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As an effort to reduce parameter uncertainties in constructing recurrence plots, and in partic-
ular to avoid potential artefacts, this paper presents a technique to derive artefact-safe region
of parameter sets. This technique exploits both deterministic (incl. chaos) and stochastic sig-
nal characteristics of recurrence quantification (i.e. diagonal structures). It is useful when the
evaluated signal is known to be deterministic. This study focuses on the recurrence plot gener-
ated from the reconstructed phase space in order to represent many real application scenarios
when not all variables to describe a system are available (data scarcity). The technique involves
random shuffling of the original signal to destroy its original deterministic characteristics. Its
purpose is to evaluate whether the determinism values of the original and the shuffled signal
remain closely together, and therefore suggesting that the recurrence plot might comprise arte-
facts. The use of such determinism-sensitive region shall be accompanied by standard embedding
optimization approaches, e.g. using indices like false nearest neighbor and mutual information,
to result in a more reliable recurrence plot parameterization.

Keywords : Recurrence plot; phase space time delay embedding reconstruction; artefact
avoidance.

1. Introduction

Recurrence is a fundamental property of many
dynamical systems, which can be exploited to char-
acterize the systems behavior in phase space, while
a recurrence plot (RP) is the visualization tool for

the analysis of this property. In this study, the phase
space reconstruction method of time delay embed-
ding [Packard et al., 1980; Takens, 1981] is used
[Eq. (1)]. Such a reconstruction is particularly use-
ful when not all variables required to describe the
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system are available (i.e. data scarcity or limited set
of observation variables), and where the topology of
the system dynamics x̂i can still be created using
only a single variable or observation ui.

x̂i =
m∑

i=1

ui+(j−i)τej , (1)

where m is the embedding dimension and τ is the
time delay. The vectors (ej) are unit vectors and
span an orthogonal coordinate system (ei·ej) = δi,j .
The calculation of recurrence as elements of the RP
is based on Eq. (2):

Ri,j(ε) = Θ(ε − ‖xi − xj‖), i, j = 1, . . . , N, (2)

where N is the number of measured points xi, ε is
a threshold distance, ‖·‖ is a norm and Θ(·) the
Heaviside function.

The RP is basically the visual representation of
the square matrix, in which the matrix elements
correspond to those times at which a state of a
dynamical system recurs (columns and rows corre-
spond then to a certain pair of times). RPs are espe-
cially useful for nonstationary pattern in time series
[Eckmann et al., 1987; Marwan et al., 2007]. Besides
using RPs for the visual analysis of time series, RPs
can also quantify structures hidden within the series
through recurrence quantification analysis (RQA)
[Zbilut & Webber, 1992; Marwan et al., 2007]. In
RQA, important elements are the diagonal and ver-
tical/horizontal straight lines because they reveal
typical dynamical features of the investigated sys-
tem, such as range of predictability, chaos-order,
and chaos-chaos transitions [Trulla et al., 1996].
One of the prominent diagonal line measures is
called determinism [DET, Eq. (3)], from which the
system predictability can be inferred.

DET =

N∑
l=lmin

lP (l)

N∑
i,j

Ri,j

(3)

where P (l) = {li; i = 1, . . . , Nl} is the histogram of
the lengths l of diagonal structures, and Nl is the
absolute number of those diagonal lines.

For a deterministic signal (including chaos),
many diagonal lines in the RP are typical, lead-
ing to high value of DET [Marwan, 2010]. However,
single, isolated recurrence points can occur if states
are rare, if they do not persist, or if they fluctuate
heavily. For instance, stochastic or random signals

would comprise such single points and result in a
very low DET.

Since the use of RPs relies on the reconstructed
phase space, its parameters’ uncertainty includes
those of the phase space reconstruction method,
such as embedding dimension (m) and time delay
(τ), in addition to the recurrence threshold (ε).
Standard approaches for finding optimal embedding
parameters are false nearest neighbors (FNN) for
m, and auto-correlation or mutual information (MI)
for τ [Kantz & Schreiber, 2005; Kennel et al., 1992;
Fraser & Swinney, 1986]. Other methods include
wavering-products, fill-factor or integral local defor-
mation [Buzug & Pfister, 1992]. Moreover, Marwan
[2010] concludes that τ is sometimes overestimated
by auto-correlation and mutual information, and
that the choice of the embedding dimension has to
be considered with care, as a wrong choice artifi-
cially increases diagonal lines, and hence DET, and
leads to artefacts. For instance, a RP resulting from
a random series should exhibit scattered or non-
deterministic patterns (i.e. single points). However,
when m increases to 2 and beyond with τ = 1, the
number and the length of diagonal lines start to
increase and dominate the plot as artefacts. This
may be misinterpreted as if the series was highly
deterministic (Fig. 1).

In this study, we focus on the artefacts related
to these embedding parameters. The impact of the
recurrence threshold (ε) is not elaborated, since
the selection of the optimal values of the recur-
rence threshold has been discussed earlier [Gao &
Jin, 2009; Koebbe et al., 1994; Zbilut & Webber,
1992; Zbilut et al., 2002; Mindlin & Gilmore, 1992;
Schinkel et al., 2008; Thiel et al., 2002]. Hence, the
recurrence threshold is fixed to a 10% recurrence
rate (recurrence points density). Supplementary
information on the impact of changing this thresh-
old is enclosed in the Appendix. The Appendix also
includes the evaluation of DET values of a corre-
lated random series, using an AR1 series as exam-
ple, to showcase that high DET values are indeed
associated with deterministic systems instead of its
auto-correlation structures, although there are also
cases at certain parameter values where the num-
ber/length of diagonal lines artificially increase. It
is important to note that the proposed technique
is not intended to be used as a new, independent
method, but rather as an additional consideration
during parameterization, when the dynamical sys-
tem is known to be deterministic.
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(a) (b)

(c) (d) (e)

Fig. 1. (a) Misleading DET values of random series; (b) sub-figure shows the artificial increase of DET when embedding
dimension (m) increases, while (c)–(e) show the corresponding RP with the increase of diagonal line structures at high embed-
ding dimension (m = 7).

2. Methodology

Artificially biased line length distributions due to
the embedding can overlay the true line length dis-
tributions and lead to wrong conclusions. Hence,
it would be desirable to separate the contribution
of the embedding induced line length distributions
from the real underlying dynamics. However, sepa-
rating both contributions is not possible without
additional knowledge about the system (such as
precise model or amount of observational noise).
Therefore, we propose an approach that minimizes
the contribution of the embedding. This approach
is based on comparing the fraction of recurrence
points that form diagonal lines in the RPs of the
original time series (which includes both the real
underlying dynamics as well as the embedding
effect) with that of a random time series (which con-
sists of the embedding effect only). As random time
series we use simply shuffled versions of the original

time series, because this preserves its value distri-
bution and, thus, allows to use the same recurrence
threshold and allows to compare the resulting RPs.
As mentioned above, RPs of random time series
should consist mainly of single points, but embed-
ding artifacts would increase the fraction of recur-
rence points that form diagonal lines in the RP.
Thus, this fraction measure is well suited for our
purpose. Moreover, this measure is equal to the
DET measure. Other measures that use the line
length distribution (e.g. average and longest line
length, entropy of the length distribution) would
be possible but are less intuitive and interpretable.
The advantage of the DET measure is that it con-
siders the influence of scattered points that appear
within the RP as well as in addition to just the diag-
onal lines, while the index of average and longest
line length could easily suffer from large statistical
uncertainty and can easily be influenced by a few
extreme values.
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Fig. 2. Scheme of the proposed artefact avoidance method.

In order to compare the line length distribu-
tions of the original and the shuffled time series,
we define DETo for the original time series and
DETi for the shuffled version. For a number of shuf-
fling iterations (i.e. n times), the resulting difference
[called determinism distance, see Eq. (4)] is calcu-
lated for each shuffle (Fig. 2).

For nonoptimal embedding, we expect a rather
high contribution of the embedding in the line
length distributions in both, the original time series
and in the shuffled version. Therefore, DET should
have high values in both cases and should not differ
so much from each other. For optimal embedding,
and if there are deterministic structures in the RP
of the original time series, the DETi of the shuffled
time series should be very low whereas DETo of the
original time series has still larger values. The dis-
tinctive high and low values of DET in deterministic
and stochastic systems are exemplified in this paper
using Lorenz and Gaussian random series. In this
example, both the original and embedded Lorenz
systems show DET values of around 0.8 to 0.9 with

Fig. 3. Examples for high and low DET values from deter-
ministic (Lorenz) and stochastic (Gaussian random) signals.

τ fixed at 3 following the first minimum of its auto-
mutual information, with m varying from 1 to 10. In
contrast, for the Gaussian random series, the DET
values are shown to be between 0 to 0.2 (Fig. 3).

The resulting difference (determinism distance)
between DETi and DETo would therefore be high.
The undesired effect by the embedding should
be minimal for the difference between DETi and
DETo. Both median (Md) and standard deviation
(Sd) of these distances are used for identifying this
determinism-sensitive region [Eqs. (4) and (5)]. The
further (larger) the Md of each parameter combi-
nation, the safer it is in terms of avoiding the men-
tioned artefacts, under the condition that Sd should
be reasonably small (e.g. within 0.1)

Md = Mediani=1,...,n(|DETo − DETi|), (4)

Sd =

√√√√ 1
n − 1

n∑
i=1

[
|DETo − DETi| − 1

n

n∑
i=1

|DETo − DETi|
]2

, (5)

where DETo and DETi are the recurrence determin-
ism values of the original series and each shuffled
iteration (i), and n is the total number of shuffling
iterations.

3. Case Study Applications

This paper presents two application examples using
Lorenz series derived from a mathematical model,
and daily runoff observations from the station
Burghausen at the Salzach River in south Ger-
many. These signals are chosen for their nonlinear
characteristics with known presence of determinism

[Sivakumar, 2000; Martins et al., 2011]. The result-
ing region of artefact-safe parameter set will be pre-
sented and discussed in Sec. 4. Caution should be
taken when τ = 1 because artificially high DET
values can lead to misinterpretations [Figs. 1(b),
1(d) and 1(e)], and hence should be excluded. In
addition to the resulting artefact-safe region as the
boundary of the parameter sets, the final choice
of the parameter set is still necessary to be opti-
mal, i.e. being able to reconstruct the topology of
system dynamics and minimal in the sense not to
over-reduce data points in the signal. There are
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many approaches to find optimal embedding para-
meters, such as the standard approaches mentioned
in Sec. 1.

3.1. Lorenz series

The Lorenz system with known nonlinear, nonpe-
riodic, three-dimensional and deterministic chaos
behavior (i.e. with parameters α = 10, ρ = 28,
β = 8/3 and sampling time ∆t = 0.05) is chosen
as the first application example, following Eq. (6)
[Lorenz, 1963; Sparrow, 1982]. Its RP and charac-
teristics have also been studied by Marwan et al.
[2007].

dx

dt
= α(y − x);

dy

dt
= x(ρ − z) − y; and

dz

dt
= xy − βz.

(6)

This Lorenz system is described by three vari-
ables and integrated using the Euler scheme, and
hence, we know the three-dimensional phase space
that describes the topology of the system dynamics.
In this study, the x variable is used as our Lorenz
series test set [Fig. 4(a)] with its phase space recon-
structed using the time delay embedding method.
Thereafter, its DET is calculated. The reliability of
these DET values is checked by using median and
standard deviation of their determinism distance
values (Md and Sd) to qualitatively evaluate how
much the constructed RP of a certain parameter
set is influenced by artefacts.

This Lorenz series is derived from a mathemat-
ical model with well-known phase space topology
and recurrence characteristics, whereas real world
observations are most likely contaminated by noise.
Therefore, we also investigate the impact of noise
on the method, i.e. in respect to the values of deter-
minism and determinism distance. Gaussian white
noise with a magnitude range corresponding to the
standard deviation of the Lorenz signal is applied,
i.e. added to the signal [Eq. (7)]

x̃(t) = x(t) + kβ(t), (7)

where, x̃(t) is the resulting new series with the addi-
tion of noise and x(t) is the original series (Lorenz);
k is the noise level, while β(t) is the Gaussian white
noise with magnitude range corresponding to the
standard deviation of x(t). The noise levels used are

(a)

(b)

Fig. 4. Test applications of (a) Lorenz — x variable and
(b) Burghausen daily runoff series (1961).

5%, 10%, 30% and 50%. For each of the noise-added
signal, its determinism and determinism distance
are calculated.

3.2. River runoff series

The second test application uses daily river runoff
observations extracted from station Burghausen in
south Germany for the year 1961. This station
measures the streamflow of the Salzach River with
a catchment area of 6600 km2. The time series
[Fig. 4(b)] is used as a test set representing real
world data, i.e. it is potentially nonstationary and
contaminated by noise and observation error.

4. Results and Discussion

This section presents the results of our proposed
method for selecting an artefact-safe parameter
region with the assumption of recurrence rate fixed
at 10%. The range of embedding dimension (m)
bounds from 1 to 10 and time delay (τ) from 1 to 20.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Recurrence characteristics of the chaotic, deterministic Lorenz signal: (a) determinism corresponding to m and τ ;
(b) change in determinism corresponding to an increase of the embedding dimension (m) from the RP, with τ = 1, 3, and 10;
(c) change in determinism corresponding to an increase of the time delay (τ ), with m = 1, 3, and 10; (d)–(f) RP of different
embedding dimension with fixed τ = 1 and (g)–(i) RP of different embedding dimension with fixed τ = 3. All RPs and
recurrence measures are calculated based on fixed 10% recurrence rate.
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(a) (b)

(c) (d)

Fig. 6. Determinism distance of the Lorenz series: (a) median (Md) and (b) standard deviation (Sd) of determinism distance
between the RP of shuffled and original Lorenz series. (c) and (d) show the median determinism distance corresponding to
τ = 1, 3, 10 and m = 1, 3, 10.

4.1. Lorenz series

The Lorenz series is known for its deterministic fea-
ture, i.e. high determinism value, yet certain parame-
ter combinations can give incorrect, low determinism
values, e.g. when m =1 or m = 10, τ = 6 [Figs. 5(a)–
5(c)]. Increasing the time delay at high embedding

dimension is also seen to thicken the line struc-
tures of the RP [Fig. 5(i)]. Low determinism val-
ues reflect nonoptimal parameterization, and hence,
misleading RP structures [Figs. 5(d) and 5(g)] with
diagonal line structures as wobbly and perpendic-
ular to the main diagonal [Marwan et al., 2007].

(a) (b)

Fig. 7. Embedding parameters for the Lorenz series resulting from standard approaches: (a) false nearest neighbor (FNN)
with median and bounds derived from parameter set 1 ≤ τ ≤ 10 and (b) mutual information (MI).
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In order to assess the reliability of the resulting RP
corresponding to the m and τ parameter combina-
tions, the proposed shuffling techniques is applied
to find the determinism-sensitive region.

Using the proposed technique (n = 100 shuf-
fles), Md is low for the case without embedding

(m = 1) as well as for τ = 1, when m > 1 (Fig. 6).
The latter suggests artefacts due to embedding.
Those parameter values where Md is high, e.g. for
τ ≥ 2, when m > 1, can be considered to be less
influenced by embedding artefacts. It can be noticed
that when τ and m are higher, Md starts to decrease

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Impact of noise levels of the Lorenz series on (a) false nearest neighbor, (b) mutual information, (c) determinism, and
(d) median determinism distance extracted at m = 1, 3, 5 with τ = 1. (e) and (f) present the extracted values with parameter
bounds of 3 ≤ m ≤ 5, τ = 3 and 10, and 10% recurrence rate (ε). Noise added is Gaussian white noise with noise levels derived
from the percentage of the signal standard deviation.
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(a) (b) (c)

Fig. 9. Recurrence characteristics of daily river runoff series: (a) determinism corresponding to m and τ , (b) change in
determinism corresponding to increasing embedding dimension (m) from the RP, with τ = 1, 3, 7; and (c) change in determinism
corresponding to increasing time delay (τ ), with m = 1, 3, 7.

and to fluctuate, as indicated by Sd. In this case, the
use of the median is quite reliable due to the low Sd

value (i.e. below 6%).
The identified determinism-sensitive region can

be referenced with the standard approaches, such
as FNN and MI, to find the optimal parameter set.
This also serves to prevent the use of unnecessarily
high parameter values that result in the reduction

of data points (i.e. by (m − 1)τ). For instance, in
the case of the Lorenz series, the optimal parameter
set found by the standard approach is m = 3 and
τ = 3 (Fig. 7) which coincides well with the domain
of high Md values.

To investigate the impact of noise as in a real
world scenario, Gaussian white noise with different
noise levels is added to the signal as described in

(a) (b)

(c) (d)

Fig. 10. Determinism distance of runoff series: (a) median and (b) standard deviation of the determinism distance between
the RP of shuffled and original runoff series. (c) and (d) show the median determinism distance corresponding to τ = 1, 3, 10
and m = 1, 3, 10.
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(a) (b)

Fig. 11. Embedding parameter selection for daily river runoff using the standard approach: (a) false nearest neighbor with
median and bounds derived from parameter set 1 ≤ τ ≤ 10 and (b) mutual information with first minimum found at τ = 10.

Sec. 4.1. Figures 8(a) and 8(b) show both false near-
est neighbor and mutual information characteris-
tics for the added-noise signal. The false nearest
neighbor approach slightly increases at the optimal
dimension of 3 causing a shift to the next dimen-
sion value, i.e. m = 4. When the noise level reaches
30% and 50%, the mutual information character-
istics start to differ from the original, whereas the
noise levels of 5% and 10% still preserve the orig-
inal signal characteristics. Noise needs to be han-
dled with care, as high level noise contamination
potentially alters the determinism of the signal. It
decreases in this case when Gaussian white noise is
added, hence the determinism distance between the
original and the shuffled series gets smaller.

4.2. River runoff series

A river runoff series is used to represent an exam-
ple for field observations which are usually con-
taminated with noise. River runoff is typically a
nonlinear deterministic series and exhibits chaos
properties [Porporato & Ridolfi, 1997; Sivakumar,
2000; Martins et al., 2011], hence, its DET is
expected to be high. However, its recurrence deter-
minism is low when parameter m = 1 and when
both m and τ reach high values, e.g. m > 8 and
τ > 9 [Fig. 9(a)]. For instance, for τ = 10 the DET
value starts to decrease when m > 7 [Fig. 9(b)],
while for m = 10 the increase of τ (i.e. above 4)
also starts to reduce DET values [Fig. 9(c)].

When evaluated through 100 shuffles, the
parameter set of τ = 1,m > 1 should not be used
due to the clear artefact potential suggested by its
low determinism distance [see Fig. 10(a) — first

column and Fig. 10(c) — black line]. The artefact-
safe region could then be deduced from the high
determinism distance domain corresponding to dif-
ferent combination parameter sets. For example,
median determinism distance values above 0.8
imply high dissimilarity between the recurrence
of the original signal and the shuffled ones [see
Fig. 10(a)]. The Sd values in this case are also low
to safely use the median values [see Fig. 10(b)].

As cross-check with the standard approach of
parameter identification [Fig. 11(a)] suggested opti-
mal embedding parameters in this case would be
τ = 10 days and m = 5.

5. Summary

We propose a method to identify a determinism-
sensitive parameter region with minimal impact of
artefacts due to embedding when constructing a
Recurrence Plot (RP). The method utilizes both
deterministic (incl. chaos) and stochastic charac-
teristics of recurrence quantification, i.e. diagonal
structures, as indicated by their determinism val-
ues. It is useful when the evaluated signal is known
to be deterministic. The method involves randomly
shuffling the time series for an abundant number
of times in order to destroy its original character-
istics and its determinism. Thereafter, determinism
values are calculated for each shuffle iteration and
compared with the determinism of the original sig-
nal for a range of parameters, resulting in a measure
called determinism distance.

The matrix of the median values of this mea-
sure is plotted to depict the determinism-sensitive
parameter region. The larger the determinism
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distance, i.e. the closer to 1, the safer the param-
eter set is to avoid potential artefacts. The opti-
mal parameter set can be selected by considering
this artefact-safe region together with the stan-
dard approach of using false nearest neighbors and
mutual information and auto-correlation.

Noise needs to be handled with care, since
it affects the determinism structures of the sig-
nal or decreases the determinism values, therefore
reducing the determinism distance between the
original and shuffled series. One could apply this
method as an artefact-precautionary measure espe-
cially when intending to choose high values of
embedding parameters.
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Appendix A

Figure 12 describes the impact of recurrence thresh-
old (i.e. recurrence rate) on the determinism dis-
tance between the original and all shuffled Lorenz
time series. It can be seen that large recurrence
threshold would lead the recurrence plot into arte-
fact as implied by its low determinism distance
[Figs. 12(b), 12(c), 12(e) and 12(f)]. Similarly when
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τ = 1, m > 1, the increase of recurrence rate further
decreases the determinism distance [Fig. 12(d)].
This confirms that the use of such parameter value
should be ignored regardless of the choice of recur-
rence threshold. However when m = 1, there is
an increase of determinism distance i.e. peaking
at 20% recurrence rate and decreases thereafter
[Fig. 12(d)]. Despite the increase, the determin-
ism distance is still regarded as low (i.e. below
0.5).

Both original and shuffled time series experi-
ence an increase of their DET values when recur-
rence rate is increased [Figs. 13(a)–13(c)]. However,
when m > 1 the increase of DET values is rather
sharp, changing significantly from low to high.
The shuffled series recurrence plots with m = 1,
and recurrence rate of 20% (i.e. at the peak of
DET distance) still do not present any notewor-
thy deterministic features [Figs. 13(d)–13(f)]. In
this case, users should avoid using large thresh-
old values and special attention should be made on
using such shuffling technique (i.e. when choosing
m = 1).

Fig. 14. DET of (a) random uncorrelated series, (b) Lorenz, (c) AR1 and (d) their corresponding autocorrelation.

Appendix B

In this Appendix, we include the evaluation of DET
values of a correlated random series (exemplified
using AR1 series) in contrast with uncorrelated ran-
dom series and Lorenz to showcase that the high
DET values is indeed associated with determinis-
tic system instead of its auto-correlation structures
(see Figs. 14 and 15). Although there are cases at
certain embedding parameter set where diagonal
lines of RP artificially increase, similar to random
uncorrelated series, when τ equals 1, AR1 appears
to artificially induce long diagonal lines and hence
high DET when embedding dimension gets higher.
Meanwhile, in addition to what was mentioned,
there appear some (but rare) relatively high DET
at certain parameter sets, e.g. when 6 ≤ m ≤ 10
and τ = 7 (see Figs. 13 and 14). However, there is a
possibility that we have excluded some rare struc-
tures of a nondeterministic signal that also showcase
high DET values. Therefore, it is important to note
that this proposed technique is intended to be used
when the user knows that the dynamical system is
deterministic.
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Fig. 15. Selected recurrence plots of AR1 with different embedding parameter sets to showcase the artificial increase of
diagonal lines.
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