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Abstract
Stability of dynamical systems against strong perturbations is an important problemof nonlinear
dynamics relevant tomany applications in various areas. Here, we develop a novel concept of interval
stability, referring to the behavior of the perturbed systemduring afinite time interval. Based on this
concept, we suggest newmeasures of stability, namely interval basin stability (IBS) and interval
stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the
stable regime (attractor) in a given time. IST provides theminimalmagnitude of the perturbation
capable to disrupt the stable regime for a given interval of time. The suggestedmeasures provide
important information about the system susceptibility to external perturbations whichmay be useful
for practical applications.Moreover, from a theoretical viewpoint the interval stabilitymeasures are
shown to bridge the gap between linear and asymptotic stability.We also suggest numerical algorithms
for quantification of the interval stability characteristics and demonstrate their potential for several
dynamical systems of various nature, such as power grids and neural networks.

1. Introduction

The problemof stability of complex dynamical systems against large perturbations is important both froma
theoretical point of view and for applications inmany fields. For example, in climatology natural or
anthropogenic extreme eventsmay cause severe changes in local and global climate systems [1–3]. In power
grids, local failure, overloads or line breaksmay lead to synchronization losses and large-scale blackouts [4, 5]. In
neuroscience, external stimulation of brain areasmay terminate pathological neural activity [6, 7]. Other
relevant examples include ecosystems [8, 9], biological networks [10] andmany others.

The study of system stability against large perturbations is fundamentally different from the case of small
perturbations. First, the dynamics of small perturbations is linear, and the linear stability analysis is nowadays a
standard technique even for large-scale dynamical networks [11]. In contrast, the dynamics of large
perturbations is typically nonlinear, therefore the linearization is inadequate. Second, although a realistic system
must be stable against all small perturbations, it is usually stable only against some strong perturbations. Not
many systems are globally stable, i.e. stable against any large perturbations [12]. Therefore, a typical task is to
define the class of ‘safe’ perturbations after which the system returns back to the initial dynamical regime. From
the nonlinear dynamics viewpoint these are perturbations which do not leave the attraction basin.

If the evolution operator of the dynamical system is given, the safety of each particular perturbation can be
easily tested by direct simulation.However, the full description of the attraction basinmay be a non-trivial task.
Even in a space of lowdimension the basin of attractionmay be quite complex, for example fractal [13]. At the
same time non-local characteristics of the basinmay be important inmany applications. For example, theymay
serve as early-warning indicators for approaching global bifurcations [14, 15] or provide information for
optimal control of the systemdynamics [16, 17].

Recently, the concept of basin stability (BS)was suggested to describe the stability against large perturbations
[15, 18–20]. The BSmethodwas later used in various applications [21–24] and also confirmed experimentally
[25]. BS is a probabilisticmeasure that characterizes the likelihood that the perturbation is ‘safe’, i.e. the
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perturbed system returns back to the attractor. The value of BS depends on the predefined class of perturbations.
Later we suggested another characteristic, the stability threshold (ST) [26]. It corresponds to the ‘unsafe’
perturbation ofminimal amplitude, or the ‘minimal seed’needed to disrupt the system [27, 28]. From the phase-
space viewpoint, the ST corresponds to theminimal distance between the attractor and the border of its
basin [29, 30].

Numerical algorithms to calculate both BS and STwere suggested. The BS can be estimated by aMonte-
Carlomethod by trying a large number of perturbations and testing the convergence to the attractor. The ST can
be estimated by solving a constrained optimization problem, i.e.finding theminimal perturbation after which
the systemdoes not converge to the attractor. Note that bothmethods rely on the asymptotic behavior of the
trajectories, i.e. they suggest integration of the system for (infinitely) long time in order to verify the convergence.
In applications, it is often impractical to consider too long transients, since it is essential that the system returns
to the attractor infinite time. Thus, it is important to study stability withinfinite time intervals.

In this paperwe introduce a novel concept of interval stability which describes the stability of a systemon
finite time intervals.We qualify the perturbation as ‘safe’ if the system returns to a close vicinity of the attractor
in a given time and ‘unsafe’ in the opposite case. Similarly as in the case of asymptotic stability, we introduce
quantitativemeasures to characterize the class of safe perturbations. Namely, the interval basin stability (IBS)
equals the probability that a perturbation of a predefined class is safe. The interval stability threshold (IST) defines
theminimalmagnitude of the unsafe perturbation.We discuss numericalmethods for quantification interval
stabilitymeasures and demonstrate their performance for various dynamical systems.

2.Definitions

First, let us formally define the time inwhich the perturbed system returns to the attractor. Consider a dynamical
system

x

t
f x

d

d
, 1= ( ) ( )

where x RNÎ . This systemdefines a group offlowmaps Fτ so that F x x0 t=t ( ) ( )where x(t) is the solution of
the initial value problem (1)with x(0)=x0. LetA be the attractor of (1), and 0e > be such that the ε-
neighborhood ofA belongs to the basin of its attraction. Then the return timeTe of the point x from its attraction
basin is defined as

T x t t F x Ainf 0, dist , , 2t  e= >e( ) { ∣ ( ) } ( )

i.e. it is theminimal timewithinwhich the perturbed system returns to the (small)neighborhood of its attractor
(see [31]). Naturally, the value of the return time depends on the size of the neighborhood ε, althoughwewill
sometimes omit the subscript ε. For points out of the basinwe set T = ¥e , and for points within the ε-
neighborhoodwe setT 0=e . Note thatwe do not specify the type of the attractor, i.e. itmay be a steady state, a
limit cycle or even a strange attractor [32–36]. The definition of the return timemay also be easily generalized for
discrete-time dynamical systems [37, 38].

Infigure 1, the concept of the return time is illustrated for the classical pendulum governed by the system
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Here,j is the angle of deflection,α is the dissipation coefficient,K characterizes the inertness and P denotes
the external torque. For the parameter values used infigure 1, the system is bistable with the coexistence of the
stablefixed pointO and a stable limit cycle. Here the fixed point is treated as the desirable state and its stability is
studied. The areaswith different return times corresponding to ε=0.4 are plotted by different colors. The
union of all the colored areas constitutes the attraction basin of the steady state.

Nowwe can define the IBS and IST. Consider perturbations of (1)which define the subset X RP
NÌ of the

perturbed states in the systemphase space. Suppose that themaximal admissible return time is τ. Then, IBS is
the fraction of the perturbed states whose return time is not larger than τ:

B
V x x X T x
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Here,V(X) denotes the volume of the subsetX in the phase space. From a physical viewpoint, IBS defines the
probability that the system returns to the attractorwithin time τ after a perturbation of the given class.

IST is defined as theminimalmagnitude of the perturbationwhose return time exceeds τ:

a b a A T binf dist , , . 5s t= Î >t e{ ( ) ∣ ( ) } ( )
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The physicalmeaning of the IST is the following. If themagnitude of the perturbation is less thanστ, the
system is guaranteed to return to the attractor in time τ at the latest. For stronger perturbations the return time
may be larger. The corresponding points a and bwith dist(a, b)=στ define the ‘thinnest site’ of the attraction
basin and themost ‘dangerous’ direction of the perturbation.

IBS and the IST naturally depend on the interval τ. Its value should be selected depending on the particular
dynamical system and the particular application. As illustrated infigure 1, the larger is the return time τ , the
closer are the corresponding areas to the border of the attraction basin. Therefore, in the limit of large τ the
interval stability characteristics approach the limiting values corresponding to the asymptotic ones. Namely, the
IBS tends to the (asymptotic)BS, and the—IST converges to the (asymptotic) ST.

3.Numericalmethods

Let us now address the issue of numerical estimation of the interval stability characteristics. TheMonte-Carlo
method for the estimate of the asymptotic BSmay be easily generalized to calculate IBS. The corresponding
algorithm suggests testing of numerous perturbed states randomly picked froma predefined class and
integrating the systemduring the time τ. The convergence to the ε-neighborhood of the attractor is checked and
the number of points with a return time less than τ is counted. Finally, IBS is estimated as

B M M, 6=t t ( )

whereM is the total number of tested perturbations (numerical experiments) andMτ the number of states with
return time less than τ.

Now let us address the problemof numerical estimation of the IST. In fact, the IST is the solution of the
constrained optimization problem

g x h xmin subject to , 7 t( ) ( ) ( )

where g(x) is the distance from x to the attractor, and h x T xº e( ) ( ). The literature devoted to constrained
optimization offers a variety of numericalmethods [39–42]which are not in the focus of the present paper.Here
wewill just discuss a specific feature of the return time function h(x)whichmay be a serious obstacle for the

Figure 1.Phase plane of the classical pendulum (3)withα=0.5, P=0.8,K=1. Colors encode the values of the return timeTεwith
ε=0.4 (see the legend). The areas with different return times constitute the attraction basin of the steady state. The red circle with
radius ε surrounds the steady state.
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numerical solution of the constrained optimization problem (7). Namely, this functionmay be discontinuous
with respect to the system state x.

To understand this unexpected phenomenon, we analyze an exemplary two-dimensional systemdepicted in
figure 2(a). The systempossesses the only steady stateA andwe select the ε-neighborhood surrounding it as
depicted by the red circle. Note that in pointsD andE the trajectories contact the circle, and the trajectories
starting from arcDE leave the circle. However, sinceA is the attractor and the neighborhood belongs to its basin,
the trajectories return back to the circle later. So, the trajectories from the gray sector infigure 2(a) cross the
circle three times: in arcEF, in arcDE and in arcCD. The other trajectories cross the circle only once.

Let us now construct the set of points in the phase spacewhose return time equals τ. A naive solutionwould
be to start from the points on the circle and integrate them backwards during the time τ. Then the circle is
mapped to some closed curveT, and each point ofT gets back to the circle in time τ. This seems to guarantee that
the return time of each point onT equals τ. However, this is true only for trajectories out of the gray sector which
cross the circle only once. The situation inside the gray sector ismore complex, since points ofTmayhave a
smaller return time. Indeed, the trajectories starting from the intervalsC1D1 andD1E1 cross the circle for thefirst
time atmoments earlier than τ. Thus, the return time equals τ only for the points in the interval E1F1. Thismeans
that the set of the points with return time τ is only a part of the closed curveT, as depicted infigure 2(b).

Thus, the return timemay indeed be discontinuous in the phase space. Discontinuity of the constrain
function causes significant difficulties for the constrained optimization problem, therefore it should be avoided.
An obviousway to avoid the discontinuity of the return time is to select the neighborhood of the attractorwhich
is strictly absorbing. This would exclude its contact with the trajectories. However, this is practically impossible
for complex dynamical systems.

Here we suggest another approach, namely selecting another constrain functionwhich is closely related, but
not equal to the return time.Namely, we introduce the return distance Rτ of the point x from the attraction basin
as

R x F x A tinf dist , 0; ,t t= Ît ( ) { ( ) ∣ [ ]}

i.e. theminimal distance to the attractor achieved during the time interval τ. Note that the return radius depends
on the value of τ. It is also naturally related to the return time.Namely, it is easy to show thatTε(x)=τ implies
Rτ(x)=ε. However, the opposite is not always true, as illustrated infigure 2. Indeed, the trajectory starting from
pointE1 contacts the circle at pointE and later crosses it at pointC. This implies that if the starting point x resides
on this trajectory between points E1andC1, theminimal distance to the attractor during the time interval τ is

Figure 2.An exemplary two-dimensional systemwith discontinuous return time. (a)The phase portrait of the vicinity of the steady
stateA: trajectories inside the gray sector (dashed) cross the circle three times, while the resting trajectories cross it only once. Red
circle is the ε-neighborhood of the attractor, green closed curveT is its image in the reverse time. (b)Green curve is the isosurface of
the return timeTε=τwith discontinuities in pointsC1 andE1. (c)Green closed curve is the isosurface of the return distanceRτ=ε:
pointsC1 andE1 are connected by the trajectory of the system.
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reached at pointE and equals ε. Therefore the return distanceRτ equals ε for all these points, and the set of points
withRτ=ε consists of the set of points withTε=τ complemented by the piece of the trajectoryE1C1, as
depicted infigure 2(c).

Thus, in contrast to the return time, the return distance is continuous in the phase space. An interesting
question is the relation between the return distanceRτ and the return timeTε in the areas where the latter is
discontinuous. On the curveC1E1 infigure 2(c),Rτ(x)=ε, butT x t¹e( ) . However, it is easy to see that this
curve separates areas withT x t>e( ) (above the curve) andT x t<e( ) (below the curve).

It is possible to show that the following is true for an arbitrary dynamical system: (i) return distance is a
continuous function in the phase space, and (ii)near each points withRτ(x)=ε points withT x t>e( ) and
T x t<e( ) can be found (see appendix for the proof). These features suggest that the return distance is amore
convenient choice of the constrain function in the constrained optimization problem associated to the IST.
Namely, instead of solving (7) one can determine the IST by solving themodified problem

g x h xmin subject to , 8 e( ) ( ) ( )

where g(x) is the same but h x R xº t( ) ( ). In this version, the constrain function is continuouswhichmakes the
problemmuch easier for a numerical solution. Since h(x) is continuous and g(x) has no localminima out of the
attractor, the solution of (8) is a point on the border of the constrained area, i.e. withRτ(x)=ε. The existence of
points withT t>e in the arbitrary small vicinity guarantees by definition (5) that the found solution
corresponds to the IST.

We have developed an algorithm for the quantification of IST. The algorithm is an extension of the one
developed for the asymptotic ST [26]. It includes two stages. (i) First, it searches for a point withRτ(x)=ε
starting from a randompoint in the vicinity of the attractor andmoving away from it. (ii)Once the point is
found, the gradient∇Rτ is calculated and the normal hyper-plane is constructed in the phase space. This hyper-
plane is a local approximation of the isosurfaceRτ=ε in the phase space.On this hyper-sphere a step in the
direction towards the attractor is taken. The procedure is repeated until no sufficient progress is achievedwhich
corresponds to the arrival to a localminimumof the distance g(x). Starting fromdifferent points, the algorithm
converges to various localminima, and their comparison provides an estimate for the IST.

4. Results

In this sectionwe apply the describedmethods of the study of the interval stability to different dynamical
systems. First, in illustrative purposes we consider the classical pendulum (3)whose phase portrait is depicted in
figure 1.

The numerical estimation of IBS for (3) is illustrated infigure 3. The class of the perturbed states was defined
as X y y, , 6 3P    j p j p= - -{ ∣ }, where y td djº . Figure 3(a) illustrates the dependency of IBS
on the return time τ, while infigure 3(b) the resultant estimate is plotted versus the number of used pointsM.
Onemay see that the obtained estimate saturates both for large τ andM. For large enoughM the numerical
estimate converges to the real value ofBτ defined as (4). For large enough τ the value ofBτ converges to the
(asymptotic)BS B Blim= t t¥ . Note that this observation of the ‘double saturation’ feature of the estimate (6)
provides a simplemethod for the fast and accurate estimation of the (asymptotic)BS.Namely, to do so one
should consecutively increase the return time τ and the number of trialsM calculating the ratioMτ/M on each
step.When the saturation is achievedwith respect to bothM and τ, the obtained estimate is close to the real value
ofB.

Infigure 4we illustrate the performance of the algorithm for quantification of IST. The algorithm starts from
randompoints (ofwhich only two are shown), moves along the isosurfaceRτ=ε and converges to localminima
of the distance to the attractor. Between the two found localminima, the onewhich is closer to the attractor
corresponds to IST. Infigure 5, the obtainedστ is plotted versus the interval length τ. Note that for large enough
τ the value ofστ saturates and converges to the (asymptotic) ST lim .s s= t t¥

The next examplewe consider is a network of connected pendulums

t t
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This system is also often regarded as a conceptualmodel of power grids, i.e. networks of connected
generators and consumers of electrical power [5, 43]. In this context,ji is the angular variable describing the
rotor position,α is the dissipation parameter, Pi is the electrical power produced or consumed by the given node
i, whileKij characterizes the capacity of the transmission line between the twonodes i and j. Here, we analyze a
prototypical network ofN=10 nodes, each one randomly assigned to be a generator or a consumer. The nodes
are organized in a regular ring, each connectedwith twoneighbors on each side (figure 6(a)). Further, we set
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Figure 3.Numerical estimate for IBS of the pendulum (3) versus (a) the return time τ for different number of trialsM, and (b) versus
the number of trialsM for different return time τ. Note that the value of the estimate saturates for large return times aswell as large
number of trials.

Figure 4.The algorithm for quantification of the IST: performance for the pendulum (3). Hollow circles—starting points, blue
connected circles—steps of the algorithm, red circles—the found localminima of the distance. Starting fromdifferent points the
algorithm converges to various localminima of the distance to the attractor.
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Pi=1 for generators andPi=−1 for consumers, and equal transmission line capacitiesKij=K=0.55 for all
connected nodes. For these parameters and all values of 0a > , the network demonstrates bistability with two
coexisting dynamical regimes. Thefirst one is synchronization between all oscillators which in this case rotate
with the same frequency andfixed phase lags. In the context of power grids, this synchronized regime of the
network operation is the desirable one. The second regime is the asynchronous one corresponding to themutual
rotation of the oscillators andmalfunction of the power grid. The two regimes of the network are illustrated in
figures 6(b) and (c).

We study the interval stability of the synchronized state of the network. Infigure 7(a), IST is plotted versus
the parameterα for different values of the return time τ. Note that for large τ the value ofστ saturates to a
constant value equal the (asymptotic) STσ (for smallα the saturation takes place for larger τ, data not shown).
This feature demonstrates howστ can be used to determineσ. Namely,στ should be computed for increasing
values of τ until the saturation is reached.

Thus, for large return times the interval stability transfers to asymptotic stability. In contrast, for small return
times the interval stability is related to the linear stability, since the dynamics near the attractor is linear. Namely,
in a small vicinity of the attractor the convergence of the trajectories is governed by the largest non-zero

Figure 5.The IST of the pendulum (3) versus the return time τ (green solid line). For large return times, the IST converges to the
(asymptotic) stability threshold (red dashed line).

Figure 6. (a)The circuitry of the power grid (9): generators (black circles) and consumers (gray circles) are chosen randomly. (b)
Synchronized dynamics of the power grid. (c)Desynchronized dynamics of the power grid. Parameters for both cases:K=0.55,
α=0.5, i.e. the systemdemonstrates bistability between the synchronized and asynchronous regimes.
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Lyapunov exponentλ, and the distance to the attractor decreases as d t texp l~( ) ( ). This allows to estimate the
IST as exps e lt~ -t ( ) for small enough ε and τ. The lines corresponding to these estimates are plotted in
figure 7(b) by dashed lines. The exact value ofστ depends on the shape of the selected neighborhood and the
directions associatedwith different Lyapunov exponents.

It is important to analyze the points in the global phase space associatedwith the IST. By definition, these are
the closest points to the attractor for which the return time exceeds τ. The perturbations directed from the
attractor towards these points are themost dangerous ones for the system. In the case of a dynamical network,
the coordinates of this point correspond to themagnitude of partial perturbations applied to each node of the
network.

The critical perturbations are illustrated infigure 8where themagnitude of the partial perturbation is plotted
versus the node number. In each panel, several critical perturbations found for different starting points are
plotted by different colors. Note that the situation is different for small compared to large return times. For the
large return time τ=30 the algorithm starting fromdifferent points converges to the close points suggesting the
existence of a single well-pronouncedminimum in the global phase space. The critical perturbation involves
mostly the node number 9 and 10which are perturbed themost strongly. In contrast to that, for the small return
time τ=10 the algorithm converges tomultiple different points with close distances to the attractor. This
means thatmany different directions of perturbation are equally dangerous for the network. The presumable
reason for thismay be understood from the consideration of the linear dynamics near the attractor. Aswas
shown above, it determines the IST for small τ. In the case of the network (9) the spectrumof the synchronized
state includes a lot of equal Lyapunov exponents due to the high symmetry of the network. This suggests the
presence ofmany directions in the phase space inwhich the trajectories convergewith equal rate.

The last example we consider is a network of bistable units governed by the system

x

t
x x a x K x

d

d
1 . 10i

i i i i
j i

ij jå= - - +
¹

( )( ) ( )

Here, xi characterizes the activity of the unit i, a0 1i< < is its excitation threshold, andKij is the coupling
between the jth and the ith units. In the absence of interactions (Kij=0) each unit is settled either in the low
(xi=0) or in the high (xi=1) stable level. These states are separated by the unstable steady state xi=ai serving
as the excitation threshold (not to bemixedwith the ST, although these terms are related).When the coupling is
introduced, the stationary levels persist althoughmay shift due to the input from the peers. As shown in [44], the
mean-field dynamics of a homogeneous neural networkmay be sometimes approximated by a one-dimensional

Figure 7. (a)The IST of system (9) versus the dissipation parameterα and return time τ. (b)The IST versus the return time forα=0.1
(blue circles),α=0.2 (green squares),α=0.3 (red diamonds) andα=0.4 (green crosses). The dashed lines demonstrate the slopes
corresponding to the linear estimates. For large return times the IST converges to the (asymptotic) stability threshold, while for small
return times it is defined by the linear spectrum.
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equation similar to the one describing a single node of (10). Therefore the network (10)may be interpreted as a
population of connected sub-networks, or an inhomogeneous neural networkwith incorporated clusters [45]
(see also [46, 47]). For illustrative purposes we again consider the networkwith a ring structure where each of
N=10 nodes is connected to its nearest neighbors from each sidewith the same coupling strengthKij=K (see
figure 9(a)). To avoid the excessive symmetry and to study the influence of the parametermismatches the
thresholds of the nodes were set different so that ai=a0+iΔwith a0=0.45 andΔ=0.01.

We study the IBS of the ‘silence’ state of the network forwhich all the nodes are low (xi=0 for all i).We
select ε=0.004 and τ=20whichmeans that the perturbation is ‘safe’ if the network returns to the ε-sphere of
the steady state in time τ at the latest. Figure 9(a) illustrates the results obtained by the algorithm for numerical
estimate of the IST depending on the coupling strengthK. Different lines depict the distances to the localminima
obtained by the algorithm starting from various randompoints.We seeN+1=11 different lines some of
which terminate for certain values ofK. Different lines correspond to different localminima in the phase space,
i.e. various direction of the perturbations associatedwith different nodes of the network.

One of theminima is associatedwith a negative perturbation of the nodes (dashed line). Thisminimum is
specific for the interval stability only and disappears in the asymptotic limit t  ¥. The rest of theminima are
associatedwith positive perturbations of the nodes (solid lines). Further we concentrate on themonly.

ForK=0 the dynamics of the nodes is independent, and the destabilization of any node leads to the
destabilization of thewhole network. Let us analyze the ‘partial’ IST of each node. The dynamics of the single
node is one-dimensional, i.e. the partial IST corresponds to such a perturbation of the variable xi that it returns
back to zero and reaches the level xi=ε in time τ after the excitation. Thus, the partial ISTστ i is just a solution
of the initial value problem associatedwith the dynamics of the single node in reverse time.Namely, if xi obeys

x t x x a xd d 1i i i i i= - - -( )( )with xi(0)=ε, thenστ i=xi(τ). Obliviously, the higher the excitation
threshold ai is, the larger is the partial ISTστ i. The excitation threshold also serves as the partial (asymptotic) ST
which implies thatστ i→ai for t  ¥.

ForK=0, the partial IST of each unit corresponds to the localminimumof the distance between the silent
steady state and the ‘unsafe’ area of the global phase space. Since different nodes possess unequal excitation
thresholds ai the partial ISTs are also different. Therefore the lines corresponding to the localminima start from
various levels. The IST of the entire network is defined by the localminimumwith the smallest distance to the
attractor, i.e. the lowest one.

When the coupling strengthK grows, the structure of the global phase space transforms, and the coordinates
of the localminima change. The general tendency is a decreasing of the distances to all theminima. Note that the
perturbations associatedwith the local thresholds involve several nodes rather than one.However, one of the
nodes is perturbed predominantly. At certain parameter values some of the localminima disappear. For strong
enough coupling only one localminimum survives (except the one associatedwith negative perturbations). This
onlyminimumdefines the IST of the network. It is associatedwith the predominant perturbation of the three
most excitable nodes of the network. As the coupling strength grows further the IST decreases significantly
because of the strong positive feedbackwhich destabilizes the network after even small perturbation.

Figure 8.Critical perturbations of the power grid (9) determined by the algorithm for (a) τ=30 and (b) τ=10. In thefirst case a
single well pronouncedminimum is reached fromdifferent initial points, while in the second casemultitude ofminimawith (almost)
the same distance to the attractor are found.
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5. Conclusions

In the present paper we have suggested a novel concept of the stability against large perturbations—the interval
stability. In this framework a perturbation of the dynamical system is classified as ‘safe’ if the perturbed system
returns to a small neighborhood of the attractor in a given interval of time.Naturally, the interval stability
depends on the size of the neighborhood ε and the time interval τ. These parameters should be selected in
consideration of the practical context towhich the study is applied. For example, the choice of εmay be based on
what is considered as normal, or perfect operation of the system. The choice of τmay be then related to the
maximal allowable duration of themalfunction period.

We have introduced quantitativemeasures to characterize the interval stability. The IBS is the probability
that a perturbation from the predefined class is safe. The IST defines theminimalmagnitude of the unsafe
perturbation. From the phase space viewpoint, the IST corresponds to theminimal distance between the
attractor and the set of ‘unsafe’ points with the return time larger than τ. The direction associatedwith this point
also plays an important role being themost dangerous for the system.

The interval stability is a natural bridge filling the gap between linear and asymptotic stability. Namely, for
small ε and τ the dynamics of the perturbations is linear, and the rate of their fading is determined by the
maximal non-zero Lyapunov exponent of the attractor. Therefore the IST depends on the linear stability of the
attractor. In contrast, for large τ the class of safe perturbations comprises thewhole basin of attraction, therefore
the IST converges to the (asymptotic) ST.

We have suggested numerical algorithms for estimate of the IBS and IST of an arbitrary dynamical system.
Since IBS is a probabilisticmeasure, it is natural to useMonte-Carlomethods for its estimate. In contrast, IST is a
deterministicmeasure, namely a solution of the constrained optimization problem. Solving this problem led us
to an unexpected problemof discontinuity of the constrain function.However, some reformulation allowed to
avoid this discontinuity.

In contrast with the case of asymptotic stability, numerical estimation of the interval stabilitymeasures relies
on integration of the dynamical system forfinite time interval τwhich is beneficial for the performance.We have
demonstrated the potential of the developed algorithms for various dynamical systems. Themost promising
direction is study of the interval stability of dynamical networks. In this context, IST is associatedwith themost
dangerous ‘combined’ perturbation applied to several nodes simultaneously.

Figure 9. (a) Local interval stability thresholds of the network (10) for ε=0.004 and τ=20. Solid lines of different colors correspond
to positive perturbations, dashed to negative. (b)–(e)Critical perturbations associatedwith different local thresholds forK=0 (b), (c)
andK=0.07 (d), (e). The critical perturbation involves a single nodewithout coupling and several noise for non-zero coupling.
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Appendix

Herewe prove the following properties of the return distance:

(i) return distance is a continuous function in the phase space;

(ii) near each points withRτ(x)=ε the points withT x t>e( ) andT x t<e( ) can be found.

To prove (i), consider the function fx(t)=dist(Ftx,A), where x is treated as a parameter. Then the return
distanceRτ(x) equals theminimumof fx(t) on the interval t 0; tÎ [ ]. From the continuity of fx(t) on the
parameter x the result follows.

To prove (ii), consider the same function and assume that it reaches theminimum for t=T and equals
Rτ(x)=dist(FTx,A)=ε. Consider the ε-circle, i.e. the set of points whose distance to the attractor equals ε. At
the point y=FTx the trajectory either crosses the circle transversely or contacts it. In thefirst case, the points
with a return time larger (less) than τ can be found near the point x along the same trajectory. Namely, points
x1=FΔxhave return times larger (less) than τ for 0D  - (D  + 0). In the latter case, it is always possible
to select a point y1 close to y outside (inside) the circle. Then the return time of the point x1=F−Ty1 is larger
(less) than τ. From the continuity of themap Ft it follows that x1 is close to x.

References

[1] DijkstraHA andGhilM2005Rev. Geophys. 43RG3002
[2] McInerney FA andWing S L 2011Annu. Rev. Earth Planet. Sci. 39 489
[3] Rahmstorf S et al 2005Geophys. Res. Lett. 32 L23605
[4] Buldyrev SV et al 2010Nature 464 1025
[5] Machowski J, Bialek J and Bumby J R 1997Power SystemDynamics and Stability (NewYork:Wiley) p 461
[6] MaybergHS et al 2005Neuron 45 651
[7] Tass PA 2003Biol. Cybern. 89 81
[8] Arnoldi J-F et al 2018 J. Theor. Biol. 436 79
[9] BurnsKA,Garrity SD and Levings SC 1993Mar. Pollut. Bull. 26 239
[10] Motter A E et al 2008Mol. Syst. Biol. 4 168
[11] Pecora LMandCarroll T L 1998Phys. Rev. Lett. 80 2109
[12] Schreiber S J 2006 J. Theor. Biol. 242 844
[13] DazaA et al 2016 Sci. Rep. 6 31416
[14] Dai L et al 2012 Science 336 1175
[15] Menck P J et al 2013Nat. Phys. 9 89
[16] Cornelius S P, KathWL andMotter A E 2013Nat. Commun. 4 1942
[17] Gambuzza LV and FrascaM2016Phys. Rev.E 94 1
[18] Brzeski P et al 2016Meccanica 51 2713
[19] Menck P J et al 2014Nat. Commun. 5 3969
[20] MitraC et al 2017Phys. Rev.E 95 032317
[21] Ji P andKurths J 2014Eur. Phys. J. Spec. Top. 223 2483
[22] MaslennikovOV,Nekorkin V I andKurths J 2015Phys. Rev.E 92 042803
[23] Rakshit S et al 2017 Sci. Rep. 7 2412
[24] Schultz P,Heitzig J andKurths J 2014New J. Phys. 16 125001
[25] Brzeski P et al 2017 Sci. Rep. 7 6121
[26] KlinshovVV,NekorkinV I andKurths J 2016New J. Phys. 18 013004
[27] Kerswell R R, Pringle CCT andWillis A P 2014Rep. Prog. Phys. 77 085901
[28] Pringle CCT andKerswell R R 2010Phys. Rev. Lett. 105 1
[29] KanekoK 1997Phys. Rev. Lett. 78 2736
[30] KanekoK 1998PhysicaD 124 322
[31] LundströmNLP 2017How to find simple nonlocal stability and resiliencemeasures (arXiv:1706.05689v1 [math.DS])
[32] YuWandCao J 2005Nonlinear Anal. TheoryMethods Appl. 62 141
[33] WangZ et al 2010Nonlinear Anal. TheoryMethods Appl. 73 3034
[34] XiaoM, ZhengWXandCao J 2013Math. Comput. Simul. 89 1
[35] AfraimovichV S, BykovVV and Shilnikov L P 1977AkademiiaNauk SSSRDokl. 234 336
[36] Chua L et al 1993 IEEETrans. Circuits Syst. I 40 732
[37] HénonM1976A two-dimensionalmappingwith a strange attractorThe Theory of Chaotic Attractors (NewYork: Springer) p 94
[38] CourbageM,Nekorkin V I andVdovin LV 2007Chaos 17 043109

11

New J. Phys. 20 (2018) 043040 VVKlinshov et al

https://doi.org/10.1029/2002RG000122
https://doi.org/10.1146/annurev-earth-040610-133431
https://doi.org/10.1029/2005GL023655
https://doi.org/10.1038/nature08932
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1007/s00422-003-0425-7
https://doi.org/10.1016/j.jtbi.2017.10.003
https://doi.org/10.1016/0025-326X(93)90062-O
https://doi.org/10.1038/msb.2008.1
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1016/j.jtbi.2006.04.024
https://doi.org/10.1038/srep31416
https://doi.org/10.1126/science.1219805
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/ncomms2939
https://doi.org/10.1103/PhysRevE.94.022306
https://doi.org/10.1007/s11012-016-0534-8
https://doi.org/10.1038/ncomms4969
https://doi.org/10.1103/PhysRevE.95.032317
https://doi.org/10.1140/epjst/e2014-02213-0
https://doi.org/10.1103/PhysRevE.92.042803
https://doi.org/10.1038/s41598-017-02409-5
https://doi.org/10.1088/1367-2630/16/12/125001
https://doi.org/10.1038/s41598-017-05015-7
https://doi.org/10.1088/1367-2630/18/1/013004
https://doi.org/10.1088/0034-4885/77/8/085901
https://doi.org/10.1103/PhysRevLett.105.154502
https://doi.org/10.1103/PhysRevLett.78.2736
https://doi.org/10.1016/S0167-2789(98)00205-X
http://arXiv.org/abs/1706.05689v1
https://doi.org/10.1016/j.na.2005.03.017
https://doi.org/10.1016/j.na.2010.06.071
https://doi.org/10.1016/j.matcom.2013.02.006
https://doi.org/10.1109/81.246149
https://doi.org/10.1007/978-0-387-21830-4_8
https://doi.org/10.1063/1.2795435


[39] ConnAR,GouldN andToint P L 1994 Large-scale nonlinear constrained optimization: a current surveyAlgorithms for Continuous
Optimization (Nato Science Series C vol 434) ed EG Spedicato (Berlin: Springer) p 287

[40] Homaifar A,Qi CX and Lai SH1994 Simulation 62 242
[41] KarabogaD andBasturk B 2007Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems

Foundations of Fuzzy Logic and Soft Computing (LectureNotes in Computer Science vol 4529) ed PMelin et al (Berlin: Springer) p 789
[42] PowellM JD1978A fast algorithm for nonlinearly constrained optimization calculationsNumerical Analysis (LectureNotes in

Mathematics vol 630) edGAWatson (Berlin: Springer)p 144
[43] RohdenM et al 2012Phys. Rev. Lett. 109 64101
[44] KlinshovV and Franovic I 2015Phys. Rev.E 92 062813
[45] Franović I andKlinshovV 2018Chaos 28 023111
[46] Franović I et al 2015Phys. Rev.E 92 062912
[47] Franović I et al 2015Phys. Rev.E 92 062911

12

New J. Phys. 20 (2018) 043040 VVKlinshov et al

https://doi.org/10.1007/978-94-009-0369-2_10
https://doi.org/10.1177/003754979406200405
https://doi.org/10.1007/978-3-540-72950-1_77
https://doi.org/10.1007/BFb0067703
https://doi.org/10.1103/PhysRevLett.109.064101
https://doi.org/10.1103/PhysRevE.92.062813
https://doi.org/10.1063/1.5017822
https://doi.org/10.1103/PhysRevE.92.062912
https://doi.org/10.1103/PhysRevE.92.062912

	1. Introduction
	2. Definitions
	3. Numerical methods
	4. Results
	5. Conclusions
	Acknowledgments
	Appendix
	References



