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Abstract
Human activity has a profound influence on river discharges, hydrological extremes and
water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological
models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in
the simulation of mean, high- and low-flows. The analysis is performed for 471 gauging stations
across the globe for the period 1971–2010. We find that the inclusion of HIP improves the
performance of the GHMs, both in managed and near-natural catchments. For near-natural
catchments, the improvement in performance results from improvements in incoming discharges
from upstream managed catchments. This finding is robust across the GHMs, although the level of
improvement and the reasons for it vary greatly. The inclusion of HIP leads to a significant decrease in
the bias of the long-term mean monthly discharge in 36%–73% of the studied catchments, and an
improvement in the modeled hydrological variability in 31%–74% of the studied catchments.
Including HIP in the GHMs also leads to an improvement in the simulation of hydrological extremes,
compared to when HIP is excluded. Whilst the inclusion of HIP leads to decreases in the simulated
high-flows, it can lead to either increases or decreases in the low-flows. This is due to the relative
importance of the timing of return flows and reservoir operations as well as their associated
uncertainties. Even with the inclusion of HIP, we find that the model performance is still not optimal.
This highlights the need for further research linking human management and hydrological domains,
especially in those areas in which human impacts are dominant. The large variation in performance
between GHMs, regions and performance indicators, calls for a careful selection of GHMs, model
components and evaluation metrics in future model applications.
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1. Introduction

Human activity has a profound influence on river
discharges, hydrological extremes and water-related
hazards, like flooding, droughts, water scarcity and
water quality issues (van Loon et al 2016, Liu et al
2017, Padowski et al 2015, Veldkamp et al 2017, Wada
et al 2011, Winsemius et al 2016). As a result, research
efforts have been made to parameterize human activ-
ity in global hydrological models (hereafter GHMs; a
full list of abbreviations is presented in supplemen-
tary table 2 available at stacks.iop.org/ERL/13/055008/
mmedia) (Bierkens 2015, Pokhrel et al 2016). These
model parameterizations include the incorporation of
dam and reservoir operations, the representation of
human water use and return flows, and representations
of land use, land management and land cover change
(Pokhrel et al 2016, Wada et al 2016a, 2017).

GHMs are widely used in scientific studies. For
example, they have been used to assess the histori-
cal and future impacts of socioeconomic developments
and/or hydro-climatic variability and change on fresh-
water resources, droughts and water scarcity (Biemans
et al 2011, Döll et al 2009, Döll and Müller Schmied
2012, Fujimori et al 2017, Gosling et al 2017, Had-
deland et al 2006, 2007, 2014, Hanasaki et al 2013,
Van Huijgevoort et al 2013, Kummu et al 2016,
Müller Schmied et al 2016, Munia et al 2016, Rost
et al 2008, Veldkamp et al 2015a, 2015b, 2016, 2017,
Wada et al 2011, 2013a, 2013b, 2014a, Wanders
et al 2015). They are also increasingly used in prac-
tice. Global institutions are relying on GHMs more
and more to conduct first-order assessments of water-
related hazards, because data, time or resources are
in short-supply for setting-up and executing multi-
ple in-depth local studies. For example, GHMs have
provided input into a multitude of high-level policy
documents, such as the UN World Water Develop-
ment Reports (e.g. Alcamo and Gallopin 2009), Global
Environmental Outlooks (UNEP 2007), the World
Bank series on climate change and development (Hal-
legatte et al 2016, 2017 and IPCC assessment reports
(IPCC 2007, 2013).

As GHMs continue to improve in terms of detail,
granularity and speed, their importance for global,
regional and local applications is likely to increase
further (Bierkens 2015). Therefore, it is essential to
have a thorough understanding of how well these
GHMs represent real-world hydrological conditions.
However, most GHM validation studies are limited to
near-natural river catchments and make use of natu-
ralized discharge data (Beck et al 2016, Gudmundsson
et al 2011, 2012). Studies that have validated GHM
simulations where human activity is included have
either focused on a single GHM and/or a few selected
river catchments (Biemans et al 2011, Döll et al 2003,
2009, De Graaf et al 2014, Haddeland et al 2006,
Masaki et al 2017, Müller Schmied et al 2014, Pokhrel
et al 2012, Wada et al 2011, 2013a, 2014a).

To date, a comprehensive validation of the abil-
ity of multiple GHMs to represent the influence of
human activity on discharge and hydrological extremes
in near-natural and managed catchments is missing. As
a result, there is a limited understanding of whether
(and where) the parameterization of human activ-
ity in GHMs leads to an increase (or decrease) in
model performance. To address this issue, the main
objectives of this study are: (a) to evaluate the per-
formance of five state-of-the-art GHMs that include
the parameterization of human activity in their mod-
eling scheme; and (b) to compare the performance of
these GHMs when runwith and without human impact
parameterizations.

2. Data and methods

The overall methodological framework used in this
study is shown in figure 1. In brief, the method
involves three main steps: (1) obtaining modeled
river discharges from GHMs with human impact
parameterizations (HIP) and without human impact
parameterization (NOHIP); (2) selecting the observed
river discharge data; and (3) evaluating model perfor-
mance. Each of these steps is explained in the following
subsections.

2.1. Obtaining modeled river discharge from GHMs
with and without HIP
We used a modeled monthly discharge (0.5◦ × 0.5◦

spatial resolution) for the period 1971–2010 from five
GHMs: H08 (Hanasaki et al 2008a, 2008b), LPJmL
(Bondeau et al 2007, Rost et al 2008, Schaphoff et al
2013), MATSIRO (Pokhrel et al 2012, 2015, Takata
et al 2003), PCR-GLOBWB (van Beek et al 2011,
Wada et al 2011, 2014b) and WaterGAP2 (Müller
Schmied et al 2016). All simulations were carried out
under the modeling framework of phase 2a of the
Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP2a: www.isimip.org/protocol/#isimip2a). For
each GHM, we used two simulations: (1) HIP: a model
run including time-varying land use and land cover
change,historicaldamconstructionandoperation, irri-
gation and upstream consumptive water abstractions;
and(2)NOHIP:a ‘naturalized’ model runwithoutHIP.

An overview of the model characteristics of each
of the GHMs, and the methods used to parameter-
ize hydrological processes and human impact, can be
found in supplementary table 1, and details on each
GHM can be found in the individual model refer-
ences provided therein. In the following subsections,
we briefly outline the most important characteristics of
the hydrological and human impact parameterizations.

2.1.1. Parameterizations of hydrological processes
Each GHM in this study is forced with daily (MAT-
SIRO: three-hourly) inputs from the GSWP3 his-
torical climate dataset (http://hydro.iis.u-tokyo.ac.jp/
GSWP3). The GHMs applied in this study differ

2

http://stacks.iop.org/ERL/13/055008/mmedia
http://stacks.iop.org/ERL/13/055008/mmedia
http://www.isimip.org/protocol/#isimip2a
http://hydro.iis.u-tokyo.ac.jp/GSWP3
http://hydro.iis.u-tokyo.ac.jp/GSWP3


E
nviron.R

es.Lett.
13

(2018)
055008

Figure 1. A flowchart of the methodological steps taken in this study. Steps 1, 2 and 3 correspond to paragraphs 2.1, 2.2 and 2.3.
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in hydrological representation and parameterization
(supplementary table 1A). H08 and MATSIRO model
the energybalance explicitly anduse thebulk formula in
the evaporation scheme (Hanasaki et al 2008a, 2008b,
Pokhrel et al 2012, 2015, Takata et al 2003). LPJmL,
PCR-GLOBWB and WaterGAP2 do not include the
energy balance explicitly and use the Priestley–Taylor
and Hammon formulas in their evapotranspiration
schemes (van Beek et al 2011, Bondeau et al 2007,
Müller Schmied et al 2014, 2016, Schaphoff et al 2013,
Verzano et al 2012, Wada et al 2011).

To generate runoff, all GHMs use a saturation
excess formula, although the formula is integrated dif-
ferently in the various GHMs. Snow accumulation and
melt are integrated in the modeling framework via
the energy balance (H08, MATSIRO) or by means
of a degree-day calculation method (LPJmL, PCR-
GLOBWB, WaterGAP2). All GHMs use a linear
reservoir method in their routing scheme. Whilst H08,
LPJmLandMATSIROroutewithaconstantflowveloc-
ity (based onManning– Strickler), PCR-GLOBWB and
WaterGAP2 use variable flow velocities. The num-
ber of soil layers and their depths vary significantly
between GHMs, from one layer with varying depth
(e.g. WaterGAP2, H08) to 12 fully resolved layers.

2.1.2. Parameterization of human impact
All GHMs use a combination of socioeconomic and
hydro-climatological parameters to estimate sectoral
water demands (Hanasaki et al 2008a, 2008b, Müller
Schmied et al 2016, Pokhrel et al 2015, Rost et al 2008,
Schaphoff et al 2013, Takata et al 2003, Van Beek et al
2011,Wada et al2014b).Livestockwaterneeds (supple-
mentary table1B)areestimatedbycombininghistorical
gridded livestock density maps with their species-
specific water demands. Domestic water demands
(supplementary table 1C) are derived by applying a
time-series regression at the country-scale, accounting
for drivers like population and per capita GDP, and in
some cases (PCR-GLOBWB) total electricity produc-
tion, energy consumption and temperature. Industrial
water demands (supplementary table 1D) are based on
historical country-scale estimates from the WWDR-
II dataset (Shiklomanov 1997, Vörösmarty et al
2005, WRI 1998) and the FAO-AQUASTAT database
(www.fao.org/nr/water/aquastat/dbase/index.stm), for
PCR-GLOBWB and H08 respectively. WaterGAP2
simulates global thermoelectric water use using spa-
tially explicit information on the location of power
plants. Manufacturing water demand is simulated
in WaterGAP2 for each country using its yearly
gross value added (GVA), and factors represent-
ing technological change and water use intensity.
The models estimate irrigation water use (supple-
mentary table 1E) by multiplying the area equipped
for irrigation with its utilization intensity, the total
crop-specific water requirements—determined by
the hydro-climatic conditions (temperature, precip-
itation, potential evapotranspiration, soil moisture,

crop-growth curves, length and timing of the crop-
growth season), and a parameter that accounts for
irrigation water use efficiency.

LPJmL, H08 and MATSIRO use surface water
(first) to accommodate the sectoral water needs
(supplementary table 1F). WaterGAP2 uses the
groundwater to fulfillwaterdemands, and surfacewater
is only used if enough is available. PCR-GLOBWB
applies a share of readily available groundwater
reserves, based on the ratio between simulated daily
base-flow and long-term mean river discharge, to be
used for consumptive water needs. The remainder
of the water needs are fulfilled in PCR-GLOBWB by
means of surface water. Whilst all GHMs deal consis-
tently with return flows (supplementary table 1G) for
industry (surface water, same day), domestic (surface
water, same day) and livestock (no returnflow), returns
from irrigation water use are incorporated differently.
PCR-GLOBWB and H08 allow excess irrigation water
return to the soil and groundwater layers by means of
infiltration and additional recharge. LPJmL and MAT-
SIRO return directly to the rivers, for which LPJmL
uses a fixed ratio of 50%. Excess irrigation water in
WaterGAP2 is returned to the surface waters using a
cell-specific artificial drainage fraction, while the rest of
the excess water is returned to the groundwater.

All GHMs include either irrigation and/or
non-irrigation purposes in their reservoir schemes
(supplementary table 1H), and PCR-GLOBWB also
includes flood control and navigation. The retro-
spective operation schemes of Hanasaki et al (2006),
Biemans et al (2011) and Haddeland et al (2006) form
the basis of the reservoir operation schemes in most
models. PCR-GLOBWB uses a prospective reservoir
operation scheme that integrates the efforts of Had-
deland et al (2006) and Adam et al (2007). H08 is
the only GHM that does not account for increased
evapotranspiration over reservoirs.

2.2. Selecting observed river discharge data
Observed monthly river discharge data was taken from
theGlobalRunoffDataCentre (GRDC,56068Koblenz,
Germany). From the 9051 gauging stations in the
GRDC database, we selected stations that meet the fol-
lowing criteria: (1) a minimum of 5 years’ coverage
(not necessarily consecutive) during the period 1971–
2010 with a completeness of observations of ≥95%;
and (2) a minimum catchment area of 9000 km2, to
omit catchments whose hydrological processes can-
not be adequately represented by models operating at
0.5◦ × 0.5◦ (Hunger and Döll 2008). We discarded the
stations for which the difference in the catchment area
in the GRDC database and as estimated by using the
DDM30 river routing network (Döll and Lehner 2002)
is >25%.

We then made a distinction between near-natural
and managed catchments. Following Beck et al (2016),
a catchment is classified as near-natural if the share
of land-area subject to irrigation is <2% and the
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Figure 2. The spatial distribution of GRDC stations used for this study. Each dot shows a GRDC station (n = 9051) from the station
catalogue. Blue dots indicate all GRDC stations (n = 471) that meet the selection criteria, whereas the red dots refer to the stations
(n = 92) that are located at the outlet of a catchment. The green dots indicate those stations (n = 12) that were selected for detailed
analyses.

total reservoir capacity is <10% of its long-term mean
annual discharge. If these conditions were not met the
catchment was classified as managed. The classification
was based on the HYDE 3/MIRCA land cover dataset
(Fader et al 2010, Klein Goldewijk and Van Drecht
2006, Portmann et al 2010, Ramankutty et al 2008)
together with the Global Reservoir and Dam database
(Lehner et al 2011). Two stations shifted from near-
natural to human-impacted conditions between 1971
and 2010 and were discarded from further analysis.

The aforementioned steps resulted in 471 stations
with a total catchment area covering 19.8% of the
global land (figure 2), of which 92 are located at the
outlet of a catchment area. The mean length of obser-
vations is 32.8 years for all stations. Of all the stations,
226 are located in managed and 245 in near-natural
catchments. Of the stations located at the outlet of a
catchment, 45 are managed (4.8% of the global land
area) and 47 are near-natural (15.1% of the global land
area).

Figure 2 shows that the majority of selected sta-
tions (blue) are located in northern and Latin America,
Europe, southern Africa and Australia. The number
of stations in northern and central Africa and Asia
is relatively small. We selected 12 stations in river
basins located in different geographic regions (green
circles in figure 2: Amazonas, Amur, Colorado, Congo,
Guadiana, Mackenzie, Murray, Ob, Rhine, Tocantins,
Volga and the Zambezi) for which a detailed analy-
sis is provided in the supplementary results section
(supplementary).

2.3. Evaluating model performance
To evaluate the GHM simulation of monthly discharge
and hydrological extremes under HIP and NOHIP
conditions, we compared the modeled results with
observed river discharge data using several evaluation

metrics described below. To ensure a consistent com-
parison between the modeled and observed data, we
only used modeled data for the same years for which
observationswere available.Wealso correctedmodeled
discharges for potential over- and underestimations
caused by the difference in catchment size between the
model and the GRDC. To do this, we used a multiplier
that represented the difference in the upstream area
as reported by the GRDC and as estimated from the
DDM30 network.

First, we applied the modified Kling–Gupta effi-
ciency index (KGE) with its sub-components: the linear
correlation coefficient (rKGE), the bias ratio (𝛽KGE)
and the variability ratio (𝛾KGE) (Gupta et al 2009,
Kling et al 2012). The KGE is a widely applied indi-
cator for the validation of hydrological performance
in modeling studies at the global and regional scale
and provides a good representation of the ‘closeness’
of simulated discharges to observations (Huang et al
2017, Kuentz et al 2013, Nicolle et al 2014, Revilla-
Romero et al 2015, Thiemig et al 2013, 2015, Thirel
et al 2015, Wöhling et al 2013). Moreover, use of its
three sub-components enables the identification of rea-
sons for sub-optimal model performance (Gupta et al
2009, Kling et al 2012, Thiemig et al 2013). This was
achieved by estimating for each sub-parameter its dis-
tance to optimal performance, and by subsequently
comparing these distances across the different sub-
parameters. The statistical significance of the change
in KGE outcomes due to the inclusion of HIP was
tested by means of regular bootstrapping (n = 1000,
p≤ 0.05 (two-tailed)), following the method of
Livezey and Chen (1982) and Wilks (2006).

Second, we applied the Nash–Sutcliffe efficiency
test (NSE, Nash and Sutcliffe 1970) to evaluate the
representation of Q1 (high-flow) and Q99 (low-flow)
conditions (e.g. Beck et al 2017a, Blösch et al 2013,
Hejazi and Moglen 2008, Mohamoud 2008), obtained
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under fixed threshold level settings (van Loon 2015).
By means of a two-sample Kolmogorov–Smirnov (KS)
test (Massey 1951, p≤ 0.05) we tested how often HIP
leads to significant changes in the fit of the full modeled
exceedance probability curve for hydrological extremes
compared to the full observed exceedance probability
curve.

3. Results

3.1. Validation and influence of human impact
parameterization on overall model performance
Including the parameterization of human impacts in
the GHMs leads to a large improvement in over-
all model performance. The hydrological performance
under theHIPsimulations showsasignificant improve-
ment compared to the NOHIP simulations for between
40.8% and 72.3% of the land area studied, depending
ontheGHM(figure3(a)).FormostGHMs, thepositive
effects of includingHIP in the simulations outweigh the
negative effects. This is the case for both near-natural
and managed catchments, although the positive effects
are more pronounced for the managed catchments
(figures 3(a)–(d)). Near-natural catchments are only
indirectly impacted by HIP, for example by receiving
improved or altered water simulations from upstream
managed catchments. The KGE sub-components show
significant improvement inperformance in large shares
of the land area studied, especially for the bias and
variability ratio. The bias ratio improves significantly
for 36.1%–73.0% of the total land area for all catch-
ments, compared to 64.8%–90.6% and 24.3%–70.4%
in managed and near-natural catchments respectively
(figure 3(b)). For the variability ratio, improvements
were found for 31.4%–74.4% of the land area for all
catchments (48.9%–92.6% for the managed, 23.0%–
73.2% for the near-natural) (figure 3(c)). The lowest
improvements are found for the correlation coefficient,
with improvements for 15.9%–58.1% of the total land
area for all catchments (22.1%–75.1% for the managed,
13.9%–61.4% for the near-natural) (figure 3(d)).

The results are shown for each station in figure
4 for the overall model performance (KGE), and in
supplementary figure 1 for the KGE sub-parameters.
The results show particularly strong improvements in
overall performance in Latin America, southern Africa
and the northwest US. There are only a limited num-
ber of stations for which the inclusion of HIP leads
to a significant decrease in overall hydrological perfor-
mance for the majority of GHMs or where no to limited
changes occur, for example in near-natural areas (e.g.
the Amazonas).

When considering overall hydrological perfor-
mance for each GHM under HIP conditions (figure
3(e)), WaterGAP2 and MATSIRO show the best per-
formance globally. Even though the simulations with
HIP include human impact parameterizations by def-
inition, all GHMs still show better performance in

near-natural catchments than in managed catchments
(figures 3(e)–(h)). The KGE bias ratio values >1
indicate that all models systematically overestimate
long-term mean monthly discharge (figure 3(f)), up
to five-fold for LPJmL in managed catchments. For the
variability ratio (figure 3(g)), WaterGAP2 is the only
GHM that tends to slightly underestimate variability
(variability ratio <1) in the monthly discharge, in both
the managed and near-natural catchments. All other
GHMsshowoverestimations, up to1.55 fold forLPJmL
for near-natural catchments. All GHMs show a reason-
able correlation with the observed monthly discharge
estimates (figure 3(h)), with values ranging between
0.49–0.69 in the managed catchments and 0.50–0.79 in
the near-natural catchments. The highest correlation
coefficients including HIP are found for WaterGAP2,
with a global mean value across all catchments of 0.76
(0.69 for the managed catchments and 0.78 for the
near-natural catchments).

For each catchment (and therefore its associated
land area), it is possible to distinguish which of the
KGE sub-parameters contributes most to sub-optimal
performance. These results are summarized in figure 5.
The results show that under HIP conditions, the bias
ratio contributes most to sub-optimal performance in
managed catchments for most GHMs, except Water-
GAP2 (for which the correlation coefficient contributes
most). For near-natural catchments, sub-optimal per-
formance is most often caused by the variability ratio
for H08, LPJmL and WaterGAP2, by the bias ratio
for MATSIRO and by the correlation coefficient for
PCR-GLOBWB.

Spatially explicit results vary per GHM and are
shown in supplementary figure 3. The distribution
of dominant contributors to the sub-optimal overall
hydrological performance is similar for H08, LPJmL,
and PCR-GLOBWB. For these GHMs, we find dom-
inant contributions from the bias ratio in southern
Africa, Australia and inland US, and dominant con-
tributions of the variability ratio and the correlation
coefficient in Latin America as well as at higher lati-
tude and altitude regions. For Europe, the dominant
contributions for H08, LPJmL and PCR-GLOBWB are
the variability ratio, the correlation coefficient, and the
bias ratio respectively. The dominant contributors that
cause sub-optimal overall hydrological performance
for MATSIRO and WaterGAP2 are more equally dis-
tributed across the globe. While all sub-components
contribute to sub-optimal overall hydrological model
performance for MATSIRO, it is predominantly the
correlation coefficient and the variability ratio that
determines the sub-optimal performance in Water-
GAP2.

3.2. Validation and influence of human impact
parameterizations on the simulation of hydrological
extremes
The inclusion of HIP in the simulations affects the
ability of GHMs to estimate hydrological extremes cor-
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Figure 3. Global weighted-mean (improvement (‘+’) or deterioration (‘−’)) in the representation of hydrological performance due to HIP for all catchments, managed catchments and near-natural catchments. Figures 3(a)–(d)
visualize for each GHM the share of land area with a significant change in overall hydrological performance due to the inclusion of HIP. Figures 3(e)–(h) indicate the globally weighted-mean hydrological performance after the
inclusion of HIP. On each box, the red mark indicates the median. The bottom and top edges of the box indicate the 25th and 75th percentiles of the model ensemble, respectively.
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Figure 4. The number of GHMs with a significant improvement or deterioration in overall hydrological performance (KGE) due
to the inclusion of HIP. The figures for the underlying KGE sub-parameters (bias ratio, variability ratio, correlation coefficient) are
presented in supplementary figure 1; supplementary figure 2 shows the KGE performance values per GHM under HIP conditions.

Figure 5. The share of the land area with the dominant contribution of the different KGE sub-components (KGE correlation coefficient,
KGE variability ratio, KGE bias ratio) to sub-optimal overall hydrological performance under HIP conditions. Supplementary figure
3 shows per model the spatial distribution of dominant KGE sub-components.

rectly in the majority of the land area studied (figure
6). The inclusion of HIP leads to better model per-
formance for all GHMs, across a substantial share of
the land area studied (figures 6(a)–(b)). For high-
flows, HIP improves model performance significantly
across 34.6%–77.0% of the land area for all catch-
ments (36.4%–94.7% for managed, 24.1%–79.2% for
near-natural). For low-flows,HIP improves modelper-
formance significantly across 39.4%–80.4% of the land
area for all catchments (29.3%–81.8% for managed,
42.7%–90.3% for near-natural). The KS-test results
(supplementary figure 4) show that HIP only leads
to significant changes in the representation of the
exceedance probability curve in a limited number of
cases for H08 and LPJmL (up to 14.1% of the land area
studied), predominantly in managed catchments.

Overall, hydrological extremes are represented rea-
sonably well under HIP conditions, with globally
weighted mean NSE values ranging between 0.8–0.98
for high-flows, and 0.84–0.98 for low-flows (figures
6(c)–(d)). However, there is a significant difference
in the ability of the GHMs to represent hydrological
extremes between managed and near-natural catch-
ments.

Figure 7 indicates that for the majority of sta-
tions, the inclusion of HIP leads to an improvement
in the representation of hydrological extremes, for
most GHMs. A deterioration in the representation of
hydrological extremes across the majority of GHMs
as a result of the inclusion of HIP was only found in
selected areas, for example at higher latitudes and along
the east coast of the US. When comparing the results
for Q1 high-flows with Q99 low-flows, no large dif-
ferences in the spatial distribution of the number of
GHMs are found with a significant improvement or
deterioration.

The effects of HIP on the magnitude of extreme
discharge differ for low-flows and high-flows (supple-
mentary figure 5). Whilst the magnitude of high-flows
mostly decreases with the inclusion of HIP, the
effects on the magnitude of low-flows are both
positive and negative. The convergence of results
towards higher observed discharges, in both high-
and low-flow estimates (as identified for all mod-
els in supplementary figure 5), indicates that HIP
becomes less important for the correct representa-
tion of hydrological extremes with increasing discharge
volumes.
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Table 1. The performance metrics used in this study and their calculation procedure. Here, 𝑠𝑖 and 𝑜𝑖 are the simulated and observed monthly
discharge at station i; 𝜇𝑠 and 𝜇𝑜 are the simulated and observed mean monthly discharge at station i; 𝜎𝑠 and 𝜎𝑜 are the standard deviation of
the simulated and observed discharge at station i, respectively; 𝑄𝑠 and 𝑄𝑜 are the simulated and observed hydrological extremes.

Abbreviation Name Calculation procedure Range and ideal value

KGE Modified Kling–Gupta

efficiency index

KGE = 1 −
√
(𝑟KGE∗ − 1)2 + (𝛽KGE∗ − 1)2 + (𝛾KGE∗ − 1)2 −∞ – 1 (ideal value: 1)

rKGE KGE correlation

coefficient (Pearson)

𝑟KGE =
∑𝑛

𝑖=1(𝑠𝑖−𝜇𝑠,𝑖)(𝑜𝑖−𝜇𝑜,𝑖)√∑𝑛
𝑖=1 (𝑠𝑖−𝜇𝑠,𝑖)

2
√

𝑛∑
𝑖=1

(𝑜𝑖−𝜇𝑜,𝑖)2
−1 – 1 (ideal value: 1)

𝛽KGE KGE bias ratio 𝛽KGE = 𝜇𝑠,𝑖∕𝜇𝑜,𝑖 0 –∞ (ideal value: 1)

𝛾KGE KGE variability ratio 𝛾KGE =
𝜎𝑠,𝑖∕𝜇𝑠,𝑖
𝜎𝑜,𝑖∕𝜇𝑜,𝑖

0 –∞ (ideal value: 1)

NSE Nash–Sutcliffe model

efficiency

NSE = 1 −
∑

(𝑄𝑠−𝑄𝑜 )2∑
(𝑄𝑜−𝑄𝑜)

2 −∞ – 1 (ideal value: 1)

Q1 High-flow indicator Monthly discharge (m s−3) that is exceeded on average in 1

out of 100 months

Q99 Low-flow indicator Monthly discharge (m s−3) that is exceeded on average in 99

out of 100 months

KS Two-sample

Kolmogorov–Smirnov

test

[h, p] = kstest2 (cdf (𝑄𝑠), cdf (𝑄𝑜), ‘Alpha’, 0.05)a For p> 0.05, H0 (the two cdfs

coming from the same

distribution) is not rejected.

a The calculation procedure for the two-sample Kolmogorov–Smirnov test presented in the table is the Matlab function for the KS-test.

Figure 6. Global weighted-mean (improvement (‘+’) or deterioration (‘−’)) in the representation of hydrological extremes (Q1
high-flow and Q99 low-flows) due to HIP, for all catchments, managed catchments, and near-natural catchments respectively. On
each box, the red mark indicates the median. The bottom and top edges of the box indicate the 25th and 75th percentiles of the model
ensemble, respectively.
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Figure 7. The number of GHMs with a significant improvement or deterioration in the representation of hydrological extremes due
to the inclusion of HIP.

4. Discussion

Our results show that including HIP in GHMs gener-
ally improves the overall hydrological performance of
the GHMs, as well as their representation of hydro-
logical extremes. However, we also show that further
improvements are needed. In this section, we discuss:
(1) possible reasons for the improved model perfor-
mance due to HIP; (2) the main limitations of the
current modeling frameworks and their representation
of HIP, as well as potential ways to improve them; and
(3) we reflect on the general limitations in the cur-
rent study design and provide suggestions for further
research.

4.1. Improvements in model performance due to
HIP and challenges ahead
Whilst the inclusion of HIP predominantly leads
to the largest improvements in simulated discharge
in the managed catchments, simulated discharge is
also improved in a large share of the near-natural
catchments. Improvements in model performance
associatedwith the inclusionofHIPcanbe attributed to
improvements in the different KGE sub-components,
and in turn to different model components

parameterizing hydrological and human processes. In
addition, insights into those factors bounding the
optimal hydrological model performance under HIP
conditions may help to identify priorities for further
model improvement.

4.1.1. Representation of long-term mean discharges
(bias ratio)
Our study shows that the representation of long-
term mean discharges significantly improved with the
inclusion of HIP, especially in the managed catch-
ments. The inclusion of HIP generally results in lower
simulated discharges. As most GHMs systematically
overestimate river discharges in the NOHIP simula-
tion, this results in an improved performance. When
HIP is included, we only find a deterioration in the
bias ratio in selected higher latitude/altitude regions,
where discharges are underestimated; this finding is in
line with the outcomes of single-model studies per-
formed by Döll et al (2009), De Graaf et al (2014)
and Haddeland et al (2006). Improvements in the bias
ratios due to the inclusion of HIP can be attributed
to the inclusion of water abstractions and return flows
(supplementary table 1B–G), and the incorporation
of irrigated areas and irrigation rules, which influence
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evapotranspiration rates and the generation of runoff
(supplementary table 1E).

However, despite improvement in the bias ratio
with the inclusion of HIP, this KGE sub-indicator
contributes most to sub-optimal performance in man-
aged catchments for H08, LPJmL, MATSIRO and
PCR-GLOBWB under HIP conditions. As the GHMs
continue to overestimate long-term mean discharges
in most cases under HIP conditions, future model
improvements should target the correction of this
bias in these locations. This may be achieved by
critically revisiting the methods used to represent evap-
otranspiration rates (supplementary table 1A), runoff
generation processes (supplementary table 1A) and
the level of water abstractions in managed catch-
ments (supplementary table 1B–E). The relatively
good performance of WaterGAP2, in which biases
in long-term mean annual discharge are adjusted
using a parameter that determines the portion of
effective precipitation that becomes surface runoff
(Müller Schmied et al 2014), highlights the potential
importance of including a calibration routine (sup-
plementary table 1I). Calibration is also performed
for H08, but this calibration routine aims to min-
imize runoff bias by modifying two parameters of
subsurface flow for four climatic groups (Hanasaki
et al 2008a, 2008b); it is therefore less effective
at minimizing the bias ratio under HIP conditions.

4.1.2. Representation of hydrological variability (vari-
ability ratio)
The inclusion of HIP leads to mixed results regarding
the representation of hydrological variability. Whilst
HIP improved the representation of variability in some
catchments and for some GHMs, it deteriorated the
representation of variability for others. For exam-
ple, it led to improvements in the west coast US,
southern Africa and Australia, but a deterioration for
most GHMs in Europe and inland US. Similar results
were found by Biemans et al (2011), De Graaf et al
(2014) and Masaki et al (2017) for a selection of
catchments. Changes in the variability ratio due to
the inclusion of HIP are predominantly driven by
the timing of water abstractions and return flows, as
well as by reservoir operation rules (supplementary
table 1F–H). These human activities influence the rel-
ative size of high- and low-flows compared to their
long-term mean discharge values.

The variability ratio is the KGE sub-parameter
that contributes most to the sub-optimal perfor-
mance in near-natural catchments with the inclusion
of HIP, for H08, LPJmL and WaterGAP2. These
GHMs significantly overestimate hydrological variabil-
ity in near-natural catchments (except WaterGAP2,
which underestimates variability in managed and near-
natural catchments), and model improvement should
therefore focus on better representing the speed of
hydrological response, e.g. through an improved rep-
resentation of the soil moisture storage capacity or

the ratio between surface and sub-surface runoff
(supplementary table 1A). In those cases where the
variability ratio is also theKGEsub-parameter that con-
tributes most to sub-optimal performance in managed
catchments,model improvement should target the tim-
ing of water abstractions, return flows and reservoir
management (supplementary table 1F–H).

4.1.3. Representation of the goodness-of-fit (correlation
coefficient)
The inclusion of HIP only led to improved correla-
tion coefficients in limited cases, and often resulted
in a deterioration, even in managed catchments. Cor-
relation coefficients between observed and modeled
discharges, which are predominantly determined by
the hydro-meteorological forcing data (Döll et al 2016,
Beck et al 2016), were found to be generally high
under both HIP and NOHIP conditions. Perturbations
of the hydrological cycle due to human activity lead-
ing to changes in the timing of discharges and in the
shape of the hydrograph, like return flows and reservoir
operations, explain the observed decrease in the corre-
lation coefficient in a substantial share of catchments
and models globally (supplementary table 1F–H).

Under HIP conditions, the correlation coefficient
is the KGE sub-parameter that contributes most to
sub-optimal performance only in PCR-GLOBWB for
near-natural catchments and WaterGAP2 for man-
aged catchments. It should be acknowledged, though,
that correlation coefficients for PCR-GLOBWB and
WaterGAP2 are relatively high, especially compared to
the other GHMs. The relatively low correlation coef-
ficients in near-natural catchments found at higher
latitudes in all models may be addressed by crit-
ically reviewing the snow accumulation and melt
processes in the GHMs (supplementary table 1A).
Higher correlation coefficients in the managed catch-
ments may be established by improving the timing and
quantification of return flow estimates and the repre-
sentativeness of reservoir operations (supplementary
table 1F–H).

4.1.4. Representation of hydrological extremes
The inclusion of HIP also led to significant changes
in the ability of most GHMs to represent hydrologi-
cal extremes (both high- and low-flows), although the
strength of this change is very much dependent on
the location and GHM in question. Whilst the mag-
nitude of high-flow estimates mainly decreased due
to the inclusion of HIP, low-flow estimates showed
mixed results. This is because the impact of human
activity tends to be greater for lower discharges, as
the relative ‘size’ of human perturbations (such as
water abstractions, return flows or delayed releases of
water via reservoir operations) is higher as a percent-
age of the overall discharge when flows are low. Both
De Graaf et al (2014) and Wada et al (2013a) found
similar results when investigating hydro-climatic
extremes. However, even with the inclusion of
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HIP, the representation of hydrological extremes is
sub-optimal. Future model improvements should aim
to better characterize these extremes and to improve
the representation of human activity during extreme
hydrological conditions.

4.2. Limitations and further research
As the GHMs have very different parameterizations of
hydrological and human processes, the current study
does not allow a systematic assessment of specific
cause–effect relations between HIP and the observed
improvements in performance (Döll et al 2016, Had-
deland et al 2014, Hagemann et al 2013, Schewe
et al 2014, Beck et al 2016). To do this, a sub-
stantial Monte Carlo analysis would be required,
whereby individual parameters and combinations of
parameters are systematically modified for all GHMs
(Döll et al 2016). Undertaking such an analysis in
parallel to the different GHMs incorporated is com-
putationally expensive and requires a strict modeling
protocol. It may, however, provide additional infor-
mation on how to adapt and improve the individual
GHMs and would be a valuable addition to the results
presented in this study.

When interpreting the results of this study, one
must take into account that we only evaluated the
GHMs with respect to the monthly discharge. Whilst
the monthly discharge may be sufficient for the assess-
ment and management of low-flows, droughts and
freshwater resource availability, flood risk assessment
and management require information on the daily
peak discharge. Further research should therefore
attempt to validate GHMs using daily peak discharge
and assess how it is affected by the inclusion of HIP.

The spatial resolution of the GHMs applied in
this study is 0.5◦ × 0.5◦ (∼50 km× 50 km at the equa-
tor), dictated by the resolution of the GSWP3 input
dataset. At a 0.5◦ × 0.5◦ spatial resolution, hydro-
logical processes are often represented by GHMs in
a simplified or generalized form which are not fit
for local applications (Bierkens 2015). To account
for this, we applied a minimum catchment size of
9000 km2, thereby omitting catchments that are too
small to be adequately represented by GHMs (Hunger
and Döll 2008). Newer versions of several of the
GHMs now operate at higher resolutions; for exam-
ple WaterGAP and PCR-GLOBWB have recently been
published in 5 m/6 m versions respectively (Verzano et
al 2012, Wada et al 2016b). Future research can inves-
tigate whether the inclusion of these high-resolution
model-runs improves the representation of discharges
and hydrological extremes in the selected catch-
ments and whether these high-resolution runs also
allow for the inclusion of smaller catchments.

In this study, a relatively simple distinction was
made between managed and near-natural catchments
using two parameters: irrigated agriculture and reser-
voirs. These parameters were chosen as they have been
reported to be the most significant human param-

eters on river hydrology (Beck et al 2016, 2017a).
However, to make a more detailed distinction between
catchments that are impacted by human activity and
those that are not, future studies could consider incor-
porating additional criteria, such as the share of sectoral
water abstractions and return flows, and the share of
built-up land area. Additional catchment descriptors
(Eisner 2016), like climate conditions and the phys-
iographic properties of the drainage area, could also
be applied to further assess the important controls on
modeled discharges.

When evaluating the impact of HIP on hydrolog-
ical extremes, we only incorporated results for the Q1
high-flow and Q99 low-flow. In this study, we did not
consider other ranges of the extreme value distribution
explicitly. Although the inclusion of HIP influences
these hydrological extremes substantially, we found
very few instances for which this led to a significant
change in the full exceedance probability curve. Future
research should therefore also incorporate other ranges
of the probability exceedance curve in order to do a
full assessment of the influence of HIP on high- and
low-flow extremes.

Next to the parameterizations and representa-
tion of hydrological processes and human impacts,
other sources contribute to uncertainty in the mod-
eling of discharges and hydrological extremes. These
include the quality of the data, the uncertainties in
the input data and observation datasets and the cali-
bration/validation strategy (Döll et al 2016, Sood and
Smakhtin 2015). The quality of the selected forcing
data, for example, may limit the representation of
monthly discharges and hydrological extremes signif-
icantly (Döll et al 2016, Beck et al 2016), although
this not been evaluated explicitly here. However, cli-
mate forcing uncertainty is probably a dominant driver
for model outputs (Müller Schmied et al 2014, 2016).
Benchmarking of the GSWP3 dataset against histori-
cal observations of precipitation and temperature, or
against other forcing datasets (e.g. similar to Beck
et al 2017b, Sun et al 2018), may therefore be of
added value.

Differences in the quality and trustworthiness of
the historical discharge observations (e.g. due to sam-
pling, measurement and interpretation errors), may
potentially result in artificial biases in the validation
results (Renard et al 2010). The spatial representa-
tiveness of our results is limited by the availability
of consistent publicly available in situ observations
of sufficient quality. Future research should there-
fore consider extending the GRDC data-points to the
regional repositories of observed discharges, as recently
attempted by Beck et al (2016), Do et al (2017) and
Gudmundsson et al (2017). However, increasing spa-
tial representation comes at the cost of consistency,
and special attention should be paid to the harmoniza-
tion of these different databases. The use of remotely
sensed data could also provide a valuable way of
carrying out calibration and validation in ungauged
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regions (Döll et al 2014a, 2014b, Scanlon et al 2018).
Remotely sensed data can also be of added value in the
assessment of water consumed by agricultural irriga-
tion (Peña-Arancibia et al 2016), operational drought
monitoring and early warning (Ahmadalipour et al
2017), as well as the estimation of terrestrial water
budgets (Zhang et al 2017). Moreover, clear poten-
tial exists for assimilating remotely sensed data into the
models (Eicker et al 2014).

Calibration and validation are essential to compen-
sate for factors such as the impossibility of measuring
all required model parameters at the applied scale,
the lack of process understanding, the simplistic pro-
cess representation in GHMs and errors in forcing
data (Beck et al 2016, Bierkens 2015, Döll et al 2016,
Liu et al 2017). Hence, calibration/validation is key
for obtaining realistic model performance. It should
be acknowledged, though, that the representation of
hydrological and/or human processes is artificially
altered by means of calibration/validation processes
and that limited calibration may introduce uncertain-
ties to the model output (Sood and Smakhtin 2015).
Before using any calibrated/validated model data,
one should therefore critically reflect on whether the
calibration/validation procedure executed—together
with their optimization objectives—are fit for the
specific application in mind.

5. Summary and conclusions

This study shows that the inclusion of human activ-
ity in GHMs can significantly improve the simulation
of monthly discharges and hydrological extremes, for
the majority of catchments studied. The finding is
robust across both managed and near-natural catch-
ments. The global and spatially distributed results
presented in this study indicate that the inclusion of
human impact parameterizations (HIP) is associated
with improvements in the bias ratio and the variabil-
ity ratio. Whilst the biases in long-term mean monthly
discharge decrease significantly in 36.1%–73.0% of the
studied catchments due to the inclusion of HIP, the
modeling of hydrological variability improves signifi-
cantly in 31.4%–74.4% of the catchments. Estimates
of hydrological extremes are also significantly influ-
enced by the inclusion of HIP, although the influence
is highly dependent on the location and GHM in
question. While HIP generally leads to a decrease
(and thus improvement) in the absolute magnitude
of simulated high-flows, its impact on low-flows is
mixed.

Even when human activity is included in GHMs,
their performance is still limited; this is particularly
the case in managed catchments. Moreover, the sys-
tematic misrepresentation of hydrological extremes
across all GHMs calls for a careful interpretation
of risk assessments based on their results, and
further study into the overarching research theme

of water resources, hydrological extremes, human
interventions, and feedback linkages. The large vari-
ation in performance between GHMs, regions and
performance indicators, highlights the importance of
carefully selecting models, model components and
evaluation metrics in future model applications. For
example, for a study of droughts it is essential to cor-
rectly represent hydrological variability, whilst to study
water scarcity it is crucial to minimize biases.

Sub-KGE results, which were presented in this
study for each GHM, allow for the attribu-
tion of different hydrological and human impact
model-components limiting optimal hydrological per-
formance. In most GHMs, model performance is
limited due to the overestimation of long-term mean
discharges. The correlation coefficient is the limiting
factor for optimal model performance for Water-
GAP2, despite the high correlation coefficients that
were found for this model relative to the other
GHMs studied. A better understanding of these
factors, as provided by this study, may assist in
the identification of priorities for further model
improvement.
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