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Abstract. An assessment of climate change impacts at different levels of global warming is crucial to inform
the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts.
Integrated assessment models often use global mean temperature change (1GMT) as a sole measure of climate
change and, therefore, need to describe impacts as a function of 1GMT. There is already a well-established
framework for the scalability of regional temperature and precipitation changes with 1GMT. It is less clear to
what extent more complex biological or physiological impacts such as crop yield changes can also be described
in terms of 1GMT, even though such impacts may often be more directly relevant for human livelihoods than
changes in the physical climate. Here we show that crop yield projections can indeed be described in terms
of 1GMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not
originally covered by climate and crop model projections. We use an ensemble of global gridded crop model
simulations for the four major staple crops to show that the scenario dependence is a minor component of the
overall variance of projected yield changes at different levels of 1GMT. In contrast, the variance is dominated
by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of
crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields
is expected to increase with increasing warming in many world regions. We provide, for each crop model, geo-
graphical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary
pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model
simulations.

1 Introduction

Climate change exerts a substantial and direct impact on food
security and hunger risk by altering the global patterns of
precipitation and temperature which determine the location
of arable land (Parry et al., 2005; Rosenzweig et al., 2014) as
well as the quality (Müller et al., 2014) and quantity (Müller
and Robertson, 2014; Lobell et al., 2012; van der Velde et al.,
2012) of crops comprising most of the world food supply. By
itself, climate change is expected to reduce global production
of the four major crops wheat, maize, soy, and rice in current
agricultural areas (e.g. Rosenzweig et al., 2014; Challinor
and Wheeler, 2008; Peng et al., 2004). Facing an increasing
food demand due to population growth and economic devel-

opment, these reductions will have to be compensated for by
(1) the direct physiological impacts of increased atmospheric
CO2 concentrations (Kimball, 1983), which are beyond local
human control; as well as (2) advances in agricultural man-
agement (e.g. fertilizer input or irrigation), technology, and
breeding (Jaggard et al., 2010) or (3) expansion of agricul-
tural land (Frieler et al., 2015; Smith et al., 2010).

In conjunction with these long-term changes, global
warming is also expected to contribute to an increase in the
frequency and duration of extreme temperatures and precipi-
tation (droughts, floods, and heat waves), which may increase
the near-term variability in crop yields and trigger short-
term crop price fluctuations (Brown and Kshirsagar, 2015;
Mendelsohn et al., 2007; Tadesse et al., 2014).
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Anthropogenic emissions of greenhouse gases are ex-
pected to influence crop yields via several pathways. On the
one hand, the associated climatic changes will modify the
length of the growing season (Eyshi Rezaei et al., 2014), wa-
ter availability, and heat stress (Lobell et al., 2012; Müller
and Robertson, 2014; Schlenker and Roberts, 2009); and on
the other hand, higher concentrations of atmospheric CO2
are expected to increase the water use efficiency in C3 (e.g.
wheat, rice, soy) and C4 (maize) crops, and enhance the rate
of photosynthesis in C3 crops (Darwin and Kennedy, 2000).
Global gridded crop models (GGCMs) are particularly de-
signed to account for these effects. They provide a complex
process-based implementation of our current understanding
of the mechanisms underlying crop growth, and are the pri-
mary tool for crop yield projections (e.g. Rosenzweig et al.,
2014), which in turn are a prerequisite for assessing poten-
tial changes in prices (Nelson et al., 2014) and food security
(Parry et al., 2005). However, these process-based crop yield
projections rely on spatially explicit realizations of the driv-
ing weather variables such as temperature, precipitation, ra-
diation, and humidity, often at daily resolution, as provided
by computationally expensive global climate model (GCM)
simulations. The GGCMs themselves also require significant
computational capacity. These requirements generally limit
the number and length of emissions scenarios that can be
simulated.

The so-called pattern scaling approach is a well-
established method to overcome these limits. Output from
GCMs has been shown to be, to some extent, scalable to
different global mean temperature (GMT) trajectories not
originally covered by GCM simulations (Santer et al., 1990;
Mitchell, 2003; IPCC-TGICA, 2007; Giorgi, 2008; Solomon
et al., 2009; Frieler et al., 2012; Heinke et al., 2013). Scaled
climate projections have also been used as input for different
impact models (Ostberg et al., 2013; Stehfest et al., 2014) to
achieve greater flexibility in terms of the range of emissions
scenarios considered in climate impact studies.

Building upon such a framework, we present a method to
extend the capacity of crop yield impact projections by re-
lating simulated crop yield changes to two highly aggregated
quantities – global mean temperature change (1GMT) and
atmospheric CO2 concentration (pCO2) – by means of sim-
plified function. 1GMT and pCO2 are standard outputs of
reduced-complexity climate models, which – while lacking
the spatial resolution of complex GCMs – allow for highly
efficient climate projections for any emissions scenario by
emulating the response of the complex models (Meinshausen
et al., 2011). Here “emulating” means that the simplified rep-
resentation is designed to reproduce the global response of
the complex model for the originally simulated scenarios but
also allows for its inter- or extrapolation to other scenarios.
We test to what extent crop yield changes, as one example
of climate change impacts, can be described directly in terms
of GMT and pCO2 changes. Our approach is different from
other emulators which use spatially explicit climate projec-

tions as input for the simplified functions (Oyebamiji et al.,
2015; Blanc, 2017). While these approaches only emulate the
responses of the complex crop model, the approach presented
here implicitly provides a simplified description of both the
GCMs’ regional patterns of climate change and the associ-
ated response of the crop models. Such an approach provides
high computational efficiency, making it applicable, for ex-
ample, in integrated assessment models. In principle, other
emulators could be used in this setting; however, they require
an additional step of first scaling the climatic changes to the
specific emissions scenario.

The emulator introduced here allows for multi-crop-model
projections for arbitrary emissions scenarios as long as crop-
model ensemble projections are available for a limited set
of scenarios. This offers a practical way of keeping track of
a relevant but often-ignored source of uncertainty which is
manifested in the considerable spread across different crop
models and other process-based impact models (Rosenzweig
et al., 2014; Schewe et al., 2014). This uncertainty is particu-
larly critical when estimating socio-economic consequences
(e.g. Nelson et al., 2014).

We test the approach using an ensemble of yield projec-
tions of the four major crops maize, rice, soy, and wheat,
generated within the first phase (“Fast Track”) of the Inter-
sectoral Impact Model Intercomparison Project (ISIMIP,
Warszawski et al., 2014). For a number of 1GMT intervals
we compare the spread in yield outcomes induced by the
choice of emissions scenario with that induced by the choice
of GGCM and GCM. A low scenario-induced spread means
that GCM- and GGCM-specific yield projections can be ap-
proximated by a simplified relationship with GMT change
without accounting for the underlying emissions scenario,
which is a prerequisite to applying the simplified relation-
ship to other emissions scenarios. The test is performed at
each grid point and separately for simulations of purely rain-
fed yields and fully irrigated yields. Multi-model ensembles
in the ISIMIP data archive provide a uniquely broad suite of
crop yield simulations over a wide range of crops, CO2 con-
centrations, and irrigation options encompassing output from
five GGCMs, forced with output from up to five GCMs under
four Representative Concentration Pathways (RCPs; van Vu-
uren et al., 2011).

In Sect. 2 we describe the ISIMIP data and the methods
used to test for scenario dependence and adjustment for dif-
ferent levels of pCO2. Section 3 is dedicated to the presen-
tation of the projected average changes in crop yields at dif-
ferent levels of global warming and an attribution of the vari-
ance of these long-term changes to different sources of uncer-
tainty, i.e. different GCMs, different GGCMs, and different
emissions scenarios (Sect. 3.1). In addition, we test to what
degree the scenario dependence of crop yields at a specific
level of global warming can be explained by different levels
of pCO2 (Sect. 3.2). Finally, we provide individual maps of
yield changes at different levels of GMT and the additional
effect of variations in pCO2 at the respective GMT levels.
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We propose three methods to generate these patterns based
on the available complex model simulations, and describe the
related approaches to estimate GGCM- and GCM-specific
yield changes for new1GMT trajectories not originally cov-
ered by GCM–crop-model simulations. In Sect. 4 we present
a quantification of the projection errors compared to actual
simulations by the complex gridded crop models. Finally,
in Sect. 5 we quantify the residual inter-annual variance of
the simulated crop yields in terms of GMT change across all
combinations of crop and climate models. Section 6 provides
a summary.

2 Data and methods

2.1 Crop yield simulations

We use projections from five different GGCMs (GEPIC,
LPJ-GUESS, LPJmL, PEGASUS, and pDSSAT) that par-
ticipated in the first phase of ISIMIP (Rosenzweig et al.,
2014; Warszawski et al., 2014) in order to test for a de-
pendence of projected yield changes on the GMT path-
way (see Sect. 1 for their basic characteristics). Each crop
model was forced by climate projections from five differ-
ent GCMs (HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-
CHEM, GFDL-ESM2M, NorESM1-M) generated for four
RCPs (RCP2.6, RCP4.5, RCP6.0, RCP8.5) in the context
of the Coupled Model Intercomparison Project, phase 5
(CMIP5; Taylor et al., 2012). CMIP5 was an effort by the
climate modelling community to provide a new suite of cli-
mate simulations in time for the Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment Report (AR5).
The RCPs cover the range from climate mitigation (RCP2.6,
RCP4.5) to business-as-usual (RCP6.0) and high-emissions
scenarios (RCP8.5). Climate projections have been bias
corrected to better match observed historical averages of
the considered climate variables. For the future, the bias-
correction preserves absolute changes in monthly tempera-
ture and relative changes in monthly values of the other vari-
ables simulated by the GCMs while also correcting the daily
variability about the monthly mean (Hempel et al., 2013).
Separate simulations are available for each of the four major
crops, wheat, maize, rice, and soy, on a global 0.5 ◦× 0.5◦

grid, covering the time period from 1971 to 2099. The con-
sidered crop is assumed to grow everywhere on the global
land area, only restricted by soil characteristics and climate
but independent of present or future land use patterns (“pure
crop” simulations). Each model has provided a pair of sim-
ulations (“runs”) for each climate change scenario: (1) a
rain-fed run and (2) a full-irrigation run assuming no wa-
ter constraints. This design provides full flexibility with re-
gard to the application of future land use and irrigation pat-
terns. While the crop yield (YvarCO2 ) in “default” simula-
tions accounts for the fertilization effects due to the increas-
ing levels of pCO2, the ISIMIP setting also includes a sen-
sitivity experiment in which the crop models were forced

by the same climate change projections but pCO2 was kept
fixed at a “present-day” reference level that differs from
GGCM to GGCM (see Table 1). We will refer to this run as
the “fixed-CO2” run and indicate the associated crop yields
by YfixedCO2 . As a special case, the default simulations for
pDSSAT do not use annual pCO2 changes. Instead, pCO2
was changed every 30 years using the average pCO2 of the
respective 30-year time slice.

2.2 Effect of temperature change

We analyse the dependence of yield changes on 1GMT sep-
arately for rain-fed and full-irrigation simulations, and for
each crop. While yields in a given grid cell of course de-
pend on the local temperature, long-term changes in local
temperature are in turn a manifestation of global greenhouse-
gas related warming (Frieler et al., 2012). The aim here is
testing to what extent local long-term changes in yields can
be described in terms of a single global measure of warm-
ing, 1GMT. Since the time of attaining a given 1GMT
differs between GCMs and scenarios, we group all avail-
able data into 1GMT intervals (bins) separated by 0.5 ◦C
steps with 0.5 ◦C width (±0.25 ◦C around the central tem-
perature), where 1GMT is calculated relative to the present-
day (1980–2010 average) reference level. For all annual data
falling into a given interval and at each grid point we ap-
ply a separate one-way analysis of variance (ANOVA fixed-
effects model) to individually calculate the yield variance ex-
plained by (1) different GGCMs, (2) the GCMs, and (3) the
RCPs. The quantification of the RCP dependence of the rela-
tionship between global warming and yield change is limited
to warming levels of up to 2 to 3 ◦C above present depend-
ing on the GCM because only one RCP (RCP8.5) reaches
temperatures above this threshold. However, we also pro-
vide the patterns of yield change for the higher concentra-
tion scenario. In the main text, all figures except Figs. 9
and 10 refer to a 1GMT level of 2.5 ◦C, and all figures ex-
cept Figs. 3, 4, and 11 refer to crop model simulations driven
by HadGEM2-ES climate. See Fig. 1 for the years associ-
ated with 1GMT= 2.5 ◦C in HadGEM2-ES. The Supple-
ment (Ostberg et al., 2018) contains analogous figures for
other GMT levels and GCMs.

We do not impose a specific functional relationship be-
tween GMT change and change in crop yields. Yield change
for any GMT level between the central levels of the consid-
ered bins could be derived by a simple linear interpolation
among the patterns of neighbouring bins but without assum-
ing a linear relationship between global mean warming and
yield change across the full range of warming.

2.3 Effect of pCO2 change

The direct effect of CO2 fertilization on crop yields is ex-
pected to introduce some scenario dependence into the rela-
tionship between GMT change and yield change. We test to

www.earth-syst-dynam.net/9/479/2018/ Earth Syst. Dynam., 9, 479–496, 2018



482 S. Ostberg et al.: Changes in crop yields and their variability at different levels of global warming

Table 1. Basic crop model characteristics with respect to (1) the implementation of CO2 fertilization effect – as affecting radiation use
efficiency (RUE), transpiration efficiency (TE), leaf-level photosynthesis (LLP), or canopy conductance (CC); (2) accounting for nutrient
constraints and associated assumption with respect to fertilizer application (N: nitrogen; P: phosphorus; K: potassium); (3) implemented
adaptation measures.

Model CO2 fertilization Nutrient limitation Adaptation

GEPIC
(Liu et al.,
2007; Liu,
2009)

RUE, TE
pCO2 of the fixed-
CO2 run: 364 ppm

flexible N application up to an upper national
application limit according to FAO FertiS-
tat database (FAO, 2007), fixed present-day
P application rates following FertiStat.

decadal adjustment of planting dates
(incl. switch between winter and spring
wheat); total heat units to reach maturity
remain constant

LPJ-GUESS
(Lindeskog
et al., 2013)

LLP, CC
pCO2 of the fixed-
CO2 run: 379 ppm

no consideration of soil nutrient limitation adjustment of total heat units to reach matu-
rity based on the average climate during the
preceding 10 years to keep growing season
length constant

LPJmL
(Bondeau
et al., 2007)

LLP, CC
pCO2 of the fixed-
CO2 run: 370 ppm

no consideration of soil nutrient limitation fixed sowing dates (Waha et al., 2012); total
heat units to reach maturity remain constant

PEGASUS
(Deryng et al.,
2011)

RUE, TE
pCO2 of the fixed-
CO2 run: 369 ppm

fixed N, P, K application rates (IFA, 2002) adjustment of planting dates; variable heat
units to reach maturity

pDSSAT
(Jones et al.,
2003; Elliott
et al., 2014)

RUE, LLP, CC
pCO2 of the fixed-
CO2 run: 330 ppm

fixed N present-day application rates no adjustment of planting dates; total heat
units to reach maturity remain constant
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Figure 1. GMT projections from HadGEM2-ES for the four RCPs.
The horizontal line and shading indicate the 2.5 ◦C bin. The orig-
inal annual GMT values (thin lines) are smoothed (thick lines) in
order to obtain a contiguous time interval for each 1GMT bin.
The smoothing is based on a singular spectrum analysis with a
time window of 20 years (R Package Rssa; Korobeynikov, 2010;
Golyandina and Korobeynikov, 2014; Golyandina et al., 2015).
Years where the thick line falls within the shaded area are asso-
ciated with1GMT= 2.5 ◦C, and the corresponding time interval is
delineated by the dashed vertical lines.

what degree the scenario dependence of the relationship can
be explained by introducing pCO2 as an additional predictor
for within-bin fluctuation of yields. To this end, we evalu-

ate two different approaches to estimate the direct CO2 ef-
fect on crop yields within the different GMT bins, described
in detail below. The two approaches differ in terms of the
crop model simulations that they require: approach (a) only
requires the default crop yield simulations with increasing
pCO2 whereas approach (b) requires a pair of simulations
with increasing pCO2 and with fixed pCO2 at the present-
day reference level.

2.3.1 Approach (a)

For all years falling into a specific 1GMT bin, approach (a)
fits the following linear regression model to the response of
yields in the default simulation to the increase in pCO2:

1YvarCO2 (i, t)=1Yclim(i)+ a1(i) · (pCO2(t)− 370ppm)
+ ε(i, t), (1)

where 1YvarCO2 (i, t) is the absolute yield change in grid
point i and year t with respect to the historical reference pe-
riod (1980–2010) and pCO2(t) is the atmospheric CO2 con-
centration of the corresponding year. In this statistical model,
two parameters are determined by regression: 1Yclim(i)
represents an estimate of the purely climate-induced yield
change at the respective bin temperature, but assuming a
fixed year-2000 pCO2 of 370 ppm (i.e. without CO2 fertil-
ization), and a1(i) represents the added effect of CO2 fer-
tilization. Finally, ε(i, t)vN (0, σ 2) represents the residual
error.
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2.3.2 Approach (b)

Approach (b) fits the following linear regression model to the
yield difference between the default and fixed-CO2 simula-
tion for all years falling into a specific 1GMT bin:

YvarCO2 (i, t)−YfixedCO2 (i, t)= a1(i) ·
(
pCO2(t)−pCO2ref

)
+ ε(i, t), (2)

where YvarCO2 (i, t) and YfixedCO2 (i, t) is the absolute yield in
grid point i and year t of the default and fixed-CO2 simula-
tions, respectively; pCO2(t) is the atmospheric CO2 concen-
tration of the default simulation during the respective year;
and pCO2ref is the crop-model-specific pCO2 value of the
fixed-CO2 simulation (see Table 1). In this statistical model,
a1(i) is determined by regression and represents the CO2 fer-
tilization effect, and ε(i, t)vN (0, σ 2) represents the residual
error. No intercept is estimated in this model because yields
from the default and fixed-CO2 runs are expected to be iden-
tical if pCO2(t)=pCO2ref . The purely climate-induced yield
change at a fixed year-2000 pCO2 of 370 ppm 1Yclim(i) can
then be derived as

1Yclim(i)=1YfixedCO2 (i)+ a1(i) ·
(
pCO2ref − 370ppm

)
, (3)

where 1YfixedCO2 (i) is the average yield change in
the respective warming bin of the fixed CO2 simula-
tion with respect to the historical reference period and
a1(i) · (pCO2ref − 370 ppm) corrects for the different pCO2ref

used by each GGCM.

2.4 Emulator of temperature and CO2 effects

Based on the spatial patterns of purely climate-induced yield
change 1Yclim(i) and added CO2 fertilization effect a1(i),
which are derived separately for each rain-fed and irrigated
crop and specific to each crop model and GCM, we propose
the following two-step interpolation method to compute crop
yield changes for any given pair of 1GMT and pCO2, using
either the coefficients from approach (a) or (b):

1. linear interpolation of1Yclim(i) between the two neigh-
bouring 1GMT bins to the desired 1GMT value;

2. addition of the CO2 pattern described by
a1(i) · (pCO2− 370 ppm), where a1(i) is also in-
terpolated linearly between the respective coefficients
from the neighbouring 1GMT bins.

The application of these two steps using coefficients from
method (a) above will be called emulator approach (a); their
application using coefficients from regression method (b)
will be called emulator approach (b). In addition, we pro-
pose a third, very basic emulator approach (c) in which the
yield change for any given 1GMT is derived from a simple
linear interpolation of the average yield change in the neigh-
bouring warming bins of the default simulations1YvarCO2 (i)

with respect to the historical reference period, without using
the associated pCO2 as an additional predictor.

The linear interpolation of any of the previous coefficients
between two neighbouring warming bins is illustrated for a
1GMT of 2.3 ◦C as follows:

coef
(
i,2.3 ◦C

)
= (1− δ) · coef

(
i,2 ◦C

)
+ δ · coef

(
i,2.5 ◦C

)
,

δ =
(
2.3− 2 ◦C

)
/
(
2.5− 2 ◦C

)
, (4)

where coef can be 1Yclim(i), a1(i), or 1YvarCO2 (i).
Using GGCM projections for the HadGEM2-ES climate

input to train the emulators, we test which of the emulator
approaches, (a), (b), or (c), provides the best reproducibility
for yield changes simulated under the four RCPs (Sect. 4).
While approach (b) requires a pair of crop model simulations
– one with time-varying pCO2 and one with fixed present-
day pCO2 – approaches (a) and (c) only require the default
simulations with time-varying pCO2. Thus, a comparison of
the three approaches could provide some important guidance
regarding future crop model experiments required to allow
for the proposed highly efficient emulation of crop model
simulations. Since simulated crop yields are subject to con-
siderable inter-annual variability, we also test what effect the
number of available training data has on the reliability of the
derived regression coefficients. For that purpose, we train the
emulators using either all available simulation data from the
four RCPs or only simulation data from RCP8.5 and com-
pare the fraction of the land surface for which derived fits
are statistically significant as well as the difference between
simulated and emulated yield changes. Due to the 30-year
time slices of constant pCO2 used by pDSSAT in the default
run, approach (a) cannot be applied to this model using only
RCP8.5 data. Since only RCP8.5 reaches 1GMT> 3.5 ◦C,
this limits the temperature range of emulator approach (a)
for pDSSAT even when using all available training data.

We evaluate and compare the performance of the three em-
ulator approaches at the grid scale as well as the scale of large
regions. Grid point yields (in tons per hectare) are multiplied
by the fixed year-2000 crop-specific growing area from the
MIRCA2000 dataset (Portmann et al., 2010) to derive re-
gional total crop production (in tons). MIRCA2000 provides
gridded growing areas for a total of 26 rain-fed and irrigated
crops based on a combination of census, remote sensing, and
other geographic data sources.

3 Mean yield change with global mean temperature
change

3.1 Patterns of relative changes at different levels of
global warming and main sources of variance

In general, increasing GMTs correspond to an expansion of
arable land to higher latitudes with concurrent yield reduc-
tions in equatorial regions. The highest positive changes in
projected yields under rain-fed conditions at 2.5 ◦C 1GMT
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Figure 2. Average wheat yield change at 1GMT= 2.5 ◦C as a percentage of the mean historical yield (1980–2010 average) under rain-fed
conditions for each crop model forced by HadGEM2-ES. The average is calculated across all RCPs which reach the global mean warming
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masked to avoid exaggerated relative yield increases. Analogous figures for different crops, for irrigated conditions, and for absolute yield
change (in tons per hectare) are available in the Supplement.

are typically in the northern high latitudes and mountainous
regions for all crops (Fig. 2 for wheat; figures for other crops
in the Supplement). These locations were previously inhib-
ited by a short growing season, which extends with increas-
ing air temperature (Ramankutty et al., 2002). Yield gains
also occur over previously moisture-limited regions, such as
the northwestern US and northeastern China, in agreement
with the findings of Ramankutty et al. (2002). In contrast,
near the Equator most crop yields decrease, especially maize
and wheat. Since most cultivated land currently lies in low
and middle latitudes, potential yield changes in those regions
contribute a higher relative importance for today’s food pro-
duction system than changes in high latitudes.

While variations exist in the magnitude of projected yield
changes, there is a high degree of consistency in the direc-
tion of yield change across ensemble members, especially
over the high latitudes, where most of the largest projected
yield changes occur, but where yields are in general smaller
(Fig. 3). Utilizing output from all available combinations of
GCM, GGCM, and RCP scenarios, more than three-quarters
of the ensemble members indicate increasing crop yields
over the upper mid-latitudes in the Northern Hemisphere for
all crops at 2.5 ◦C.

The simulated yield values at each grid point and within
each GMT bin are subject to variation due to the selection of
impact model, GCM forcing, and emissions scenario. When
considering all of these factors, the variance attributable to
the impact model selection is much greater than that asso-
ciated with the GCM or scenario choice in most regions
(Fig. 4). This holds for rain-fed as well as irrigated simu-
lations. The predominance of the impact model component
in total variance is particularly evident in the middle to high
latitudes for all four considered crops, where impact model
variance accounts for up to 90 % of the grid point variance at
2.5 ◦C.

3.2 Direct impacts of increasing pCO2

In addition to air temperature warming, pCO2 has a direct
influence on crop yields. As it varies within the different
1GMT bins, it is expected to induce part of the fluctuations
of the yield changes at given GMT levels. We find that this
CO2 effect shows little scenario dependence (see Fig. 5 for
the global average effect within the LPJmL simulations at
1GMT= 2.5 ◦C), consistent with a short response time of
plants to pCO2 changes. As expected, the CO2-induced yield
differences increase with heightened atmospheric CO2 level

Earth Syst. Dynam., 9, 479–496, 2018 www.earth-syst-dynam.net/9/479/2018/



S. Ostberg et al.: Changes in crop yields and their variability at different levels of global warming 485

x

M
ai

ze

x

y

R
ic

e

x

S
oy

be
an

s

x

y

W
he

at

Negative for >75 % of combinations

Negative for >50 % of combinations

Positive for >75 % of combinations

Positive for >50 % of combinations

Figure 3. Percentage of crop model simulations (combination of a single GCM, GGCM, and RCP scenario) indicating an increase (blue) or
decrease (red) in yield of greater than 5 % at each grid point at 2.5± 0.25 ◦C 1GMT as compared to the historical period for maize, rice,
soybeans, and wheat under rain-fed conditions. White indicates either a change of less than 5 % or disagreement among the models in the
direction of yield change. Note that only four out of five GGCMs provided results for rice. An analogous figure for irrigated conditions is
available in the Supplement.

x x

y

M
ai

ze

x

y

M
ai

ze

x x

y

R
ic

e

x

y

R
ic

e

x x

y

S
oy

be
an

s

x

y

S
oy

be
an

s

x x

y

W
he

at

x

y

W
he

at

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of explained variance

(a) Impact models (b) Climate models (c) Scenarios

Figure 4. Fraction of total yield variance attributable to the impact models (GGCMs, a), climate models (GCMs, b), and scenarios (RCPs, c)
for each crop. Figure shown for rain-fed runs at 1GMT= 2.5± 0.25 ◦C warming; an analogous figure for irrigated runs is provided in the
Supplement.

under all emissions scenarios, implying a stronger CO2 fer-
tilization impact with increased pCO2.

At the grid point level, two approaches have been used to
separate purely climate-change-induced from CO2-induced

yield change (following Eqs. 1 to 3). Figure 6 shows the
climate-change-induced yield change at 1GMT= 2.5 ◦C for
LPJmL under rain-fed conditions, using all available runs
that fall into the warming bin to estimate 1Yclim(i). Figures
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Figure 5. Difference in global mean yield change (sum of rain-fed and irrigated, and weighted by year-2000 growing areas) between the
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dotted line indicates the linear best fit through all available scenarios. Analogous figures for other GGCMs and warming bins are available
in the Supplement.

for irrigated conditions and the other GGCMs are available
in the Supplement. The two methods result in broadly sim-
ilar patterns, with yield increases in the upper middle and
high latitudes, mixed regions with decreases and increases in
the lower mid-latitudes, and mostly decreases in the tropics.
However, the magnitude of change differs between the two
approaches: approach (a) generally estimates larger changes
outside the tropics while yield decreases in the tropics are
larger in approach (b). There are also some regions where
both approaches disagree regarding the direction of change,
such as the high latitudes of both western North America and
eastern Russia for wheat and parts of Southeast and South
Asia for all crops. Patterns of climate-induced yield change
match better between both approaches under irrigated condi-
tions (see Supplement).

In GEPIC, both approaches disagree on the direction of
change for maize yields over large parts of Europe. In LPJ-
GUESS, both approaches disagree on the direction of change
in most of the tropics for all crops. While tropical yield
change is predominantly negative in approach (b) mirror-
ing results of the other crop models, approach (a) estimates
mostly positive climate effects on tropical crops. In pDSSAT,
approach (a) generally produces larger areas with negative
yield change than approach (b). At the same time, positive
yield effects in approach (a) have a larger magnitude than

those in approach (b) in many regions. In PEGASUS, both
approaches disagree on the direction of change over large
parts of the US for maize and soybeans, and large parts of
China for wheat.

The estimates of CO2-induced yield change also differ be-
tween the two approaches (Fig. 7 for LPJmL results under
rain-fed conditions). We expect CO2 fertilization to have a
positive or at least neutral effect on yields, and this is con-
firmed by approach (b) for all GGCMs and crops. Only
GEPIC simulations show negative CO2 effects on soybean
and wheat yields in a few regions for approach (b). This can
be explained by nutrient interactions in the model: CO2 fertil-
ization leads to yield increases first but also increases nutrient
depletion in the soil compared to the fixed-CO2 run. If fer-
tilizer application is insufficient to replenish nutrient stocks
this can lead to lower yields despite the beneficial effect of
higher pCO2. With approach (a), however, areas of negative
estimated CO2 effects are widespread in all GGCMs and all
crops. Generally, the magnitudes of the estimated CO2 effect
are also much larger, often surpassing those of approach (b)
even in regions where the direction of change matches.

Given that approach (a) contradicts our expectation of
how CO2 fertilization should affect yields in many regions,
we conclude that approach (a) is not reliable in separating
the effects of climate change on yield from those of pCO2
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Figure 6. Climate-change-induced yield changes at 1GMT= 2.5 ◦C of global warming and the year-2000 pCO2 level (370 ppm). Left
column panels: patterns of1Yclim(i) derived at each grid point i using approach (a) (see Eq. 1). Right column panels: corresponding patterns
of 1Yclim(i), derived using approach (b) (see Eq. 3). Both types of patterns are derived from LPJmL simulations forced by HadGEM2-ES
assuming rain-fed conditions and expressed as absolute differences compared to the historical period (1980–2010). Rows: different crop
types. Analogous figures for irrigated conditions, for different GGCMs, and using relative instead of absolute yield changes are available in
the Supplement.

change. By design, climate-induced and CO2-induced yield
changes add up to the full yield change (see Eq. 1), which
is why the difference among the patterns of estimated CO2
effects explains why climate change patterns from Fig. 6
also differ substantially between both approaches in some
regions. Approach (a) has a structural disadvantage to ap-
proach (b) in that it estimates both the climate-induced and
CO2-induced effect on yields from the same linear regres-
sion model (Eq. 1). In addition to changes in pCO2 annual
yields in each warming bin are subject to substantial inter-
annual climate variability, which means that individual years
with a higher pCO2 do not necessarily have a higher yield. In
contrast, approach (b) only estimates the CO2-induced yield
change from the regression model (Eq. 2) while both the
default and the fixed-CO2 runs are subject to identical cli-
mate variability. There is inter-annual variability in the CO2-

induced yield change as well (see Fig. 5 for the global aver-
age effect); however, it is much smaller than the total yield
variability.

While approaches (a) and (b) should provide similar esti-
mates of the CO2-induced yield change given a large sample,
our sample size is limited by the number of years falling into
each 1GMT bin (Table 2). This number varies between 7
years in the 4.5 and 5.0 ◦C bin and up to 66 years in the 1.0◦C
bin when yield data from all RCPs are used to train the em-
ulator. The number of years varies between 7 and 13 years
if only data from RCP8.5 are used. Given the limited sample
size and possibly large variability, the derived fits are often
not statistically significant. For approach (a) we found that
derived fits were rarely significant on more than 25 % of the
crop-specific growing area (Portmann et al., 2010) using a
p value of 0.05 (figure available in the Supplement). Val-

www.earth-syst-dynam.net/9/479/2018/ Earth Syst. Dynam., 9, 479–496, 2018



488 S. Ostberg et al.: Changes in crop yields and their variability at different levels of global warming

x x

y

M
ai

ze

x x

y

R
ic

e

x x

y

S
oy

be
an

s

x

Approach (a)

x

y

Approach (b)

W
he

at

<−2.0 −1.0 0.0 1.0 >2.0
Yield change (t ha yr   )-1-1

Figure 7. CO2-induced yield changes at 2.5 ◦C of global warming for LPJmL forced by HadGEM2-ES assuming rain-fed conditions.
Analogous to Fig. 6, but showing the scaling coefficients a1(i) from approach (a) (left column panels) and approach (b) (right column
panels), multiplied by the average pCO2 change compared to the year 2000 (370 ppm) across all years falling into the GMT bin. Rows:
different crop types. Analogous figures for irrigated conditions, for different GGCMs, and using relative instead of absolute yield changes
are available in the Supplement.

ues were even lower if only RCP8.5 was used for the regres-
sion. In contrast, fits derived using approach (b) were mostly
statistically significant (p< 0.05) on more than 70 % of the
growing area, often on more than 90 % of the area. We also
found only a small negative effect in terms of statistical sig-
nificance if only RCP8.5 was used in approach (b).

4 Validation of three emulator approaches

Using GGCM projections for the HadGEM2-ES climate in-
put, we test which of the approaches, (a), (b), or (c), pro-
vides the best reproducibility for all four RCPs. For that pur-
pose, we apply each emulator with a time series of 1GMT
and pCO2 from the RCPs and compare emulated yield
changes in each grid point as well as total crop production
for 10 large world regions to those simulated by the GGCM.

For pDSSAT, the pCO2 time series used in that model’s de-
fault run is also used with the emulator.

Figure 8 shows results for the LPJmL model, when apply-
ing the emulators trained on all available data to reproduce
rain-fed yields under RCP4.5. Figures for other RCPs, irri-
gated yields, and other GGCMs are available in the Supple-
ment.

Approach (a) generally leads to the largest differences rel-
ative to the simulated yield change (Fig. 8, left column). In
particular maize, rice, and soybean yields are underestimated
for much of North America, and overestimated in Europe,
temperate South America, and Australia. Wheat yields are
overestimated in Canada, for example.

Approach (b) also leads to some substantial deviations
from the yields simulated by LPJmL, mainly in the North-
ern Hemisphere (Fig. 8, middle column). Spatial patterns
of over- and underestimation are broadly similar to ap-
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Table 2. Number of years of yield data available in each 1GMT bin for HadGEM2-ES. Only RCP8.5 reaches warming levels above 3 ◦C.

Data used 1GMT bin

0.5 ◦C 1.0 ◦C 1.5 ◦C 2.0 ◦C 2.5 ◦C 3.0 ◦C 3.5 ◦C 4.0 ◦C 4.5 ◦C 5.0 ◦C

All available scenarios 47 66 44 38 52 20 8 8 7 7
RCP8.5 only 10 13 12 10 9 8 8 8 7 7
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Figure 8. Validation of the three emulator approaches. Maps show the difference (emulated minus simulated) among the simulated LPJmL
yields forced by HadGEM2-ES climate for RCP4.5 under rain-fed conditions, averaged over all years falling into the 1GMT bin of 2.5 ◦C
(2066–2094), and the emulated yields for the same years based on approach (a) (left column panels), approach (b) (middle column panels),
and approach (c) (right column panels). Rows: different crops. MAD: mean absolute difference, regardless of sign, averaged across all grid
points. Analogous figures for irrigated conditions and for different GGCMs are available in the Supplement.

proach (a), but the magnitude of the difference is generally
slightly lower. In the tropics, approach (b) often leads to a
higher deviation from the simulated yields than approach (a),
particularly for rice and soybeans in South America.

Finally, approach (c) leads to a similar pattern of devia-
tions from the simulated yields as approach (b) for maize
(Fig. 8, right column). For the other crops, approach (c) of-
ten leads to an overestimation of yields whereas approach (b)
tends to underestimate simulated yields. The mean absolute
deviation between emulated and simulated yields (designated
as MAD in Fig. 8) is similar for approaches (b) and (c).
Approach (c) performs slightly better than approach (b) for

rice, and both approach (b) and (c) perform better than ap-
proach (a) for all four crops. Differences among the three
emulators are smaller when reproducing RCP6.0 and RCP8.5
(figures available in the Supplement).

The difference between emulator approaches (b) and (c) is
even smaller in the other crop models than in LPJmL (figures
available in the Supplement). Overall, MAD between emu-
lated and simulated yields is up to 50 % higher than LPJmL
in PEGASUS, roughly twice as high in GEPIC, and up to
3 times as high in pDSSAT. In LPJ-GUESS, MAD between
emulated and simulated yields is similar for all three emula-

www.earth-syst-dynam.net/9/479/2018/ Earth Syst. Dynam., 9, 479–496, 2018



490 S. Ostberg et al.: Changes in crop yields and their variability at different levels of global warming

Table 3. Root-mean-square difference between emulated and simulated decadal production (expressed as a percentage of the simulated
production as in Fig. 9) in the largest producing region of each crop, for all five crop models forced by HadGEM2-ES climate projections.
Average across all four RCPs. The values for all combinations of models, crops, and regions, and separately for each RCP, can be found in
the Supplement. Top: emulators trained on all available data; bottom: emulators trained on RCP8.5 only.

(a) Emulators trained on all available data

Model Wheat, Europe Rice, South Asia Maize, North America Soybeans, Latin America

Approach a b c a b c a b c a b c

GEPIC 1.334 1.267 1.215 3.982 3.037 2.790 10.099 9.058 9.360 3.485 2.550 2.321
LPJ-GUESS 2.242 2.254 2.213 4.033 2.163 3.729 5.870 5.466 5.359 2.934 3.025 2.653
LPJmL 1.777 1.768 1.596 2.582 2.371 1.786 6.923 5.494 5.846 4.898 3.870 4.709
pDSSAT∗ 5.363 3.196 3.550 7.758 3.606 4.190 12.218 6.129 6.149 3.427 3.662 3.500
PEGASUS 6.061 4.908 4.937 NA NA NA 8.762 8.533 8.496 7.773 5.439 5.876

(b) Emulators trained on RCP8.5 only

Model Wheat, Europe Rice, South Asia Maize, North America Soybeans, Latin America

Approach a b c a b c a b c a b c

GEPIC 2.159 1.309 1.396 6.941 3.541 3.266 19.091 9.779 9.664 5.001 2.654 2.858
LPJ-GUESS 2.579 2.449 2.486 5.026 2.656 4.517 10.034 7.083 6.866 3.749 3.355 2.691
LPJmL 3.814 2.293 2.415 4.247 3.040 2.409 11.954 5.838 5.950 5.869 4.607 5.084
pDSSAT NA 4.053 4.392 NA 4.230 4.971 NA 8.290 7.984 NA 4.246 4.809
PEGASUS 8.125 5.167 5.324 NA NA NA 14.097 11.801 11.825 11.542 6.413 7.182

∗ Emulator approach (a) for pDSSAT only covers warming of up to 3.5 ◦C, i.e. up to 2070 under RCP8.5. NA: not available.

tor approaches, even though the spatial patterns of over- and
underestimation differ.

Using only RCP8.5 instead of all available data to train the
emulators has a detrimental effect on the performance, espe-
cially for approach (a). MAD between emulated and simu-
lated yields increases by a factor of more than 3, even close to
4 for some GGCMs and crops, under RCP4.5. MAD for ap-
proaches (b) and (c) also increases by a factor of more than 2,
although not as sharply as for approach (a) (figures available
in the Supplement). Performance loss is lower for RCP6.0,
with MAD generally less than twice as high. The emulator
trained on RCP8.5 alone shows better performance in emu-
lating RCP8.5-simulated yields than the emulator trained on
all available data.

To get a more comprehensive indication of the perfor-
mance of the emulator for the whole 95-year time se-
ries (instead of just the 2.5 ◦C bin) we use all three ap-
proaches to reproduce simulated changes in crop production
under RCP2.6, RCP4.5, RCP6.0, and RCP8.5, as derived for
10 large-scale world regions. Grid point yields are aggre-
gated to the regions assuming fixed year-2000 land use and
irrigation patterns. Compared to gridded yields, using pro-
duction gives less weight to areas where a crop is not cur-
rently grown. Since none of the emulators are expected to
capture the relatively large inter-annual variability in sim-
ulated yields, we compare simulated and emulated decadal
production and calculate the RMSE over all decades of the
relative difference between emulated and simulated decadal

production (as a percentage) as a measure of the performance
of the emulator.

Of the two approaches that estimate warming and CO2-
induced effects separately, approach (b) generally provides a
better performance than approach (a) (see Fig. 9 for LPJmL,
Table 3 and the Supplement for all crop models, Fig. 10 for a
map of the regions). Performance of all emulator approaches
varies substantially among regions. There are also consid-
erable differences among crop models. For LPJmL, emula-
tor approach (b) provides marginally better performance for
many regions than approach (c). However, this is not con-
sistent across the emulators for the other crop models. Tak-
ing into account that approach (b) requires additional crop
model simulations with fixed CO2 and that performance is
mostly very similar for approaches (b) and (c), the very ba-
sic interpolation approach (c) appears to provide the best
compromise between emulator performance and complex-
ity. Note though that the average difference between emu-
lated and simulated production over the full 95-year time
series is sometimes larger than the simulated production
change in 2091–2099, especially in the low warming sce-
narios (marked by red crosses in Fig. 9). Table 3 compares
the RMSE between emulated and simulated crop production
in the largest producing region of each crop for all five crop
models.

Figure 10 illustrates the performance of emulator ap-
proach (c) in reproducing decadal maize production as sim-
ulated by LPJmL forced by HadGEM2-ES. Emulated yields
generally follow the simulated trends, although large errors
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Figure 9. Root-mean-square difference (as a percentage) between emulated and simulated regional decadal production (yields multiplied by
year-2000 growing areas, combined for irrigated and rain-fed crops) for LPJmL forced by HadGEM2-ES climate projections. The emulator
was built using all available data and used to reproduce yield changes in all four RCPs. For comparison, point symbols illustrate the average
simulated yield change for 2091–2099 (same horizontal axis), using red crosses or blue circles depending on whether the error between
emulated and simulated production is larger or smaller than the simulated change. Simulated yield changes outside the plot range are
indicated by a number in the plot margin. Analogous figures for the other crop models are available in the Supplement.

exist, e.g. in North America, which also stands out in Figs. 9
and 8. Analogous figures for all crops, emulator approaches,
and crop models are available in the Supplement.

Similar to the grid point results, using only RCP8.5 to train
the emulators leads to a performance loss for all emulator
methods and all RCPs except RCP8.5. This performance loss
is larger for approach (a) than approaches (b) and (c), and is

generally highest for RCP4.5 (figures available in the Sup-
plement).

5 Increases in regional crop yield variance

In addition to estimating the yield change associated with a
rise in average temperature, it is important to consider the
implications of rising variance. Climate change is expected
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Figure 10. Comparison of simulated and emulated time series of regionally aggregated crop production changes for LPJmL forced by
HadGEM2-ES climate projections. Results are shown for maize and emulator approach (c). Analogous figures for the other crops, emulator
approaches, and GGCMs are available in the Supplement.

to increase not only the average temperature but also to im-
pact the variance of temperature and precipitation, including
an increase in the frequency and duration of extreme events.
For this reason, when deriving simplified relationships be-
tween yield change and global climate change, it is crucial to
account not only for the mean effects of rising temperature
but also their concurrent implications for crop yield variance.
Inter-annual yield variance can be computed for the same
warming bins as used above for the average yields, which
we do here for all four crops under the “no irrigation” sce-
nario. The variance is calculated separately for the years of
each RCP–GCM–GGCM combination falling into the 2.5◦C
warming bin and compared to the variance of the matching
GCM–GGCM combination over the historical period (1980–
2010).

The global figures show broadly similar patterns across
all four crops: increases in yield variability in much of the
Northern Hemisphere, particularly in North America, cen-
tral Asia, and China, as well as in the southern mid-latitudes
(Fig. 11). The majority of model combinations projects de-
creasing variability in tropical regions (except for rice) as
well as parts of eastern Europe; but nowhere do more than
75 % of the model combinations agree on a decrease in vari-
ability. In several instances increased variability occurs in
highly productive regions such as in China for rice and the
US, Brazil, and Argentina for soy. Wheat also has an in-
creased variability in more than 50 % of the crop model
simulations over the highly productive regions in China and

the US. Such an increase in variability, if realized, could
manifest as impacts on the price, whose volatility is tightly
linked to rapid changes in supply (Gilbert and Morgan,
2010).

6 Summary

Evaluating the impacts of climate change at different lev-
els of global warming, and thus evaluating mitigation tar-
gets, requires a functional link between 1GMT and regional
impacts. Here we have shown that changes in crop yields,
as simulated by gridded global crop models, can be recon-
structed based on 1GMT, with some limitations. The small
spread of simulated yield change across the RCP scenar-
ios as compared to the GCMs and impact models implies
that projected impacts at different 1GMT levels are not sub-
stantially dependent on the choice of emissions pathway. In
this context, it has to be noted that the scenario setup of the
ISIMIP crop model simulations was chosen specifically to
minimize scenario dependency by asking modellers to keep
crop management fixed at the present-day level or adjust it
only in response to climate without any regard to the time
horizons associated with adaptation or economic processes.
Four models are calibrated to match present-day yield lev-
els while LPJ-GUESS simulates potential yields assuming
optimal management. Only two of the crop models allow
for an adjustment of planting dates in response to climate
change (GEPIC and PEGASUS; see Table 1). Three of the
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Figure 11. Percentage of crop model simulations (combination of a single GCM, GGCM, and RCP scenario) in the 2.5 ◦C warming bin
indicating an increase (blue) or decrease (red) in yield variance of greater than 5 % compared to the historical period (1980–2010), for maize,
rice, soy, and wheat under rain-fed conditions. White indicates either a change of less than 5 % or disagreement among the models in the
direction of change. Note that only four out of five GGCMs provided results for rice. An analogous figure for irrigated conditions is available
in the Supplement.

models keep the total heat unit sum to reach maturity con-
stant, assuming no change in crop cultivar, which effectively
leads to a shortening of the growing season. Representation
of soil nutrient limitation varies substantially among models,
with two models (LPJ-GUESS and LPJmL) considering no
soil nutrient limitation at all, while the nutrients considered
and the assumptions on fertilizer application differ among
the other three models. The effects of these assumptions on
yield changes simulated by the different crop models are not
studied here since the focus of this study is on developing
efficient emulators, but these assumptions inform both the
simulated yield changes and the emulators which attempt to
imitate the behaviour of the crop models. The results of the
ISIMIP crop models have been studied in detail in Rosen-
zweig et al. (2014).

We have tested three different approaches for emulat-
ing crop yield change simulated by five GGCMs driven by
HadGEM2-ES climate projections for four RCPs. All ap-
proaches rely on 1GMT as the main predictor of yield
change at the grid scale. Two of the approaches include
pCO2 as an additional predictor. An approach (a) attribut-
ing the yield variation within an individual 1GMT bin of a
simulation with varying pCO2 solely to the change in pCO2
shows the poorest overall performance. An approach (b)
based on the difference between runs with and without direct
CO2 fertilization effects performs similarly well as a simple
approach (c) using only1GMT as a single predictor. Consid-
ering the added complexity in approach (b) compared to (c),
the simple approach (c) appears in general preferable even
though it may not provide the best result in all regions. While
our tests indicate that the emulators perform better for some
crop models than for others we strongly advise against rely-
ing solely on results from any one particular model, but in-

stead to always consider the full range of uncertainty spanned
by the GGCMs. Similarly, different GCMs still account for
more than 15 % of the total variance of the ISIMIP ensemble
at 1GMT= 2.5 ◦C in a number of regions (Fig. 4), which is
why emulators should be constructed for all GCMs.

Given the availability of crop model simulations in the
ISIMIP archive, emulators based on approaches (a) and (c)
could be constructed for all five GGCMs for the remain-
ing four GCMs (IPSL-CM5A-LR, MIROC-ESM-CHEM,
GFDL-ESM2M, NorESM1-M). Emulators based on ap-
proach (b) could only be constructed for LPJmL and
pDSSAT (and PEGASUS if using only RCP8.5 for training).
With its five GCMs, the ISIMIP selection essentially sam-
ples as much of the CMIP5 ensemble uncertainty as is possi-
ble with such a limited subset, but still likely underestimates
the total uncertainty in future climate impacts attributable to
GCMs for many regions (McSweeney and Jones, 2016). The
generally good performance of approach (c) suggests that
simplified predictions of large-scale agricultural yields may
not require additional crop model simulations with CO2 lev-
els held at a historical level if planning to extend the GCM
coverage.

While the emulators are designed to reproduce changes in
average yields, the impact model ensemble assembled in this
study also indicates that the variability in crop yields is pro-
jected to increase in conjunction with increasing 1GMT in
many important regions for the four major staple crops. Such
an increase in yield volatility could have significant policy
implications by affecting food prices and supplies, although
management assumptions as well as model–structural limi-
tations of the GGCMs to account for crop stress factors may
impact the models’ ability to project future changes in vari-
ability.
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The scalability of mean yields is conducive to the develop-
ment of predictor functions relating 1GMT, or other aggre-
gate climate variables readily available from simplified cli-
mate models (such as pCO2), to regional or global mean crop
yield impacts. This lays the groundwork for a further explo-
ration of the economic impacts of climate change encoun-
tered at target warming levels or over policy-relevant regions.

Data availability. The coefficients estimated with Eqs. (1) to (3)
are available as a Supplement, along with supplementary figures and
RMSE estimates, at https://doi.org/10.5281/zenodo.1194045 (Ost-
berg et al., 2018). The GGCM simulations that the analysis in this
paper is based on are available through https://esg.pik-potsdam.de/
search/isimip-ft/ (last access: 7 May 2018), with additional docu-
mentation available on the ISIMIP website https://www.isimip.org/
outputdata/caveats-fast-track/ (last access: 7 May 2018).

The Supplement related to this article is available online
at https://doi.org/10.5194/esd-9-479-2018-supplement.
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