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Spatial variations in crop growing seasons pivotal to
reproduce global fluctuations in maize and wheat yields
Jonas Jägermeyr1,2,3* and Katja Frieler3

Testing our understanding of crop yield responses to weather fluctuations at global scale is notoriously
hampered by limited information about underlying management conditions, such as cultivar selection or fer-
tilizer application. Here, we demonstrate that accounting for observed spatial variations in growing seasons
increases the variance in reported national maize and wheat yield anomalies that can be explained by process-
based model simulations from 34 to 58% and 47 to 54% across the 10 most weather-sensitive main producers,
respectively. For maize, the increase in explanatory power is similar to the increase achieved by accounting for
water stress, as compared to simulations assuming perfect water supply in both rainfed and irrigated agriculture.
Representing water availability constraints in irrigation is of second-order importance. We improve the model’s
explanatory power by better representing crops’ exposure to observed weather conditions, without modifying
the weather response itself. This growing season adjustment now allows for a close reproduction of heat wave
and drought impacts on crop yields.
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INTRODUCTION
Year-to-year fluctuations in crop yields and weather-induced shocks
pose a considerable risk for food security, via both direct effects on local
supply and prices, and remote effects via the global crop market (1–3),
which can have severe impacts for producers and consumers (4, 5).
Weather-induced agricultural losses belong to the most costly natural
disasters (6, 7). For maize, the most important global staple in terms of
production, the 2003 European heatwave resulted in yield reductions of
13% (8), and total direct economic losses in the agricultural sector are
estimated at more than US$12 billion (9, 10). In 2012, drought
conditions caused a decline inU.S.maize yields of >22% (11, 12), result-
ing in direct economic damages through crop losses alone of almost
US$30 billion (7, 12). On average (1964–2007), global heat waves and
droughts [EM-DAT record (13)] have reduced national reported maize
yields by 12 and 7% compared to undisturbed reference conditions,
respectively.Wheat yields, in turn, have been less sensitive to heat waves
(4% reduction), but slightly more to droughts (7% reduction) (14).

Weather variability in general (1, 15, 16) and the frequency and in-
tensity of heat waves and droughts are expected to increase under global
warming (17–19). It is thus essential to develop a detailed understanding
of the associated yield responses to assess future risks to food produc-
tion. Empirical models forced by observed weather fluctuations can,
however, explain only about 30% of the observed yield variability at
global average levels (20–23). Process-based models, incorporating
the mechanistic understanding of driving factors, achieve similar levels
globally but are shown to explain >50% of the national average yield
variability in individual countries (24, 25).

Both the process-based and empirical approaches leave substantial
fractions of observed variances unexplained, which are likely due to
changes in management decisions and impacts from weeds, diseases,
and pests not represented in themodels. But theymay also be associated
with an inappropriate or incomplete representation of the actual
weather signal, the yield response to weather forcing, or reporting
errors. A fundamental prerequisite to disentangle these confounding
factors in global gridded crop models is a realistic representation of
plant development dates and phenology, that is, the timing of planting,
anthesis, and maturity (11, 26). Detailed spatially and temporally re-
solved knowledge about the exact growing season window would en-
sure the correct exposure to actual weather conditions, ruling out
inadequate forcing thatmight causemodels to obscure.However, global
benchmarking of crop model responses to weather forcing is limited
particularly because of missing information about management and
other non–weather-related drivers (24, 25).

Here, we demonstrate to what degree the explanatory power of
process-based yield simulations can be improved by comprehensively
accounting for available local information about the average month of
sowing and harvest for different crops—representative of average cli-
mate conditions around the year 2000 (27).We particularly test to what
degree an adequate representation of spatial variations in growing
seasons improves the reproducibility of observed global yield losses
due to heat waves and droughts [derived from EM-DAT (13)], without
modifying the model’s weather response itself. To this end, spatial
variations in phenological heat units (PHU; in oC day), a cumulative
measure of heat required to reach maturity, are used to implement
information on the timing of maturity for different crops into a global
gridded crop model (LPJmL; see Materials and Methods). Geographic
variations in PHU can be considered as proxy for cultivar choices of the
same crop in themodel.We note that cultivars are not fully specified by
heat sums but are characterized by additional properties (28), which are
only partly resolved in global gridded crop models and not modified in
our simulations. In general, however, cultivars grown in colder climates
require smaller heat sums to reach maturity compared with those
grown in warmer climates (29).

We compare the effect of improved growing season timing with
model improvements regarding refined representation of water stress
on irrigated land through accounting for irrigation water constraints,
starting from the reference model version assuming unlimited water
supply in irrigated systems. We also consider a basic version neglecting
water stress through unlimited irrigation on all crop land. Simulation
performances are evaluated on the basis of (i) the variance in reported
national maize and wheat yield anomalies [Food andAgriculture Orga-
nization (FAO) (8)] that can be explained (“explanatory power”), (ii) the
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performance in reproducing reported composite yield impacts of heat
waves and droughts at global scale, and (iii) the reproduction of the yield
declines induced by the European heat wave 2003 as a case study. Analy-
ses are focused on the group ofmain producer countries that collectively
provide 90% of the respective global maize and wheat production
(2000–2011 average; hereinafter “main producers”). Of these 20 coun-
tries for maize and 26 countries for wheat, we particularly focus on the
10 countries that exhibit highest weather sensitivity in yield anomalies,
that is, where the maximum of the explained variances provided by the
consideredmodel versions solely forcedby observedweather information
is highest (hereinafter “most weather-sensitive main producers”).

While reported sowing dates have already been used to harmonize
crop model simulations, for example, within the Global Gridded
Crop Model Intercomparison (GGCMI) (24, 30) and other studies
(11, 12, 31), individual models are rarely constrained to meet observed
harvest dates and often assume static crop cultivars globally (24) or
across large regions (32). Here, we make use of the spatially explicit
information about sowing and harvest dates by crop to constrain global
gridded cropmodel simulations and systematically quantify for the first
time associated gains in model performance regarding (i) representing
annual fluctuations in nationalmaize andwheat yields and (ii) repro-
ducing observed yield responses to heat waves and droughts.
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RESULTS
Weuse the global gridded cropmodel LPJmL (33) to calculate historical
annual crop yields at 0.5° spatial resolution, forced by three observation-
al climate datasets (34–36). To study the contribution of both refined
growing season timing and irrigation water constraints to increased
explanatory power of cropmodel simulations, we evaluate the following
three model versions (see Table 1 for overview and Material and
Methods for details).

The referencemodel [1. LPJmL–Ref (37), as it is used for example, in
GGCMI (24) or in the Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP) (25)] internally derives sowing dates from climate
conditions, and maturity is reached at a simplistic PHU estimate with
limited spatial variation (semistatic). Neither sowing nor harvest is
adjusted to meet reported data. Irrigation is assumed to occur on areas
currently equipped for irrigation (27) without accounting for system ef-
ficiencies and water constrains.
Jägermeyr and Frieler Sci. Adv. 2018;4 : eaat4517 21 November 2018
In a two-step approach, the model is first updated with an advanced
representation of local surface-water constraints based on a detailed
representation of irrigation systems and their efficiencies [2. LPJmL–
WaterLimIrr (38)]. In a second step, growing seasons are additionally
adjusted by prescribing grid cell–level sowing dates and PHU require-
ments to meet local average harvest dates, individually for rainfed and
irrigated systems (3. LPJmL–PHU). Crop calendar information are
derived from observational MIRCA2000 data (27), complemented by
LPJmL-derived seasons in countries, where MIRCA2000 information
leads to lower agreement with reported yield data.

To quantify the fundamental contribution of water stress to crop
yield fluctuations, we introduce a fourth model run in which water
stress is eliminated through unrestricted irrigation in both currently
rainfed and irrigated systems (4. LPJmL–NoWaterStress). Assumptions
herein on sowing dates and PHU are identical to the LPJmL–Ref
simulation.

Reproducing national crop yield variability
Accounting for water constraints in irrigated farming systems, and
especially the representation of spatial crop cultivar variations, substan-
tially increases the fraction of the variance in observed national crop
yield anomalies that can be explained by the process-based model
simulations forced solely by weather fluctuations (Fig. 1). For maize,
the explained variance (R2) roughly doubles—from 29% (LPJmL–Ref)
to 58% (LPJmL–PHU) averaged across themostweather-sensitivemain
producers (Fig. 1; 20 to 37% across all main producers). Differences
[root mean square error (RMSE)] between observed and simulated
standardized crop yield anomalies decrease from 0.95 to 0.67 (fig. S1;
1.06 to 0.87 all main producers). Respective time series are shown
in fig. S2.

The effect of the improved representation of water constraints in
irrigation—R2 increases from 29% (LPJmL–Ref) to 34% (LPJmL–
WaterLimIrr) across the most weather-sensitive main producers
(Fig. 1; 20 to 23% all main producers)—is consistently surpassed
by contributions from improved timing of the growing season in
LPJmL–PHU (R2 reaches 58% acrossmost weather-sensitivemain pro-
ducers and 37% for all main producers).

Eliminating water stress by assuming full irrigation in LPJmL–
NoWaterStress reduces the explained variances to only 10% (most
weather-sensitive main producers, 6% all main producers), which
9

Table 1. Experimental design. Global gridded crop model versions used in this study are characterized regarding assumptions on irrigation, phenological heat
units (PHU), and sowing dates; see Materials and Methods for details.
Model (code reference)
 Irrigation assumptions
 Phenology assumptions
LPJmL–Ref (37)
 Reference irrigation: Full, that is, unconstrained
irrigation on irrigated land, rainfed conditions
in rainfed systems
Reference phenology: semistatic global PHU parameter
not based on observations; sowing dates internally
derived from climate conditions
LPJmL–WaterLimIrr (38)
 Advanced irrigation: Mechanistic representation
of irrigation systems and surface water availability
Same as above
LPJmL–PHU (this study)
 Same as above
 Spatially derived PHU requirements per crop and
grid cell to match targeted growing seasons;
sowing dates prescribed according to observational
data and model simulations
LPJmL–NoWaterStress (37)
 Full irrigation: No water stress in rainfed
or irrigated systems
Same as LPJmL–Ref
2 of 10
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highlights the fundamental importance of water stress for explaining
interannual yield fluctuations. In turn, while the water stress repre-
sentation (difference between LPJmL–NoWaterStress and LPJmL–
WaterLimIrr) can increase the explained variance to 34% for the most
weather-sensitivemain producers (and 23% for allmain producers), the
growing season adjustment improves simulation performance to the
same extent (to 58% for the most weather-sensitive main producers
and 37% for all main producers; see Fig. 1 and fig. S3). Our results thus
suggest that using more reliable information on the timing of the
growing season improves maize-yield simulations as much as the fun-
damental representation of water stress itself, which is one of the main
growth-limiting constraints in large-scale crop models.

For wheat, model improvements due to a refined representation of
irrigation processes and adjusted growing seasons follow a similar pat-
tern: Gains from refined growing-season timing exceed those from re-
fined irrigation processes and surface water availability. Average
explained variances increase from 45% (LPJmL–Ref) to 54%
(LPJmL–PHU) for the most weather-sensitive main producers (Fig. 1;
25 to 34% for all main producers). LPJmL–PHU wheat simulations
achieve largest relative gains in countries at the lower end of simulation
performance (fig. S3), turning nonsignificant correlations in five of eight
countries statistically significant (P <0.1; table S2). Differences (RMSE)
between simulated and observed standardized yield anomalies decline
from 0.8 to 0.72, respectively (fig. S1; 1.02 to 0.94 for all main produc-
ers). The LPJmL–NoWaterStress simulation does not exceed 9% ex-
plained variance on average.

Inmost countries, the gain inmodel performance due to the growing-
season adjustment is dominated by the effect of spatially resolved
representation of PHUs, while the selection of prescribed sowing dates
only plays a minor role (fig. S4). Thus, LPJmL–PHU simulations
Jägermeyr and Frieler Sci. Adv. 2018;4 : eaat4517 21 November 2018
achieve substantially better results compared to LPJmL–WaterLimIrr
(that is, LPJmL–Ref phenology but water constraints as in LPJmL–
PHU), even when the growing season is not based on observational
data, but derived by the LPJmL–Ref model (R2 of 53% for LPJmL–
PHU with model-derived growing season and 34% for LPJmL–
WaterLimIrr, respectively, for maize across most weather-sensitive
main producers; fig. S4). This is explained by excessive PHU require-
ments in the LPJmL–Ref phenology, which often lead to premature
harvests when themaximal growing season length is reached (Materials
and Methods). In LPJmL–PHU, this is avoided by associated spatial
variations in PHU requirements that are based on local climate
conditions. LPJmL–PHU based onMIRCA2000 growing seasons alone
reaches R2 of 54% for maize across the most weather-sensitive main
producers (fig. S4). The MIRCA2000 crop calendar outperforms the
LPJmL-calculated seasons on 80% of the maize and 59% of the wheat
cropland area, respectively (fig. S5)—predominantly in countries in
which MIRCA2000 provides subnational data (for example, USA,
China, India, and Brazil). Explained variances depend on the considered
climate forcing dataset, but associated uncertainties are minor yet
somewhat larger for maize than for wheat (fig. S6). The mean of simu-
lations forced by different climate inputs achieves higher explanatory
power than any of the individual simulations in many countries.

Quantitative understanding of crop yield responses to heat
waves and droughts
Worldwide heat waves between 1964 and 2007 reduced observed na-
tional maize and wheat yields on average by 12.4% (quartile range,
−1 to −20%, referring to the 75th and 25th percentile of the normalized
distribution of all 65 events) and 4.1% (+3 to −9%, 81 events), respec-
tively, compared to themeanof the three before and followingnonevent
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Fig. 1. Explained variance of country-level yield anomalies for maize (A) and wheat (B). R2 values between four different LPJmL simulations (see Table 1) and
observed FAO yield anomaly time series (1980–2010) are highlighted for the 10 main producer countries showing highest weather sensitivity (see tables S1 and S2 for
all main producer countries). Statistical significance of the explained variance is indicated through chart symbols (large dots if P < 0.001; small dots if P < 0.1; circle if not
significant, that is, P ≥ 0.1). Mean R2 values across displayed most weather-sensitive main producers (and across all main producers in parentheses) are shown in the
top-right corner.
3 of 10

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on January 11, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

years (Fig. 2, see Materials andMethods for details on this compositing
analysis). Throughout the same period, droughts led to mean yield
declines of 7% (+2 to −16%, 175 events) for maize and 7.1% (+3 to
−16%, 146 events) for wheat (table S3 lists all considered events).
Neither heat waves nor droughts show a lagged yield level response
in the year following reported events (Fig. 2).

Except for simulations neglecting water stress, all model versions
agree on the sign of heat wave and drought yield influences on maize
and wheat. Even the versions without growing-season adjustment
(LPJmL–Ref and LPJmL–WaterLimIrr) are able to simulate global
average effects of extreme events for wheat. However, they only repro-
Jägermeyr and Frieler Sci. Adv. 2018;4 : eaat4517 21 November 2018
duce about half of the observed decline in maize yields in response to
heat waves. For droughts, LPJmL–Ref only reproduces half of the ob-
served maize response, while water constraints in irrigation (LPJmL–
WaterLimIrr) already lead to a close agreement with observations.
Yet, this model version overestimates the drought effects for wheat
yields (Fig. 2). Throughout all cases, the adjustment of growing seasons
(LPJmL–PHU) leads to close reproduction of the observed losses across
reported events, that is, in both maize and wheat yields and for heat
waves and droughts. Improvements are particularly relevant for maize,
with remarkably accurate replications of the yield signal also in the years
following the extreme event (Fig. 2, A and B).
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Fig. 2. Observed and simulated influences of extreme weather on global crop yields. Global average impact of heat waves (first column) and droughts (second
column) on maize (top row) and wheat (bottom row) yields [1964–2007; all events recorded in EM-DAT (13)]. Composites are based on 7-year time windows of country-
level yields centered on the respective event. Results are shown for observed FAO time series (gray) and for different LPJmL simulations (yellow to red; see Table 1).
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indicated in the top-right corner (n); for details, see the “Statistical analysis” section and table S3 for the list of considered extreme events.
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Simulated yield declines in the wake of heat waves and drought are
primarily induced by water stress. Eliminating soil water deficits by
assuming full irrigation, even in currently rainfed systems (LPJmL–
NoWaterStress), leads to increases in simulated maize yields during heat
wave and drought years (Fig. 2), which indicates that additionally avail-
able radiation in such years is, on average, beneficial for crop growth, as
long as the water demand is fulfilled. Reported national yields (Fig. 2)
include yields achieved under irrigation, because FAO yield statistics
(8) are not available separately for rainfed systems. In most countries,
the fraction of cropland under irrigation is low, that is, national yields
are generally dominated by production on rainfed land. Further
LPJmL–PHU model simulations confirm that at the global scale, heat
wave, and drought events predominantly affect rainfed yields, with
marginal influences in irrigated systems (heat wave effects on maize
yields: −19.7% rainfed only, −12.4% mixed, and −0.6% irrigated only;
fig. S7). In general, if water availability permits, then irrigation not only
reduces water stress but also alleviates direct adverse extreme tempera-
ture impacts due to surface cooling. The latter effect, however, is not re-
presented in the model and seems to be of minor importance for
reproducing observed yield effects at national level (see Discussion).
Jägermeyr and Frieler Sci. Adv. 2018;4 : eaat4517 21 November 2018
Refined crop exposure to rainfall deficit
Improved representation of growing season timing in the model
changes the crop’s simulated exposure to rainfall and thus water stress,
which is a key driver of yield fluctuations in all gridded cropmodels. For
maize, the median rainfall deficit (growing season rainfall relative to
long-term average growing season rainfall; growing seasons depend
on respective model version) aggregated across heat wave years is con-
siderably lower in the model with improved growing season timing
(LPJmL–PHU) compared to the reference model (Fig. 3A). This is par-
ticularly pronounced in the case of the Europe 2003 heat wave, where
the median deficit across 10 European countries decreases from −11 to
−44%, respectively, between the two models (Fig. 3A). Maize yields de-
clined by 12.7% during the 2003 heat wave and LPJmL–PHU simula-
tions (10.8% decline) closely reproduce the observed impacts, whereas
previous model versions fail to show any impact (0.3% decline, fig. S8).
The differences in rainfall deficits betweenmodel versions areminor for
wheat growing seasons, where both models reproduce observed yield
anomalies (fig. S9).

The LPJmLmodel does not account for potential permanent phys-
iological crop damages or mortality caused by adverse weather
 on January 11, 2019
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conditions. While plant growth is reduced and carbon assimilation is
altered under water stress, grain filling continues when conditions al-
low. This model simplification has the potential to cause fundamental
differences in simulated crop yields for different growing seasons (see
Fig. 3 for the example of Germany).

In summer 2003, an anticyclone anchored over western Europe in
June and July and held back the arrival of depressions, leading to low
precipitation, soil moisture depletion, and above-average temperatures,
which, in turn, accelerated heat-sum accumulation and thus crop devel-
opment by about 20 days (39). As for Germany, LPJmL–PHU repro-
duces the observed shortening of the growing season, leading to a
rainfall deficit of >1200 mm. Since LPJmL–Ref simulates a later
(assuming later planting) and longer growing season (assuming exces-
sive PHU requirements), the timing of maturity stretches into consid-
erable rainfall events in October (Fig. 3, C and D)—when the harvest in
LPJmL–PHU was completed already. In LPJml–Ref, late rainfall
compensates early-season rainfall deficits and eventually leads to
above-average yield levels in 2003, which is in sharp contrast to the ob-
served decline. As a result of the refined weather forcing in LPJmL–
PHU, simulated maize-yield anomalies are in close agreement not only
with observations in Germany (R2 of 93 and 18%, respectively, for the
two models; Fig. 3E) but also with the reported yield impacts across
other affected countries during the 2003 heat wave in Europe (fig. S8).
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DISCUSSION
We derive location-specific PHUs from spatial variations in observed
[MIRCA2000 crop calendar (27)] and simulated (LPJmL-derived; see
fig. S5) sowing and harvest dates. These variations are used as proxy
to implement geographic differences among crop cultivars into a global
gridded crop model to deliberately match spatially explicit crop cal-
endar dates with global crop model simulations. Constraining the
growing seasonmeans improving the coincidence of weather forcing
with phenological stages of crops, which substantially increases the
agreement between reported and simulated crop yield fluctuations
without actually changing the representation of weather responses in
the model. The adjusted timing of growing seasons is particularly im-
portant for the quantitative reproduction of global average maize-yield
responses to heat waves. Improved representation of irrigation system
functioning and surface water constraints also improves the reproduc-
tion of interannual yield variability, yet to a lower degree compared to
spatially resolved growing seasons. The updated model simulations
reproduce average heat wave and drought effects on national yield
levels, including higher sensitivities of maize than wheat yields to ex-
treme heat (11, 14, 40), while providing new evidence that these effects
are dominantly affecting rainfed farming.

Results indicate that observed yield fluctuations, especially in re-
sponse to droughts and heat waves (which may as well imply agrome-
teorological droughts), are induced primarily by water stress. This is in
line with in-depth analyses of observed effects of heat on U.S. maize
yields (41, 42), which suggest that yield declines occurring around
30°C are less related to direct heat stress on reproductive organs than
to temperature-related water stress due to increases in water demand
and reductions in water supply. The sensitivity of photosynthesis rates
to water stress is generally well represented in global gridded crop
models that are designed to capture temperature effects on soil water
depletion and increased atmospheric water demand (40, 41), as well as
differences in water-use efficiencies in C3 and C4 crops due to differ-
ences in the CO2 fixation pathway (43). Water stress is also simulated
Jägermeyr and Frieler Sci. Adv. 2018;4 : eaat4517 21 November 2018
to have lasting effects on the development of leaf area index, harvest
index, and thus grain yield in the models.

Extreme temperatures also have the potential to directly damage en-
zymes, tissues, and reproductive organs and therefore hamper plant
growth, especially near anthesis and until early grain filling—mostly
in tropical and subtropical regions, where average maximum tempera-
tures during the growing period are exceeding 30°C (40, 44). However,
these direct negative effects on grain number and on the duration of
grain filling (45) are rarely implemented in global gridded crop models
(40, 46). While photosynthetic activity is down-regulated at tempera-
tures exceeding the crop-specific optimal range and warmer seasons
lead to faster phenological development and thus early senescence
(see Materials and Methods), the crop model considered in our study
neither accounts for permanent yield-reducing effects of heat nor
does it represent lethal effects of extreme temperatures (33). These
direct heat stressors are expected to be partially mediated by ample
soil moisture and irrigation through reduced leaf temperatures, a
mechanism also not explicitly implemented in the model. Without
accounting for irreversible damages and crop mortality, photosynthesis
rates and biomass accumulation are reduced within the model during
periods of water and heat stress, while unimpeded plant growth
continues as soon as conditions permit (see, for example, LPJmL–Ref
in Fig. 3C). Despite the lack of irreparable heat damage in current global
process-based cropmodels, they prove capable of reproducing observed
county-level yield declines at extreme temperatures (40), as well as heat
wave impacts on national yield levels (this study). This contributes to a
debate on the relevance of heat stress in crop modeling at larger spatial
scales (40, 41, 45, 47, 48) and contradicts recent findings from empirical
modeling, suggesting that heat stress is often the most important pre-
dictor (23). Other empirical findings suggest that high temperature
might affect global yields only when concurring with drought
conditions (49).

Relative improvements in explained variance of yield simulations
achieved in this study are consistent across most main producer coun-
tries (fig. S3), but low explanatory power remains in some countries
such as Mexico, Indonesia, or the Philippines for maize (table S1)
and Mexico, Kazakhstan, or Denmark for wheat (table S2). These
countries are also located at the lower end of explained variances
provided by ensembles of different crop models (24, 25). Yield fluc-
tuations in general do not show a statistically significant weather de-
pendency in about a third of all main producer regions (20, 25).
Additional reasons are difficult to differentiate and may include
not only model shortcomings (for example, ozone, flood, pest, and
diseases) and missing representation of agronomic decisions (for
example, fertilizer use, crop rotation, planting density, and general so-
cioeconomic condition), but also low-quality yield reporting data in
some cases (20, 25).

In addition, MIRCA2000 sowing and harvest data quality is not
consistent and considered less reliable in large countries, where data
are reported at national level only (for example, Russia, Spain, France,
Ukraine, Nigeria, Pakistan, and Argentina) (27). In these countries,
the LPJmL-internally calculated crop calendar often outperforms
MIRCA2000 information (fig. S5). Crop calendar improvements at
high spatial resolution, such as recently published for rice (50), are
expected to further improve crop yield simulations—especially in re-
gions where growing seasons are closely linked to the onset of the rainy
season (51, 52). There is no global information about temporal
variations in growing season, but recent studies show that the imple-
mentation of high-quality crop development dates reported annually
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for the United States even allows for a historical reproduction of ob-
served temporal trends in U.S. yields (11, 12).

The implementation of spatially resolved PHUs improves the
simulation of maize yields more than that for wheat. This difference
may be due not only to (i) a higher ab initio agreement between the
observed and simulated wheat yield fluctuations already achieved by
the referencemodel, associatedwith a different heat unit approach com-
pared tomaize (seeMaterials andMethods), and (ii) the fact that wheat
simulations include winter crops, which are generally harvested earlier
and thus less vulnerable to summer extreme heat, but also to (iii) the fact
that MIRCA2000 growing season information is known as being more
robust for maize than for wheat (27). In only 14 of 26 main wheat pro-
ducers (59% of the cropland area), MIRCA2000 crop calendar infor-
mation leads to superior results compared to LPJmL–internally
derived seasons (fig. S5).

Our analysis exclusively addresses weather effects on crop yields, but
not the effects on harvested areas. Management decisions related to the
extent of the harvested area can compensate or compound yield impacts
from extreme events (14). Yet, more and, most of all, spatially explicit
data are needed to better understand the relation of interannual climate
variability and sowing dates and harvested area for specific crops (53).
While these data would further benefit crop simulation if available glob-
ally, this study provides evidence that the multiyear average growing
season timing at the grid-cell level already provides one critical tech-
factor needed to reproduce annual national yield variability.

Better knowledge about the current relationship between local cli-
mate conditions and heat unit requirementsmay also be used to project
future cultivar selection [for example, faster growing cultivars (28)] in
response to regional climate change. Thus, by providing spatially expli-
cit heat unit requirements, our study provides a basis for investigating
the potential of management adaptation strategies in view of adverse
climate change.

This is the first study to our knowledge to highlight that a spatially
explicit implementation of cultivar phenology allows for an adequate
reproduction of extreme weather impacts on the variability of global
maize and wheat yields and that better agreement between simulated
and observed crop yield variations may depend less critically on ad-
vanced model responses to weather forcing than on the correct repre-
sentation of exposure to weather forcing. In view of the advanced
model’s capacity to reproduce observed historical interannual yield var-
iability and extreme event impacts, we highlight its role for refined
impact analyses of future climate-change projections. It may lead to
more reliable crop yield simulations and quantitative understanding
of adaptation potentials.
MATERIALS AND METHODS
Experimental design
The agrohydrological model LPJmL was used to show how (i) better
representation of water constraints in irrigation and (ii) the implemen-
tation of spatially resolved crop cultivars based on observed and
modeled growing seasons contribute to GGCM’s ability to explain ob-
served interannual yield variability at the global scale (Table 1). An ad-
ditional model run eliminating crop-water limitations in both currently
rainfed and irrigated cropland areas was used to quantify the underlying
contributions of water stress to observed crop yield variabilities.

By improving on a reference model version that does not account for
water constraints in irrigation and based on a semistatic heat-unit
parameterization not constrained by observations [LPJmL–Ref (33); de-
Jägermeyr and Frieler Sci. Adv. 2018;4 : eaat4517 21 November 2018
tails below], we first introduce an advanced representation of irrigation
system functioning and water constraints (38) and then adjust PHU re-
quirements to match spatially explicit information on sowing and
harvesting dates.

Model versions were evaluated on the basis of national standar-
dized yield anomalies (1980–2009) reported by the United Nations’
FAO (8) using the Pearson correlation (R2) and RMSE. In addition,
we tested the ability to reproduce global average effects of heat waves
and droughts on national crop yields between 1964 and 2007 (compo-
siting) (14), where extreme events were derived from the International
Disaster Database EM-DAT (13) (see the “Statistical analysis” section
for more details).

Model simulations were forced by the three bias-corrected reanalysis
climate datasets GSWP3 (34), PGFv2.1 (35), and WATCH + WFDEI
(36). If not stated otherwise, results refer to the average of three crop
model simulations forced by each climate dataset, respectively (fig. S6).

Sowing and harvest dates
Sowing dates and harvest dates in all model versions except for LPJmL–
PHU were internally derived per crop on the basis of local climatic
conditions (37). In contrast, LPJmL–PHUwas additionally constrained
by reported information about growing seasons under rainfed and irri-
gated conditions around the year 2000 at 0.5° spatial and monthly tem-
poral resolution according to MIRCA2000 (27). The first day of a
reported planting month was used as the planting date and the last
day of a harvest month as the harvest date. MIRCA2000 differentiates
between up to five different seasons per grid cell and crop. Grain and
silage maize were distinguished neither in MIRCA2000 nor in LPJmL.
MIRCA2000 was originally released at the 5–arc min spatial resolution,
aggregated to 0.5° for the use in global crop models. However, the
underlying information about growing seasons has amuch lower spatial
resolution with 402 units, where, for example Russia, Spain, France,
Ukraine,Nigeria,Mexico, andArgentina are single spatial units without
distinguishing subnational regions. An alternative global crop calendar
(52) has been published, but it relies on largely similar data sources and
does not distinguish rainfed and irrigated crops and was therefore not
considered in this study. Given the limited spatial resolution of reported
data, we complemented theMIRCA2000 information with LPJmL–
internally derived growing seasons based on local climatic conditions
(37). For each therefore available growing season, we derived grid
cell–specific heat units required to match targeted harvest dates
(fig. S4). Per country, we selected the season that leads to the highest
correlation between simulated and observed crop-yield anomalies
when used as input in LPJmL–PHU. Figure S4 shows individual
model performances of all seasons, for simulations solely based on
LPJmL-derived growing seasons but with spatially resolved heat units,
and also for simulations with growing seasons exclusively based on
MIRCA2000 information. For final LPJmL–PHU simulations as de-
scribed in Table 1, MIRCA2000 information was used across 80 and
59% of total main producers’ cropland area for maize and wheat, re-
spectively (see the map in fig. S5).

PHU requirements and phenological development
The simulation of crop phenological development from emergence
through anthesis to maturity was controlled by temperature and
modified by vernalization requirements. Spatially explicit accumulated
thermal units—here PHU (in oC day)—are based on daily weather data
averaged for the 1980–2010 period, individually derived from the three
observational climate datasetsmentioned above. For each climate dataset,
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crop, growing season (see above), and grid cell (i), we determined heat
units required to reach maturity (PHUreq,i) by calculating the sum of
daily ( j) average temperature �Ti;j above a crop- and location-specific
base temperature (Tb,i), weighted by a vernalization factor Vi,j from
sowing ( j = 0) to the harvest day (J)

PHUreq;i ¼ ∑
J

j¼0
max 0; �Ti;j � Tb;i

� �
*Vi;j ð1Þ

where base temperatures Tb,i are calculated as

Tb;i ¼ min Tmax
b ; max Tmin

b ; �Ti � 3°C
� �� � ð2Þ

with minimum temperatures Tmin
b = 5°C for maize and 0°C for wheat,

maximum base temperaturesTmax
b = 15°C for maize and 0°C for wheat

(33, 34), and annual average temperatures �Ti.
For maize, we assume no vernalization requirement (V = 1). Winter

wheat is assumed to require exposure to low temperatures to reach
anthesis (54, 55). It is distinguished from spring wheat if sowing
takes place between the 243rd and 365th day of the calendar year
on the Northern Hemisphere and between the 59th and 181st day
of the calendar year on the Southern Hemisphere and if the mean
temperature of the three coldest months within the growing season
is below 10°C. Heat unit accumulation is down-regulated by V < 1 as
long as the vernalization requirement Vreq is not yet fulfilled. Vreq is
derived fromcell-specific averagewinter temperatures of the five coldest
months within the growing season.

For winter wheat, we assume a maximum vernalization requirement
of 70days. That being said, fewer vernalizationdays are required ifmonth-
ly average temperatures of the coldest months i1,..., i5 are above 3°C

Vreq ¼ ∑
5

k¼1
Vreq;ik ð3Þ

where Vreq;ik ¼ 70=5 if monthly average temperature is below 3°C and
linearly decreases to zero at a monthly temperature of 10°C.

To reach the vernalization requirement, each day in the growing sea-
son is weighted according to their vernalization effectiveness and suc-
cessively added up. Here, we assume that vernalization effectiveness is
highest (=1) if daily temperature is between 3° and 10°C. Below 3°C, it
linearly decreases and reaches 0 at −4°C, and above 10°C, it also de-
creases linearly to 0 at 17°C (55). As soon asVreq is reached, the vernal-
ization factor for daily heat sum accumulation V is set to 1. Before a
minimum vernalization requirement of Vreq/5 is reached, V is set to
0. In between, it increases linearly from 0 to 1 with accumulated
weighted vernalization days (29).

In the default phenologymodel (referred to as semistatic), LPJmL–
Ref (and also LPJmL–WaterLimIrr and LPJmL–NoWaterStress), heat
requirements are not derived from reported growing seasons, and
sowing dates are internally derived on the basis of climate conditions.
For maize, the harvest date is not based on local observations but on a
global constantPHUref

req ¼ 1600°, while only the base temperature (Tb,i)
is assumed to vary geographically (same as Eq. 2). For springwheat, heat
requirements are defined as a multiple of the mean annual tempera-
ture (�T, 1980–2010 mean) PHUref

req ¼ �T*200 or a maximum value of
Jägermeyr and Frieler Sci. Adv. 2018;4 : eaat4517 21 November 2018
PHUmax
req ¼ 2684 and a minimum value of PHUmin

req ¼ 1000. For win-
ter wheat, PHUref

req is calculated as

PHUref
req ¼ max PHUmin

req ;�0:1081*ðDs � DkÞ2
�

þ 3:1633*ðDs � DkÞ þ PHUmax
req ÞÞ ð4Þ

whereDs is the sowing date andDk is 365 (Northern Hemisphere) or
181 (SouthernHemisphere). The default model also uses a simplified
approach to the effect of vernalization with geographically constant
vernalization requirements.

Phenological development is a function of daily accumulation of
weighted heat sum increments over the growing season (PHUsum,j, cal-
culated as in Eq. 1). Anthesis is assumed to occur as soon as PHUsum,j

reaches 0.5*PHUreq for maize and 0.45*PHUreq for wheat (33). Physio-
logical maturity is assumed to be reached as soon as PHUsum,j reaches
either PHUreq or a crop-specific age limit of 240 days formaize, 334 days
for spring wheat, and 364 days for winter wheat, which represents the
maximum growing season length in the MIRCA2000 crop calendar.
We further assume time requirements between crop maturity (green
leaf area index reaches zero) and harvest, as suggested by Elliott et al.
(30), that is, 21 days for maize and 7 days for wheat. As phenological
development of specific crops can also be influenced by day length,
PHU accumulation in LPJmL can be weighted by photoperiodism,
as described in Schaphoff et al. (33), but results were outperformed
by the simpler model without photosensitivity, which was thus pres-
ented herein. Additional physiological stresses were not considered to
directly affect phenological development but explicitly influence the
simulation of photosynthesis and carbon allocation (see next section).

The global gridded crop model LPJmL
LPJmL mechanistically represents biogeochemical land-surface pro-
cesses at the global scale, simulating daily water fluxes in direct coupling
with the establishment, growth, and productivity of major natural and
agricultural plant types at 0.5° resolution (33). Spatially explicit data on
cropland extent were obtained from the MIRCA2000 land-use dataset
(27), the extent of areas equipped for irrigation from Siebert et al. (56),
and the distribution of irrigation systems (surface, sprinkler, and drip—
applies only to simulation LPJmL–WaterLimIrr and LPJmL–PHU; see
Table 1) from Jägermeyr et al. (38). Land-use patterns were held con-
stant at year 2005 levels, and sowing dates were fixed throughout the
simulation period. Crop yields were calibrated to match average
(1998–2002) reported national management intensities (8).

Photosynthesis is simulated in dynamic coupling to absorbed
photosynthetically active radiation, temperature (optimum for pho-
tosynthesis, maize 21° to 26oC and wheat 12° to 17oC), day length,
canopy conductance, and water stress (33). Daily carbon assimilated
through photosynthesis is allocated to the crop organs roots, leaves,
harvestable storage organ (for example, cereal grain), and stem. Al-
location to each compartment is a function of the phenological devel-
opment stage and biomass increment. LPJmL computes daily water
stress as the ratio of soil water supply to the crop water demand.
Increased vapor pressure deficit or water stress therefore affects the
daily rate of carbon assimilation through reduced stomatal conduct-
ance. The daily increment of leaf area index is also down-regulated by
water stress, with lasting effects over the growing season, affecting the
harvest index and thus grain yield.
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Model simulations followed a 900-year (no land use) and 120-year
(land use) spin-up, recycling the first 20 years of input climatology
(mentioned above). LPJmL–PHU outputs were corrected for un-
intended multiple harvests potentially occurring within a single calen-
dar yearwhen harvest dates oscillate around the end of the year. In cases
where multiple harvest events are detected, yields were reported for the
year in which most of the growing season occurred. The full irrigation
setup (LPJmL–NoWaterStress) assumes unrestricted access to irriga-
tion water to fulfill crops’ water demand (any soil water deficit is
balanced the next day).

Statistical analysis
Explained variances (R2, in percent) are based on Pearson correlation
coefficients derived from simulated and observed national time series of
standardized crop yield anomalies (1980–2010), calculated as detrended
(first quadratic polynom subtracted) and normalized (mean subtracted)
yields, divided by the SD (hereinafter “yield anomalies”). To quantify
residuals between the observed and simulated yield anomalies, we
calculated RMSEs (unitless, as standardized anomalies are without
unit). Note that the Pearson correlation coefficient is unaffected by
the standardization of anomalies.

The composite analysis (Fig. 2 and fig. S8) was constructed by
extracting a 7-year time window from historical national yield time
series, centered on the respective “extreme year.” Extreme years were
defined according to EM-DAT (13), which reports the country and year
for various extreme event types from 1961 to 2010, if at least 10 people
died, 100 or more people were injured, made homeless, or required im-
mediate assistance, or a country declared a state of emergency, or called
for international assistance. In this study, we considered all heat waves
and droughts recorded between 1964 and 2007 (3 years before and after
an extreme event required for the construction of the composite anal-
ysis), if the respective crop contributes more than 5% to the total
cropland area in the affected country [based on Portmann et al. (27)].
For multiyear extreme events, we averaged consecutive extreme years
into a single disaster year signal, so that the time window always con-
sisted of seven entries, centered on the event signal.

This method creates a subset of 65 heat waves and 175 droughts for
maize and 81 heat waves and 146 droughts for wheat (table S3). The
extracted 7-year time series were divided by the average of the 3 years
preceding and following the event to remove the absolute magnitude of
national data from the signal. Any other data entry co-occurring with
another extreme event was excluded from calculating the mean. Last,
any linear trend was removed from the composite time series [in con-
trast to the study by Lesk et al. (14)], as model simulations are not
expected to reproduce observed trends in yields driven by technological
progress. The detrending was applied after compositing as it maintains
the absolute event signal, which is thus directly comparable to previous
studies (14). A discussion on potential type I and II errors associated
with compositing sample size was presented in Lesk et al. (14).

Rainfall deficits in Fig. 3 were calculated as the relative difference of
cumulative growing season precipitation in the respective year and the
long-term average cumulative precipitation during the MIRCA2000
growing season.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaat4517/DC1
Fig. S1. Root mean square error of standardized country-level yield anomalies for maize
and wheat.
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Fig. S2. Observed and simulated historical maize and wheat yield anomaly time series.
Fig. S3. Sensitivity of mean explained variance to number of countries considered.
Fig. S4. Evaluation of available growing season inputs.
Fig. S5. Best-performing crop calendar per country.
Fig. S6. Evaluation of different climate inputs.
Fig. S7. Influences of heat waves and droughts on rainfed and irrigated yields.
Fig. S8. Observed and simulated influences of the 2003 European heat wave on maize yields.
Fig. S9. Effects of growing season adjustment on wheat rainfall deficit.
Table S1. Explained variances and RMSE of maize country-level yield anomalies.
Table S2. Explained variances and RMSE of wheat country-level yield anomalies.
Table S3. List of extreme events considered in this study.
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