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The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-
level information on the damage and protection costs associated with varying flood heights. We provide a
systematically and consistently calculated dataset of macroscale damage and protection cost curves for the
600 largest European coastal cities opening the perspective for a wide range of applications. Offering the
first comprehensive dataset to include the costs of dike protection, we provide the underpinning
information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost
curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments
and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more
critical discussion on the availability and derivation of cost curves.
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Background & Summary
Establishing the relation between economic loss and flood height is a crucial step in the elaboration of
flood-damage assessments in coastal zones, be it at global1 or city scales2. Such relations take the form of
damage cost curves and are used by researchers as an essential ingredient for the estimation of economic
loss due to sea-level rise and the associated intensification of storm surges3. In a wider sense, they
constitute the starting point for the appraisal of the benefits of adaptation in light of climate change4.
Despite their pivotal role in the workflow leading to economic assessments of coastal impacts and
adaptation, academic literature has put little scrutiny on the derivation of cost curves or their comparison.

Mainly seen as a by-product of the impact assessment itself, damage cost curves are generally not
published as a standalone dataset. At the case-study scale, damage cost curves are rarely derived in a
consistent manner, with regard to the data sources for assets at risk and the employed cost methodology.
These factors severely limit the comparability of cost results and renders the synthesis of knowledge
embedded in such curves a daunting task. In order to advance the comparability of forthcoming impact
assessments of coastal flooding, and to initialize a more critical discussion on the availability and
development of cost curves, this work releases a consistently derived set of macroscale damage and
protection cost curves for the 600 largest European coastal cities. We employ the term macroscale to
indicate that the curves are obtained for the entity of the city, and also to differentiate our cost curves
from depth-damage functions for single elements at risk (also termed microscale)5.

Given the local character of damages and adaptation6, the data and processes chosen for the
elaboration of the cost curves must, on the one hand, contain a certain degree of spatial detail to capture
the city/landscape specificities that play an important role in shaping the magnitude of the impacts. On
the other hand, it is mandatory for the objectives of this work - comparability and transferability - that
data retains a certain level of universality in order to be generically available. The balancing of these two
opposing premises shaped to a large extent the primary data choices made in this study.

Our approach differs from previous studies estimating potential damage from coastal flooding by
employing land-use information as the basis to approximate the location of assets, rather than using
population coupled with GDP per capita, as found in similar studies7,8. The use of land-use information
guarantees that our main object of analysis is the built-up city itself and not a less consistent
approximation based on regional political or socio-economic consideration. Regarding hydrological
modeling, we make use of a high resolution digital elevation model for Europe for determining areas at
risk from flooding. To generate inundation maps, we employ a simple though commonly used static-
inundation model that only accounts for hydraulic connectivity. Because we are interested in determining
the rise of direct monetary damage with increasing flood height, we raise the flood height in small
incremental steps up to a maximum of 12 m. This range was chosen to cover potential extreme sea levels
both under current and future conditions9.

The benefits of the damage cost curves to the scientific community are manifold. At the foremost, the
comparability between alternative cost curves for different cities will be improved. The large number and
size range of cities investigated makes room for further quantitative insights on the characteristics of cost
curves. Because the provided cost curves embed in themselves a measure of asset vulnerability they only
require information of typical or expected flood events for a given city in order for damage assessments to
be performed. As regional and global datasets on sea-level rise and storm surges become available at
increasing resolutions10–12, the existence of a consistent database of damage cost curves at city-scale will
unlock new potential for the systematic analysis of coastal damage from sea-level rise in cities.

Unique to this work is the evaluation of the protection needs of urban land within a city at increasing
levels of coastal flooding. The protection cost curves describe the relation between the construction cost
of coastal protection (whose costs are approximated by those of building dikes) and the designated
protection height. The curves provided allow to contextualize the adaptation efforts expected in each city,
while at the same time providing impact researchers with the underpinning information to run
comparative assessments of costs and benefits of coastal adaptation.

Methods
In this study, we derive macroscale damage and protection cost curves for European coastal cities. The
cost curves are a product of combining information about the orography and land cover of a city and
merging these with statistical information on land use and its associated monetary value.

It is relevant to underline that only European cities are considered, given the availability of some
datasets and the restrictions imposed, namely a consistent classification of land cover and land use.
Table 1 summarizes the sources and characteristics of the data used. In the following, we disclose each
step involved in the estimation of the macroscale damage and protection cost curves and also introduce
the relevant datasets in detail.

Step I: Inundation modeling
With a horizontal resolution below 100 m, recent satellite-based digital elevation models (DEM) have
received much attention in flood modeling and have been established as an important data source for
large-scale damage assessments8,13–15. Following this approach, we make use of the EU-DEM16 to model
hypothetical inundation at the European coast at a horizontal resolution of 25 m (see Table 1).
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Employing a static inundation scheme17, we estimate areas that are hydraulically connected with the
sea at a given sea level. A flood-fill algorithm using 8 nearest neighbors18 determines grid cells that are
flooded at a presumed flood height. For each of these, we store the corresponding inundation depths. The
whole procedure is repeated for flood heights between 0 m and 12 m in steps of 0.5 m. An example for the
inundated area and the corresponding inundation depths is given in Figure 1b for a 2 m flood at the city
of Copenhagen. It is acknowledged that this approach disregards the effect of natural or artificial flood
barriers that may not be resolved by the DEM. Furthermore, the static inundation scheme provides an

Type Details Reference

Digital Elevation
Model of Europe
(EU-DEM)

Year 2000, 25 m× 25m resolution. The EU-DEM dataset is based on satellite-based SRTM and ASTER
GDEM data, which have been fused by a weighted averaging approach. Being a product of interpolation, the
vertical resolution of the EU-DEM is variable and given as float numbers in meters.

13

EEA coastline for
analysis

Year 2013 (updated 2015), coastline for geographical Europe, derived from two sources: EU-Hydro and
GSHHG. The criteria for defining the coastline is the line separating water from land.

14

CORINE Land
Cover (CLC)

Year 2012, 100 m× 100 m resolution. The CLC datasets map homogeneous landscape patterns, i. e. more
than 75% of the pattern has the characteristics of a given land-cover class. The class nomenclature is a 3-level
hierarchical classification system. In its detailed version it accounts for 44 classes, 8 of which are considered
in the derivation of the city clusters according to the UMZ definition22.

16

Land Use and
Coverage Area
frame Survey
(LUCAS)

Year 2015, harmonized and comparable statistics on land use and land cover for Europe. LUCAS provides
statistical data derived from ground surveys carried out in situ, i. e. observations are made and registered in
the field all over the EU. Eurostat carried out the latest LUCAS survey between March and October 2015,
visiting a total of 273 401 points. LUCAS defines land use in 14 main categories, 6 of which can be mapped to
the CLC classes considered in the UMZ definition22 for the derivation of city clusters
(cf. Table 2)

17

Relative damage
functions for
land-use classes

Year 2004 (updated 2017), land-use-specific damage functions in EU member states. The study comprised a
literature review (including questionnaires to the authors), an economical characterization of the countries,
and a harmonization procedure which includes the elaboration of maximum damage values for all land-use
classes and countries.

18,19

Table 1. Detailed overview of the data sources used in this study.

a
a

c

b

d

b

c d

Figure 1. Inundation, flood damages and protection needs for the urban cluster of Copenhagen at 2 m

flood height. (a) Identification of the urban cluster and its CORINE land-cover composition. (b) Inundation

depths as calculated by the flood-fill algorithm. (c) Spatial distribution of damage costs within the urban cluster.

(d) Urban protection course (UPC) of flood defenses (shown in purple) required to avoid the estimated

damages.
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upper estimate of the flooded area. Further discussion of this approach is given in the Technical
Validation section.

Step II: Identification of cities from land cover
In order to ensure a consistent identification of coastal cities, we use a systematic procedure to identify
the spatial extent of continuous urban land located at the coasts of Europe. For this purpose, we apply a
cluster algorithm19,20 to the CORINE 2012 Land-Cover dataset21 (CLC, see Table 1). We thereby follow
the definitions of Urban Morphological Zones22 (UMZ), which define the maximum distance between
connected cells and the specific land-cover classes included (listed as columns in Table 2).

Due to the coarser resolution of the CLC data compared to the EU-DEM, some cluster grid cells may
protrude into the open sea. In order to avoid such artifacts, we trim the CLC-based cluster at the coast by
considering additional vector data for the European coastline23. We retain only those parts of a CLC grid
cell that lie behind the coastline or that overlap with a DEM cell that shows a positive elevation
above MSL.

We keep only those city clusters that are either directly adjacent to marine waters or located with at
least 10% of their area in low-lying coastal zones (defined as no more than 10 m above MSL). From these
coastal clusters, the 600 largest (by area) are selected for further investigation. A breakup of the number
of selected clusters per country is given in Table 3 and their locations at the European coast in Figure 2.

It should be noted, that the clusters do not correspond to administrative boundaries but represent
connected areas of urban land cover. Hence, it is possible that the algorithm combines adjacent cities
within one urban cluster. For instance, our analysis provides a joint cluster for the so-called Flemish
Diamond, an urban agglomeration comprising the major cities of Antwerp, Ghent, Louvain, and Brussels.
In two cases (i.e. the Flemish Diamond and Manchester/Liverpool) we provide further sub-clusters that
relate to separate cities, each of which individually qualifies as coastal cluster according to the above
criteria.

For the following steps, the cluster boundaries are used as a mask to extract the corresponding land
cover and inundation information. We give an example of the results for the city of Copenhagen in
Figure 1a.

Step III: Inference of land use from land cover
So far, the clusters boundaries define the location of assets at risk. However, the estimation of damage
cost requires information about the quantity and the economic value of these assets (exposure). We
estimate exposure on the basis of the economic value of land use. For this purposes a statistical mapping
between land-cover and land-use classes is required. The mapping is created from raw data of the 2015
Land Use/Cover Area Frame Statistical Survey24 (LUCAS). Specifically, we statistically relate observed
land use and CORINE land-cover classes over all geo-referenced observation within the LUCAS data.
Finally, every land-cover class is allocated the average fraction of the land-use classes. Table 2 shows the
derived mapping between the considered land-use classes and the land-cover classes that are included in
the urban clusters.

For this study, we limit the considered land uses to the classes residential, commercial, industrial, road
transport, and agriculture, as well as unused land (cf. Table 2) and disregard other LUCAS land-use
classes. This choice is motivated by the availability of microscale depth-damage functions, which are not

LUCAS class CORINE class

1.1.1 Continuous
urban fabric

1.1.2 Discontinuous
urban fabric

1.2.1 Industrial or
commercial units

1.2.2 Road
and rail net-
works

1.2.3
Port
areas

1.2.4
Airports

1.4.1 Green
urban areas

1.4.2 Sport and
leisure facilities

U110 Agriculture 0.04 0.22 0.11 0.19 0.01 0.09 0.09 0.15

U220 Industry 0.00 0.01 0.13 0.02 0.10 0.00 0.00 0.00

U310 Transport 0.20 0.14 0.25 0.44 0.53 0.66 0.13 0.09

U340 Commerce 0.05 0.02 0.11 0.02 0.06 0.00 0.02 0.02

U370 Residential 0.49 0.41 0.07 0.01 0.07 0.01 0.14 0.12

U400 Unused 0.05 0.07 0.13 0.20 0.14 0.07 0.11 0.11

Considered share
(all of the above)

0.83 0.87 0.80 0.87 0.90 0.84 0.49 0.49

Table 2. Statistical mapping of CORINE land-cover classes to LUCAS land-use classes, derived from
2015 LUCAS raw data and the 2012 CORINE dataset. The table shows the observed frequency at which
the considered CORINE land-cover classes coincide with those LUCAS land-use classes that we use for damage
estimation.Statistically, these frequencies correspond to an average share of a CORINE cell that can attributed
to a certain land-use class and are hence used as weights wi∧ j in Equation (1). The considered share defines the
overall fraction of a land-cover class that can be statistically attributed to the relevant land-use classes. E.g.
“Discontinuous urban fabric” corresponds to 22% Agriculture, 1% Industry, 14% Transport, 2% Commerce,
41% Residential, and 7% Unused, accounting for 87% of the total area on average.
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available for other land-use classes. As a consequence, we can only account for an overall share of 0.82 of
the aggregated cluster area. Details on the considered share, i. e. the fraction of a cluster cell that can be
attributed to the considered land uses, are given in Tables 2 and 3.

Step IV: Application of microscale depth-damage functions
Microscale depth-damage functions are used to convert the grid-based information on inundation depth
and land use to monetary damage. The depth-damage functions are adapted from publications by
Huizinga et al.25,26, who provide country-specific data for five different land-use classes. For each country,
the data contain land-use specific values for the average maximum damage per m2. These values are used
to calibrate relative damage functions that were derived at the European level for the considered land
use25. For the example of Germany, we show the inflation-adjusted average maximum damage in
Figure 3a. The generic relative depth-damage functions are shown in Figure 3b.

Huizinga25 relates the average maximum damage per land use to the economic output of a country
measured in terms of GDP per capita using Purchasing Power Standards (PPS) for the year 2004. In the
lack of a more recent land-use valuation, we adjust monetary estimates to 2016 price levels by using
historic inflation rates based on the consumer price index26. For most countries the inflation rates were
obtained from Eurostat27, for Albania and Montenegro from the Worldbank28.

Country # of Clusters Considered share Affected at 5 m flood height

Value [billion €] Cluster share

United Kingdom 87a 0.81 139.60 0.66

France 68 0.84 102.28 0.58

Netherlands 65 0.81 540.53 0.67

Italy 54 0.84 127.83 0.47

Spain 50 0.82 45.22 0.58

Sweden 39 0.80 46.62 0.57

Germany 34 0.81 139.73 0.46

Denmark 32 0.78 66.90 0.57

Turkey 31 0.81 22.40 0.53

Norway 22 0.83 17.04 0.28

Greece 20 0.83 13.81 0.35

Finland 18 0.83 36.96 0.58

Portugal 14 0.83 5.55 0.50

Belgium 11 (17)b 0.84 87.12 0.81

Ireland 10 0.81 14.45 0.56

Poland 8 0.80 16.25 0.50

Cyprus 6 0.81 4.26 0.79

Latvia 5 0.78 16.52 0.70

Albania 4 0.86 2.34 0.51

Bulgaria 4 0.77 1.71 0.62

Croatia 4 0.86 1.97 0.26

Romania 4 0.81 3.44 0.38

Iceland 3 0.77 9.32 0.36

Estonia 2 0.82 1.09 0.36

Lithuania 2 0.82 2.23 0.43

Isle of Man 1 0.82 0.02 0.09

Malta 1 0.84 0.20 0.40

Montenegro 1 0.85 0.19 0.25

Table 3. Statistics on the number of clusters and affected values per country. For each country, the
considered share indicates the fraction of the total cluster area that can be attributed to the considered land-use
classes. The affected monetary value is determined by taking into account the considered share for the areas
that are affected by a certain flood. We give an example of the affected values at a hypothetical 5 m flood height.
The cluster share indicates the share of the affected values in each country that are included in the coastal city
clusters of this study. aIncludes the Liverpool/Manchester megacluster. When split, the number of clusters
remains unchanged since the Manchester subcluster does not qualify as a coastal cluster. bWe obtain 7 coastal
subclusters from splitting up the Flemish Diamond.
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Switching from land use to land cover data, we infer the microscale damage function di for a land-
cover class i as a weighted sum of the corresponding damage functions dj for land-use classes j,

diðhÞ ¼
X
j

wi∧jdjðhÞ; ð1Þ

where h denotes the inundation depth and the weight wi∧ j represents the observed frequency of finding
both i and j attributed to the same grid cell. The weight is taken from the statistical mapping between land
cover and land use shown in Table 2.

Knowing the land-cover class and the inundation depth for each grid cell, we can use Equation (1) to
calculate monetary damage for each grid cell within a city cluster. As an example, damage costs per m2

for a hypothetical 2 m flood in Copenhagen are shown in Figure 1c.

Figure 2. City clusters considered in this study. We provide damage and protection cost curves for the 600

largest urban clusters spread along the European coast. For better visibility on the map, the cluster bounds have

been enlarged.

a b

Figure 3. Depth-damage functions for different land uses. (a) Average maximum damage per m2 for

Germany (inflation adjusted). (b) Relative depth-damage functions for each land use. Both maximum damage

and relative depth-damage functions have been adapted from Huizinga25.
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Step V: Macroscale aggregation of monetary damage
In this step, we combine the information on the urban cluster with the modeled inundation data and the
microscale damage functions. For each urban cluster the monetary damage at a specific flood height is
given by the sum over the damages for each of the inundated grid cells29. Precisely,

DðxÞ ¼
X
n

diðnÞðhx;nÞ; ð2Þ

where D is the total damage in the considered cluster at flood height x. The index n runs over all grid cells
in the cluster and di(n) is the microscale damage function for the corresponding land-cover class in cell n.
The inundation depth hx,n is obtained from the inundation model in Step I and is dependent on the
overall flood height x and the location of grid cell n. Following this approach, we obtain the flood
damages for all 600 urban clusters at all flood heights x ¼ 0m; 0:5m; 1m; ¼ ; 12m.

Step VI: Estimation of protection costs
Using the results of Steps I and IV we determine the protection needs for a given urban cluster in terms of
an urban protection course (UPC). The novel terminology has been chosen deliberately to stress the
hypothetical nature of this product and its dependence on the urban cluster. The UPC can be understood
as the entirety of all flood defense measures, whether they are dikes, sea walls or any other artificial
construction.

In order to obtain the UPC, we need to identify grid cells, where the construction of a flood defense
structure is theoretically required to avert the potential damage at a given flood height. First, we extract
the outline of the city cluster by finding those cluster cells that belong to the cluster and are adjacent (in
the sense of the 8 nearest neighbors) to the surrounding land, whereby the surrounding land excludes
grid cells that are entirely enclosed by the city cluster (i.e. holes). Second, cells on the outline are identified
as part of the UPC if they suffered a potential flood damage during Step IV.

The required height of the protective structure at an identified UPC cell is defined as the difference
between the cell's elevation and the considered flood height. The required length of the protective
structure is given by the edge length of the cell itself. An example for an UPC in the city of Copenhagen at
2 m protection height is given in Figure 1d.

It is important to distinguish between the UPC, which is a purely hypothetical protection course
around an urban cluster, and existing or planned flood protection which typically protect wider areas.
Crucially, the UPC shall not be misunderstood as a basis for engineering decisions on coastal defense
measures due to its known limitations, e. g. of the underlying DEM and the simplicity of the hydrostatic
approach. A critical discussion of the UPC is included in the Technical Validation section, where we also
compare the UPC and existing protection measures for the city of Hamburg.

Since the UPC represents a compilation of potentially several different flood defense measures, its
construction costs can only be estimated approximately. Since empirical costs estimates for coastal
defense measures are only sporadically available on case study level, construction costs are commonly
assessed via a unit-cost approach30–32. We employ unit costs for dike construction (cost of constructing
or raising a dike per unit length and height)31 as a general cost proxy for the UPC. Protection costs are
obtained by applying the unit cost to the product of protection height and length of each grid cell and
summing over all grid cells belonging to the UPC. Repeating this process for every protection height
ω ¼ 0m; 0:5m; 1m; ¼ ; 12m, we obtain individual cost curves for all cities considered. We provide both a
low and a high cost scenario31 that reflect the high uncertainty32 of empirical dike construction costs.

Analogous to the preparation of the damage costs, we stratified the protection costs for the different
European countries by calculating the difference in Purchasing Power Standards25. Subsequently, regional
protection costs were inflation-adjusted to 2016 price levels26 analogous to the damage estimates in
Step IV.

Code availability
All data products were computed using Matlab R2014a. For computational efficiency, the Matlab
functions for generating the city clusters and the inundation maps were coded in C and compiled with
the Microsoft Windows SDK 7.1 C Compiler. Raster data were prepared either directly in Matlab or by
using the Geospatial Data Abstraction Library 2.2.1 (GDAL). Any maps were generated with QGIS,
version 2.18.

In the Supplementary Information we provide a stand-alone example of the Matlab codes and data to
generate the damage and protection cost curves for the Copenhagen urban cluster. Further codes are
specific to our computational architecture and can be made available upon request.

Data Records
All data products that were derived and described in this work are publicly available at the PANGAEA
repository [Data Citation 1] under the Creative Commons Attribution 3.0 Unported license. In detail,
[Data Citation 1] provides four distinct datasets:

● [Data Citation 2] provides binary masks for each coastal city cluster derived from CORINE land-cover
and EU-DEM data. The dataset comprises individual raster files (GeoTIFF) for the 600 largest clusters,
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as well as additional files for the 8 sub-clusters of the Flemish Diamond and Manchester/Liverpool
megaclusters. The archive further contains auxiliary metadata, namely: The name and geographical
coordinates of the clusters, as well as the area of the clusters in km2.

● [Data Citation 3] provides the direct monetary damage (million € in 2016) for each of the considered
city clusters at flood heights varying from 0 to 12 m in 0. 5 m steps. Although existing flood protection
is not considered, we propose an approach to take into account the impact of flood protection in the
Usage Notes section.

● [Data Citation 4] provides lower bound cost estimates (million € in 2016) for potential protection at
each of the considered city clusters. Costs are absolute figures for the construction of the UPC at design
flood heights varying from 0 to 12 m in 0. 5 m steps. Note that existing flood protection is not
considered in the cost estimates, but may still be incorporated based on simple assumptions (cf. Usage
Notes).

● Analogous to [Data Citation 4], [Data Citation 5] provides upper bound cost estimates (million € in
2016) for potential protection at each of the considered city clusters.

In the following, we provide a detailed account of each of the individual datasets.

Cluster masks
In [Data Citation 2] derived cluster masks are provided for each of the 600 largest urban clusters located
at the European coast. The spatial distribution of the clusters is shown in Figure 2. An example of a
cluster mask applied to CORINE land-cover data can be found in Figure 1a for the city of Copenhagen.
The 600 clusters are located in 28 European countries, with the largest exposure in the Netherlands,
Germany, UK, Italy, and France. A detailed breakup of the number of clusters per country and affected
monetary value is given in Table 3.

Within the 600 clusters there are two which comprise two or more major cities. These are the Flemish
Diamond of Brussels, Antwerp, Ghent, and Louvain, as well as the cluster of Manchester/Liverpool. These
were disaggregated into 8 subclusters that are provided alongside the original clusters. All further results
are available for both the original clusters and the disaggregated coastal sub-clusters.

While the employed damage functions account for the predominant land use in urban areas, not all
land use could be accounted for. We find that our method can attribute an average of 82% of the cluster
area to accountable land use. Other land uses are not considered due to the unavailability of value
estimates and damage functions. Tables 2 and 3 provide a breakup of the considered share of the cluster
area per land-cover class and per country, respectively. Concerning land cover, we find that all land-cover
classes associated with built-up areas can be attributed by at least 80% and only green urban areas and
sport and leisure facilities are covered to a lesser extent. Across countries the considered share remains
approximately constant, with small fluctuations between 0.77 and 0.86.

When considering the affected values (exposure) at a hypothetical 5 m flood height, the total exposure
accumulated within the coastal clusters equates to more than half of the total urban exposure within
Europe. In numbers, we find that 58% of the total exposure are due to the top 600 clusters.

Damage cost curves
[Data Citation 3] provides estimated cost curves for direct monetary damage for each of the 600 clusters
as well as the 8 subclusters. The curves for the largest 100 clusters are shown in Figure 4a. Given the
strong differences in the absolute value of estimated damages, the curves are normalized by the maximum
damage at 12 m flood height. Probably most eye-catching is, that some curves exhibit a considerable
damage at a 0 m flood height, which at first appears counter-intuitive. This effect is explained by the fact,
that our approach considers the potential damage costs in the absence of any coastal protection measure.
Accordingly, low-lying cities such as Rotterdam in the Netherlands can already be affected at 0 m flood
height. Apart from that, it can be seen that almost all curves exhibit a convex increase for low and
moderate flood heights. Furthermore, the damage cost curves exhibit inflection points for various city
clusters and even approach saturation in a few cases. This behavior arises when most parts of the city
have already been inundated and there is a diminishing increase of the flooded urban area. The saturation
is seen most prominently in the example of Rotterdam.

Overall, the majority of curves exhibit a moderately convex (e.g. London), or slightly sigmoid (e.g.
Copenhagen) behavior over the entire range from 0 to 12 m. As for the example of Bristol, cities that are
mostly located on elevated grounds exhibit a strongly convex damage cost curve with no saturation for
the flood heights considered.

Protection cost curves (low/high)
For [Data Citation 4] and [Data Citation 5] approximate protection cost curves were estimated for each
of the 600 clusters as well as the 8 subclusters. We obtained a lower and an upper bound of protection
costs for each city, which result from applying the lower and upper unit cost figures, respectively (cf. Step
VI in the Methods section). Analogous to the damage cost curves, we show the protection cost curves
(upper bound) for the 100 largest clusters in Figure 4b. Similarly to the damage costs, some protection
cost curves exhibit a positive offset at zero protection height. Again, this results from the fact that existing
protection is not considered and therefore low-lying cities may experience hypothetical flooding below

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180034 | DOI: 10.1038/sdata.2018.34 8



mean sea level. In contrast to the damage costs curves, the protection costs show a convex increase
throughout. Furthermore, they do not saturate but converge to a linear function of protection height. The
linear increase arises, when the protection course spans the entire city and costs arise merely due to a
gradual heightening of dikes. This is clearly seen for the low-lying example of Rotterdam, whereas the
elevated city of Bristol exhibits a super-linear increase throughout. Since both damage and protection cost
curves are dependent on the extent of the flooded area, we see the same ordering for the four
example cases.

Technical Validation
The feasibility of a technical validation is limited given that the damage and protection cost curves can
only provide a characterization of potential cost under the assumption of no existing protection. Even if
existing protection levels were modeled, empirical cost estimates at the city level remain scarce and may
not be consistent in terms of the considered city areas and asset values. (A general approach to
incorporate existing protection levels for risk assessment is described in the Usage Notes section.)

In order to address these limits, we focus our validation on three different aspects. First, we undertake
a critical discussion of the caveats implicit in the data and the model choices of this work. Second, we
identify comparable damage cost curves for 17 coastal cities in the scientific literature and compare these
against our estimates. Third, we discuss the characteristics of the UPC against existing protection on the
example of Hamburg.

Critical discussion of the modelling approach
City boundaries. The definition of city boundaries is a long-standing problem in any field studying
cities33. As population data is collected on the administrative level, the apparent choice is to simply rely
on those definitions. Administrative boundaries, however, in general disagree with the common sense
spatial extent of cities, so that definitions of metro-regions aim for consistent density and commuting
thresholds34.

a

b

Figure 4. Damage and protection cost curves for top 100 urban clusters with the largest area.

(a) Normalized damage curves, where each curve has been divided by the damage at a hypothetical 12 m flood

height. (b) Normalized protection cost curves, where each curve has been divided by the protection cost at the

12 m height. The curves for the cities of Rotterdam (Rot), Copenhagen (Cop), London (Lon), and Bristol (Bris)

have been highlighted.
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Since damages primarily arise from urban infrastructure, we employ a physical city definition which closely
matches asset exposure and potential damage proxies. According to our definition, cities are spatial clusters of
urban land cover, i. e. any two neighboring urban grid-cells belong to the same city cluster.
By following the EEA's definition of urban morphological zones22, we employ a systematic and reproducible

procedure to extract city boundaries from land-cover data. Since land-cover data is also the source of our
damage proxy, our approach assures consistency between the city boundaries and the estimated monetary
damage.

Assets at risk. Given the large number of city clusters considered and the continental scope of analysis,
approximating the economic value of assets at risk is bounded by a number of caveats. Unlike local
studies in which asset value is available at the building level18, continental and global assessments need to
approximate asset values using economic information with a comparably coarser resolution. Economic
proxies for asset exposure (e.g. GDP per capita) are typically downscaled using more detailed
geographical information. For this purpose, recent studies have employed remote sensing data for
population4,7,8,35, land use35, land cover36, or night light37 information.
Fundamentally, our study is based on the average maximum damage for each land use per country25. Where

country averages are not available, European values are scaled to the country level by the ratio of national over
European GDP per capita in Purchasing Power Standards, thus reflecting the differences in economic output25.
This procedure results in monetary estimates that are homogeneous for each country.
As with similar studies7,8,35, these national estimates do not differentiate between relatively poor or wealthy

regions or between more rural or strongly urbanized settlements. While some population-based studies have
employed a factor of 2.8 to approximate asset values from national GDP per capita4,8, others have used a factor
of 5 to account for increased affluence in cities7,35. The higher factor for cities can be motivated from the fact
that GDP scales super-linearly with the size of the population38. If sub-national estimates of GDP per capita are
available for a given city, the damage cost curves provided here could simply be rescaled by the ratio of city
GDP over national GDP.
In our approach the maximum damage of a grid cell is dependent on land use and local GDP per capita but

independent of population density. This is a major difference to population-based approaches where total
assets are assumed to be proportional to the local population. This aspect has two main consequences. On the
one hand, our approach could overestimate potential damage in low-density areas. Due to the high 100 m
resolution of the underlying CORINE data, we believe this to be a minor effect. On the other hand, studies
based on population and GDP per capita may fail to accommodate for high-rise buildings in city centers, which
are typically less affected by flood damage in relation to their total economic value. They may also
systematically undervalue industrial and commercial sites which are not resolved explicitly. In contrast, our
approach identifies and evaluates different types of built-up areas by land use and, thus, yields a more accurate
spatial distribution of damages. Moreover, the use of land use can in principle be more appealing to spatial
planners and adaptation practitioners.
It should be noted that the allocation of average fractions of land use to the CORINE land-cover data could

be a source of error for individual damage cost curves. Locally, the composition of land use per CORINE cell
could be different from the statistical average. Generally, this random error is expected to become less
significant at higher flood heights where more and more cells are affected, and it should be negligible for a
large-scale assessment on the national or European scale.

Microscale depth-damage functions. Despite the existence of a considerable amount of functions
relating flood depth and relative damage at the building-level their overall shape is remarkably similar—a
sub-linear rise of damage for the initial flood depths followed by a slow deceleration of damage and
saturation for high flood depths. The microscale depth-damage functions used in this work (Figure 3b)
apply to the average damage per m2 for different land uses, but they comply with the general shape of
damage functions at the building level. While the maximum damage value per land use is broken down
for each country according to its GPD in terms of Purchasing Power Parity25, the shape of the depth-
damage functions remains homogeneous across Europe. This implies that damage effects stemming from
country and behavioral-specific features are not captured. For example, differences in construction
materials39 and the existence of an underground floor40 significantly influence the shape of the relative
damage function. Furthermore, the existence of flood-adapted use and adapted interior fitting are
reported to have a significant effect in shaping damages41 and hence the modification of the relative
damage function.

Inundation maps. Inundation maps produced are a explicit spatial representations of hypothetical
flood events and thus define both the extent of the flooded area as well as the water height (inundation
depth) at each individual point. Conventional approaches range from simple static inundation schemes to
computationally demanding dynamic inundation modeling9.
Static inundation schemes, sometimes also called bathtub models, are often used for large-scale flood damage

assessment, where computational time becomes a limited resource4,8. The comparison of different inundation
schemes shows that static models may overestimate the flooded area9. The overestimation is due to the fact that
static inundation schemes assume infinite water volume for immediate discharge during the flood event,
disregarding limitations due to terrain roughness, narrow or constricted openings, and flow velocity in general.
The choice of the DEM and its resolution has a substantial effect on the accuracy of inundation models. In

this context, many studies have demonstrated the benefit of using airborne light detection and ranging (LiDAR)

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180034 | DOI: 10.1038/sdata.2018.34 10



data, which offers high horizontal resolution and vertical accuracy, as well as the capacity to separate bare-earth
from built structures and vegetation13,14,42. However, since LiDAR data is not consistently and often not freely
available, large-scale flood damage assessment relies on satellite based observations.
Recent large-scale studies have employed the shuttle radar topography mission (SRTM) DEM4,8, whose

general utility as a source of global terrain data has been noted42. Comparative studies show significant
differences between SRTM and LiDAR for inundation mapping14, but also indicate that the differences may be
within the accuracy that is typically associated with large-scale flood studies13.
This study employs the EU-DEM23, which is largely SRTM based and would thus be expected to provide

similar accuracy. A first study comparing SRTM and EU-DEM products for flood modeling did not find
significant differences15. However, since all elevation data were averaged to the same resolution as SRTM, the
benefit of the higher resolution of the EU-DEM was not assessed.

Costs of protection. Empirical cost estimates are scarce and generally not available for the entirety of
flood defense measures around a specific city. Hence, a direct validation of protection cost against
reported figures is not feasible and, as a consequence, we discuss the costing and the location of flood
defenses separately.
In our work we employ empirical estimates of protection cost that reflect the costs per 1 m increase in dike

height31. Derived from actual project data, the unit cost include material and construction costs, as well as the
costs for design, taxes, and fees31. Strictly, the unit-cost approach only applies to the incremental cost of raising
dikes, such that absolute cost figures are potentially unsubstantiated. However, the unit-cost approach is
supported by the finding that empirical costs for Canadian and Dutch dikes can be approximated by linear cost
functions32.
Costs for protection measures other than dykes are not considered in this work. Estuaries and in particular

harbor cities require adaptable storm surge barriers, such as flood gates, in order to allow passage and water
exchange at ordinary water levels. The construction costs of storm surge barriers are significantly higher than
those for sea dykes. Based on empirical estimates for the construction costs of flood barriers31 we compute a
range of €67.1 million to €259.0 million per m height and km width. These values are a factor 5 to 12 greater
than the unit costs for sea dykes in urban areas, which have been estimated at €15.5 million and €22.4 million
in ref. 31. However, the feasibility and cost of constructing flood gates critically depend on the local conditions
and require the consideration of in-situ hydrological, bathymetrical, ecological, and economical information—
information that is not systematically available at the European level. Additionally, urban drainage systems
(e.g. pump stations) play an important role for the removal of stormwater. Again, such facilities are highly
dependent on in-situ characteristics and could not be considered here.
Under the unit-cost assumption, the shape of the estimated protection cost curves is determined solely by the

length and height of the required flood protection. This information is provided by the UPC, which is based on
the the city cluster that defines the urban land cover attributable to the city. As such, the UPC can be compared
to the existing protection measures deployed within the city. However, the actual protection measures and the
UPC differ in their objective. For consistency with our damage estimation, the UPC was designed to protect
those urban areas which would otherwise suffer damage. As such, the UPC does not reflect economic
considerations or protection needs beyond city cluster boundaries. In contrast, the processes leading to actual
protection are very complex and might involve a local political discourse and constitute a compromise between
economic and social aspects. The implicit decision process likely considers the city and its surroundings such
that the protection in place potentially deviates from the UPC.
Given the high variance in empirical protection costs32 and the specific assumptions of the UPC, it becomes

evident that the monetary estimates of the protection costs should be considered as indicative. However,
courtesy to the consistent approach, the estimates are well suited for differential analysis of protection costs
across different cities.

Comparison of our results with damage cost curves in the literature
While being of great value for risk assessment, macroscale damage curves are typically being considered
as an intermediate result of the damage assessment and often not published. This fact unnecessarily
hampers the comparability and accessibility of flood risk assessments and hinders the validation of such
curves.

We consider only one study8 comparable to the one presented, both in regard to the number of cities
considered and methodological homogeneity. This other study undertakes a risk assessment for the 136
major coastal cities worldwide. There is an overlap with our study for 17 urban agglomeration within
Europe. The supplementary material to ref. 8 contains raw data and computational codes from which the
implicit damage cost curves can be constructed. Employing no additional data, we hence reconstructed
the damage cost curves in the original 2005 USD. For comparability, these values were converted to EUR
and adjusted to 2016 values.

If available, one would prioritize the comparison of the damage cost curves in this work with those
derived from case-study investigations. We do so for the city of Copenhagen, where a monetary damage
curve has been disclosed2.

Figure 5 provides a comparison between our damage cost curves and the results obtained from
literature2,8. Despite the use of distinct datasets and methodology for asset estimates in the included
studies (cf. Table 4), we find a remarkable agreement between cost curves for the cities of Athens, Dublin,
Hamburg, Marseille, and Naples. Furthermore, a very good match for Amsterdam and Rotterdam
after subtraction of the damage offset at 0 m flood height. This shift is explained by the fact that in ref. 8
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Figure 5. Comparison of the estimated damage curves with other studies. Loss estimates for 17 European

cities were obtained from Hallegatte et al. 2013 (ref. 8). An additional damage curve for Copenhagen was

obtained from Hallegatte et al. 2011 (ref. 2). An asterisk (*) identifies those cities, where more than one coastal

city cluster was combined to match the area considered in ref. 8.
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inundation is considered only above 0 m elevation, neglecting the possibility of low-lying areas beneath
the mean sea level. For the remaining cities we note strong deviations at low flood heights below 3 m and
deviations up to a factor of 4 at higher flood heights.

The large spread of the different damage cost curves for Copenhagen gives an indication of the typical
variability among damage cost curves. Table 4 shows that the external studies2,8 differ only with respect to
the asset exposure and the choice of vulnerability/depth-damage functions. For example, the exposure at
a 5 m flood height equates to €4.28 billion in ref. 2 and €16.14 billion in ref. 7, both in 2005 EUR
(compared to an estimated exposure of €29.70 billion at the 5 m level in this study). However, despite the
considerably larger asset exposure, the curve from ref. 8 shows not ≈ 4 times but a mere ≈ 1/3 of the
losses of that of ref. 2. At the lack of more detailed information, this effect must be attributed to a strong
difference between the proprietary vulnerability functions and the depth-damage functions. The fact that
both types of microscale damage functions are typically derived from empirical data urgently shows that
absolute estimates from damage assessments may be significantly biased.

Nonetheless, Figure 6 suggests that the different damage curves are nearly parallel on a log-log graph
in the majority of cases. If parallel, curves differ only by a constant coefficient, i. e. are subject to a simple
multiplicative bias. This implies that relative differences (e. g. percentage increases) are more similar and
robust with regard to model choice.

Comparison of the urban protection course with existing protection on the example of
Hamburg
With a major commercial port on the river Elbe, Hamburg has a longstanding tradition in flood
protection. Unfortunately, a quantification of the total cost of its existing protection is not possible due to
the diversity of individual protection measures and the many evolutionary steps in reinforcing and
readapting to current protection needs. However, official spatial information43 enables a comparison
between the existing protection measures and the UPC with regard to location and extent. Accordingly,
Figure 7a shows the existing protection measures as well as the UPC for an 8 m design level. This
approximately compares to the design levels of the existing dikes43, which vary from location to location
with values mostly fluctuating around 8 m. Perhaps the most striking is the fact that the existing
protection closely follows the embankments of the river Elbe, whereas the UPC shows a more ragged
behavior and extends into the marshlands and low-lying agricultural lands in the south-west and south-
east of the city. This difference is a direct consequence of our modeling choice to protect only those areas
that belong to the urban cluster and thus to ensure consistency between the damage cost and protection
cost curves.

The close-up of the city center and harbor in Figure 7b reveals a variety of public and private
protection measures. Whereas public dikes tend to follow the embankment and protect the entire
hinterland, the private polders (defined as low-lying tracts of land that are enclosed by dikes, forming an
artificial hydrological entity without natural connections to outside waters) protect selected parts of the
harbor. There is a good resemblance of these existing protection measures with the UPC in Figure 7c. The
main limitation of the approach is that it is purely cost based, i. e. does not consider the economic benefits
from protection. As a consequence, the UPC may enclose urban areas of low economic value that from an
economic point of view should remain unprotected. Given that no database of coastal protection location
is available for European cities, our results introduce the first approximation to date and provide a basis
for discussion of further developments.

In summary, the comparison of protection measures indicates that the UPC is by large consistent with
the existing protection measures. The limitations are due to the constricted focus on urbanized areas and
the negligence of economic viability.

Dataset This study Hallegatte et al. 2011 (ref. 2) Hallegatte et al. 2013 (ref. 7)

Urban area Urban cluster from 100 m
CORINE land-cover data

Post-code areaa Post-code areaa

Orography 30m resolution EU-DEM
(SRTM based)

90 m SRTM 90m SRTM, except for proprietary 10 m DEM in the UK

Exposure Value per m2 derived from
LUCAS land-use data

Insured valuea Produced capital based on Landscan 2002 population
and GDP per capita

Flooding Static inundation scheme for
hydraulically connected cells

Layers of elevation above MSL Layers of elevation above MSL

Damage Relative depth-damage
functions for 5 land uses

Vulnerability curves for asset classes residential,
commercial, and industriala

Relative depth-damage functions for 6 building and
contents classes

Table 4. Data and methodological differences between this study and the external studies under
comparison. aProprietary data owned by Risk Management Solutions (RMS).
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Usage Notes
Vertical reference datum
All cost curves are derived from EU-DEM data and relate to the vertical datum specified by the European
Vertical Reverence System 2000 (EVRS2000) with quasi-geoid EGG08 (ref. 44). Note that before applying

Figure 6. Log-log comparison of the estimated damage curves with other studies. This figure is analogous

to Figure 5 but in log-log scale in order to better resolve the lower ranges. An asterisk (*) identifies those cities,

where more than one coastal city cluster was combined to match the area considered in ref. 8.
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the supplied damage and protection cost curves it may be necessary to convert the vertical datum of
flood-gauge or sea-level data which are typically referenced to the mean sea level (MSL). This aspect has
recently been acknowledged in the flood-hazard community and was found to induce large errors and
greatly affect flood exposure45. A possible bias correction could be based on observations of the mean
dynamic ocean topography (MDT), which provides the difference between the mean sea level and the
reference geoid45.

Application
The damage and protection cost curves can be the starting point for an economic assessment of coastal
flooding impacts and adaptation at the city scale. Together with information on the height of floods at
different return periods, they allow for the comparability of the risk from flooding in different cities.

A common approach to obtain the distribution of extreme sea levels is to apply extreme value
statistics46 to empirical or modeled flood-gauge data11. From the distribution, it is possible to infer the
return periods of floods at certain height, or vice versa, to obtain the estimated flood height for a given
return period.

The damage cost curve can be employed to transform the distribution of (extreme) sea levels to the
distribution of damage cost3. Specifically,

PD dð Þ ¼ PXðD - 1 dð ÞÞ; ð3Þ
where PD and PX are the cumulative distribution functions of the damage d and the extreme sea levels x,
respectively, and D − 1 represents the inverse of the damage cost curve.

Since information on existing coastal defense measures are hardly available consistently for any
location8 we did not consider existing protection in the cost curves. However, given information on

a

b c

Figure 7. Comparison of the existing protection and the urban protection course (UPC) at 8 m protection

height for the city of Hamburg. In Panel (a) the existing protection43 has been overlain onto the UPC derived

from the city cluster. Panels (b) and (c) show close-ups of the existing protection and the UPC within the city

center, respectively.
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existing protection levels (in terms of protection height or return period), the damage and protection
costs curves can be manipulated to reflect the effects of existing protection.

The simplest approach to incorporate existing protection into the damage cost curve would be a
truncation of damage cost at the design flood height z,

D0ðxÞ ¼ 0 if x<z
DðxÞ if xZz

;

�
ð4Þ

such that flood events of magnitude smaller than z do not cause any damage. Evidently, such a stylized
approach falls short of considering the risk of protection failure (e.g. dike breach) and could understate
the monetary risk from flood events below the design flood height of the flood defense measure. In order
to overcome this limitation, fragility curves47 could be employed to model the probability of e.g. dike
breaches or wave over-topping.

Similarly, the calculation of the cost of raising or upgrading existing protection P' can be directly
inferred from the protection cost curves,

P0ðωÞ ¼ 0 if ω<z
PðωÞ - PðzÞ if ωZz

:

�
ð5Þ

In this case, the cost P of the already built coastal protection up to flood height z is simply subtracted
from the total cost at protection height ω. The feasibility of this approach hinges on the assumptions
made in this work, namely the unit-cost of dike construction and the predetermined protection course at
the city cluster boundary. Since the unit-cost approach should be most reliable for the case of dike raise,
we recommend to consider only protection cost increments between well-defined protection levels (e. g.
upgrading protection levels from a 100-year to a 1000-year return period).

Adjustment for economic development and urban growth
The damage cost curves provided in this work reflect the socioeconomic conditions of the reference
period. This poses no problem if the damage assessment is targeted at the isolated effect of changes in the
hazard (e. g. sea level rise or changing storm climates). In contrast, socioeconomic scenarios cannot be
considered without making certain changes to the employed damage cost curves. In the following, we
argue on the feasibility of adjusting for economic development as well as urban growth and provide some
hints how this could be achieved on the basis of the data provided.

Research has shown a strong correlation between economic development (in therms of GDP) and the
accumulated asset value8. In our work and in similar studies (e.g. ref. 4,8) the relation between GDP and
asset value has been used to approximate asset values at different geographical locations. In the same way,
the model can be adjusted to reflect future projections of GDP. Such projections are, for example,
available from the SSP scenarios developed within the climate-change community48. Practically, the
damage cost curves should be multiplied by the ratio of future over current GDP per capita.

The adjustment for future growth of the urban clusters is less obvious and only possible under certain
assumptions. In our view, land-use changes (e.g. from Transport to Industrial) or spatially explicit growth
patterns cannot be adjusted for, since these result in specific non-linear transformations of the damage
cost curve. However, we suggest that for large-scale assessment urban growth could be considered in a
more general statistical manner. In order to motivate this hypothesis, we have computed the number of
urban cells in Europe that would be affected at 1 m increments of flood height on the basis of three
different time slices of the CORINE data, namely for the years 2000, 2006, and 2012. The results shown in
Figure 8a indicate a proportionality between the different years. Accordingly, it should be possible to
collapse the curves onto each other by simply dividing by the the mean value over all increments. As seen

Figure 8. The proportionality of flood-prone urban cells regarding the years 2000, 2006, and 2012.

(a) Absolute number of urban cells affected at 1 m increments of flood height. (b) Number of urban cells

divided by the mean over all increments. The estimates for the different years are based one the respective

CORINE datasets.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180034 | DOI: 10.1038/sdata.2018.34 16



in Figure 8b, the curves fall nicely onto each other, which confirms the direct proportionality. Comparing
the different mean values, we estimate an average growth of 9.7% between 2000 and 2006 and 2.6%
between 2006 and 2012. Most importantly, the proportionality, i. e. the constant growth of urban cells at
various flood height increments, also implies proportionality of the damage cost for different time slices.
As a approximation, one could assume that the spatial growth rate of an urban cluster is the same as for
the European or national level. Hence, to approximate a scenario with assumed spatial growth rate g the
damage cost curves could be multiplied by a factor (1+g).

Unfortunately, the protection cost curves provided in this work cannot be adjusted in a similar way.
Here, the consideration of urban growth would require a reconstruction of the UPC and recalculation of
the protection cost curve, since the UPC is crucially dependent on the geographical pattern of the cluster.
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