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Abstract

Stability of dynamical systems against strong perturbations is an important problem of nonlinear
dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval
stability, referring to the behavior of the perturbed system during a finite time interval. Based on this
concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval
stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the
stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation
capable to disrupt the stable regime for a given interval of time. The suggested measures provide
important information about the system susceptibility to external perturbations which may be useful
for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are
shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms
for quantification of the interval stability characteristics and demonstrate their potential for several
dynamical systems of various nature, such as power grids and neural networks.

1. Introduction

The problem of stability of complex dynamical systems against large perturbations is important both from a
theoretical point of view and for applications in many fields. For example, in climatology natural or
anthropogenic extreme events may cause severe changes in local and global climate systems [1-3]. In power
grids, local failure, overloads or line breaks may lead to synchronization losses and large-scale blackouts [4, 5]. In
neuroscience, external stimulation of brain areas may terminate pathological neural activity [6, 7]. Other
relevant examples include ecosystems [8, 9], biological networks [10] and many others.

The study of system stability against large perturbations is fundamentally different from the case of small
perturbations. First, the dynamics of small perturbations is linear, and the linear stability analysis is nowadays a
standard technique even for large-scale dynamical networks [11]. In contrast, the dynamics of large
perturbations is typically nonlinear, therefore the linearization is inadequate. Second, although a realistic system
must be stable against all small perturbations, it is usually stable only against some strong perturbations. Not
many systems are globally stable, i.e. stable against any large perturbations [12]. Therefore, a typical task is to
define the class of ‘safe’ perturbations after which the system returns back to the initial dynamical regime. From
the nonlinear dynamics viewpoint these are perturbations which do not leave the attraction basin.

If the evolution operator of the dynamical system is given, the safety of each particular perturbation can be
easily tested by direct simulation. However, the full description of the attraction basin may be a non-trivial task.
Even in a space of low dimension the basin of attraction may be quite complex, for example fractal [13]. At the
same time non-local characteristics of the basin may be important in many applications. For example, they may
serve as early-warning indicators for approaching global bifurcations [14, 15] or provide information for
optimal control of the system dynamics [16, 17].

Recently, the concept of basin stability (BS) was suggested to describe the stability against large perturbations
[15, 18-20]. The BS method was later used in various applications [21-24] and also confirmed experimentally
[25]. BSis a probabilistic measure that characterizes the likelihood that the perturbation is ‘safe’, i.e. the
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perturbed system returns back to the attractor. The value of BS depends on the predefined class of perturbations.
Later we suggested another characteristic, the stability threshold (ST) [26]. It corresponds to the ‘unsafe’
perturbation of minimal amplitude, or the ‘minimal seed’ needed to disrupt the system [27, 28]. From the phase-
space viewpoint, the ST corresponds to the minimal distance between the attractor and the border of its

basin [29, 30].

Numerical algorithms to calculate both BS and ST were suggested. The BS can be estimated by a Monte-
Carlo method by trying a large number of perturbations and testing the convergence to the attractor. The ST can
be estimated by solving a constrained optimization problem, i.e. finding the minimal perturbation after which
the system does not converge to the attractor. Note that both methods rely on the asymptotic behavior of the
trajectories, i.e. they suggest integration of the system for (infinitely) long time in order to verify the convergence.
In applications, it is often impractical to consider too long transients, since it is essential that the system returns
to the attractor in finite time. Thus, it is important to study stability within finite time intervals.

In this paper we introduce a novel concept of interval stability which describes the stability of a system on
finite time intervals. We qualify the perturbation as ‘safe’ if the system returns to a close vicinity of the attractor
in a given time and ‘unsafe’ in the opposite case. Similarly as in the case of asymptotic stability, we introduce
quantitative measures to characterize the class of safe perturbations. Namely, the interval basin stability (IBS)
equals the probability that a perturbation of a predefined class is safe. The interval stability threshold (IST) defines
the minimal magnitude of the unsafe perturbation. We discuss numerical methods for quantification interval
stability measures and demonstrate their performance for various dynamical systems.

2. Definitions

First, let us formally define the time in which the perturbed system returns to the attractor. Consider a dynamical
system

% =f(x), ey

where x € RN. This system defines a group of flow maps F, so that E. (x,) = x(7) where x(£) is the solution of
the initial value problem (1) with x(0) = x,. Let A be the attractor of (1), and € > 0 be such that the e-
neighborhood of A belongs to the basin of its attraction. Then the return time T_ of the point x from its attraction
basin is defined as

T.(x) = inf{t | t > 0, dist (Fx, A) < €}, )

i.e. it is the minimal time within which the perturbed system returns to the (small) neighborhood of its attractor
(see [31]). Naturally, the value of the return time depends on the size of the neighborhood ¢, although we will
sometimes omit the subscript . For points out of the basin we set T. = 00, and for points within the e-
neighborhood we set T. = 0. Note that we do not specify the type of the attractor, i.e. it may be a steady state, a
limit cycle or even a strange attractor [32—36]. The definition of the return time may also be easily generalized for
discrete-time dynamical systems [37, 38].
In figure 1, the concept of the return time is illustrated for the classical pendulum governed by the system
2
in-l—aj—f—i-Ksin(p:P. 3)
Here, @ is the angle of deflection, v is the dissipation coefficient, K characterizes the inertness and P denotes
the external torque. For the parameter values used in figure 1, the system is bistable with the coexistence of the
stable fixed point O and a stable limit cycle. Here the fixed point is treated as the desirable state and its stability is
studied. The areas with different return times corresponding to ¢ = 0.4 are plotted by different colors. The
union of all the colored areas constitutes the attraction basin of the steady state.
Now we can define the IBS and IST. Consider perturbations of (1) which define the subset X, C R ofthe
perturbed states in the system phase space. Suppose that the maximal admissible return time is 7. Then, IBS is
the fraction of the perturbed states whose return time is not larger than 7

_ Vdxlx e Xp, Te(x) < 7})

B,
V(Xp)

(C))

Here, V(X) denotes the volume of the subset X in the phase space. From a physical viewpoint, IBS defines the
probability that the system returns to the attractor within time 7 after a perturbation of the given class.
IST is defined as the minimal magnitude of the perturbation whose return time exceeds 7:

o, = inf{dist (a, b) | a € A, T.(b) > 7}. (5)
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Figure 1. Phase plane of the classical pendulum (3) with @ = 0.5, P = 0.8, K = 1. Colors encode the values of the return time T. with
€ = 0.4 (see the legend). The areas with different return times constitute the attraction basin of the steady state. The red circle with
radius € surrounds the steady state.

The physical meaning of the IST is the following. If the magnitude of the perturbation is less than o, the
system is guaranteed to return to the attractor in time 7 at the latest. For stronger perturbations the return time
may be larger. The corresponding points a and b with dist(a, b) = o define the ‘thinnest site’ of the attraction
basin and the most ‘dangerous’ direction of the perturbation.

IBS and the IST naturally depend on the interval 7. Its value should be selected depending on the particular
dynamical system and the particular application. As illustrated in figure 1, the larger is the return time 7, the
closer are the corresponding areas to the border of the attraction basin. Therefore, in the limit of large 7 the
interval stability characteristics approach the limiting values corresponding to the asymptotic ones. Namely, the
IBS tends to the (asymptotic) BS, and the—IST converges to the (asymptotic) ST.

3. Numerical methods

Let us now address the issue of numerical estimation of the interval stability characteristics. The Monte-Carlo
method for the estimate of the asymptotic BS may be easily generalized to calculate IBS. The corresponding
algorithm suggests testing of numerous perturbed states randomly picked from a predefined class and
integrating the system during the time 7. The convergence to the e-neighborhood of the attractor is checked and
the number of points with a return time less than 7 is counted. Finally, IBS is estimated as

B, =M, /M, (6)

where M is the total number of tested perturbations (numerical experiments) and M, the number of states with
return time less than 7.

Now let us address the problem of numerical estimation of the IST. In fact, the IST is the solution of the
constrained optimization problem

g(x) — min subject to h(x) > T, (7)

where g(x) is the distance from x to the attractor, and h(x) = T.(x). Theliterature devoted to constrained
optimization offers a variety of numerical methods [39—42] which are not in the focus of the present paper. Here
we will just discuss a specific feature of the return time function h(x) which may be a serious obstacle for the
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Figure 2. An exemplary two-dimensional system with discontinuous return time. (a) The phase portrait of the vicinity of the steady
state A: trajectories inside the gray sector (dashed) cross the circle three times, while the resting trajectories cross it only once. Red
circle is the e-neighborhood of the attractor, green closed curve T'is its image in the reverse time. (b) Green curve is the isosurface of
the return time T. = 7with discontinuities in points C; and E;. (c) Green closed curve is the isosurface of the return distance R, = ¢:
points C; and E, are connected by the trajectory of the system.

numerical solution of the constrained optimization problem (7). Namely, this function may be discontinuous
with respect to the system state x.

To understand this unexpected phenomenon, we analyze an exemplary two-dimensional system depicted in
figure 2(a). The system possesses the only steady state A and we select the e-neighborhood surrounding it as
depicted by the red circle. Note that in points D and E the trajectories contact the circle, and the trajectories
starting from arc DE leave the circle. However, since A is the attractor and the neighborhood belongs to its basin,
the trajectories return back to the circle later. So, the trajectories from the gray sector in figure 2(a) cross the
circle three times: in arc EF, in arc DE and in arc CD. The other trajectories cross the circle only once.

Let us now construct the set of points in the phase space whose return time equals 7. A naive solution would
be to start from the points on the circle and integrate them backwards during the time 7. Then the circle is
mapped to some closed curve T, and each point of T gets back to the circle in time 7. This seems to guarantee that
the return time of each point on T equals 7. However, this is true only for trajectories out of the gray sector which
cross the circle only once. The situation inside the gray sector is more complex, since points of T'may have a
smaller return time. Indeed, the trajectories starting from the intervals C, D, and D, E; cross the circle for the first
time at moments earlier than 7. Thus, the return time equals 7 only for the points in the interval E; F;. This means
that the set of the points with return time 7 is only a part of the closed curve T, as depicted in figure 2(b).

Thus, the return time may indeed be discontinuous in the phase space. Discontinuity of the constrain
function causes significant difficulties for the constrained optimization problem, therefore it should be avoided.
An obvious way to avoid the discontinuity of the return time is to select the neighborhood of the attractor which
is strictly absorbing. This would exclude its contact with the trajectories. However, this is practically impossible
for complex dynamical systems.

Here we suggest another approach, namely selecting another constrain function which is closely related, but
not equal to the return time. Namely, we introduce the return distance R of the point x from the attraction basin
as

R, (x) = inf {dist(F,x, A) | t € [0; 7]},

i.e. the minimal distance to the attractor achieved during the time interval 7. Note that the return radius depends
on the value of 7. It is also naturally related to the return time. Namely, it is easy to show that T.(x) = 7implies
R.(x) = . However, the opposite is not always true, as illustrated in figure 2. Indeed, the trajectory starting from
point E; contacts the circle at point E and later crosses it at point C. This implies that if the starting point x resides
on this trajectory between points E;and Cj, the minimal distance to the attractor during the time interval 7is

4
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reached at point E and equals €. Therefore the return distance R, equals € for all these points, and the set of points
with R, = ¢ consists of the set of points with 7. = 7complemented by the piece of the trajectory E; Cy, as
depicted in figure 2(c).

Thus, in contrast to the return time, the return distance is continuous in the phase space. An interesting
question is the relation between the return distance R, and the return time T in the areas where the latter is
discontinuous. On the curve C; E; in figure 2(c), R(x) = &,but T:(x) = 7. However, it is easy to see that this
curve separates areas with T_ (x) > 7 (above the curve)and T: (x) < 7 (below the curve).

Itis possible to show that the following is true for an arbitrary dynamical system: (i) return distance is a
continuous function in the phase space, and (ii) near each points with R (x) = ¢ points with T_(x) > 7and
T.(x) < T canbe found (see appendix for the proof). These features suggest that the return distance is a more
convenient choice of the constrain function in the constrained optimization problem associated to the IST.
Namely, instead of solving (7) one can determine the IST by solving the modified problem

g(x) — min subject to h(x) > ¢, (8)

where g(x) is the same but h(x) = R, (x). In this version, the constrain function is continuous which makes the
problem much easier for a numerical solution. Since h(x) is continuous and g(x) has no local minima out of the
attractor, the solution of (8) is a point on the border of the constrained area, i.e. with R (x) = €. The existence of
points with T > 7 in the arbitrary small vicinity guarantees by definition (5) that the found solution
corresponds to the IST.

We have developed an algorithm for the quantification of IST. The algorithm is an extension of the one
developed for the asymptotic ST [26]. It includes two stages. (i) First, it searches for a point with R (x) = ¢
starting from a random point in the vicinity of the attractor and moving away from it. (if) Once the point is
found, the gradient VR is calculated and the normal hyper-plane is constructed in the phase space. This hyper-
planeis alocal approximation of the isosurface R, = ¢ in the phase space. On this hyper-sphere a step in the
direction towards the attractor is taken. The procedure is repeated until no sufficient progress is achieved which
corresponds to the arrival to alocal minimum of the distance g(x). Starting from different points, the algorithm
converges to various local minima, and their comparison provides an estimate for the IST.

4, Results

In this section we apply the described methods of the study of the interval stability to different dynamical
systems. First, in illustrative purposes we consider the classical pendulum (3) whose phase portrait is depicted in
figure 1.

The numerical estimation of IBS for (3) is illustrated in figure 3. The class of the perturbed states was defined
asXp={p,y| -7 < p<m —6 <y < 3}, where y = dp/dt. Figure 3(a) illustrates the dependency of IBS
on the return time 7, while in figure 3(b) the resultant estimate is plotted versus the number of used points M.
One may see that the obtained estimate saturates both for large 7 and M. For large enough M the numerical
estimate converges to the real value of B, defined as (4). For large enough 7 the value of B, converges to the
(asymptotic) BS B = lim,_, ., B;. Note that this observation of the ‘double saturation’ feature of the estimate (6)
provides a simple method for the fast and accurate estimation of the (asymptotic) BS. Namely, to do so one
should consecutively increase the return time 7and the number of trials M calculating the ratio M, /M on each
step. When the saturation is achieved with respect to both M and 7, the obtained estimate is close to the real value
of B.

In figure 4 we illustrate the performance of the algorithm for quantification of IST. The algorithm starts from
random points (of which only two are shown), moves along the isosurface R, = € and converges to local minima
of the distance to the attractor. Between the two found local minima, the one which is closer to the attractor
corresponds to IST. In figure 5, the obtained o, is plotted versus the interval length 7. Note that for large enough
7 the value of o saturates and converges to the (asymptotic) ST 0 = lim,_, . 0;.

The next example we consider is a network of connected pendulums

Py N dy;

dr? dt

N
+ P; + Z Ki; sin (gaj — ). ©)]
j=1

This system is also often regarded as a conceptual model of power grids, i.e. networks of connected
generators and consumers of electrical power [5, 43]. In this context, (;is the angular variable describing the
rotor position, « is the dissipation parameter, P; is the electrical power produced or consumed by the given node
i, while Kj; characterizes the capacity of the transmission line between the two nodes i and j. Here, we analyze a
prototypical network of N = 10 nodes, each one randomly assigned to be a generator or a consumer. The nodes
are organized in a regular ring, each connected with two neighbors on each side (figure 6(a)). Further, we set
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number of trials.
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Figure 3. Numerical estimate for IBS of the pendulum (3) versus (a) the return time 7 for different number of trials M, and (b) versus
the number of trials M for different return time 7. Note that the value of the estimate saturates for large return times as well as large

-2

-3

-4

-5

-6

|

Figure 4. The algorithm for quantification of the IST: performance for the pendulum (3). Hollow circles—starting points, blue
connected circles—steps of the algorithm, red circles—the found local minima of the distance. Starting from different points the
algorithm converges to various local minima of the distance to the attractor.
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Figure 5. The IST of the pendulum (3) versus the return time 7 (green solid line). For large return times, the IST converges to the
(asymptotic) stability threshold (red dashed line).

0 5 10 15 20 25 30
time

Figure 6. (a) The circuitry of the power grid (9): generators (black circles) and consumers (gray circles) are chosen randomly. (b)
Synchronized dynamics of the power grid. (c) Desynchronized dynamics of the power grid. Parameters for both cases: K = 0.55,
o = 0.5, 1.e. the system demonstrates bistability between the synchronized and asynchronous regimes.

pi = 1for generators and P; = —1 for consumers, and equal transmission line capacities Kj; = K = 0.55 for all
connected nodes. For these parameters and all values of o > 0, the network demonstrates bistability with two
coexisting dynamical regimes. The first one is synchronization between all oscillators which in this case rotate
with the same frequency and fixed phase lags. In the context of power grids, this synchronized regime of the
network operation is the desirable one. The second regime is the asynchronous one corresponding to the mutual
rotation of the oscillators and malfunction of the power grid. The two regimes of the network are illustrated in
figures 6(b) and (¢).

We study the interval stability of the synchronized state of the network. In figure 7(a), IST is plotted versus
the parameter o for different values of the return time 7. Note that for large 7 the value of o saturates to a
constant value equal the (asymptotic) ST o (for small « the saturation takes place for larger 7, data not shown).
This feature demonstrates how o can be used to determine ¢. Namely, o, should be computed for increasing
values of 7 until the saturation is reached.

Thus, for large return times the interval stability transfers to asymptotic stability. In contrast, for small return
times the interval stability is related to the linear stability, since the dynamics near the attractor is linear. Namely,
in a small vicinity of the attractor the convergence of the trajectories is governed by the largest non-zero

7
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(a)
interval stability
threshold o,

14

interval stability threshold .

5 10 15 20 25 30 35 40 45 50
return time t

Figure 7. (a) The IST of system (9) versus the dissipation parameter o and return time 7. (b) The IST versus the return time for v = 0.1
(blue circles), a = 0.2 (green squares), @ = 0.3 (red diamonds) and & = 0.4 (green crosses). The dashed lines demonstrate the slopes
corresponding to the linear estimates. For large return times the IST converges to the (asymptotic) stability threshold, while for small
return times it is defined by the linear spectrum.

Lyapunov exponent A, and the distance to the attractor decreases as d(t) ~ exp(At). This allows to estimate the
IST as o, ~ € exp(— A7) for small enough € and 7. The lines corresponding to these estimates are plotted in
figure 7(b) by dashed lines. The exact value of o, depends on the shape of the selected neighborhood and the
directions associated with different Lyapunov exponents.

Itis important to analyze the points in the global phase space associated with the IST. By definition, these are
the closest points to the attractor for which the return time exceeds 7. The perturbations directed from the
attractor towards these points are the most dangerous ones for the system. In the case of a dynamical network,
the coordinates of this point correspond to the magnitude of partial perturbations applied to each node of the
network.

The critical perturbations are illustrated in figure 8 where the magnitude of the partial perturbation is plotted
versus the node number. In each panel, several critical perturbations found for different starting points are
plotted by different colors. Note that the situation is different for small compared to large return times. For the
large return time 7 = 30 the algorithm starting from different points converges to the close points suggesting the
existence of a single well-pronounced minimum in the global phase space. The critical perturbation involves
mostly the node number 9 and 10 which are perturbed the most strongly. In contrast to that, for the small return
time 7 = 10 the algorithm converges to multiple different points with close distances to the attractor. This
means that many different directions of perturbation are equally dangerous for the network. The presumable
reason for this may be understood from the consideration of the linear dynamics near the attractor. As was
shown above, it determines the IST for small 7. In the case of the network (9) the spectrum of the synchronized
state includes a lot of equal Lyapunov exponents due to the high symmetry of the network. This suggests the
presence of many directions in the phase space in which the trajectories converge with equal rate.

The last example we consider is a network of bistable units governed by the system

dx;

E =xi(x; —a)(l — x;) + Z Kijx;. (10)

j=i

Here, x; characterizes the activity of the unit 4, 0 < a; < lisits excitation threshold, and Kj;is the coupling
between the jth and the ith units. In the absence of interactions (Kj; = 0) each unit is settled either in the low
(x; = 0) orin the high (x; = 1) stable level. These states are separated by the unstable steady state x; = a;serving
as the excitation threshold (not to be mixed with the ST, although these terms are related). When the coupling is
introduced, the stationary levels persist although may shift due to the input from the peers. As shown in [44], the
mean-field dynamics of a homogeneous neural network may be sometimes approximated by a one-dimensional

8
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o o
o o =

o
~

partial perturbation

node number

Figure 8. Critical perturbations of the power grid (9) determined by the algorithm for (a) 7 = 30 and (b) 7 = 10. In the first case a
single well pronounced minimum is reached from different initial points, while in the second case multitude of minima with (almost)
the same distance to the attractor are found.

equation similar to the one describing a single node of (10). Therefore the network (10) may be interpreted as a
population of connected sub-networks, or an inhomogeneous neural network with incorporated clusters [45]
(see also [46, 47]). For illustrative purposes we again consider the network with a ring structure where each of
N = 10 nodes is connected to its nearest neighbors from each side with the same coupling strength Kj; = K (see
figure 9(a)). To avoid the excessive symmetry and to study the influence of the parameter mismatches the
thresholds of the nodes were set different so thata; = a, + iA withay, = 0.45and A = 0.01.

We study the IBS of the ‘silence’ state of the network for which all the nodes are low (x; = 0 for all /). We
selecte = 0.004 and 7 = 20 which means that the perturbation is ‘safe’ if the network returns to the e-sphere of
the steady state in time 7 at the latest. Figure 9(a) illustrates the results obtained by the algorithm for numerical
estimate of the IST depending on the coupling strength K. Different lines depict the distances to the local minima
obtained by the algorithm starting from various random points. Wesee N + 1 = 11 different lines some of
which terminate for certain values of K. Different lines correspond to different local minima in the phase space,
i.e. various direction of the perturbations associated with different nodes of the network.

One of the minima is associated with a negative perturbation of the nodes (dashed line). This minimum is
specific for the interval stability only and disappears in the asymptotic limit 7 — ©0. The rest of the minima are
associated with positive perturbations of the nodes (solid lines). Further we concentrate on them only.

For K = 0 the dynamics of the nodes is independent, and the destabilization of any node leads to the
destabilization of the whole network. Let us analyze the ‘partial’ IST of each node. The dynamics of the single
node is one-dimensional, i.e. the partial IST corresponds to such a perturbation of the variable x; that it returns
back to zero and reaches the level x; = ¢ in time T after the excitation. Thus, the partial IST o, ; is just a solution
of the initial value problem associated with the dynamics of the single node in reverse time. Namely, if x; obeys
dx;/dt = —x;(x; — a;)(1 — x;) withx;(0) = ¢, then o, ; = x,(7). Obliviously, the higher the excitation
threshold a;is, the larger is the partial IST o, ;. The excitation threshold also serves as the partial (asymptotic) ST
which implies that 0. ; — a;for 7 — o0,

For K = 0, the partial IST of each unit corresponds to the local minimum of the distance between the silent
steady state and the ‘unsafe’ area of the global phase space. Since different nodes possess unequal excitation
thresholds a; the partial ISTs are also different. Therefore the lines corresponding to the local minima start from
various levels. The IST of the entire network is defined by the local minimum with the smallest distance to the
attractor, i.e. the lowest one.

When the coupling strength K grows, the structure of the global phase space transforms, and the coordinates
of the local minima change. The general tendency is a decreasing of the distances to all the minima. Note that the
perturbations associated with the local thresholds involve several nodes rather than one. However, one of the
nodes is perturbed predominantly. At certain parameter values some of the local minima disappear. For strong
enough coupling only one local minimum survives (except the one associated with negative perturbations). This
only minimum defines the IST of the network. Itis associated with the predominant perturbation of the three
most excitable nodes of the network. As the coupling strength grows further the IST decreases significantly
because of the strong positive feedback which destabilizes the network after even small perturbation.
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Figure9. (a) Local interval stability thresholds of the network (10) fore = 0.004 and 7 = 20. Solid lines of different colors correspond
to positive perturbations, dashed to negative. (b)—(e) Critical perturbations associated with different local thresholds for K = 0 (b), ()
and K = 0.07 (d), (e). The critical perturbation involves a single node without coupling and several noise for non-zero coupling.

5. Conclusions

In the present paper we have suggested a novel concept of the stability against large perturbations—the interval
stability. In this framework a perturbation of the dynamical system is classified as ‘safe’ if the perturbed system
returns to a small neighborhood of the attractor in a given interval of time. Naturally, the interval stability
depends on the size of the neighborhood € and the time interval 7. These parameters should be selected in
consideration of the practical context to which the study is applied. For example, the choice of ¢ may be based on
what is considered as normal, or perfect operation of the system. The choice of 7 may be then related to the
maximal allowable duration of the malfunction period.

We have introduced quantitative measures to characterize the interval stability. The IBS is the probability
thata perturbation from the predefined class is safe. The IST defines the minimal magnitude of the unsafe
perturbation. From the phase space viewpoint, the IST corresponds to the minimal distance between the
attractor and the set of ‘unsafe’ points with the return time larger than 7. The direction associated with this point
also plays an important role being the most dangerous for the system.

The interval stability is a natural bridge filling the gap between linear and asymptotic stability. Namely, for
small ¢ and 7 the dynamics of the perturbations is linear, and the rate of their fading is determined by the
maximal non-zero Lyapunov exponent of the attractor. Therefore the IST depends on the linear stability of the
attractor. In contrast, for large 7 the class of safe perturbations comprises the whole basin of attraction, therefore
the IST converges to the (asymptotic) ST.

We have suggested numerical algorithms for estimate of the IBS and IST of an arbitrary dynamical system.
Since IBS is a probabilistic measure, it is natural to use Monte-Carlo methods for its estimate. In contrast, IST is a
deterministic measure, namely a solution of the constrained optimization problem. Solving this problem led us
to an unexpected problem of discontinuity of the constrain function. However, some reformulation allowed to
avoid this discontinuity.

In contrast with the case of asymptotic stability, numerical estimation of the interval stability measures relies
on integration of the dynamical system for finite time interval 7 which is beneficial for the performance. We have
demonstrated the potential of the developed algorithms for various dynamical systems. The most promising
direction is study of the interval stability of dynamical networks. In this context, IST is associated with the most
dangerous ‘combined’ perturbation applied to several nodes simultaneously.
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Appendix
Here we prove the following properties of the return distance:

(i) return distance is a continuous function in the phase space;

(ii) near each points with R (x) = ¢ the points with T (x) > 7 and T.(x) < T canbe found.

To prove (i), consider the function f,(f) = dist(Fx, A), where x is treated as a parameter. Then the return
distance R,(x) equals the minimum of f,(f) on the interval ¢t € [0; 7]. From the continuity of f.(¢) on the
parameter x the result follows.

To prove (ii), consider the same function and assume that it reaches the minimum for t = Tand equals
R,(x) = dist(Frx, A) = e. Consider the e-circle, i.e. the set of points whose distance to the attractor equals €. At
the pointy = Frx the trajectory either crosses the circle transversely or contacts it. In the first case, the points
with a return time larger (less) than 7 can be found near the point x along the same trajectory. Namely, points
x; = Faxhave return times larger (less) than 7 for A — —0 (A — + 0). In the latter case, it is always possible
to select a point y; close to y outside (inside) the circle. Then the return time of the point x; = F_1y; islarger
(less) than 7. From the continuity of the map F, it follows that x; is close to x.
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