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The appropriate selection of recurrence thresholds is a key problem in app{ ions of recurrence quantification

analysis (RQA) and related methods across disciplines. Here, we discuss.the d1

ibution of pairwise distances

between state vectors in the studied system’s state space reconstrucged by meansiof time-delay embedding
0

as the key characteristic that should guide the corresponding choice
a recurrence plot. Specifically, we present an empirical description
characteristic changes of its shape with increasing embedding di
recurrence threshold according to a fixed percentile of this dis
characteristics on the embedding dimension in comparison. wi
Numerical investigations on some paradigmati

methods.
support these empirical findings.

aining an adequate resolution of
istance distribution, focusing on
ur results suggest that selecting the
es the dependence of recurrence
Other“eommonly used threshold selection
tem with time-dependent parameters

model

)
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sualizing the (potentially multi-dimensional) tza.

formation from observations is hampered by the

Recurrence plots provide an intuitive tool for vv\i‘td ‘a"ﬁplications, however, inferring complete dynam-
- ical

jectory of a dynamical system in state space.
case only univariate observations of the sy

that only some of the dynamically relevant vari-
In such cases, it has

mi\z&bles are directly observable.
overall state are available, time-delay embeddi een demonstrated! that it is possible to qualitatively

has become a standard procedure for
tively reconstructing the dynamics in state
The selection of a threshold distan i
distinguishes close from distant pairs \%sg:
structed) state vectors, is known

stantial impact on the recurrence
quantitative characteristics, but its correspond-
ing interplay with the embédding“dimension has
not yet been explicitly addressed. re, we point
out that the results of Qé a elated meth-
ods are qualitatively rebust/under changes of the
imension only if
the full distribution of p istances between

state vectors is najrere r selecting ¢, which
is achieved by consideration of a fixed recurrence
rate. Z

v,

-

I. INTRO CTIOb

A végtor tir? series {#;}, (with #; = #(¢;)) provides

unation of a specific trajectory of a given dy-
s‘}%tem in finite-time and (for time-continuous
cal “systems) finite-resolution. In many real-
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reconstruct representations of the unobserved compo-
nents of a higher-dimensional system by means of em-
bedding techniques applied to a suitably chosen individ-
ual component?. Specifically, time-delay embedding has
become a widely utilized method in nonlinear time series
analysis, where a series of univariate observations {z;}
(the actual time series at hand) is unfolded into a se-
quence of m-dimensional state vectors {Z; }1*3 defined as
T = (i) Tiery - -« ,xi,(m,l)T)T, where m and 7 denote
the chosen embedding dimension and embedding delay,
respectively.

Introduced by Eckmann et al, recurrence plots (RPs)
provide a versatile tool for visualizing and quantitatively
analyzing the succession of dynamically similar states in
a time series. For this purpose, dynamical similarity is
measured in terms of some metric distance d; ; = ||Z; —
Zj|| defined in the underlying system’s (reconstructed)
state space. Based on the resulting distance matrix d =
(dij), a recurrence matrix R = (R; ;) is defined as a
thresholded version such that its entries assume values
of 1, if the distance between the two associated state
vectors is smaller than or equal to a threshold ¢, and 0
otherwise:

1: d;;<e .
Ri,j(s){o_ d-j- . ,7=1,..,N. (1)
©odi ,

Equivalently, we can write

R; j(e) = O(e — d; 5),
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I: ©(-) is the Heaviside function. In this definition, also changes with increasing embedding dimension (see
thre ,hold ¢ is fixed with respect to all pairwise dis- Fig. (1| and further discussions in Section .
Publ lﬁh&&g{ ontained in d, and we will focus only on this

kind ot threshold apphcatlon throughout this paper. An
alternative definition of the recurrence matrix®®, which
shall not be further considered in this study, replaces the
global, fixed recurrence threshold ¢ applied to all state
vectors T; by an adaptive local one that is defined such
that the number of recurrences (i.e., close state vectors) is
the same for each Z; (fixed amount of nearest neighbors )%,
leading to a constant local recurrence rate.

According to the above definition, for a given time se-
ries the recurrence matrix depends on the chosen recur-
rence threshold e together with the selected norm || - ||
used for defining pairwise distances between the state
vectors. In this work, we will restrict ourselves to two of
the most commonly used norms: the Euclidean (L2) and
maximum (L., supremum, Chebychev) norms. Specifi-
cally, we will study how the distributions of pairwise Lo
and L., distances depend on the embedding dimension.

Previous studies have provided various complementary
suggestions for (i) selecting the right method of deter-
mining the recurrence threshold and (ii) choosing its
actual value in some automatic way based on the sp

ing approaches include the spatial extent of the trajec-
tory in the (reconstructed) state spaceé™ signal tomois
ratio?™9 the specific dynamical system undexlying t

cific properties of the system under study. Correspohg\

time series under investigation®L, or propertieg ofsthe
associated recurrence network™ 13 with adjdcency trix"
A;j = R; ; — 6;; (with 6; ; being the Krone symbol)
like the percolation thresholdﬂl’Im second, smallest eigen-
value of the graph’s Laplacian®, breakdeowyn scal-

ing of the average path length™, or informatien-theoretic
characteristics”. In practice, t ropriate ‘choice of
the method for determining theé\zecurrenge threshold, as
well as its resulting value itself, can'dgpend on the specific
problem under study and t@ke any of*the above criteria
or even some multiple-objective considerations based on
different criteria into agcount. lis end, a general so-
lution to the second robNelecting a specific value
of € has not yet begn obtiained, and we will also not ad-
ifically in the course of the present
empting to provide some fur-
more conceptual problem set-
of dpproach for selecting recurrence

ken in case of varying situations
edding dimensions).

ther 1n81ghts in
ting (i.e.,
thresholds

hould be

e will f r detail in the course of this paper,
cviously suggested approaches® 71018 t6 Jink a re-
-eshold to a certain percentage of the maximal
istance of all pairwise distances of state vectors
a’ given fraction of the attractor’s diameter in the
reconstyucted state space) cause the resulting recurrence
characteristics to strongly depend on the embedding di-
mension. The reason for this behavior is that in addition
to a general increase of distances™ (depending on the
chosen norm ), the shape of the distance distribution

It should be noted that embedding a time series with
m ~ O(10!) or even larger can become necessary when
the correlation dimension Dy of the attractor is rather
large. This is due to the fact that Takens’ theorem
(and several extensions thereof) guarantee the existence
of a diffeomorphism between the original and the recon-
structed attractor if m gatisfies m > 2D, + 11520, Heg-
ger et al2l emphasiz(6 1at it is also advisable to choose
a rather high value.o Mﬁ dealing with time series
originating from Djunen ignal deterministic system
that is driven by "R sléwly time dependent parameters.
servative choice for m then ful-

ries amalysis, one commonly deals with
ting frem complex, non-stationary systems
ercfore, high embedding dimensions can become
Iy, req%iring threshold selection methods which

bust/results of RQA and related state space

reasing embedding dimension on the shape of the
ce distribution in more detail. We deduce that,
in order to avoid problems arising due to an unfavor-

le fixed recurrence threshold when varying m, we could
choose € as a certain percentile of the distance distribu-
tion rather than a certain percentage of the maximum
or mean phase space diameter. Successively, Section [IT]
presents a numerical example of a classical Lorenz-63 sys-
tem with a time-dependent parameter, illustrating that
the changes in some recurrence characteristics with vary-
ing embedding dimension are particularly small under a
fixed recurrence rate in comparison with other strategies.
Finally,the main results of this study are summarized in

Section [[V1

Il. INFLUENCE OF EMBEDDING DIMENSION ON
THE DISTANCE DISTRIBUTION

Let us consider a univariate time series {x;} of length
N. As an overarching question, we study the effect of
time-delay embedding on the distribution of all pairwise
distances of its reconstructed state vectors. The variation
of this distribution with increasing embedding dimension
m is expected to depend on the chosen norm used for the
calculation of distances. Note that the effective num-
ber of state vectors Neg(m) = N — (m — 1)1 available
for estimating the probability distribution of distances in
m dimensions will decrease with m. In order to avoid
sample size effects in comparing the results for differ-
ent m, we therefore choose N sufficiently large so that
1 — Neg(my)/N < 1, where my is the largest considered
embedding dimension.


http://dx.doi.org/10.1063/1.5024914

| This manuscript was accepted by Chaos. Click here to see the version of record. |

A +«10* Embedded uniform random numbers (Euclidean norm) B +10* Embedded uniform random numbers (Maximum norm)
i 25 T T T T T T 25 T T T T T T
I =1 -
P b I H h H I =3 ]
ublisning i mes

I =40 |

o
"
o

frequency
frequency

’ ‘I‘I\Im.“

"y
i '"""l‘lu.‘
(! My
\ Ny,

0 2 4 6 8 10 12 0.5 1 1.5 2 25 3
distances istances

c «10* Embedded ian random i norm) D 104 Ln random numbers (Maximum norm)
25 T 35 T T T T T

T T T T T
-1 . |-
N m=3 I =3

im=6

I m=40

frequency
&

3
distances

0 2 4 6 8 4

distances

E 6 10° Lorenz gradual chaotic-regular (| F 6 %10° Lorenz gradual chaotic-regular (Maximum norm)
T T T T T T T T T
. =1
. =3
[ m=6
I =40 ]
4 E J
g g
g 5
33 g 53 E
o o
o [
- -
2 L 2 B
1 B
0 1 2 3 4 5
distances distances

. l‘§a$!«)graurns of the Ly (A,C,E) and L (B,D,E) distances of N = 1,500 independent random numbers with

nd Gau551an (C,D) distribution as well as (E,F) for the y component of the Lorenz-63 system (Eq. .,
se ectlon with control parameters o = 10, 8 = 8/3 and r linearly increasing from 180 (chaotic regime) to
gime), for different embedding dimensions m.

A. Maximum norm wise L., distances, dmgc, stays constant with increas-
ing embedding dimension, whereas the mean of all
Numerical results for different types of systems demon- pairwise Lo distances, dmzﬂla monotonically increases

strate (see Appendix that the largest of all pair- with m (Fig. [3). In order to understand this observa-


http://dx.doi.org/10.1063/1.5024914

For the squared Lo distance, this implies:

This manuscript was accepted by Chaos. Click here to see the version of record. |
‘ s ItPre« all that the L., distance between two embed- i is i i

tate vectors ¥; = (%,1,%,27 cee

Pubh@ljl INg,. ... z;m)7 is

,Tim)T and T; =

17 = Zjlloc = max |y —zjx| = A (m)  (3)

Lo

For m = 1 (i.e., no embedding), the distance between
two observations at times t; and t; therefore is simply

dg?)(l) = |z; — xj|. For m = 2, we find
d§?)(2) = max{|x; — x|, |[Tiyr — 247}

= max {d) (1), Js1- = 254-1} > AT (1),
(4)

By induction, we can easily show that

(0) )
d; :>]O (m) = max {dgzo (m — 1), |xi—(m—1)7— — zj—(m—1)7-|}
and therefore
d; >’ (m) > d; ;" (m —1) Ym > 1. (5)

Hence, considering all possible pairs of state vector 7
(@3, Z;) from the time series, the largest Lo, distance

[dz(,zj)(l)r = (2 —x5)°

[d2@) = @ -2 + (@0

— )

using the Lo norm. Specifically, un-
1e maximum L, distance between two

- @]akxﬂﬁ —dm)  (9)

() (1) = max[d(] )( 1)] = max[d(oo)( ) = dmo?l (m Nlat by the same argument as above,

max i,J

,J ’ ,J

cannot change with m, since the largest aximbiis\

(=) (m) = ———

mean

.. Y, 3
ith m stays at most
reases, smaller dis-

easmg variance. We con-
he distribution of d(>) (m) will
istribution (see below) possibly
ing delay 7.

constant. More specifically,
tances systematically dlsa
tribution is Systematlcal hi
maximum, thereby be

increasing mean alo
jecture that, for large m,
converge to a li
depending on

ith

Ly (Euclidean) norm, both mean
imum of all pairwise distances (d,(qz)ean(m) and
ectlvely) monotonically increase with ris-

),

, AAppendix |A] Fig. . This can be understood
: The L, distance between two points in an
m-dimensional state space, &; and &}, is given as

" )
||f¢—fj||2=(z|xi,k— 2) —i®m)  (6)
k=1

P
(@D m+ 1) = [d) )], (10)
implying again a monotonic increase of mean and maxi-
mum distances with rising embedding dimension (recall
the positive semi-definiteness of distances and p).

C. Changing shape of distance distribution with increasing
embedding dimension

Building upon our previous considerations and numer-
ical results, a mathematically more specific yet challeng-
ing question is how exactly an increasing embedding di-
mension m is affecting the shape of the distribution of all
pairwise distances rather than just its central tendency
(mean).

For the maximum norm, one may argue that the in-
dividual components of each embedded state vector are
commonly constructed such that they are as indepen-
dent as possiblé?Z. Accordingly, for a system without
serial correlations (i.e., uncorrelated noise), the absolute
differences d = d(°°)(1) between the components of two
state vectors are also independent, identically distributed
(i.i.d.) and lie within the interval [0, dpmqz]. In such case,
for sufficiently large m, the pairwise L, distance between
two state vectors can be interpreted as the maximum of
m i.i.d. variables that are bounded from above, which
should follow a reversed Weibull distribution according
to the Fisher-Tippett-Gnedenko theorem from extreme
value statistics. Note, however, that this expectation is
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‘ s I;I only if m is sufficiently large and the i.i.d. assump-
ihn is (approximately) fulfilled, both of which do not

PUbI|§e H;l;gt ly have to be the case for real-world time series.
ioreover, it is not guaranteed that the given distance
distribution in one dimension lies within the domain of
attraction of the reversed Weibull class?3, which calls for
further theoretical investigation in each specific case.

For other L, norms including the Euclidean norm, the
aforementioned considerations do not apply. Instead, for
any L, norm with p < oo,

e the pairwise distances dP are of the form (3, zF)1/?
(i=1,...,m) as given in Eq. (ED with approximately
i.i.d. variables z;.

e From the central limit theorem it follows that the
distribution of dP is approximately a normal distri-
bution with mean and standard deviation growing
proportionally with m and /m, respectively, for
large m.

e The coefficient of variation of dP thus declines ap-
proximately as ~ 1//m.

e For large m, also d = (d?)'/? is approximatel

viation growing approximately as ~ m!/? and

dz!/? 1/p—1 _ . 1/p—1/2
meE lomm ~ /mm /Pt = /=12,

normally distributed with mean and standard %\

for dP.

e As a consequence, the relative v
rows in the same fashion for all p

m depends on p (“curse offimengionality”19).
The considerations made explain the numer-
ical results in Fig. |1} showing histograms of the distances
of three different time fries T se;e’cted values of the

embedding dimension d for Lo and Lo, norms.
In addition to time géries fulfilling the i.i.d. assumption
e are

Iso interested in deter-

an illustrative example, we choose
(Eqw(11), Fig.[] E,F) in some non-
'parz&ﬁ)‘uer) setting, which will be fur-

gard, it is'confirmed that the expectation
istance distribution takes higher values with
probability to find small distances
therefore decréases. In case of the Lo, norm (Fig.

D,F), this growth is bounded and we can identify a
conyergence of the distribution, in some cases eventu-
ally Waa% the aforementioned reversed Weibull distri-
N In turn, for the Lo norm (Fig. [I| A,C,E) the
convergence towards a normal distribution is discernible.
Considering the Lorenz-63 time series (Fig. [1] E,F), the
empirical expectations are approximately met by the ob-
servations, even though the distribution of L., distances

value

e The coefficient of variation of d thus be mwe.bap—
proximately as ~ m/P=1/2 /ml/P = 1/, /mNjust as.

exhibits a slightly more complex (i.e., less symmetric)
shape than for the two noise series. Specifically, for the
L5 norm the resulting distance distribution is left-skewed
with a pronounced lower tail (see Fig. |l| E), whereas for
the Lo, norm we observe a disturbed Weibull-like shape.
Notably, the i.i.d. assumption is violated when dealing
with such a deterministic dynamical system. For a more
detailed characterization of the shape of the empirically
observed pairwise distance distributions shown in Fig.
see Appendix

In general, we emphasize that it is not straightforward
to analytically degéribe the shape of the distance distri-
bution of an embedded time series stemming from an
stem with potentially nontrivial

sticcesslve concentration and

(ii) 1@ arying shape of the distribution of distances

withyincreasing embedding dimension. The first aspect
ould be accounted for by relating the threshold selection
to the spatial extent of the state space object (attractor),

L ““lgimilar as, for instance, suggested by Abarbanel?# in the

context of the false nearest neighbor algorithm. However,
our findings suggest that accounting for the second point
is key to an appropriate recurrence threshold selection
method that relieves the effects of the embedding dimen-
sion on the recurrence properties as much as possible. As
a simple possible solution, we recommend to use a numer-
ical estimate of a certain (sufficiently low) percentile of
the distance distribution as threshold This ap-
proach considers both above mentioned effects and leads
to a constant global recurrence rate (which equals the
chosen percentile). As a result, the recurrence properties
become much less dependent on the embedding dimen-
sion and chosen norm than when using other methods,
as we will exemplify in the following section.

We emphasize that in addition, by conserving the re-
currence rate, possible dependences of RQA character-
istics on the density of recurrences for different m are
omitted, and corresponding residual changes of these
measures upon varying m could rather point to either
insufficiently low embedding dimension (missing essen-
tial factors contributing to the system’s dynamics, in
a similar spirit as, e.g., for the false nearest neighbor
method) or spurious recurrence structures arising from
overembedding?®. These ideas should be further studied
in future work.

11l. NUMERICAL EXAMPLE

In this section, we will demonstrate the effect of the
varying shape of the distance distribution with increas-
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l; bedding dimension on different threshold selection
.approaches working with a globally fixed value of €. In
PUb“& éng) mimic a practically relevant test case of a non-
stationary low-dimensional dynamical system, where we
should use some higher embedding dimension (following
Hegger et al*l) instead of a more moderate choice, we
consider the classical Lorenz-63 system?28

& = o(y—u)
g =z(r—z)—y (11)
z = zy— Pz

Depending on the parameters o, 8 and r, the system
exhibits either regular or chaotic dynamics. Here, we con-
sider a transitory setting, where the parameter r grad-
ually increases from 180 to 210 while keeping 8 = 8/3
and o = 10 fixed. In this case, the system undergoes
a transition from a chaotic regime into a regular (limit
cycle) phase as r rises before it exhibits again a chaotic
behavior. Note again that instead of studying the sta-
tionary Lorenz-63 system for different values of r, we
intentionally employ a gradual parameter change lead-
ing to a non-stationary system which calls for a system-
atic overembedding when performing nonlinear time se-
ries analysis?l. Specifically, we implement a linear vari
tion of r as

r(tis) = 180 4 2.5 - 10~ %t

tegration step of ¢s = 0.001 and a tota
iterations. Therefore, we simulate the syste
over 1,300 time units (t.u.). By using
of 6t = 0.2 t.u. we obtain 6,500 samples

the first 500 points (=100 t.u.) tha 1d be affected by
transient dynamics and retain theremaining 6,000 points
ent forfurther analysis.

(£1200 t.u.) of the y comp
, Eq. , with

We integrate the Loren
the linear parameter (;I?Age, f (@ , 1,000 times with

randomly chosen initial conditionsy embed the y compo-
nent time series usi dtb\? 4, consistent with the
first local minimu of@ mutual information®2, and as-
sess the resulting’R or each of these 1,000 RPs, we
use a running indyzv a their main diagonal with a
window size of 400 jag;d mutual shift of ws = 40 data
etween consecutive windows, to
the time-dependence of the result-
characteristics. We repeat this procedure
nsions ranging from m = 3 tom = 10
erent threshold selection methods: (i) a
tile of the distance distribution (as recom-
our theoretical considerations in Section
I"as some fixed percentage of the (ii) maximum,
(iii) mean and (iv) median pairwise distances between
all state vectors in the reconstructed state space, respec-
tively.
Since we are aiming to study the change of recurrence
properties associated with a transition between chaotic

and periodic dynamics and vice versa, we choose the re-
currence time entropy (RTE). Here, instead of using the
diagonal or vertical “black” (recurrence) lines in the RP
as in most “conventional” RQA measures, we use “white”
(non-recurrence) vertical lines with lengths ¢,,, as they
correspond to recurrence times. In general, such recur-
rence times can be estimated directly from the RP in dif-
ferent ways2Z0, among which the vertical non-recurrence
lines offer a particularly simple estimator. The normal-
ized entropy of the (%ribution of recurrence times, re-
ferred to as the recufre period density entropy® and
originally introdu d'\}itho any direct link to RPs, is

given as

RTE p(tw) Inp(ty,) € [0,1] (13)

Tmax ’“}:1
. the probability of a recurrence time t,,
st recurrence time. Using RPs, it is

o estimate p(t,,) from the histogram of recur-

w)s as P(ty) = %, i.e., as the prob-

ability t‘o}md a white vertical line of exactly length ¢,
the RP. It can be shown that RT'E is closely linked to
olmogorov-Sinai (KS) entropy of the system under

4~

e choose the actual recurrence threshold for each

(ul\t.hreshold selection method (i)-(iv) such that a global re-

currence rate of RR ~ 4% is achieved in all four cases for
m = 3. Therefore, for each embedding dimension we ob-
tain a distribution of 1,000 RT'E time series and show the
mean (blue lines in Fig. together with the two-sided
90% confidence interval ([5%,95%)], gray shaded areas).
In order to put these time dependent RTE estimates of
the non-stationary Lorenz-63 system into a context, we
consider a reference reflecting the time-dependent RTE
values directly computed from the true three-dimensional
state vectors without embedding, using otherwise the
same analysis strategy (window size and overlap) as for
the embedding scenario. Thus, for each point in time we
obtain 1,000 reference measurements and consider the
mean (red line) and the two-sided 90% confidence inter-
val (red shaded area in Fig. [2)).

The robustness of the observed time-dependence of
RTE with respect to the chosen embedding dimension
when using a fixed percentile of the distance distribution
(i.e., a fixed recurrence rate) is shown in Fig. [2]A (here we
used the Ly norm, but the results are similar when us-
ing the Ly, norm). For any embedding dimension larger
than m = 4, the variations of the RTE estimates orig-
inating from the embedding procedures match the red
reference time series within its uncertainties for times
t 2 200. For adequately revealing the chaotic regime
in the first part until ¢ ~ 160, an embedding dimension
larger than m = 7 seems to be inevitable, whereas results
from any embedding dimension coincide with the refer-
ence estimate within its uncertainties at the limit cycle
regime (1,000 < ¢ < 1,080). In case of not using the rec-
ommended threshold selection method, this robustness
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certain percentile of the distance distribution and some percentage of the

a
(B) maximum, (C) mean and (D) median dista; gﬁ% n state vectors on the reconstructed attractor. The actual threshold
ly

values (4th percentile, 8%, 24% and 24%,
4% is achieved for each method in the em
from 1,000 independent realizations of the non-
all three components as state varia
from the respective ensembles.

is clearly lost (Fig. [2B,

afﬁd ?ly the limit cycle
regime (plus some shor

efore) are properly
in the reconstructed
state space.

Considering t
failure of the
median) of the pairwise dis-
n state vectors for higher em-
the change in the shape of that

ix [C] demonstrates this effect on the
some xgore detail. Hence, we argue that selecting

threshold at some percentile of the dis-
istribution is to be preferred if we aim to obtain
esults for a broad range of embedding dimensions,
; the case if we wish to automatically choose fixed
recurrence thresholds for the analysis of arbitrary com-
plex systems.

We note that the presented example has focused on a
recurrence characteristic that is particularly well suited

ave been chosen such that the global recurrence rate of approximately
1 cenario with m = 3. The red line shows the reference time series gained
tionary Lorenz-63 system by randomly choosing initial conditions and using
s (gray and red) indicate the two-sided 90% confidence intervals estimated

for detecting transitions between chaotic and periodic dy-
namics and is linked to a dynamical invariant. Other re-
currence characteristics, like classical RQA measures or
recurrence network characteristics, have been found to
exhibit less stable variations with changing embedding
dimension (not shown) and are therefore not further dis-
cussed here. Clarifying the reasons for the different be-
haviors of different recurrence characteristics will be an
important subject of future work.

IV. CONCLUSIONS

We have discussed the changing shape of the distribu-
tion of pairwise distances between state vectors obtained
by time delay embedding with increasing embedding di-
mension and its implications for different methods for
selecting temporally fixed recurrence thresholds. While
specific values of the recurrence threshold should always
be chosen based upon a multitude of criteria ranging
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.geometric characteristics of the associated trajectory, we
PUb|I§JMJII& vided both empirical arguments and numerical
indications that selecting the recurrence threshold at a
prescribed percentile of the distance distribution (i.e.,
conserving the global recurrence rate) results in quan-
titative recurrence characteristics that are more stable
under changes of the embedding dimension than when
using alternative approaches. In the latter context, we
have demonstrated that measures from RQA and related
frameworks may exhibit a crucial dependence on the em-
bedding dimension when selecting the recurrence thresh-
old according to a certain percentage of the mean or max-
imum state space diameter, as sometimes suggested in
other works™0, This also indicates that some alterna-
tive approaches, such as normalizing the time series and
applying a uniform threshold independent of the embed-
ding dimension and the considered norm®®, are not likely
to perform well for any kind of data, when neglecting the
effect on the distance distribution with increasing embed-
ding dimension.
At the conceptual level, our general discussion of the
changing shape of distance distributions with embedding

dimension has led to some interesting follow-up questio vars
associated with the convergence properties of these dis- _—

tributions at high embedding dimensions, which shou
be further addressed in future studies. Notably,

lationship between the distribution of L., distances

—

Taken together, the re esented in this work are
important for autornati@?lJ the prgblem of data-adaptive
recurrence threshold se Mhl h is key for further
widening the scop ot‘?plica ions of recurrence plots,
recurrence quantification/analysis and related techniques
s. Especially in the context of
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Appendix A: Influence of embedding dimension on the
variations in the maximum and mean pairwise distances

As discussed in Section [T}, we show some numerical re-
sults illustrating the general behavior of mean and maxi-
mum L., and Lo distances for different types of systems
in Figs. 3] and [4] respectively. For a theoretical explana-
tion of the observed changes with increasing embedding
dimension, see Section [[I}

Appendix B: Empirical shape parameters of the distance
distributions for different systems

In order to further characterize the shape of the em-
pirically observed pairwise distance distributions shown
in Fig. [1]in more detail, we consider two standard char-
acteristics from descriptive statistics. On the one hand,
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the skewness

1 Ng 7
M- .

(Jowmo-m)

of the distribution measures its asymmetry arou
sample mean distance d. On the other hand, we St
the associated Shannon entropy

providing an integral measure of the hetero
distribution of d. Here, j enum the bins'of a his-
» bins“and relative fre-

in the sample (i.e., the nu
the distance matrix d,
width has been selecte
value according to th

aussian and uniform distri-
d Np,r.. = 286, while for the

701 and Ny = 771.

e corresponding normalization, h as-
of one in case of a uniform distribu-

.p; =1/Ny Vji=1,..., Ny, ie., for each

'bta ce within [din, dmaz]). In turn, the more

time series dra
butions, Nylpse=

shows the resulting behavior of both char-
acteristics for the Lo (panels A,C,E) and Lo (panels
B,D,F) distances obtained from uniform and Gaussian
distributed noise as well as for the non-stationary Lorenz-

63 system (Eq. , see Section in dependence on the

je

embedding dimension. The results complement the quali-
tative description based on a visual inspection of Fig.[1|as
given in Section[[T] In case of the Ly norm and time series
drawn from uniform and Gaussian distributions (Fig.
A,C) we observe the skewness converging towards zero
(symmetric Gaussian distribution) and the entropy re-
flecting this convergence towards a normal distribution
by a downward trend until the skewness approaches zero
as m further increases. s Although the theoretically pre-
dicted Gaussian shap or high m is visually apparent in
case of the time ser s the Lorenz-63 system (see
Fig. || E), the sk ta clearly non-zero negative
values while the 11‘:0;}/ constantly decreases with in-
creasing m, indicating an asymmetric shape (Fig. 5| E).

orenz system

For Mfurther illustrating the RPs resulting from the
tlm dependent Lorenz-63 system discussed in Sec-
ion we show here the results for just one example tra-
ry corresponding to a set of randomly chosen initial

nditions z(0) = 0.9649, y(0) = 0.1576, z(0) = 0.9706.
As before, we embed the y component time series and
study the RP for each previously discussed threshold se-
lection method. Then, we use a running window over
each (global) RP with a window size of w = 400 and
mutual shift of ws = 40 data points, i.e., 90% overlap
between consecutive windows.

The RPs and the associated time-dependent recur-
rence characteristic RT'E (Eq. ) for a “normal” three-
dimensional embedding with time delay 7 = 4, consistent
with the first local minimum of the mutual information?2,
are shown in Fig. [6] using the Euclidean norm. We
compare the results for four different threshold selec-
tion methods but similar effective threshold values (cor-
responding to a global recurrence rate of RR ~ 4%),
which are thus expected to give comparable results. The
left panel corresponds to the recommended method of
taking a certain percentile of the distance distribution,
while the other three panels are based on thresholds se-
lected according to some percentage of the maximum,
mean and median distance of state vectors on the at-
tractor in the reconstructed state space. Comparing the
different panels, as expected there are hardly any marked
differences in the RPs or the temporal changes of RTE.
The transition from a chaotic regime into a periodic one
is well reflected by a constantly decreasing RTE, which
takes its minimum for the limit cycle behavior between
t1 =~ 1,000 and t; =~ 1, 080.

However, if choosing a higher-dimensional embedding
(e.g., m = 10) motivated by the non-stationarity of the
system, the RP becomes almost completely white if the
recurrence threshold is chosen based upon the same per-
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centages of the maximum, mean or median state space
distances as used before (Fig.[7)). In this case the RTE is
still able to detect the transitory limit cycle regime, but
one looses information about the chaotic regime before.
In contrast, we retain the same density of recurrences
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red) and Shannon entropy (blue) of the Ly (A,C,E) and L (B,D,F) distances of N = 1,500 independent
rﬁé)rm (A,B) and Gaussian (C,D) distribution and (E,F) the y component of the Lorenz-63 system

= 6,000, see Section with control parameters ¢ = 10, 8 = 8/3 and r linearly increasing from 180 (chaotic
peri&:‘ic regime) as a function of the embedding dimension m. For the two noise series, box plots show the
ityestimated from 1,000 independent realizations for each data set, using a random number generator. In case of the
the variability is estimated from 10 independent realizations of the non-stationary Lorenz-63 equations with

and, hence, resolution of the RP as for m = 3 when fixing
the threshold according to the whole distance distribu-
tion (left panel in Fig. [7). Here, the overall behavior of
RTF from the lower-dimensional (m = 3) case is qualita-
tively retained, although the periodic regime is less well
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