0

F IGURE  2 Homing	Flight:	Pigeon	A	position,	velocity,	and	acceleration	Blue	shows	the	whole	trajectory,	while	red	indicates	the	interpolated	
data	points	not	logged	by	the	GPS	device.	(a)	Whole	trajectory.	(b)	X	coordinates.	(c)	Velocity	magnitude.	(d)	Y	coordinates.	(e)	Acceleration	
magnitude.	(f)	Z	coordinates.	(g)	X	coordinates	acceleration
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approximate	solution	p	 for	the	observed	positions	P	and	their	corre-
sponding	 acceleration	 for	 a	 given	 smoothing	 parameter	η. For more 
details,	 see	 the	 Supplementary	 Materials.	 Our	 proposed	 method	 is	
computationally	 fast,	 efficient	 and	 allows	 for	 effective	 optimization.	
The	 provided	 code	 (Zaitouny,	 2016)	 demonstrates	 the	 applicability	
of	our	method	to	noisy	data	with	missing	observations	and	irregularly	
sampled	trajectories.	Although	the	code	is	provided	for	scalar	case,	it	is	
easy	to	extend	to	multiple	dimensions	or	multiple	objects.	Alternatively,	
our	method	is	sufficiently	robust	that	the	error	correlation	among	dif-
ferent	dimensions	can	be	 ignored	 (Zaitouny,	2012).	That	 is,	one	can	
treat	a	high-dimensional	problem	as	independent	scalar	problems.

3  | RESULTS

In	this	section,	we	will	implement	our	methodology	for	a	single	flying	
pigeon	(both	in	free	flight	and	in	homing)	to	verify	our	model	perfor-
mance	and	 judge	the	reliability	of	 the	data	set.	The	tracking	will	be	
applied	to	the	flight	period	(the	most	interesting	and	nontrivial	behav-
ior	pattern).	We	down-sample	with	a	variety	of	different	decimation	
factors	to	illustrate	the	robustness	of	our	algorithm	when	presented	
with	more	sparsely	sampled	time	series.	We	will	show	how	powerful	
our	tracking	technique	 is,	and	how	it	works	successfully	even	when	
we	exclude	the	data	points	that	the	GPS	device	failed	to	observe.

In	order	to	investigate	the	model	performance	and	optimize	its	pa-
rameters,	we	 compute	 the	 root-mean-square	 error	 (RMS)	 along	 the	
entire	trajectory	to	be	our	measurement:

where	S	is	the	size	of	the	down-sample	observations,	Xi,Yi	and	Zi	are	the	
observed	coordinates,	and	xi,yi,	and	zi	are	our	estimated	coordinates.

3.1 | Tracking free-flying pigeon

In	 this	 subsection,	we	will	 consider	one	pigeon	 from	the	 free-flying	
flock	 where	 the	 free-flying	 pattern	 has	 a	 length	 of	 1,500	 points.	
Specifically,	 we	will	 consider	 a	 subtrajectory	 of	 pigeon	A	 shown	 in	
the	previous	section	(Figure	1)	and	focus	on	the	period	from	[8,500,	
10,000)	which	is	obviously	a	period	of	flying.	While	in	flight	our	track-
ing	methodology	 will	 be	 implemented	 in	 three	 different	 situations:	
(1)	 taking	 the	 whole	 subtrajectory	 (1,500	 points),	 that	 is,	 the	 time	

resolution	is	0.2	s;	(2)	taking	each	fifth	point,	which	means	a	sub-sub-
trajectory	of	 length	 (300	points)	and	time	resolution	1	s;	and	(3)	we	
extend	the	considered	subtrajectory	to	include	200	extra	points,	then	
down-sample	it	to	a	time	resolution	of	2	s	(170	points).	The	reason	be-
hind	choosing	different	down-sample	sizes	is	to	show	the	robustness	
of	our	tracking	method	and	illustrate	how	the	missing	data	points	will	
not	affect	the	performance	of	our	tracking	technique.

As	we	only	aim	to	explore	our	tracking	method	performance,	we	
can	use	a	simple	numerical	scheme.	We	take	a	broad	parameter	sweep	
with	η	between	10	and	10−6	and	calculating	E	(Equation	6	for	both	posi-
tion	and	acceleration)	for	different	time	resolutions	as	described	above.

Table	3	shows	the	results	of	our	numerical	experiments.	Where	“E-
position”	is	calculated	from	the	position	data	points	and	our	estimated	
positions,	and	“E-acceleration”	is	the	root-mean-square	error	between	
the	acceleration	from	the	data	and	the	acceleration	we	estimate	via	
our	model.	 It	 is	 apparent	 from	 the	 table	 that	 there	 are	 optimal	val-
ues	of	the	smoothing	parameter	η	for	each	time	resolution.	With	time	
resolution	as	0.2	s,	it	has	been	found	that	the	optimum	value	of	η	lies	
in	 the	 interval	 (10−6,10−5)	with	E-position	≈7.3510 × 10−5 m	 and	E-
acceleration	≈ 0.0469m/s2.	The	corresponding	 results	 are	 illustrated	
in	 Figure	3a,c,e,	where	 the	 smoothing	 parameter	 η	 is	 chosen	 to	 be	
5 × 10−6.	Figure	3a	shows	a	comparison	between	our	position	track-
ing	estimations	and	the	data,	it	represented	for	the	whole	trajectory.	

(6)E=

����1

S

S�

i=0

(‖Xi−xi‖2 + ‖Yi−yi‖2 + ‖Zi−zi‖2)

TABLE  2 Homing	flight:	Ranges	of	x,	y	and	z	components	of	
position,	velocity	and	acceleration

Position m x y z

Range 2,900→9,100 2,000→14,000 100→230

Velocity	m/s ẋ ẏ ż

Range −18→15 −18→15 −2→2

Acceleration	m/s2 ẍ ÿ z̈

Range −8→8 −8→8 −2→2

TABLE  3 Numerical	experiments	results	of	free	flight	to	
determine	the	optimum	value	of	η	for	different	time	resolution.	
Given	are	the	root-mean-square	errors	for	position	(E-Pos.	in	m)	and	
acceleration	(E-Acc.	in	per	m/s2)

η

Time 
resolution = 0.2 s

Time 
resolution = 1 s

Time 
resolution = 2 s

E-Pos. E-Acc. E-Pos. E-Acc. E-Pos. E-Acc.

10 5.57 2.11 13.9 3.07 19.1 3.37

5 3.43 1.82 9.58 2.66 14.0 2.95

1 1.09 1.33 3.37 1.94 5.35 2.15

0.5 0.68 1.14 2.09 1.72 3.33 1.92

0.1 0.23 0.74 0.73 1.30 1.17 1.56

0.05 0.14 0.59 0.47 1.14 0.80 1.45

0.01 0.042 0.31 0.18 0.85 0.38 1.23

5×10
−3 0.025 0.23 0.12 0.75 0.28 1.16

10−3 0.0062 0.12 0.049 0.60 0.14 1.05

5 × 10−4 0.003 0.09 0.036 0.56 0.12 1.03

10−4 7.8×10−4 0.058 0.021 0.498 2.34 2.41

5 × 10−5 4.2 ×10−4 0.052 0.017 0.48 16.9 16.4

10−5 1.1 ×10−4 0.047 2.78 10.6 235 232

5 × 10−6 7.35 × 10−5 0.047 17.0 65.5 407 403

10−6 1.0 ×10−4 0.047 222 880 707 702

5	×10−7 2.1 ×10−4 0.05 432 1.7 ×103 766 760

10−7 0.051 48.4 990 3.9 ×103 818 811

Bold	values	highlight	the	optimal	values	of	the	smoothing	parameter	and	
the	corresponding	minimal	errors.
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It	can	be	easily	noticed	how	close	the	estimations	are	to	the	observa-
tions.	 Figure	3c,e	 compare	between	 the	 data's	 acceleration	 and	our	
tracking	 estimated	 acceleration,	 the	 former	 shows	 for	 the	 accelera-
tion's	magnitude,	while	the	latter	shows	the	acceleration	x	component.	
It	is	clear	that	our	acceleration	approximations	are	very	close	to	those	
of	the	original	data—except	at	some	sharp	spikes	where	our	estima-
tions	have	eliminated	these	spikes,	which	is	more	realistic.

While	for	time	resolution	1	s,	it	has	been	found	the	minimum	of	E-
position	≈	0.0171	m	and	the	minimum	of	E-acceleration	≈ 0.4838m/s2 
occur	at	an	optimal	value	of	η	inside	the	interval	(10−5,10−4).	The	increase	
in	 the	minimum	values	 of	E-position	 and	E-	 acceleration	 comparing	
with	their	values	in	0.2	s	time	resolution	is	not	surprising,	because	the	
number	of	points	used	for	the	tracking	with	1	s	time	resolution	is	much	
smaller.	Figure	3b,d,f	shows	the	results	of	our	tracking	filter	with	this	
time	 resolution	 and	 a	 smoothing	 parameter	η = 5 × 10−5	 lies	 in	 the	
optimal	interval.	In	these	figures,	the	solid	blue	lines	refer	to	the	whole	
data	trajectory	from	which	we	extract	the	down-sampled	version,	the	
down-sample	points	which	are	used	in	the	filter	are	indicated	as	green	
stars,	the	outcomes	of	our	tracking	using	the	down	sample	are	repre-
sented	as	red	squares.	Figure	3b	compares	the	positions,	we	observe	
that	our	filter	still	gives	very	good	results	even	with	using	just	a	down	
sample	and	not	the	whole	data	set.	While	Figure	3d,f	compares	the	ac-
celeration	estimated	using	the	down	sample	with	data's	acceleration,	
here	the	mismatching	at	the	spikes	is	much	more	noticeable.

Finally,	for	time	resolution	of	2	s,	as	expected	we	found	larger	min-
imum	E-position	≈	0.1163	m	and	E-acceleration	≈ 1.0261m/s2 corre-
sponding	to	an	optimal	value	of	η	in	the	interval	(10−4,	10−3).	However,	
our	position	estimations	are	still	very	close	to	the	observations,	as	well	
as	the	estimated	accelerations	despite	the	expected	gaps	occurring	at	
the	sharp	spikes.

3.2 | Tracking homing flying pigeon

Following	from	the	previous	subsection,	we	now	apply	our	shadowing	
filter	to	homing	flight.	That	is,	we	will	choose	pigeon	A	from	homing	
flight	and	consider	a	subtrajectory	of	length	1,500	points	of	its	flying	
pattern;	particularly,	we	consider	the	period	of	points	[2,500,	4,000]	
of	 its	 trajectory.	When	analyzing	the	remaining	flying	segments,	we	
obtained	similar	 results.	Along	this	subtrajectory,	we	 implement	our	
tracking	filter	for	the	three	different	situations	(time	resolution	=	0.2	s,	
1	s	and	2	s).2	The	implementation	has	been	performed	for	the	same	
broad	parameter	sweep	as	above.

Table	4	illustrates	the	outcomes	of	these	numerical	investigations.	
It	 has	 been	 found	 for	 0.2	s	 time	 resolution	 that	 the	 optimum	value	
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F IGURE  3 Free	Flight:	Tracking	pigeon	A	position	and	
acceleration	with	optimal	values	of	η	corresponding	to	two	different	
time	resolution	0.2	s	and	1	s.	(a)	Whole	trajectory:	η = 5 × 10−6,	 
Δ	T	=	0.2	s.	(b)	Whole	trajectory:	η = 5 × 10−5,	Δ	T	=	1	s.	(c)	
Acc.	magnitude:	η = 5 × 10−6,	Δ	T	=	0.2	s.	(d)	Acc.	magnitude:	
η = 5 × 10−5,	Δ	T	=	1	s.	(e)	Acc.	x-component:	η = 5 × 10−6,	 
Δ	T	=	0.2	s.	(f)	Acc.	x-component:	η = 5 × 10−5,	Δ	T	=	1	s
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of	the	smoothing	parameter	η	lies	in	the	interval	(5	×10−6,	5	×10−5),	
where	the	approximation	of	the	corresponding	minimum	errors	are	E-
position≈9.4705 × 10−5 m	and	E-acceleration	≈ 0.0389m/s2.	For	time	
resolution	=	1	s,	 it	can	be	seen	from	Table	4	that	the	minimum	of	E-
position	≈	0.0122	m	and	the	minimum	of	E-acceleration	≈ 0.3733m/s2 
correspond	to	an	optimal	value	of	the	smoothing	parameter	η	 lies	in	
the	interval	(5 × 10−5,	5 × 10−4).	Lastly,	as	expected	for	2	s	time	res-
olution,	the	minimum	values	of	the	errors	are	slightly	increased	such	
that	 E-	 position	≈	0.0564	 and	 E-acceleration	≈	0.6091,	which	 occur	
at	an	optimal	value	of	η	inside	the	interval	(10−4,	10−3).	Note	that,	by	
comparing	these	results	with	the	results	from	free	flying	in	the	previ-
ous	section,	we	find	that	the	tracking	filter's	performance	is	consistent	
between	these	two	very	different	behaviors.

Additionally,	 to	 show	 our	 results	 graphically,	 Figure	4	 represents	
comparisons	between	our	filter	estimations	and	data	observations	for	
both	positions	and	accelerations	along	two	different	periods—the	filter	
has	been	applied	for	η = 10−4	and	time	resolution	=	1	s.	In	order	to	con-
firm	that	our	tracking	filter	estimations	are	closer	to	reality	than	the	data	
observations,	 especially	 for	 acceleration,	 the	 two	 periods	 have	 been	
chosen	as	follows	(see	Figure	4a):	The	red	down	sample	includes	700	
points	of	a	flying	interval	(each	fifth	point	of	the	interval	[1,500,	5,000]).	
While	 the	green	down	sample	has	been	chosen	purposely	 to	 include	
an	episode	of	rather	doubtful	acceleration	in	the	data	set	as	mentioned	
before	in	subsection	(3.2),	this	down	sample	includes	700	points	of	the	
last	quarter	of	the	trajectory	 (each	fifth	point	of	the	 interval	 [10,000,	

13,500]).	It	can	be	seen	from	Figure	4b,d,f	how	the	estimations	are	close	
to	the	observations	for	both	position	and	acceleration	along	the	flying	
period.	On	the	other	hand,	for	the	doubtful	region,	we	can	notice	from	
Figure	4c	that	the	matching	between	our	position	tracking	estimations	
and	data	observations	 is	almost	perfect.	However,	Figure	4e,g	shows	
how	our	estimated	accelerations	avoid	the	unrealistic	states	shown	in	
the	last	quarter	of	the	data	set,	where	the	data	set	includes	accelera-
tions	around	80	m/s2,	while	our	estimations	of	acceleration	does	not	
exceed	40	m/s2	,	which	supports	our	assumption	that	our	tracking	esti-
mated	accelerations	are	closer	to	reality	than	the	data's	accelerations.

3.3 | Reliability of the data

The	data	set	we	used	is	a	filtered	GPS	data	with	0.4	m2	error	variance	
due	to	the	device	inaccuracy;	moreover,	as	mentioned	before,	the	ve-
locity	and	acceleration	provided	 in	 the	data	are	calculated	using	 the	
GPS	position	information.	Therefore,	it	is	important	for	our	further	in-
vestigations	to	verify	the	reliability	of	these	data	especially	the	accel-
eration	and	optimize	the	performance	of	our	filter	and	the	significance	
of	its	impact	on	the	calculation	of	acceleration.	To	do	that,	we	propose	
two	numerical	experiments.	The	first	one	is	to	optimize	the	smoothing	
parameter	η	according	to	the	error	variance	of	the	GPS	device	using	
simulation	data.	 Such	 an	optimization	 is	 needed	because	we	do	not	
know	 the	 true	 trajectory	 of	 the	 bird	 but	 only	 the	 recorded	 position	
data.	The	second	numerical	experiment	determines	the	minimum	tra-
jectory	length	required	to	implement	our	tracking	filter.	In	addition,	we	
give	some	comparison	between	our	method	and	a	sliding	window	filter.

3.3.1 | Simulation data optimization

In	our	previous	numerical	investigations,	we	found	that	there	exists	an	
optimal	value	of	the	smoothing	parameter	η	that	 implies	the	closest	
estimations	to	the	data	observations	 (c.f.	Tables	3	and	4).	However,	
we	now	ask	whether	this	achieves	our	objective,	or	can	we	do	some-
thing	better?	In	fact,	as	we	only	have	noisy	observations	from	the	GPS	
device,	we	should	aim	to	find	the	closest	 (most	plausible)	 trajectory	
to	 the	 unknown	 reality.	 Plausibility	 in	 our	 case	means	 that	 the	 tra-
jectory	we	are	looking	for	is	consistent	with	our	model	of	the	flying	
pigeon.	Therefore,	we	will	use	a	scaling	relationship	between	the	error	
variance	and	the	corresponding	optimal	value	of	 the	smoothing	pa-
rameter	η	which	(we	claim)	gives	the	closest	trajectory	to	reality	from	
the	simulation	data.	The	idea	can	be	described	briefly	as	follows:	we	
generate	a	true trajectory	and	for	each	noise	level	 in	a	certain	range	
we	also	generate	100	noisy	trajectories	that	we	use	as	observations.	
Obviously	 the	noise	 level	 range	 is	 chosen	 such	 that	 it	 fits	with	 the	
measurement	uncertainty	of	 the	equipment	used	 in	the	real	experi-
ment.	Starting	from	a	broad	parameter	sweep	of	η,	we	estimate	a	tra-
jectory	 for	 the	observations.	Measuring	 the	error	between	 the	100	
estimated	sequences	and	the	true	trajectory	allows	us	to	narrow	our	
parameter	sweep	around	the	minimum	error.	Several	sweeps	and	con-
sequent	limiting	of	the	range	of	η	around	the	new	minimum	results	in	a	
simple	optimization	of	the	η	parameter.	It	has	been	found	in	(Zaitouny,	
2012;	Zaitouny,	Stemler	&	Judd,	In	press)	that	the	best	value	of	η	is	

TABLE  4 Numerical	experiments	results	of	homing	flight	to	
determine	the	optimum	value	of	η	for	different	time	resolution.	Again	
the	errors	of	the	position	(E-Pos.	m)	and	the	acceleration	(E-Acc.	m/s2)	 
are	given

η

Time 
resolution = 0.2 s

Time 
resolution = 1 s

Time 
resolution = 2 s

E-Pos. E-Acc. E-Pos. E-Acc. E-Pos. E-Acc.

10 3.09 1.73 6.02 2.19 6.03 1.60

5 2.13 1.54 4.65 2.03 4.41 1.52

1 0.85 1.10 2.22 1.61 2.15 1.34

0.5 0.56 0.92 1.53 1.42 1.61 1.25

0.1 0.19 0.56 0.59 1.02 0.78 1.02

0.05 0.11 0.44 0.39 0.88 0.56 0.94

0.01 0.033 0.24 0.13 0.62 0.27 0.77

 5×10−3 0.019 0.18 0.085 0.55 0.19 0.71

10−3 0.005 0.094 0.033 0.440 0.08 0.63

 5×10−4 0.003 0.072 0.024 0.41 0.056 0.61

10
−4 5.8	×10−4 0.05 0.012 0.373 11.0 10.5

 5×10
−5 3.0 ×10−4 0.042 0.014 0.37 80 78

10
−5 9.5 × 10−5 0.039 13.2 50.4 1.1 ×103 1.1 ×103

5×10
−6 1.2 ×10−4 0.040 81 312 1.9 ×103 1.9 ×103

10−6 4.1 ×10−4 0.056 1.1 ×103 4.2 ×103 3.4 ×103 3.3 ×103

 5×10
−7 10−3 0.11 2.1 ×103 8.2	×103 3.6 ×103 3.6 ×103

10−7 2.45 230 4.7 ×103 1.×104 3.9 ×103 3.9 ×103
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proportional	 to	 the	 noise's	 standard	 deviation	 cubed.	 An	 approxi-
mated	relationship	for	high	sampling	rates	is	found	to	be

where	ηb	is	the	desired	optimal	value	of	η	and	β	is	the	noise's	variance.
Such	 a	 relationship	 allows	us	 to	 no	 longer	 optimize	η	 based	on	

some	 interpretation	of	being	close	 to	 the	observations	 (as	we	have	
done	 so	 far	 for	 example	 in	 Tables	3	 and	 4),	 but	 instead	 choose	 η 

according	to	the	device's	error	variance	of	0.4	m2.	Accordingly,	we	can	
conclude	that	 implementing	our	tracking	technique	on	this	data	set	
with	a	value	of	the	smoothing	parameter	η	≈	0.05	will	result	in	estima-
tions	closer	to	the	reality.	In	Table	3,	we	can	find	E-position	=	0.14	m	
and	E-acceleration	=	0.59	m/s2	corresponding	to	η	=	0.05,	which	are	
further	from	the	observations	but	according	to	Equation	7	should	be	
close	to	the	true	trajectory.	Figure	5	represents	the	results	of	this	ap-
plication	for	the	free	flying	pigeon	A's	subtrajectory	of	length	1,500	

(7)ηb ≈ 0.046
√
β
3
+ 0.054,

F IGURE  4 Homing	Flight:	Tracking	pigeon	A	position	and	acceleration	with	η = 10−4	and	time	resolution	=	1	s.	(a)	Position:	Whole	trajectory.	
(b)	Position:	X	coordinates.	(c)	Position:	X	coordinates.	(d)	Acceleration:	magnitude.	(e)	Acceleration:	magnitude.	(f)	Acceleration:	X	component.	(g)	
Acceleration:	X	component
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points	and	time	resolution	=	0.2	s.	Figure	5a	shows	how	the	position	
estimations	are	close	to	observations,	the	differences	are	not	obvious,	
but	Figure	5b	 shows	 that	 corrections	varying	between	0	 and	0.1	m	
have	been	observed.	Actually	an	improvement	occurred	at	the	spikes	
in	the	data.	This	improvement	can	be	seen	better	when	we	compare	
the	 estimated	 acceleration	 (Figure	5c,d).	 It	 is	 noticeable	 how	 our	
tracking	filter,	corresponding	to	the	optimum	η	=	0.05,	tries	to	avoid	
strong	 and	 sharp	 changes	 in	 acceleration	 and	 therefore	 gives	more	
realistic	estimates.	The	corrections	in	the	acceleration	magnitude	vary	
between	0	and	1	m/s2.	Figure	5e,f	show	the	estimations	and	the	cor-
rections	of	 the	acceleration's	x	 component	 in	order	 to	emphasis	on	
the	significant	improvements	made	by	our	tracking	technique.	We	see	
how	our	filter	treats	the	sudden	and	strong	changes	in	acceleration,	
and	how	it	modifies	the	estimations	to	be	closer	to	real	dynamics.

3.3.2 | Windowing test

The	widowing	test	is	a	useful	procedure	to	address	questions	of	pre-
dictability	 and	 data	 requirements	 arising	 in	 real-world	 applications.	
The	test	was	introduced	in	(Stemler	&	Judd,	2009),	and	the	basic	idea	
of	this	test	 is	to	apply	the	shadowing	filter	to	data	sequences	of	 in-
creasing	length.	By	examining	the	filter's	convergence,	we	can	find	a	
minimum	measurement	or	window	 length	 that	 is	needed	to	get	ap-
propriate	 approximations.	Consistency	 of	 convergence	 beyond	 that	
minimum	length	also	provides	a	good	guide	to	reliability	of	the	filter	in	
the	particular	application	setting.

A	basic	application	of	the	widowing	test	is	to	determine	a	minimum	
window	length	of	observations	that	is	required	to	obtain	a	good	tracking	
of	the	positions	of	the	travelled	object,	that	is,	one	is	interested	in	a	good	
convergence	along	the	whole	trajectory.	The	widowing	test	can	be	ap-
plied	to	real	measurements	or	artificial	data.	In	our	case,	we	do	have	a	real	
data	set	but	we	do	not	know	the	true	states	of	the	pigeons;	therefore,	we	
will	use	the	windowing	test	to	verify	the	reliability	of	the	data	set.

For	 the	 first	 application	when	 the	 true	 states	 are	 unknown,	 the	
widowing	test	is	applied	as	follows.	Given	a	long	trajectory	of	noisy	ob-
servations	N = (P1,… ,PN),	apply	the	shadowing	filter	at	the	optimal	
parameter	η	 to	 the	 length	n	 subtrajectories	n = (PN−n+1,… ,PN),	 for	
0	≤	n	≤	N,	 to	 obtain	 approximated	 trajectories	η,n = (qN−n+1,… ,qN).  
As	n	 is	 decreased	 the	 lengths	 of	 the	 subtrajectories	 are	 decreased,	
therefore,	we	compare	the	estimated	subtrajectories	η,n	to	the	cor-
responding	observations	of	N = (P1,… ,PN).	That	is,	we	compare	the	
distances	Dj,n =∥PN−j−qN−j,η,n ∥	for	0	≤	j < n.

Figure	6	represents	an	application	of	the	widowing	test	using	an	
initial	 down-sample	 sequence	 from	 the	 recorded	 flight	pattern	with	
time	resolution	2	s	and	a	length	of	200	observations.	We	compare	the	
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F IGURE  5 Free	flight:	Tracking	pigeon	A	position	with	an	
approximation	of	the	best	value	of	η = 5 × 10−3	gives	the	closest	
estimates	to	reality	and	time	resolution	=	0.2	s.	(a)	Whole	trajectory.	
(b)	Trajectory	corrections.	(c)	Acceleration	magnitude.	(d)	Acceleration	
corrections.	(e)	Acceleration	X	coordinates.	(f)	X	acceleration	
corrections
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estimation	of	 this	200	observation	 long	sequence	with	 the	ones	re-
sulting	 from	subtrajectories	of	 lengths	n	=	150,	100,	80,	60,	40,	20,	
10.	For	all	cases,	we	used	the	optimal	parameter	η	=	0.05.	Each	line	in	
Figure	6a	plots	the	distances	Dj,n	between	observations	PN	and	corre-
sponding	states	η,n.	Observe	the	convergence	of	the	N	to	η,n,	the	
convergence	at	the	last	state3	occurs	for	all	n	≥	20;	therefore,	we	con-
clude	that	the	minimum	length	of	the	observational	trajectory	that	is	
required	for	position	tracking	is	n =	20	and	therefore	about	40	s.

Figure	6b	represents	the	logarithm	of	the	previous	distances.	From	
this	 figure,	we	can	observe	that	 the	minimum	error	 in	 the	observed	
data	set	is	about	0.3	m.

Moreover,	 according	 to	 Figure	1	 by	observing	 the	nonflying	 po-
sitions,	 we	 can	 say	 that	 the	 data	 have	 a	 maximum	 error	 of	 3	m.	
Therefore,	we	can	confirm	that	the	position	data	set	we	have	is	suf-
ficiently	reliable	(error	∈		(0.3,	3)	m)	and	it	can	be	used	to	extend	our	
work.	However,	we	observe	above	that	the	acceleration	provided	with	
the	data	set	is	not	reliable.	Therefore,	it	is	more	appropriate	to	use	our	
tracking	filter	to	estimate	new	accelerations	closer	to	reality	to	be	used	
in	our	further	investigations.

4  | DISCUSSION

We	have	shown	in	(Zaitouny,	2012;	Zaitouny	et	al.,	submitted,	under	
review)	that	our	tracking	methodology	(1)	is	able	to	minimize	the	error	

F IGURE  6 Application	of	the	
windowing	test:	Estimates	for	different	
length	of	observation	sequences.	(a)	Dj,n	as	
a	function	of	the	position.	(b)	The	logarithm	
of	Dj,n	as	a	function	of	the	position
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F IGURE  7 Comparison	between	the	shadowing	filter	and	
the	sliding	average	filter	for	two	segments	of	the	homing	flight.	
In	the	upper	panel,	we	see	that	the	sliding	average	filter	leads	to	
unreasonable	high	spikes	in	the	acceleration,	while	in	the	lower	panel,	
we	find	that	the	turning	points	of	the	time	series	are	underestimated	
by	this	filter
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and	can	be	optimized	corresponding	to	the	observational	error	and	
time	resolution,	(2)	is	easy	to	adjust	for	one	dimension	or	higher	di-
mensions,	(3)	is	robust	enough	to	consider	or	ignore	the	error	corre-
lation,	(4)	works	successfully	for	regular	or	irregular	time	resolution,	
(5)	 is	capable	to	be	extended	to	track	rigid	bodies	and	(6)	 is	able	to	
reconstruct	the	full	dynamical	state	space	only	from	position	observa-
tions.	In	this	article,	we	have	seen	our	shadowing	filter	tracking	ap-
proach	is	able	to	track	the	dynamics	of	an	individual	pigeon	very	well	
and	applying	the	filter	improved	the	quality	of	the	data.	Conversely,	
we	should	also	justify	the	introduction	of	this	new	filter	when	popu-
lar	alternatives	are	already	well	accepted.	 In	 the	 literature,	one	can	
find	a	variety	of	filter	methods,	including	variational	filters	(Swanson,	
Vautard	&	Pires,	1998)	Kalman	filters	(Bar-Shalom,	Li	&	Kirubarajan,	
2001;	Hartikainen,	Solin	&	Särkkä,	2011),	and	other	statistical	filters	
(Jazwinski,	1970).	The	variational	filters	start	to	be	no	longer	useable	
if	the	time	series	get	too	long	(Stemler	&	Judd,	2009),	while	the	other	
two	approaches	are	 rather	widely	used	nowadays.	These	 statistical	
filters	 are	both	 sequential,	 that	 is,	 instead	of	using	all	 the	 available	
time	series	information	at	once	the	next	state	is	optimized	based	on	
the	value	of	the	current	state.	As	we	have	seen	the	shadowing	filter	
uses	the	time	series	as	a	whole	and	optimization	is	done	not	on	neigh-
boring	 states	 but	 on	 the	 complete	 time	 series.	We	 argue	 that	 this	
leads	to	better	results	as	it	more	appropriately	used	all	the	available	
information.	Note	 that	 the	 shadowing	 filter	 framework	has	 already	
been	tested	against	a	variety	of	alternative	filter	techniques,	including	
all	the	usual	suspects	(see	Judd,	2003;	Judd	&	Stemler,	2009;	Stemler	
&	Judd,	2009),	and	shown	to	outperform.	While	it	seems	to	be	a	major	
drawback	that	we	need	a	minimum	time	series	length	to	apply	our	fil-
ter,	it	should	be	noted	that	this	minimum	length	is	similar	to	the	length	
required	for	good	estimates	from	sequential	filters	like	the	Kalman	fil-
ter	or	other	Bayesian	filters.	In	addition,	we	want	to	also	point	out	that	
while	other	filters	lead	to	good	position	approximations	and	therefore	
can	provide	good	tracking	results,	the	other	filters	require	some	post-
processing	to	reconstruct	the	full	phase-space	consisting	of	position,	
velocity	and	acceleration.	On	the	other	hand,	for	the	specific	track-
ing	 application	of	 these	 filters,	 in	 (Zaitouny	et	al.,	 submitted,	 under	
review),	a	direct	comparison	has	been	conducted	among	our	method,	
Kalman	 ,	extended	Kalman,	and	particle	 filters’	 tracking	approaches	
(Gustafsson	et	al.,	2002;	Gustafsson,	2010;	Hartikainen	et	al.,	2011).	
The	 results	 support	 the	 superiority	of	our	method	 in	 terms	of	per-
formance	 (accuracy)	 and	 computational	 complexity	 (speed).	 In	 the	
following	subsection,	we	introduce	an	additional	simple	comparison	
with	the	sliding	average	filter.

4.1 | Comparison with a sliding average filter

The	simplest	possible	sequential	filter	is	the	sliding	average	filter	(Wei,	
1994).	In	this	filter,	the	position	is	stimated	by	averaging	n-observations	
to	get	an	estimate	of	the	current	state,	that	is	pi = 1∕n

∑i+(n−1)∕2

j=i−(n−1)∕2
Pj.  

If	the	noise	level	is	small	and	unbiased,	this	filter	gives	reasonable	ap-
proximations	of	 the	 true	position.	For	our	experiment,	we	used	 the	
data	from	the	homing	flight.	Given	that	these	data	have	a	high	tempo-
ral	resolution	(0.02	s.)	and	that	the	measurement	noise	is	comparably	

small,	we	can	directly	apply	this	filter	and	we	do	so	with	n	=	5.	As	with	
the	Kalman	filters	or	any	other	sequential	filter	reconstruction	of	the	
full	phase-space	requires	us	to	numerically	differentiate	the	position	
data,	so	that	vi = (pi+1−pi)∕Δt	and	ai = (vi+1−vi)∕Δt.	It	is	well	known	
that	even	if	there	is	very	little	noise	in	the	position	estimates	pi,	the	de-
rivatives	will	amplify	the	noise.	In	addition	sliding	average	filters	tend	
to	underestimate	the	turning	points	of	the	time	series.

In	Figure	7,	we	show	the	comparison	between	the	two	methods.	
As	expected,	the	sliding	average	filter	performs	much	worse	than	the	
shadowing	filter	(η	=	0.05).	Not	only	does	this	lead	this	method	to	sev-
eral	unreasonable	high	values	for	the	acceleration	(for	example,	seven	
spikes	in	the	upper	panel	of	Figure	7)	but	in	addition	the	turning	points	
in	 the	 lower	 panel	 of	 Figure	7	 are	 underestimated.	 As	 mentioned	
above,	this	result	does	not	only	apply	to	this	particular	filter	but	is	a	
generic	property	of	all	sequential	filters,	that	require	numerical	differ-
entiation	to	reconstruct	the	full	phase-space.	On	the	other	hand,	the	
shadowing	filter	is	not	prove	to	this	problem,	because	the	full	phase-
space	is	reconstructed	based	on	the	whole	time	series	and	a	postpro-
cessing	therefore	is	not	needed.

5  | CONCLUSION

In	 this	article,	we	have	shown	how	the	shadowing	 filter	 framework	
can	be	applied	to	track	the	motion	of	a	pigeon.	Due	to	the	measure-
ment	error	associated	with	the	GPS	tracking	device,	significant	data	
analysis	is	needed	to	get	a	better	understanding	of	the	motion	of	such	
targets	(birds	pose	a	particularly	challenging	test	case	for	tracking	al-
gorithms).	Moreover,	we	have	shown	that	our	method	does	not	need	
such	a	high	sampling	rate	and	can	deal	with	down-sampled	data	hav-
ing	a	10	times	longer	resolution	easily.	In	addition—as	the	code	shows	
(Zaitouny,	2016)—the	time	resolution	does	not	have	to	be	regular	and	
therefore	our	algorithm	can	deal	with	irregularly	sampled	trajectories.	
In	fact,	in	several	applications	mostly	with	coarse	time	resolution	and	
also	missing	data	our	method	provides	an	excellent	alternative	to	the	
traditional	statistical	filters.	In	addition,	we	have	shown	using	the	win-
dowing	test	that	our	method	is	also	applicable	for	much	shorter	time	
series	than	the	one	at	hand.

It	is	important	that	our	tracking	method	does	not	require	any	input	
in	terms	of	biological	parameters.	Just	making	the	(valid)	assumption	
that	pigeons	obey	Newtonian	mechanics	is	sufficient.	This	allows	us	to	
improve	the	data	quality	without	any	questionable	assumptions	that	
might	underlay	a	biological	model.

While	we	 see	our	 contribution	 as	 a	 first,	 important	 step	 to	 im-
prove	the	data	quality	before	modeling	the	flock's	dynamics,	it	is	clear	
that	our	method	could	be	applied	 in	other	problems	too.	While	 im-
plementation	of	our	filter	for	already	existing	GPS	data	(Steiner	et	al.,	
2000;	Gremillet	et	al.,	2004;	DeCesare	et	al.,	2005)	is	an	obvious	ap-
plication,	 it	should	be	noted	that	our	method	could	also	be	applied	
to	 position	 data	 resulting	 from	 visual	 methods	 of	 tracking	 animals	
(Ballerini,	Cabibbo,	Candelier,	Cavagna,	Cisbani,	et	al.,	2008;	Gautrais,	
Ginelli,	Fournier,	Blanco,	Soria,	et	al.,	2012;	Bhagavatula,	Claudianos,	
Ibbotson	&	Srinivasan,	2014;	Boos,	Pritz,	Lange	&	Belz,	2014).
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NOTES
1	Direct	 differentiation	 estimates	 the	 velocity	 as	 the	 difference	 (distance)	
between	consecutive	positions	divided	by	the	corresponding	time	interval;	
similarly,	the	acceleration	is	the	difference	between	consecutive	velocities	
divided	by	the	time	interval.	The	primary	problem	with	direct	differentiation	
is	that	numerical	differencing	will	amplify	the	effect	of	noise.

2	Again	with	time	resolution	=	2	s,	we	extend	the	subtrajectory	to	1,700	points
3	Remember	 that	 our	 filter	 show	 large	 errors	 at	 the	very	beginning	of	 the	
sequence.
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