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The appropriate selection of recurrence thresholds is a key problem in applications of recurrence quantification
analysis (RQA) and related methods across disciplines. Here, we discuss the distribution of pairwise distances
between state vectors in the studied system’s state space reconstructed by means of time-delay embedding
as the key characteristic that should guide the corresponding choice for obtaining an adequate resolution of
a recurrence plot. Specifically, we present an empirical description of the distance distribution, focusing on
characteristic changes of its shape with increasing embedding dimension. Our results suggest that selecting the
recurrence threshold according to a fixed percentile of this distribution reduces the dependence of recurrence
characteristics on the embedding dimension in comparison with other commonly used threshold selection
methods. Numerical investigations on some paradigmatic model system with time-dependent parameters
support these empirical findings.

PACS numbers: 05.45.Tp, 05.90.+m, 89.75.Fb

Recurrence plots provide an intuitive tool for vi-
sualizing the (potentially multi-dimensional) tra-
jectory of a dynamical system in state space. In
case only univariate observations of the system’s
overall state are available, time-delay embedding
has become a standard procedure for qualita-
tively reconstructing the dynamics in state space.
The selection of a threshold distance ε, which
distinguishes close from distant pairs of (recon-
structed) state vectors, is known to have a sub-
stantial impact on the recurrence plot and its
quantitative characteristics, but its correspond-
ing interplay with the embedding dimension has
not yet been explicitly addressed. Here, we point
out that the results of RQA and related meth-
ods are qualitatively robust under changes of the
(sufficiently high) embedding dimension only if
the full distribution of pairwise distances between
state vectors is considered for selecting ε, which
is achieved by consideration of a fixed recurrence
rate.

I. INTRODUCTION

A vector time series {~xi}Ni=1 (with ~xi = ~x(ti)) provides
an approximation of a specific trajectory of a given dy-
namical system in finite-time and (for time-continuous
dynamical systems) finite-resolution. In many real-

a)Electronic mail: hkraemer@pik-potsdam.de, hkraemer@uni-
potsdam.de

world applications, however, inferring complete dynam-
ical information from observations is hampered by the
fact that only some of the dynamically relevant vari-
ables are directly observable. In such cases, it has
been demonstrated1 that it is possible to qualitatively
reconstruct representations of the unobserved compo-
nents of a higher-dimensional system by means of em-
bedding techniques applied to a suitably chosen individ-
ual component2. Specifically, time-delay embedding has
become a widely utilized method in nonlinear time series
analysis, where a series of univariate observations {xi}
(the actual time series at hand) is unfolded into a se-
quence of m-dimensional state vectors {~xi}1,3 defined as
~xi = (xi, xi−τ , . . . , xi−(m−1)τ )T , where m and τ denote
the chosen embedding dimension and embedding delay,
respectively.

Introduced by Eckmann et al.4, recurrence plots (RPs)
provide a versatile tool for visualizing and quantitatively
analyzing the succession of dynamically similar states in
a time series. For this purpose, dynamical similarity is
measured in terms of some metric distance di,j = ‖~xi −
~xj‖ defined in the underlying system’s (reconstructed)
state space. Based on the resulting distance matrix d =
(di,j), a recurrence matrix R = (Ri,j) is defined as a
thresholded version such that its entries assume values
of 1, if the distance between the two associated state
vectors is smaller than or equal to a threshold ε, and 0
otherwise:

Ri,j(ε) =

{
1 : di,j ≤ ε
0 : di,j > ε,

i, j = 1, ..., N. (1)

Equivalently, we can write

Ri,j(ε) = Θ(ε− di,j), i, j = 1, ..., N, (2)
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where Θ(·) is the Heaviside function. In this definition,
the threshold ε is fixed with respect to all pairwise dis-
tances contained in d, and we will focus only on this
kind of threshold application throughout this paper. An
alternative definition of the recurrence matrix4,5, which
shall not be further considered in this study, replaces the
global, fixed recurrence threshold ε applied to all state
vectors ~xi by an adaptive local one that is defined such
that the number of recurrences (i.e., close state vectors) is
the same for each ~xi (fixed amount of nearest neighbors)4,
leading to a constant local recurrence rate.

According to the above definition, for a given time se-
ries the recurrence matrix depends on the chosen recur-
rence threshold ε together with the selected norm ‖ · ‖
used for defining pairwise distances between the state
vectors. In this work, we will restrict ourselves to two of
the most commonly used norms: the Euclidean (L2) and
maximum (L∞, supremum, Chebychev) norms. Specifi-
cally, we will study how the distributions of pairwise L2

and L∞ distances depend on the embedding dimension.

Previous studies have provided various complementary
suggestions for (i) selecting the right method of deter-
mining the recurrence threshold and (ii) choosing its
actual value in some automatic way based on the spe-
cific properties of the system under study. Correspond-
ing approaches include the spatial extent of the trajec-
tory in the (reconstructed) state space6,7, signal to noise
ratio7–10, the specific dynamical system underlying the
time series under investigation8,11, or properties of the
associated recurrence network12,13 with adjacency matrix
Ai,j = Ri,j − δi,j (with δi,j being the Kronecker symbol)
like the percolation threshold14,15, second smallest eigen-
value of the graph’s Laplacian16, breakdown of ε−1 scal-
ing of the average path length14, or information-theoretic
characteristics17. In practice, the appropriate choice of
the method for determining the recurrence threshold, as
well as its resulting value itself, can depend on the specific
problem under study and take any of the above criteria
or even some multiple-objective considerations based on
different criteria into account. To this end, a general so-
lution to the second problem of selecting a specific value
of ε has not yet been obtained, and we will also not ad-
dress this problem specifically in the course of the present
paper. Instead, we are attempting to provide some fur-
ther insights into the first, more conceptual problem set-
ting (i.e., which type of approach for selecting recurrence
thresholds should be taken in case of varying situations
such as different embedding dimensions).12–14,17

As we will further detail in the course of this paper,
some previously suggested approaches6,7,10,18 to link a re-
currence threshold to a certain percentage of the maximal
or mean distance of all pairwise distances of state vectors
(i.e., a given fraction of the attractor’s diameter in the
reconstructed state space) cause the resulting recurrence
characteristics to strongly depend on the embedding di-
mension. The reason for this behavior is that in addition
to a general increase of distances19 (depending on the
chosen norm)18, the shape of the distance distribution

also changes with increasing embedding dimension (see
Fig. 1 and further discussions in Section II).

It should be noted that embedding a time series with
m ∼ O(101) or even larger can become necessary when
the correlation dimension D2 of the attractor is rather
large. This is due to the fact that Takens’ theorem
(and several extensions thereof) guarantee the existence
of a diffeomorphism between the original and the recon-
structed attractor if m satisfies m > 2D2 + 11,5,20. Heg-
ger et al.21 emphasize that it is also advisable to choose
a rather high value of m when dealing with time series
originating from a D-dimensional deterministic system
that is driven by P slowly time dependent parameters.
An appropriate yet conservative choice for m then ful-
fills m > 2(D + P ). Concerning practical applications of
nonlinear time series analysis, one commonly deals with
signals originating from complex, non-stationary systems
and, therefore, high embedding dimensions can become
necessary, requiring threshold selection methods which
lead to robust results of RQA and related state space
based techniques that are robust under different choices
of the embedding dimension.

In the following Section II, we study the influence of
an increasing embedding dimension on the shape of the
distance distribution in more detail. We deduce that,
in order to avoid problems arising due to an unfavor-
able fixed recurrence threshold when varying m, we could
choose ε as a certain percentile of the distance distribu-
tion rather than a certain percentage of the maximum
or mean phase space diameter. Successively, Section III
presents a numerical example of a classical Lorenz-63 sys-
tem with a time-dependent parameter, illustrating that
the changes in some recurrence characteristics with vary-
ing embedding dimension are particularly small under a
fixed recurrence rate in comparison with other strategies.
Finally,the main results of this study are summarized in
Section IV.

II. INFLUENCE OF EMBEDDING DIMENSION ON
THE DISTANCE DISTRIBUTION

Let us consider a univariate time series {xi} of length
N . As an overarching question, we study the effect of
time-delay embedding on the distribution of all pairwise
distances of its reconstructed state vectors. The variation
of this distribution with increasing embedding dimension
m is expected to depend on the chosen norm used for the
calculation of distances. Note that the effective num-
ber of state vectors Neff(m) = N − (m − 1)τ available
for estimating the probability distribution of distances in
m dimensions will decrease with m. In order to avoid
sample size effects in comparing the results for differ-
ent m, we therefore choose N sufficiently large so that
1−Neff(mf )/N � 1, where mf is the largest considered
embedding dimension.
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FIG. 1. Selected histograms of the L2 (A,C,E) and L∞ (B,D,E) distances of N = 1, 500 independent random numbers with
uniform (A,B) and Gaussian (C,D) distribution as well as (E,F) for the y component of the Lorenz-63 system (Eq. (11),
N = 6, 000, see Section III) with control parameters σ = 10, β = 8/3 and r linearly increasing from 180 (chaotic regime) to
210 (periodic regime), for different embedding dimensions m.

A. Maximum norm

Numerical results for different types of systems demon-
strate (see Appendix A) that the largest of all pair-

wise L∞ distances, d
(∞)
max, stays constant with increas-

ing embedding dimension, whereas the mean of all

pairwise L∞ distances, d
(∞)
mean, monotonically increases

with m (Fig. 3). In order to understand this observa-
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tion, recall that the L∞ distance between two embed-
ded state vectors ~xi = (xi,1, xi,2, . . . , xi,m)T and ~xj =
(xj,1, xj,2, . . . , xj,m)T is

‖~xi − ~xj‖∞ = max
k=1,...,m

|xi,k − xj,k| = d
(∞)
i,j (m) (3)

For m = 1 (i.e., no embedding), the distance between
two observations at times ti and tj therefore is simply

d
(∞)
i,j (1) = |xi − xj |. For m = 2, we find

d
(∞)
i,j (2) = max{|xi − xj | , |xi+τ − xj+τ |}

= max
{
d

(∞)
i,j (1), |xi+τ − xj+τ |

}
> d

(∞)
i,j (1).

(4)

By induction, we can easily show that

d
(∞)
i,j (m) = max

{
d

(∞)
i,j (m− 1),

∣∣xi−(m−1)τ − xj−(m−1)τ

∣∣}
and therefore

d
(∞)
i,j (m) > d

(∞)
i,j (m− 1) ∀ m > 1. (5)

Hence, considering all possible pairs of state vectors
(~xi, ~xj) from the time series, the largest L∞ distance

d(∞)
max(1) = max

i,j
[d

(∞)
i,j (1)] = max

i,j
[d

(∞)
i,j (m)] = d(∞)

max(m),∀m

cannot change with m, since the largest maximum dis-
tance will already appear for m = 1. The mean distance

d(∞)
mean(m) =

1

N2
eff(m)

Neff(m)∑
i,j=1

d
(∞)
i,j (m),

however, necessarily increases with m or stays at most
constant. More specifically, as m increases, smaller dis-
tances systematically disappear, so that the entire dis-
tribution is systematically shifted towards its (constant)
maximum, thereby becoming narrower and exhibiting an
increasing mean along with decreasing variance. We con-
jecture that, for large m, the distribution of d(∞)(m) will
converge to a limiting distribution (see below) possibly
depending on the embedding delay τ .

B. Euclidean norm

In case of the L2 (Euclidean) norm, both mean

and maximum of all pairwise distances (d
(2)
mean(m) and

d
(2)
max(m), respectively) monotonically increase with ris-

ing m (Appendix A, Fig. 4). This can be understood
as follows: The L2 distance between two points in an
m-dimensional state space, ~xi and ~xj , is given as

‖~xi − ~xj‖2 =

( m∑
k=1

|xi,k − xj,k|2
) 1

2

= d
(2)
i,j (m) (6)

For the squared L2 distance, this implies:[
d

(2)
i,j (1)

]2
= (xi − xj)2[

d
(2)
i,j (2)

]2
= (xi − xj)2 + (xi−τ − xj−τ )2

=
[
d

(2)
i,j (1)

]2
+ (xi−τ − xj−τ )2

>
[
d

(2)
i,j (1)

]2
(7)

...[
d

(2)
i,j (m+ 1)

]2
>
[
d

(2)
i,j (m)

]2
> · · · >

[
d

(2)
i,j (1)

]2
, (8)

which explains the observed behavior of both mean and
maximum distance using the L2 norm. Specifically, un-
like for L∞, the maximum L2 distance between two
points is not bound by the largest pairwise distance in
one dimension.

In a similar way, we may argue for all Lp distances
(p ∈ (0,∞)) defined as

‖~xi − ~xj‖p =

( m∑
k=1

|xi,k − xj,k|p
) 1

p

= d
(p)
i,j (m) (9)

that, by the same argument as above,[
d

(p)
i,j (m+ 1)

]p
>
[
d

(p)
i,j (m)

]p
, (10)

implying again a monotonic increase of mean and maxi-
mum distances with rising embedding dimension (recall
the positive semi-definiteness of distances and p).

C. Changing shape of distance distribution with increasing
embedding dimension

Building upon our previous considerations and numer-
ical results, a mathematically more specific yet challeng-
ing question is how exactly an increasing embedding di-
mension m is affecting the shape of the distribution of all
pairwise distances rather than just its central tendency
(mean).

For the maximum norm, one may argue that the in-
dividual components of each embedded state vector are
commonly constructed such that they are as indepen-
dent as possible22. Accordingly, for a system without
serial correlations (i.e., uncorrelated noise), the absolute
differences d = d(∞)(1) between the components of two
state vectors are also independent, identically distributed
(i.i.d.) and lie within the interval [0, dmax]. In such case,
for sufficiently large m, the pairwise L∞ distance between
two state vectors can be interpreted as the maximum of
m i.i.d. variables that are bounded from above, which
should follow a reversed Weibull distribution according
to the Fisher-Tippett-Gnedenko theorem from extreme
value statistics. Note, however, that this expectation is

http://dx.doi.org/10.1063/1.5024914
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valid only if m is sufficiently large and the i.i.d. assump-
tion is (approximately) fulfilled, both of which do not
necessarily have to be the case for real-world time series.
Moreover, it is not guaranteed that the given distance
distribution in one dimension lies within the domain of
attraction of the reversed Weibull class23, which calls for
further theoretical investigation in each specific case.

For other Lp norms including the Euclidean norm, the
aforementioned considerations do not apply. Instead, for
any Lp norm with p <∞,

• the pairwise distances dp are of the form (
∑
i z
p
i )1/p

(i = 1, ...,m) as given in Eq. (9) with approximately
i.i.d. variables zi.

• From the central limit theorem it follows that the
distribution of dp is approximately a normal distri-
bution with mean and standard deviation growing
proportionally with m and

√
m, respectively, for

large m.

• The coefficient of variation of dp thus declines ap-
proximately as ∼ 1/

√
m.

• For large m, also d = (dp)1/p is approximately
normally distributed with mean and standard de-
viation growing approximately as ∼ m1/p and ∼√
mdz1/p

dz |z=m ∼
√
mm1/p−1 = m1/p−1/2.

• The coefficient of variation of d thus behaves ap-
proximately as ∼ m1/p−1/2/m1/p = 1/

√
m, just as

for dp.

• As a consequence, the relative variability of d nar-
rows in the same fashion for all p <∞ as m grows,
and only the growth of the absolute scale of d with
m depends on p (“curse of dimensionality”19).

The considerations made above do explain the numer-
ical results in Fig. 1, showing histograms of the distances
of three different time series for selected values of the
embedding dimension m and for the L2 and L∞ norms.
In addition to time series fulfilling the i.i.d. assumption
(Fig. 1 A,B,C,D), here we are also interested in deter-
ministic systems. As an illustrative example, we choose
the Lorenz-63 system (Eq. (11), Fig. 1 E,F) in some non-
stationary (drifting parameter) setting, which will be fur-
ther studied in Section III.

In this regard, it is confirmed that the expectation
value of the distance distribution takes higher values with
increasing m. The probability to find small distances
therefore decreases. In case of the L∞ norm (Fig. 1
B,D,F), this growth is bounded and we can identify a
convergence of the distribution, in some cases eventu-
ally towards the aforementioned reversed Weibull distri-
bution. In turn, for the L2 norm (Fig. 1 A,C,E) the
convergence towards a normal distribution is discernible.
Considering the Lorenz-63 time series (Fig. 1 E,F), the
empirical expectations are approximately met by the ob-
servations, even though the distribution of L∞ distances

exhibits a slightly more complex (i.e., less symmetric)
shape than for the two noise series. Specifically, for the
L2 norm the resulting distance distribution is left-skewed
with a pronounced lower tail (see Fig. 1 E), whereas for
the L∞ norm we observe a disturbed Weibull-like shape.
Notably, the i.i.d. assumption is violated when dealing
with such a deterministic dynamical system. For a more
detailed characterization of the shape of the empirically
observed pairwise distance distributions shown in Fig. 1,
see Appendix B.

In general, we emphasize that it is not straightforward
to analytically describe the shape of the distance distri-
bution of an embedded time series stemming from an
arbitrary dynamical system with potentially nontrivial
serial correlations. Regarding our overarching question
how we could automatically choose a recurrence thresh-
old such that the resulting recurrence characteristics are
as independent as possible of the embedding dimension
and chosen norm, we need to consider both,

(i) the general increase of distances together with their
successive concentration and

(ii) the varying shape of the distribution of distances

with increasing embedding dimension. The first aspect
could be accounted for by relating the threshold selection
to the spatial extent of the state space object (attractor),
similar as, for instance, suggested by Abarbanel24 in the
context of the false nearest neighbor algorithm. However,
our findings suggest that accounting for the second point
is key to an appropriate recurrence threshold selection
method that relieves the effects of the embedding dimen-
sion on the recurrence properties as much as possible. As
a simple possible solution, we recommend to use a numer-
ical estimate of a certain (sufficiently low) percentile of
the distance distribution as threshold12–14,17. This ap-
proach considers both above mentioned effects and leads
to a constant global recurrence rate (which equals the
chosen percentile). As a result, the recurrence properties
become much less dependent on the embedding dimen-
sion and chosen norm than when using other methods,
as we will exemplify in the following section.

We emphasize that in addition, by conserving the re-
currence rate, possible dependences of RQA character-
istics on the density of recurrences for different m are
omitted, and corresponding residual changes of these
measures upon varying m could rather point to either
insufficiently low embedding dimension (missing essen-
tial factors contributing to the system’s dynamics, in
a similar spirit as, e.g., for the false nearest neighbor
method) or spurious recurrence structures arising from
overembedding25. These ideas should be further studied
in future work.

III. NUMERICAL EXAMPLE

In this section, we will demonstrate the effect of the
varying shape of the distance distribution with increas-
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ing embedding dimension on different threshold selection
approaches working with a globally fixed value of ε. In
order to mimic a practically relevant test case of a non-
stationary low-dimensional dynamical system, where we
should use some higher embedding dimension (following
Hegger et al.21) instead of a more moderate choice, we
consider the classical Lorenz-63 system26

ẋ = σ(y − x)
ẏ = x(r − z)− y
ż = xy − βz.

(11)

Depending on the parameters σ, β and r, the system
exhibits either regular or chaotic dynamics. Here, we con-
sider a transitory setting, where the parameter r grad-
ually increases from 180 to 210 while keeping β = 8/3
and σ = 10 fixed. In this case, the system undergoes
a transition from a chaotic regime into a regular (limit
cycle) phase as r rises before it exhibits again a chaotic
behavior. Note again that instead of studying the sta-
tionary Lorenz-63 system for different values of r, we
intentionally employ a gradual parameter change lead-
ing to a non-stationary system which calls for a system-
atic overembedding when performing nonlinear time se-
ries analysis21. Specifically, we implement a linear varia-
tion of r as

r(tis) = 180 + 2.5 · 10−2tis. (12)

For numerically solving this system of equations, we
use a fourth-order Runge-Kutta integrator with an in-
tegration step of tis = 0.001 and a total of 1,300,000
iterations. Therefore, we simulate the system’s evolution
over 1,300 time units (t.u.). By using a sampling interval
of δt = 0.2 t.u. we obtain 6,500 samples forming our time
series for the three components x, y and z. We remove
the first 500 points (=̂100 t.u.) that could be affected by
transient dynamics and retain the remaining 6,000 points
(=̂1200 t.u.) of the y component for further analysis.

We integrate the Lorenz-63 equations, Eq. (11), with
the linear parameter change, Eq. (12), 1,000 times with
randomly chosen initial conditions, embed the y compo-
nent time series using a delay τ = 4, consistent with the
first local minimum of the mutual information22, and as-
sess the resulting RPs. For each of these 1,000 RPs, we
use a running window along their main diagonal with a
window size of w = 400 and mutual shift of ws = 40 data
points, i.e., 90% overlap between consecutive windows, to
quantitatively study the time-dependence of the result-
ing recurrence characteristics. We repeat this procedure
for embedding dimensions ranging from m = 3 to m = 10
and for four different threshold selection methods: (i) a
fixed percentile of the distance distribution (as recom-
mended by our theoretical considerations in Section II)
as well as some fixed percentage of the (ii) maximum,
(iii) mean and (iv) median pairwise distances between
all state vectors in the reconstructed state space, respec-
tively.

Since we are aiming to study the change of recurrence
properties associated with a transition between chaotic

and periodic dynamics and vice versa, we choose the re-
currence time entropy (RTE). Here, instead of using the
diagonal or vertical “black” (recurrence) lines in the RP
as in most “conventional” RQA measures, we use “white”
(non-recurrence) vertical lines with lengths tw, as they
correspond to recurrence times. In general, such recur-
rence times can be estimated directly from the RP in dif-
ferent ways27, among which the vertical non-recurrence
lines offer a particularly simple estimator. The normal-
ized entropy of the distribution of recurrence times, re-
ferred to as the recurrence period density entropy28 and
originally introduced without any direct link to RPs, is
given as

RTE = − 1

lnTmax

Tmax∑
tw=1

p(tw) ln p(tw) ∈ [0, 1] (13)

with p(tw) being the probability of a recurrence time tw
and Tmax the largest recurrence time. Using RPs, it is
possible to estimate p(tw) from the histogram of recur-

rence times, h(tw), as p(tw) = h(tw)∑
tw
h(tw) , i.e., as the prob-

ability to find a white vertical line of exactly length tw
in the RP. It can be shown that RTE is closely linked to
the Kolmogorov-Sinai (KS) entropy of the system under
study29.

We choose the actual recurrence threshold for each
threshold selection method (i)-(iv) such that a global re-
currence rate of RR ≈ 4% is achieved in all four cases for
m = 3. Therefore, for each embedding dimension we ob-
tain a distribution of 1, 000 RTE time series and show the
mean (blue lines in Fig. 2) together with the two-sided
90% confidence interval ([5%, 95%], gray shaded areas).
In order to put these time dependent RTE estimates of
the non-stationary Lorenz-63 system into a context, we
consider a reference reflecting the time-dependent RTE
values directly computed from the true three-dimensional
state vectors without embedding, using otherwise the
same analysis strategy (window size and overlap) as for
the embedding scenario. Thus, for each point in time we
obtain 1,000 reference measurements and consider the
mean (red line) and the two-sided 90% confidence inter-
val (red shaded area in Fig. 2).

The robustness of the observed time-dependence of
RTE with respect to the chosen embedding dimension
when using a fixed percentile of the distance distribution
(i.e., a fixed recurrence rate) is shown in Fig. 2A (here we
used the L2 norm, but the results are similar when us-
ing the L∞ norm). For any embedding dimension larger
than m = 4, the variations of the RTE estimates orig-
inating from the embedding procedures match the red
reference time series within its uncertainties for times
t & 200. For adequately revealing the chaotic regime
in the first part until t ≈ 160, an embedding dimension
larger than m = 7 seems to be inevitable, whereas results
from any embedding dimension coincide with the refer-
ence estimate within its uncertainties at the limit cycle
regime (1, 000 ≤ t ≤ 1, 080). In case of not using the rec-
ommended threshold selection method, this robustness
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FIG. 2. Time-dependence of RTE (ensemble means and two-sided 90% confidence intervals from 1,000 independent realizations)
based on the y component of the non-stationary Lorenz-63 system (see text for details) using the L2 norm. The blue lines
show the results for time-delay embedding with different embedding dimensions (m = 3, . . . , 10) and for four different methods
to select the recurrence threshold according to (A) a certain percentile of the distance distribution and some percentage of the
(B) maximum, (C) mean and (D) median distance between state vectors on the reconstructed attractor. The actual threshold
values (4th percentile, 8%, 24% and 24%, respectively) have been chosen such that the global recurrence rate of approximately
4% is achieved for each method in the embedding scenario with m = 3. The red line shows the reference time series gained
from 1,000 independent realizations of the non-stationary Lorenz-63 system by randomly choosing initial conditions and using
all three components as state variables. Shaded areas (gray and red) indicate the two-sided 90% confidence intervals estimated
from the respective ensembles.

is clearly lost (Fig. 2B,C,D), and only the limit cycle
regime (plus some shorter sections before) are properly
revealed by the estimates obtained in the reconstructed
state space.

Considering the results of Section II, the reason for the
failure of the methods based on individual location pa-
rameters (maximum, mean, median) of the pairwise dis-
tance distribution between state vectors for higher em-
bedding dimensions is the change in the shape of that
distribution beyond its characteristic location and range
parameters. Appendix C demonstrates this effect on the
RPs in some more detail. Hence, we argue that selecting
the recurrence threshold at some percentile of the dis-
tance distribution is to be preferred if we aim to obtain
stable results for a broad range of embedding dimensions,
which is the case if we wish to automatically choose fixed
recurrence thresholds for the analysis of arbitrary com-
plex systems.

We note that the presented example has focused on a
recurrence characteristic that is particularly well suited

for detecting transitions between chaotic and periodic dy-
namics and is linked to a dynamical invariant. Other re-
currence characteristics, like classical RQA measures or
recurrence network characteristics, have been found to
exhibit less stable variations with changing embedding
dimension (not shown) and are therefore not further dis-
cussed here. Clarifying the reasons for the different be-
haviors of different recurrence characteristics will be an
important subject of future work.

IV. CONCLUSIONS

We have discussed the changing shape of the distribu-
tion of pairwise distances between state vectors obtained
by time delay embedding with increasing embedding di-
mension and its implications for different methods for
selecting temporally fixed recurrence thresholds. While
specific values of the recurrence threshold should always
be chosen based upon a multitude of criteria ranging
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from time series length to different topological and/or
geometric characteristics of the associated trajectory, we
have provided both empirical arguments and numerical
indications that selecting the recurrence threshold at a
prescribed percentile of the distance distribution (i.e.,
conserving the global recurrence rate) results in quan-
titative recurrence characteristics that are more stable
under changes of the embedding dimension than when
using alternative approaches. In the latter context, we
have demonstrated that measures from RQA and related
frameworks may exhibit a crucial dependence on the em-
bedding dimension when selecting the recurrence thresh-
old according to a certain percentage of the mean or max-
imum state space diameter, as sometimes suggested in
other works7,10. This also indicates that some alterna-
tive approaches, such as normalizing the time series and
applying a uniform threshold independent of the embed-
ding dimension and the considered norm15, are not likely
to perform well for any kind of data, when neglecting the
effect on the distance distribution with increasing embed-
ding dimension.

At the conceptual level, our general discussion of the
changing shape of distance distributions with embedding
dimension has led to some interesting follow-up questions
associated with the convergence properties of these dis-
tributions at high embedding dimensions, which should
be further addressed in future studies. Notably, the re-
lationship between the distribution of L∞ distances and
extreme value statistics clearly deserves further investiga-
tions to fully understand the emerging shape of the distri-
butions as the embedding dimension becomes large. As
a cautionary note, we emphasize that the considerations
presented in this work relate exclusively to the concept
of time delay embedding as the most widely applied em-
bedding technique, but not necessarily to methodological
alternatives like derivative embedding30, for which the
metric properties of different components of the embed-
ding vector cannot be easily related to each other.

Taken together, the results presented in this work are
important for automatizing the problem of data-adaptive
recurrence threshold selection, which is key for further
widening the scope of applications of recurrence plots,
recurrence quantification analysis and related techniques
across scientific disciplines. Especially in the context of
long time series originating from non-stationary systems,
which frequently appear in many fields of science, a gen-
erally applicable approach is crucial for obtaining reliable
and easily interpretable results.
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Appendix A: Influence of embedding dimension on the
variations in the maximum and mean pairwise distances

As discussed in Section II, we show some numerical re-
sults illustrating the general behavior of mean and maxi-
mum L∞ and L2 distances for different types of systems
in Figs. 3 and 4, respectively. For a theoretical explana-
tion of the observed changes with increasing embedding
dimension, see Section II.

Appendix B: Empirical shape parameters of the distance
distributions for different systems

In order to further characterize the shape of the em-
pirically observed pairwise distance distributions shown
in Fig. 1 in more detail, we consider two standard char-
acteristics from descriptive statistics. On the one hand,
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the skewness

ŝ =
1
Nd

∑Nd

i=1(di − d̄)3(√
1
Nd

∑Nd

i=1(di − d̄)2

)3 (B1)

of the distribution measures its asymmetry around the
sample mean distance d̄. On the other hand, we study
the associated Shannon entropy

ĥ = −
Nb∑
j=1

pj
log(pj)

log(Nb)
(B2)

providing an integral measure of the heterogeneity of the
distribution of d. Here, j enumerates the bins of a his-
togram of the values of d with Nb bins and relative fre-
quencies pj , and Nd is the number of pairwise distances
in the sample (i.e., the number of independent entries of
the distance matrix d, Nd = Neff(Neff − 1)/2). The bin
width has been selected by first computing the optimum
value according to the Freedman-Diaconis rule31 for each
embedding dimension m and then averaging over all cor-
responding values and taking the resulting mean to keep
Nb fixed for each considered setting. Specifically, for the
time series drawn from the Gaussian and uniform distri-
butions, Nb,L2

= 355 and Nb,L∞ = 286, while for the
Lorenz system, Nb,L2

= 701 and Nb,L∞ = 771.

According to the corresponding normalization, ĥ as-
sumes its maximum of one in case of a uniform distribu-
tion (since then, pj = 1/Nb ∀ j = 1, ..., Nb, i.e., for each
(binned) distance within [dmin, dmax]). In turn, the more
heterogeneous (e.g., spiky or generally asymmetric) the

distribution of distances gets, the lower ĥ.
Figure 5 shows the resulting behavior of both char-

acteristics for the L2 (panels A,C,E) and L∞ (panels
B,D,F) distances obtained from uniform and Gaussian
distributed noise as well as for the non-stationary Lorenz-
63 system (Eq. (11), see Section III) in dependence on the

embedding dimension. The results complement the quali-
tative description based on a visual inspection of Fig. 1 as
given in Section II. In case of the L2 norm and time series
drawn from uniform and Gaussian distributions (Fig. 5
A,C) we observe the skewness converging towards zero
(symmetric Gaussian distribution) and the entropy re-
flecting this convergence towards a normal distribution
by a downward trend until the skewness approaches zero
as m further increases. Although the theoretically pre-
dicted Gaussian shape for high m is visually apparent in
case of the time series from the Lorenz-63 system (see
Fig. 1 E), the skewness takes clearly non-zero negative
values while the entropy constantly decreases with in-
creasing m, indicating an asymmetric shape (Fig. 5 E).
In case of the L∞ norm, the considered maximum em-
bedding dimension appears not suited for observing con-
vergence of both shape parameters.

Appendix C: RP’s and RQA for one realization of the
non-stationary Lorenz system

For further illustrating the RPs resulting from the
time-dependent Lorenz-63 system discussed in Sec-
tion III, we show here the results for just one example tra-
jectory corresponding to a set of randomly chosen initial
conditions x(0) = 0.9649, y(0) = 0.1576, z(0) = 0.9706.
As before, we embed the y component time series and
study the RP for each previously discussed threshold se-
lection method. Then, we use a running window over
each (global) RP with a window size of w = 400 and
mutual shift of ws = 40 data points, i.e., 90% overlap
between consecutive windows.

The RPs and the associated time-dependent recur-
rence characteristic RTE (Eq. (13)) for a “normal” three-
dimensional embedding with time delay τ = 4, consistent
with the first local minimum of the mutual information22,
are shown in Fig. 6, using the Euclidean norm. We
compare the results for four different threshold selec-
tion methods but similar effective threshold values (cor-
responding to a global recurrence rate of RR ≈ 4%),
which are thus expected to give comparable results. The
left panel corresponds to the recommended method of
taking a certain percentile of the distance distribution,
while the other three panels are based on thresholds se-
lected according to some percentage of the maximum,
mean and median distance of state vectors on the at-
tractor in the reconstructed state space. Comparing the
different panels, as expected there are hardly any marked
differences in the RPs or the temporal changes of RTE.
The transition from a chaotic regime into a periodic one
is well reflected by a constantly decreasing RTE, which
takes its minimum for the limit cycle behavior between
t1 ≈ 1, 000 and t2 ≈ 1, 080.

However, if choosing a higher-dimensional embedding
(e.g., m = 10) motivated by the non-stationarity of the
system, the RP becomes almost completely white if the
recurrence threshold is chosen based upon the same per-
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FIG. 5. Skewness (red) and Shannon entropy (blue) of the L2 (A,C,E) and L∞ (B,D,F) distances of N = 1, 500 independent
random numbers with uniform (A,B) and Gaussian (C,D) distribution and (E,F) the y component of the Lorenz-63 system
(Eq. (11), N = 6, 000, see Section III) with control parameters σ = 10, β = 8/3 and r linearly increasing from 180 (chaotic
regime) to 210 (periodic regime) as a function of the embedding dimension m. For the two noise series, box plots show the
variability estimated from 1,000 independent realizations for each data set, using a random number generator. In case of the
Lorenz-63 system the variability is estimated from 10 independent realizations of the non-stationary Lorenz-63 equations with
randomly chosen initial conditions.

centages of the maximum, mean or median state space
distances as used before (Fig. 7). In this case the RTE is
still able to detect the transitory limit cycle regime, but
one looses information about the chaotic regime before.
In contrast, we retain the same density of recurrences

and, hence, resolution of the RP as for m = 3 when fixing
the threshold according to the whole distance distribu-
tion (left panel in Fig. 7). Here, the overall behavior of
RTE from the lower-dimensional (m = 3) case is qualita-
tively retained, although the periodic regime is less well
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expressed than in the former case.
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