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Abstract 19 

 20 

Ozone pollution can severely diminish crop yields. Its damaging effects depend, apart from 21 

ozone concentration, on crop, cultivar, water status, temperature and CO2 concentration. 22 

Previous studies estimating global yield loss from ozone pollution did not consider all of these 23 

co-factors and climate change impact studies on crop yields typically ignore ozone pollution. 24 

Here we introduce an ozone damage module for the widely used process-based crop model 25 

LPJmL. The implementation describes ozone uptake through stomata, internal detoxification 26 

and short- and long-term effects on productivity and phenology, dynamically accounting for 27 

all listed co-factors. Using this enhanced model we estimate historical global yield losses 28 

from ozone pollution for wheat and soybeans. We divide wheat into “Western” and “Asian” 29 

to account for higher ozone sensitivities in Asian types. We apply daily ozone concentrations 30 

obtained from six chemistry-transport models provided by the ACCMIP and HTAP2 projects. 31 

Our implementation of ozone damage follows expected dynamics, for example  damage 32 

amplification under irrigation. The model is able to reproduce results from chamber and field 33 
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studies. Historical ozone-induced losses between 2008 and 2010 vary between countries, and 34 

we estimate these between 2 and 10% of ozone-free yields for soybeans, between 0 and 27% 35 

for Western wheat and 4 and 39% for Asian wheat.  36 

Our study highlights the threat of ozone pollution for global crop production and improves 37 

over previous studies by considering co-factors of ozone damage. Uncertainties of our study 38 

include the extrapolation from rather few point observations to the globe, possible biases in 39 

ozone data, omission of sub-daily fluctuations in ozone concentration or stomatal conductance 40 

and the averaging of different cultivars across regions. We suggest performing further field-41 

scale experimental studies of ozone effects on crops, as these are currently rare but would be 42 

particularly helpful to evaluate models and to estimate large-scale effects of ozone. 43 

 44 
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 47 

Highlights 48 

• Global yield damages from surface ozone are calculated for wheat and soybeans 49 

• Air temperature and plant water status are considered as co-factors 50 

• Ozone damage depends on region and cultivar, ranging from 0-39 % of harvest loss 51 

• For wheat, Asia suffers from much higher losses than Europe or North America 52 

 53 

 54 
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1. Introduction 55 

 56 

High levels of surface ozone (O3) can lower crop yields substantially (Burney and 57 

Ramanathan, 2014; Fuhrer, 2009; Ghude et al., 2014; Long et al., 2005; McGrath et al., 2015; 58 

Mills et al., 2015). Up to date, pollutants including ozone may even have contributed more to 59 

yield changes than climate change (Shindell, 2016). Ozone is a powerful oxidant and the 60 

mechanisms how it affects plants have long been researched (Ainsworth et al., 2012; 61 

Wilkinson and Davies, 2010; Wilkinson et al., 2012). The gas enters plant leaves via the 62 

stomata and swiftly reacts with apoplast components to form reactive oxygen species (ROS). 63 

These react further with membranes and cell components and cause damages to enzymes, 64 

including photosynthesis proteins. This leads to lower rates of carbon (C) assimilation. To 65 

prevent damage, plants tend to lower stomatal conductance in the presence of O3, causing 66 

reduced influx of CO2 and thus also lower photosynthesis rates. Senescence is advanced with 67 

higher O3 due to accumulating damages, causing a precocious loss of green leaf area. A share 68 

of assimilated carbon is respired for repairing ozone-induced damages and to build up anti-69 

oxidant defenses like ascorbate. Additionally, ovary sterility or kernel abortion could ensue 70 

from ozone damage, leaving less sink capacity for yield formation. Furthermore, the weather 71 

conditions favorable for O3 formation (dry, sunny and warm) may cause stress for plants, 72 

while their capacity to cope with stress is diminished due to O3 (Wilkinson et al., 2012). All 73 

these effects lead to a lower net assimilation of C on short and long term, eventually resulting 74 

in lower yield levels. Wheat and soybean are two global staple crops (FAO, 2016) and 75 

deemed sensitive to O3, with possibly increased damage potential of ozone in recent years due 76 

to higher stomatal conductance (Feng et al., 2008; McGrath et al., 2015; Osborne et al., 2016; 77 

Wilkinson et al., 2012). Ozone is also a greenhouse gas accelerating climate change and thus 78 

affecting yields indirectly (Fishman et al., 1979; IPCC, 2013; Sitch et al., 2007).  79 
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 80 

Ozone formation in the atmosphere is complex (Rai and Agrawal, 2012), largely determined 81 

by three limiting factors: solar radiation, temperature and precursor amount and relative 82 

proportion (methane, carbon monoxide, Volatile Organic Compounds (VOCs) and NOx 83 

compounds). These factors can vary independently (Fuhrer, 2009; McGrath et al., 2015), 84 

leading to substantial variance in O3 levels over space and time (Lin et al., 2015; Stevenson et 85 

al., 2006). Trends of ozone concentration diverge between regions. While in industrialized 86 

countries concentrations increased previously but have stabilized or slightly declined due to 87 

stricter enforcement of thresholds, O3 trends are upwards in transition economies like India 88 

and China (Gaudel et al., 2018; Rao et al., 2016; The Royal Society, 2008). Quantifying the 89 

global impact of O3 on crop yields is thus a pertinent issue. 90 

 91 

There are numerous chamber and field studies quantifying the effect of increased O3 on 92 

yields, reviewed, for example, by Broberg et al. (2015), Feng et al. (2008), Long et al. (2005), 93 

Morgan et al. (2003) or Rai and Agrawal (2012). Modeling studies based on experiments can 94 

be divided into three categories: exposure-response functions (ERF) for empirical correlations 95 

between yield and ozone exposure, flux-based approaches accounting for ozone uptake 96 

instead of exposure, and process-based models simulating physiological effects of O3 on 97 

different plant processes. ERF's are readily computed for large geographical areas and 98 

produce reliable results under similar conditions as they were trained on (Musselman et al., 99 

2006; Pleijel et al., 2007). Examples of ERF applications comprise Avnery et al. (2011) or 100 

Van Dingenen et al. (2009) where the authors calculate ozone damages for soybean, wheat 101 

and other crops in 2000, estimating losses between 4 and 16% depending on crop and region. 102 

Chuwah et al. (2015) study effects on eleven crops between 2005 and 2050 and derive that at 103 

least 2.5% of additional cropland area would be required to compensate for O3-induced 104 
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production losses. Avnery et al. (2013) research two pathways to reduce crop damage: climate 105 

change mitigation or crop adaptation. Burney and Ramanathan (2014) apply damage 106 

functions to estimate wheat and rice loss in India, correlating yield with O3 precursors rather 107 

than O3 concentrations directly. Tai et al. (2014) study interactive effects between O3 and 108 

temperature changes in 2000 and 2050 for four crops and assess the impact on food security. 109 

But these ERF-based assessments are agnostic about the underlying mechanisms how O3 110 

reduces yields. Additionally, interactions between O3 and other environmental factors like 111 

CO2 or water stress are usually not considered. Approaches that account for actual fluxes to 112 

the leaves, rather than outside concentrations, are thus necessary to complement experimental 113 

studies (Ainsworth et al., 2012; Franz et al., 2017). These could support adaptation or plant 114 

breeding for more O3-resistant cultivars.  115 

A hybrid between process-based and empirical models is the DO3SE flux-based model by 116 

Emberson et al. (2000). Stomatal conductance is described in dependence of limiting factors 117 

including water stress, light, temperature and ozone. The resulting stomatal ozone flux can be 118 

distinct from ozone concentrations. The DO3SE model has recently been applied in a novel 119 

combination of two model types: first, ozone flux to plants is calculated considering 120 

temperature, vapor pressure deficit, radiation and soil moisture, and, second, the ensuing 121 

damage to yields is then derived by a linear equation with this flux as exogenous variable 122 

(Mills et al., 2018a; Mills et al., 2018b). Another semi-empirical damage function is derived 123 

by Reilly et al. (2007) who calculate economic effects of interacting CO2, O3 and climate 124 

change on crop yields. But they only consider a generic C3 crop on monthly time step.  125 

Few process-based crop models including ozone stress have been designed. Fuhrer (2009) 126 

developed a model for O3 damage with explicit stomatal conductance and detoxification, but 127 

remained on a conceptual basis. Sitch et al. (2007) assessed indirect effects of O3 on climate 128 

change, but considered only generic vegetation and crops. Finally, Ewert and Porter (2000) 129 
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provide a detailed study of CO2 and O3 interactive effects on wheat yields. They consider 130 

short-term (reduced photosynthesis) and long-term (advanced senescence) damages of O3, but 131 

do not include water stress effects or possible costs of cell repair measures. Emberson et al. 132 

(2018) provide an excellent overview of current modelling efforts and sketch next steps in 133 

capturing ozone effects on crops (see Discussion for details on how this study follows their 134 

recommendations). 135 

 136 

In this study, we extend the global vegetation and crop model LPJmL (Bondeau et al., 2007; 137 

Schaphoff et al., 2018) towards ozone effects on crops. We model the effect of historical O3 138 

concentrations on global wheat and soybean yields. We explicitly consider interaction effects 139 

of O3 with temperature, water stress, phenology and CO2 at the physiological level in plants. 140 

We separately analyze Western (i.e. European and North American) and Asian wheat 141 

varieties to account for differences in their ozone responses (Emberson et al., 2009; Feng et 142 

al., 2012). This is, to our knowledge, the first study analyzing ozone-induced yield losses at 143 

the global scale with an integral consideration of modulating co-factors within a crop model. 144 

 145 

 146 

6 
 



2. Materials and methods 147 

 148 

2.1 Crop model and crops 149 

LPJmL is a widely used, process-based dynamic vegetation and crop model (Bondeau et al., 150 

2007; Sitch et al., 2003; Waha et al., 2012). LPJmL simulates carbon (C) cycling and 151 

vegetation dynamics with explicit representation of physiological processes. These include 152 

photosynthesis, autotrophic respiration, transpiration, evaporation, interception and runoff in 153 

natural and agricultural systems. The model is driven by daily weather (temperature, 154 

precipitation, incoming shortwave radiation and net downward longwave radiation), 155 

atmospheric CO2 concentrations and soil texture. Agriculture is described by managed 156 

grasslands and twelve crop functional types that differ in bio-climatic limits and eco-157 

physiological parameters. Photosynthesis and acquisition of carbon is based on BIOME3 158 

(Haxeltine and Prentice, 1996a). Stomatal conductance is optimized to maximize carbon 159 

assimilation while simultaneously minimizing water loss. Net assimilated C is allocated to 160 

four crop compartments: root, stem including mobile reserves, leaves and storage organs. 161 

Yield is represented by the amount of C in storage organs. In this study, LPJmL operates on 162 

0.5° grid cells (approx. 50 km at the equator) with individual land-use fractions and irrigation 163 

shares. Sowing and harvesting dates for crops are calculated internally considering climatic 164 

histories (Waha et al., 2012). LPJmL uses a potential productivity scaling factor accounting 165 

for management differences between countries: LAImax, the maximum Leaf Area Index the 166 

plant can achieve under optimum conditions, ranging between 1 and 7 (Fader et al., 2010). 167 

This factor is calibrated per country and crop such that temporally averaged national yield 168 

levels simulated by LPJmL (including damages from ozone) and reported by FAO (FAO, 169 

2016) agree (SI Figure S1).  170 

 171 
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We consider two staple crops, wheat and soybean, which together cover 22% of the global 172 

harvested area (Portmann et al., 2010). Since Asian and European/North American 173 

(“Western”) wheat varieties are known to react differently to ozone (Emberson et al., 2009; 174 

Feng et al., 2012) we separately consider these two types (though the reasons for this 175 

difference are currently not known). Asian wheat is assumed as dominant in all countries east 176 

of 40° Eastern longitude (plus Turkey). For soybean this distinction is not made since 177 

differences are currently unclear (Emberson et al., 2009). A choice between spring and winter 178 

wheat is computed internally by LPJmL, depending on climatic suitability with a preference 179 

for winter wheat: spring wheat is only sown when winters are too cold or long, that is mostly 180 

in high Northern latitudes (Bondeau et al., 2007). 181 

For the global runs, we applied a limited irrigation scheme: only water that is actually 182 

available for irrigation (after extraction of water necessary for household, industry and 183 

livestock) can be applied (Schaphoff et al., 2018). This is important particularly in South Asia 184 

where irrigation share is high, but available water limits effective crop irrigation (Elliott et al., 185 

2014; Zampieri et al., 2018). 186 

 187 

2.2 Modeling ozone effects 188 

The complex interaction of ozone with crops is simplified to three steps in our model (Figure 189 

1, Table 1). First, O3 outside the leaf (O3,out) is taken up via the stomata, leading to an inner-190 

stomatal concentration O3,in. Stomatal conductance for O3 is derived from the conductance for 191 

water vapor by using a factor of 0.58 (dividing by 1.6, the difference in diffusion coefficients 192 

of CO2 and water vapor, (Haxeltine and Prentice, 1996a) and by 1.075 to account for 193 

differences between CO2 and O3 (Ewert and Porter, 2000)). The concentration of O3 in cells is 194 

virtually zero (Ewert and Porter, 2000; Plöchl et al., 2000), as other oxidizing agents (reactive 195 

oxygen species, ROS) are quickly formed. We do not resolve these intermediate reactions for 196 
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the sake of model simplicity, but subsume from now on all ozone-derived ROS as Ox. Second, 197 

Ox,in is lowered by a detoxification process in cells and cell walls (Castagna and Ranieri, 198 

2009; Plöchl et al., 2000) that dynamically reduces Ox,in to a potentially harmful concentration 199 

Ox,harm. This process is split into two parts: an amount of Ox,in is scavenged at no additional 200 

cost to the plant owed to a basal, un-targeted rate of antioxidants production (Blokhina et al., 201 

2003; Jaleel et al., 2009), while the remaining fraction requires energy to be detoxified and 202 

thus increases the amount of carbon lost to maintenance respiration (Dizengremel et al., 2008; 203 

Ewert and Porter, 2000; Franz et al., 2017; Fuhrer et al., 1997). Franz et al. (2017) state that 204 

about half of external O3 is taken up and detoxified via non-stomatal pathways (Kollist et al., 205 

2000; Tuzet et al., 2011; Yin and Struik, 2009) and that this O3 destruction pathway is 206 

important when assessing risks for plants. We do not directly account for these non-stomatal 207 

effects, but consider them as captured by the stomata-dependent detoxification. Though this 208 

may be oversimplified, in particular since the non-stomatal disposal of ozone depends on 209 

weather conditions or leaf age, we argue that the additional parameters necessary for a 210 

dynamic detoxification aside the stomata, i.e. when both stomatal and non-stomatal pathways 211 

are explicitly considered, are intractable with few experimental measurements only (note that 212 

an explicit calibration is not performed by Franz et al. (2017)). Moreover, we assume the core 213 

dynamics of detoxification, i.e. a fractional disposal of ozone before damage accrues, as 214 

sufficiently captured with a single pathway in our model, containing both basal (passive) and 215 

respiration-driven (active) detoxification. We do also not explicitly account for damage 216 

recovery, which is particularly relevant for younger leaves (Ewert and Porter, 2000), but 217 

subsume this effect in the detoxification process. We assume this as valid surrogate since 218 

damage repair requires energy as well. Since LPJmL employs a big-leaf approach, the 219 

distinction between younger and older leaves is currently also not possible. Third, the inner 220 

harmful concentration Ox,harm induces damages: gross photosynthesis is reduced (short-term 221 
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damage) and senescence starts earlier (long-term), thereby shortening the time to acquire 222 

biomass and yield. The day of senescence onset is earlier for both wheat and soybeans, but the 223 

total growing time until maturity is not altered by ozone. Maturity is not advanced due to 224 

contrasting evidences or dose-dependent effects with low study coverage from the literature 225 

(Feng et al., 2008; Feng et al., 2011; Finnan et al., 1998; Pleijel et al., 1997; Zhu et al., 2011). 226 

The rate of senescence, i.e. the speed of decay, is not increased in our model, also due to 227 

ambiguous literature results (Dermody et al., 2006; Finnan et al., 1998; Pleijel et al., 1997). 228 

These three steps are added to the existing photosynthesis model (Table 1). Potential damages 229 

of O3 to stomatal functioning (Hoshika et al., 2015; Mills et al., 2009), which would affect O3 230 

uptake in the long term, are not considered due to data scarcity for crops. Similarly, the direct 231 

sensing of O3 by stomata, with subsequent closure independent of photosynthesis 232 

(Lombardozzi et al., 2012), is not simulated due to data scarcity. CO2 fertilization of crops is 233 

considered in LPJmL (Bondeau et al., 2007; Haxeltine and Prentice, 1996a; Haxeltine and 234 

Prentice, 1996b) and affects the response of crops to O3 via its effect on stomatal 235 

conductance: higher concentrations of CO2 result in lower stomatal conductance, which in 236 

turn allows less O3 to enter the leaves. The two molecules therefore act as antagonists: the 237 

more there is of one, the less the other will diffuse into leaves since both can lower stomatal 238 

conductance. 239 

After calculating an optimized stomatal conductance that accounts for temperature, water, 240 

ozone and CO2 concentration, the final daily C assimilation, C allocation and 241 

evapotranspiration are derived. All other steps in LPJmL are as described in Bondeau et al. 242 

(2007). 243 

 244 

 245 
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 246 

Figure 1: Reaction scheme of ozone as modeled in LPJmL. The size of O3/x boxes reflects 

their relative concentrations. Numbers refer to the three steps as described in text and Table 

1. Symbols are O3,out: outer ozone concentration, Ox,in: inner ozone/oxidative agent 

concentration (accounting for the fact that O3 concentration inside cells is virtually zero), 

Ox,harm: harmful inner concentration, nil: non-oxidative reaction products. The dashed arrow 

from photosynthesis to stomata indicates a feedback, lowering stomatal aperture as a 

consequence of reduced photosynthesis. 

 247 
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Table 1: Relevant equations in LPJmL to account for ozone stress. Units are omitted for clarity; see SI Table S2 for all symbols and units. 

Step Process Affected 

variable 

Relevant code lines Explanation 

1 Uptake Stomatal 

conductance 

λ = min(λ(water; CO2), λ(O3; CO2)) Lambda (λ) is the relation between inner and outer [CO2] with a maximum of 0.8. 

Water-limited and O3-limited lambda are separately optimized, then the minimum of 

these two is taken to represent stomatal conductance1. 

Inner [O3] Ox,in = O3,out * λ / λmax * gcmax Relation between inner and outer O3 depends on stomatal conductance, represented by λ 

over λmax (0.8) times the maximum conductance under no stress. 

2 Detoxification Basic 

scavenging 

Ox,inR = max(0, Ox,in – bsPFT) A certain amount of O3 (or other ROS) is not harmful for the plant and is scavenged 

without additional energy costs (as detoxifying agents are assumed as basally present). 

Respiration rd = bC3 * Vmax * (1 + rPFT * Ox,inR) The remaining Ox (i.e. O3 or other ROS) increases cell respiration, for repairing and 

scavenging. 

Harmful [O3] Ox,harm = Ox,inR * (1 – dPFT) 

Ox,harm.cum = Ox,harm.cum + Ox,harm  

 

Ox is reduced by a percentage to the remaining harmful concentration. The cumulative 

harmful concentration Ox,harm.cum is calculated (set to 0 at sowing). 

3 Damage Reduction of 

photosynthesis 

jc = cC3 * Vmax * max(0, 1 – jPFT * Ox,harm) Rubisco-limited photosynthesis jc is reduced by Ox. See also comments on Vmax in the 

discussion. 

Senescence 

onset 

Senescence starts when  

PHUsum / PHUmax > fracsen; with  

fracsen = 0.7 * max(0, 1 – sPFT * Ox,harm.cum)  

 

Advancing of senescence is realized by lowering the phenological heat unit (PHU) 

threshold necessary to reach senescence (fracsen). The value of 0.7 (equal for wheat and 

soybeans) is the fraction of maximum attainable heat units (PHUmax) necessary for 

senescence onset under no ozone. 

1 The interaction between water stress and O3 would best be represented by a hyperplane; but evaluation data is too sparse for an interactive response. 
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2.3 Parameter calibration 248 

The ozone module requires five crop-specific parameters: bsPFT (in mmol/m2/day) describing 249 

the basal scavenging without energy cost, dPFT (between 0 and 1, unitless) describing the 250 

fraction of Ox,in that is detoxified at the cost of higher respiration, rPFT (mmol-1m2 day) 251 

describing the respiration increase for this detoxification, jPFT (mmol-1m2 day) describing the 252 

Rubisco (i.e. ribulose 1,5-bisphosphate carboxylase/oxygenase)-limited photosynthesis 253 

reduction due to ozone and sPFT (mmol-1m2) describing the advance in senescence. No 254 

literature values were available for these five parameters, but they result as a compromise 255 

between our global focus and the harmonization of differently available measured variables 256 

across studies. Parameters were subjected to a calibration aiming to reproduce experimental 257 

studies. After a first round of calibration, where all five parameters were free, it became 258 

obvious that there are pairwise inverse correlations that require some parameters to be kept 259 

constant. We decided to fix bsPFT and rPFT , to which the model is either not very sensitive 260 

(rPFT, Figure 4) or there is a reference value that can be derived from the literature (bsPFT). We 261 

fixed bsPFT at 0.16 mmol m-2 day-1, corresponding to a threshold of non-damaging O3 262 

concentration of 40 ppbv (as in the AOT40 exposure metric often used in ERF studies, e.g. 263 

Avnery et al. (2011) or Fuhrer et al. (1997)) at a maximum stomatal conductance of 6 mm 264 

sec-1 (equal to 0.162 mol m-2 sec-1 of conductance to O3 at 25°C and 1000 hPa pressure) for 8 265 

hours (SI Table S3). The fixed value of rPFT was determined by a linear regression using 266 

experiments (SI Table S1). Other crop-specific parameters like base temperatures or 267 

allocation constraints were not calibrated since these are based on literature values (Bondeau 268 

et al., 2007). No scaling from leaf to plant was used, i.e. the whole plant was treated as one 269 

big leaf. 270 

Calibration was performed by traversing a full three-dimensional cube with 20 values for each 271 

of the three parameters to be calibrated (dPFT, jPFT, sPFT), resulting in a total of 203 = 8,000 272 
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model runs per crop. Values were iterated, ranging from 0.05 to 5.0 times of the starting value 273 

(jPFT, sPFT) derived from linear regressions using experimental evidence, or between 0 and 274 

100% (dPFT). The weighted average root mean square error (RMSE) was used as target 275 

function, calculated for all pairs of observed and simulated variables. Growing-season 276 

averages (for model and experiment) were used if the measurement time point or the 277 

phenological phase was not clearly indicated in the studies. Weights for calibration variables 278 

were: 2 for the O3 flux to leaves, 2 for relative stomatal conductance, 1 for Asat as percentage 279 

of control, 1 for relative yield loss and 0.1 for respiration. Stomatal conductance and ozone 280 

uptake were weighed highest since these are the decisive processes that allow an upscaling 281 

from experimental to global level. Reduction in Asat and relative yield loss are of second 282 

weighting since these are used as a mixture of result (from ozone uptake) and independent 283 

observation. Respiration was weighed least since experimental values were rare (see 284 

comments in SI Table S1). Resulting RMSE values were often similar (difference only in the 285 

third or fourth decimal place) such that of the 100 simulations with the lowest RMSE values 286 

the parameter set with the lowest reduction factors was chosen. This is justified by lower 287 

observed damages in reality than in experiments (Morgan et al., 2003). The LAImax 288 

management parameter was adapted for each experiment before calibration such that the 289 

control yield level was correctly simulated.  290 

 291 

The Web of Science® (http://apps.webofknowledge.com)  was searched in spring 2016 for 292 

experimental studies that described ozone effects on wheat or soybean and reported one or 293 

more physiological observations useful for calibration (yield loss, O3 uptake, light-saturated 294 

photosynthesis, stomatal conductance, respiration and/or growing season length). Six different 295 

studies containing 16 experiments were considered for Western wheat, seven studies with 12 296 

experiments for Asian wheat and four studies with 11 experiments for soybeans (SI Table 297 
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S1). The experimental conditions described in these studies, including in particular O3 and 298 

CO2 concentrations, water provision and temperature, were provided as input for LPJmL. 299 

Output variables for comparison were extracted from the manuscripts, involving the use of the 300 

software Engauge Digitizer (Mitchell et al., 2018).  301 

 302 

An out-of-sample calibration was performed to evaluate the reliability of the calibration 303 

process. Every study, each containing several measurements, was omitted from calibration in 304 

turn and the best parameters identified for the reduced experiment set. Simulation results for 305 

the experiments from the omitted study were then calculated with the out-of-sample calibrated 306 

parameters. The omission of studies corresponds to a 14-25% cross validation since each 307 

study contains at least two experiments (SI Table 1). 308 

 309 

2.4 Ozone data 310 

The ideal ozone data set for this exercise would contain observed daily, global surface O3 311 

concentrations over several years at 0.5° spatial resolution. But such a data set does not exist. 312 

Therefore we used an ensemble of daily global surface ozone concentrations, derived from 313 

chemical transport models participating in the ACCMIP model inter-comparison (Lamarque 314 

et al., 2013) and HTAP2 atmospheric pollution (Stjern et al., 2016) projects. Six models are 315 

included in the ensemble, all providing hourly or daily ozone concentrations: GEOSCCM, 316 

GFDL-AM3, MIROC-CHEM (all from ACCMIP), CHASER_re1, EMEP_rv48, GEOS-317 

Chem (all from HTAP2). For either of the two experiment sets, an ensemble median was 318 

calculated pixel-wise, resulting in a total of eight global daily ozone input fields (six models 319 

plus two ensembles). Common available years for all models are 2008 to 2010. The usage of 320 

model ensembles is motivated by a better agreement of ensemble than single-model values 321 

with observed data (Fiore et al., 2009). 322 
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Hourly data were aggregated to daily data by averaging concentrations between 8 am and 4 323 

pm. The daily values (aggregates or directly provided by the model) were downscaled from 324 

model resolution to 0.5° spatial resolution with a double-conservative remapping that 325 

conserves spatial gradients. A comparison of both ACCMIP and HTAP2 ensembles to 326 

observed values is shown SI Figure S2. Crop loss estimates were calculated with a reference 327 

of zero ozone and additionally with a scenario when all anthropogenic emissions (except 328 

methane) were reduced by 20%. Ozone data for the latter were provided by the HTAP2 329 

“GLOALL” simulations (for 2010 only), for the three HTAP2 models included here. 330 

 331 

 332 

2.5 Climate and land-use data 333 

Temperature, precipitation, shortwave and longwave solar radiation are taken from the 334 

WFDEI data set (Weedon et al., 2014). These data have often been used by climate change 335 

impact models (Warszawski et al., 2014), and in particular in the Agricultural Model 336 

Intercomparison and Improvement Project’s (AgMIP) global gridded crop model inter-337 

comparison, GGCMI (Elliott et al., 2015). 338 

Crop-specific land-use and irrigation fractions are extracted from the MIRCA2000 data set on 339 

0.5° spatial resolution, representative of the global crop distribution around the year 2000 340 

(Portmann et al., 2010). These fractions are held fixed to limit potential co-variation of O3 341 

damages and land-use shifts.  342 

 343 

2.6 Model evaluation 344 

Four levels of model evaluation were applied. First, the model was tested against 345 

experimental observations. These studies were also used to calibrate model parameters, once 346 

with the full data set and once as an out-of-sample calibration. Second, sensitivity runs were 347 
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performed where either input variables or model parameters were varied. These runs were not 348 

compared to observations, but gave insights whether the inner mechanics of the model were 349 

reasonably adherent to the modelled processes. Third, simulated national yield losses were 350 

compared to previous studies by McGrath et al. (2015), Ghude et al. (2014) and Burney and 351 

Ramanathan (2014). Fourth, the global historical loss estimates produced by LPJmL were 352 

compared to previous estimates using Exposure Response Functions (ERFs), which linearly 353 

relate ozone exposure above a threshold to crop losses. 354 

 355 

 356 
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3. Results 357 

 358 

3.1 Parameter calibration 359 

The calibration procedure leads to crop-specific parameter sets (Table 2). Asian and Western 360 

wheat parameters differ in detoxified percentage, photosynthesis decrease and respiration 361 

increase; all of them show larger effects of O3 on Asian wheat. Calibration plots for each crop 362 

(Figure 2) show the agreement between experimentally observed and simulated values for 363 

ozone uptake, light-saturated (i.e. Rubisco-limited) photosynthesis Asat, stomatal conductance 364 

for water and yield loss. For each of the variables different counts of observations are 365 

available. Out-of-sample calibration shows that the results are robust towards omission of 366 

several experiments (SI Figure S3). Stomatal conductance and ensuing ozone uptake show 367 

variation around the 1:1 line, but no systematic bias, and largely match with observations in 368 

dynamics and magnitude. Note that ozone uptake is not measured for any experiment with 369 

Asian wheat. Relative yield loss is estimated rather conservatively for all three crops – there is 370 

no simulation below the 1:1 line.  371 

 372 

Table 2: Calibrated values for the five O3 parameters 

Parameter Western wheat Asian wheat Soybeans Comment 
bsPFT 0.1600 0.1600 0.1600 Fixed value 
dPFT 0.7395 0.6353 0.7395  
rPFT 0.1000 0.1729 0.9470 Fixed value 
jPFT 0.0100 2.6874 0.568  
sPFT 0.0844 0.0896 0.0323  
 373 

 374 
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 375 
(a) Western wheat 376 

 377 
(b) Asian wheat 378 
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 379 

 380 
(c) Soybeans 381 

Figure 2: Calibration results for (a) Western wheat, (b) Asian wheat, (c) soybeans. Subpanels 

show experimentally observed values on the x-axis and simulated values on the y-axis. 

Different colors denote different experiments; detailed descriptions are listed in SI Table S1. 

There can be several measurements of one variable within one experiment. Ideally all points 

would lie on the 1:1 line shown for comparison. Numbers in brackets in sub-captions denote 

calibration weights (see Methods). 

 382 

 383 
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3.2 Sensitivity towards weather or parameter variation 384 

Sensitivity of the model towards input variation is displayed in Figure 3 and SI Figure S4, 385 

similar to the tests conducted by Ewert and Porter (2000). Response dynamics of three key 386 

variables (light-saturated photosynthesis Asat, stomatal conductance and ozone uptake) are 387 

evaluated under different growth conditions for one example day during late leaf expansion or 388 

early senescence. Variations include ozone concentration, exposure time, CO2 concentration 389 

and precipitation. Temperature and illumination were simulated as optimal and repeated each 390 

day. All crops convey similar dynamics (SI Figure S4). Since phenological development, in 391 

particular when the LAI changes with development, influences photosynthetic performance, 392 

analogous plots without senescence advancing can be found in SI Figure S5. This exercise 393 

with ozone-unaffected senescence onset conveys similar patterns as the original analysis 394 

(except ozone uptake monotonically increasing with exposure time).  395 

Light-saturated photosynthesis (Asat) increases with higher CO2, but high O3 concentrations 396 

dampen this increase (Figure 3; SI Figure S4). The relative loss in Asat in reference to O3-free 397 

conditions is, however, levelling off with higher CO2. Stomatal conductance is reduced by a 398 

higher load of either CO2 or O3. At high O3 and low CO2 concentrations simulated stomata 399 

are completely closed. The influence of O3 diminishes with higher CO2 concentrations. 400 

Closely connected to stomatal conductance is O3 uptake, which decreases with higher CO2 but 401 

increases with higher O3. 402 

Scarcity of water leads to a less important role of O3, evidenced by smaller differences 403 

between Asat, conductance and O3 uptake at low water levels. Both relative and absolute 404 

photosynthetic damages increase with water provision. For high O3 loads stomatal 405 

conductance levels off: it does not increase with more water to avoid excess O3 uptake. 406 

Longer O3 exposure times lead to higher O3 uptake and thus lower Asat and stomatal 407 

conductance. Stomatal conductance, Asat and O3 uptake turn down to zero at high levels of O3. 408 
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The day of senescence onset slightly advances with higher management intensity (SI Figure 409 

S6). Simulated plant growth (LAI) and development (as relative phenology) are influenced by 410 

atmospheric ozone (SI Figure S7). 411 

 412 

 413 

 414 
 (a) Varying CO2 concentrations, at 8 hours of exposure and 6mm daily precipitation 415 

 416 

 417 
(b) Varying precipitation levels, at 8 hours of exposure and CO2 at 340 ppm 418 
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 419 

 420 
(c) Varying exposure times, at 6mm daily precipitation and CO2 at 340 ppm 421 

Figure 3: Sensitivity of crop responses against varying inputs of (a) CO2 concentration, (b) 

water supply and (c) ozone exposure times for Asian wheat (for other crops see SI Figure S4). 

Data are taken as one-day snapshots at mid growing season (81 days after sowing, which is 

in the leaf expansion phase for ozone doses up to 50 ppb, but already in senescent phase for 

the others – see also SI Figure S7). The response of Asat, stomatal conductance and O3 uptake 

is shown. Different colors denote different ozone concentrations.  

 422 

Model sensitivity towards varying ozone parameters, at constant weather and O3 conditions, is 423 

shown in Figure 4. The five ozone-related parameters were varied between +/- 90% of their 424 

calibrated or fixed values. Simulated yields react most to changes in the detoxified fraction 425 

(dPFT) of O3: the more is detoxified, the higher are yield values. The second largest sensitivity 426 

is found towards senescence advancing (sPFT); then follows the basal scavenging (bsPFT). The 427 

Rubisco-limited photosynthesis reduction factor (jPFT) shows impact only for Asian wheat, 428 

while the respiration increase factor (rPFT) shows an influence only for soybeans. Sensitivities 429 

with parameters fixed at low, rather than mean, reduction factors are shown in SI Figure S8. 430 

These show distinct responses and orders of parameters, but underlining the choice of dPFT, 431 
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sPFT and jPFT as calibration parameters. Basal scavenging would exert measurable influence on 432 

yields, but was fixed as this is the only parameter that can be tied to literature values (see 433 

Methods). 434 

 435 

 436 

 437 

Figure 4: Sensitivity of simulated yields against perturbed crop parameters. Each of the five 

parameters was varied from -90% to +90% of its calibrated value (Table 2, except that dPFT 

was limited to a maximum of 100%); the other four parameters were held at their calibrated 

values. Black lines indicate mean yield values across all parameter values; grey dots indicate 

yields when all parameters are held at their calibrated/fixed values. Constant optimal 

temperature, precipitation and illumination were used (details see SI Figure S8). 

 

 438 

 439 
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3.3 Historical yield losses 440 

 441 

Historical global yield loss due to ozone pollution between 2008 and 2010 was calculated 442 

with LPJmL. Mean ozone levels during summer, based on the ACCMIP model ensemble, are 443 

displayed in Figure 5. These range from 7 ppbv in Amazonia and Papua-New Guinea up to 444 

more than 60 ppbv in the Middle East. Eastern US and Europe, in particular Italy, are stricken 445 

by high O3 levels (50-60 ppbv) in the summer season. This suggests that major crop 446 

producing regions, which are mostly in the Northern Hemisphere, are substantially affected 447 

by O3 pollution. 448 

Maps of relative losses, separately for rainfed and irrigated yields, referring to a hypothetical 449 

scenario with zero surface ozone are shown for Western wheat (Figure 6), Asian wheat 450 

(Figure 7) and soybeans (Figure 8). Both wheat types are simulated globally for comparison. 451 

The (unrealistic) scenario with zero surface ozone was chosen for ease of comparison with 452 

two previous global studies, Van Dingenen et al. (2009) and Avnery et al. (2011),  453 

 454 

Irrigated yields (with irrigation limited by available water) show more pronounced relative 455 

losses than rainfed yields for all crops. Western wheat losses range from 0 to 25% for rainfed 456 

yields, with high losses in Central Europe, followed by the Eastern US (Figure 6). Irrigated 457 

Western wheat yield losses range between 5 and 35%, with low spatial variation within main 458 

producing areas. Globally, land-use weighted wheat losses were estimated at 5.4% for rainfed 459 

and 15.1% for irrigated yields, if all planted wheat was of Western type. 460 

Asian wheat losses range between 0 and 30% for rainfed and 10-50% for irrigated crops 461 

(Figure 7). The highest losses occur in India, Pakistan and China where ozone load is high 462 

and a substantial fraction of crops is irrigated. Globally, land-use weighted wheat losses were 463 

estimated at 9.8% for rainfed and 25.6% for irrigated yields, if all planted wheat was of Asian 464 
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type. 465 

Relative yield losses for soybeans range between 0 and 13% for rainfed crops, where the 466 

highest reductions are observed in the Balkans and Eastern US (Figure 8). Reductions for 467 

irrigated soybeans are up to 15% in several regions, in particular in Northern China, Iran and 468 

the US Midwest. Globally, land-use weighted soybean losses are estimated at 3.8% for 469 

rainfed and 8.0% for irrigated yields. 470 

 471 

Nationally aggregated yield losses due to ozone pollution are shown in Figure 9. Only the top 472 

producers (cumulatively accounting for at least 90% of global production between 2000 and 473 

2011, split between Asian and Western wheat) for each crop are considered. Uncertainties in 474 

the estimation due to different O3 model inputs are shown by black (ACCMIP) and blue 475 

(HTAP2) lines. Mean losses for Western wheat range from 1-3% in Argentina, Australia or 476 

Canada to up to 23% in France and 27% in Egypt. For Asian wheat mean losses range from 4-477 

6% in Iran and Turkey up to 39% in India. Soybeans show mean losses between 2% in 478 

Argentina and 10% in China. The uncertainty range due to O3 concentrations is around 11% 479 

of the mean loss, averaged over all crops, models and countries. Differences between 480 

countries are usually due to different levels of O3 pollution, water limitation or management 481 

intensities, which affect canopy conductance, and different matches of crop growing season 482 

and peak ozone load. Since an atmospheric ozone concentration of zero is not realistic, a 483 

similar loss assessment was performed where all anthropogenic emissions (except methane) 484 

were reduced by 20% in 2010, relative to observed levels. Loss ranges are much lower in this 485 

case (SI Figure S9). 486 

 487 

Yield losses estimated with LPJmL were compared to two previous global assessments based 488 

on exposure-response functions. In Van Dingenen et al. (2009) and Avnery et al. (2011) the 489 
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authors each compile a global ozone field for the year 2000, using a chemical model, and 490 

estimate yield losses with previously published ERFs for wheat and soybeans based on two 491 

different ozone damage indices. A comparison of the loss estimates is provided in Table 3. 492 

For LPJmL the mean across all eight ozone inputs is supplied while for the ERF studies the 493 

mean from both indices is shown. Losses for soybeans are estimated consistently lower by 494 

LPJmL, with Latin America as the only exception. Loss estimates for wheat deviate from the 495 

ERF studies, too, but not in a consistent direction. 496 

Table 3: Comparison of relative yield losses between previous estimates and LPJmL. Exact 

regional definitions can be found in the two ERF studies. Western and Asian wheat 

parameters for LPJmL are denoted with [W] and [A]. 

Crop Region (Country) Loss by ERF: 
Van Dingenen et 
al. (2009) 

Loss by ERF: 
Avnery et al. 
(2011) 

Loss by 
LPJmL 

Soybeans North America 12.4% 14.4% 10.2% 
Latin America n.a. 3.3% 3.8% 
Europe 23.9% 25.6% 10.7% 
Africa & Middle East n.a. 5.9% 1.7% 
China / East Asia 16.1% 22.8% 6.2% 
India / South Asia 11.9% 8.2% 5.3% 
Oceania n.a. 1.9% 1.9% 

Wheat North America [W] 4.3% 6.8% 3.9% 
Latin America [W] n.a. 3.7% 1.4% 
Europe [W] 4.4% 7.7% 14.2% 
Africa, Mid-East [W, A] n.a. 13.0% 6.1% 
China / East Asia [A] 14.4% 9.8% 34.2% 
India / South Asia [A] 20.4% 17.4% 36.7% 
Northern Asia [A] n.a. 6.9% 6.4% 
Oceania [W] n.a. 0.5% 0.0% 

 497 

 498 

 499 
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 500 

Figure 5: Means of daily ozone levels in ppbv, averaged between 2008 and 2010 during the 

summer growing season, derived from the ensemble of ACCMIP models. Growing season is 

defined as April to August on the Northern and December to April on the Southern 

Hemisphere. 

 501 

 502 

 503 

(a) Rainfed 504 
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 505 

(b) Irrigated 506 

Figure 6: Historical Western wheat yield losses as fraction of unharmed yields at zero O3. 

White areas have no cropping area in MIRCA2000. Panels show (a) rainfed and (b) irrigated 

yields. The ACCMIP model ensemble was used as O3 input. 

 

 

 

(a) Rainfed 507 
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(b) Irrigated 508 

Figure 7: As Figure 6, but for Asian wheat (same color scale). 

 

 

 

 

 

(a) Rainfed509 
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 510 

(b) Irrigated 511 

Figure 8: As Figure 6, but for soybeans. 

 

 

 512 

(a) Western wheat 513 
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 514 

(b) Asian wheat 515 

 516 

(c) Soybeans 517 

Figure 9: Nationally aggregated yield losses due to ozone, relative to zero pollution, for the 

main producers of each crop: (a) Western wheat, (b) Asian wheat, (c) soybeans. Red bars 

show yield losses as land-use weighted averages over all grid cells with at least 0.05% land-

use share of the respective crop, as the mean of eight different global O3 input fields (see 

Methods). Black lines show loss ranges among ACCMIP models, while blue lines show loss 

ranges among HTAP2 models. Countries are ordered by total production. Yield losses with 
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respect to a 20% reduction of emissions (instead of zero ozone) are shown in SI Figure S9. 

 518 

 519 

 520 

 521 

 522 
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4. Discussion 523 

 524 

We have implemented a novel ozone damage module into the widely used global crop model 525 

LPJmL. Parameters were calibrated to experiments and with these we have estimated global 526 

historical yield losses. Losses range from virtually 0% up to 40% and agree with previous 527 

yield loss estimates in several cases. This study is the first to consider water stress, 528 

temperature, management intensity and CO2 concentration as co-variates of ozone effects at 529 

the global level within a crop model. To account for distinct sensitivities to O3, Western and 530 

Asian wheat were simulated separately. 531 

 532 

4.1 Model design 533 

Simulating ozone damages with a process-based model is more complex than regressions 534 

between yield and accumulated pollutant exposure as in ERFs. But mechanistic descriptions 535 

offer several advantages: capturing non-linear effects on sub-seasonal scale, accounting for 536 

variation in ozone response due to variable water supply or temperature and including the 537 

antagonistic role of O3 and CO2. Our equation design is based on a diverse literature 538 

background and was tailored for seamless integration into the LPJmL framework. Yet there 539 

are several caveats concerning the formulation. First, the earlier onset of senescence, but an 540 

unaffected rate of senescence or maturity day may contradict with some experimental 541 

observations (though there is no consensus; see Methods). But a reducing effect of O3 on 542 

active LAI is visible with this approach (SI Figure S7a), which we deem sufficient for our 543 

aims in this study. Second, previous approaches implemented a decrease in photosynthesis 544 

from ozone by reducing Vmax, the CO2-limited maximum rate of carboxylation, as observed by 545 

experiments (Farage and Long, 1995). We chose to reduce the Rubisco-limited 546 

photosynthesis rate jc instead of Vmax, as observed in Betzelberger et al. (2012), since 547 
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respiration in LPJmL is linearly dependent on Vmax (Haxeltine and Prentice, 1996a) and would 548 

therefore decrease with higher O3 load. However, a decrese in respiration has not been 549 

observed in experiments – respiration increases with O3 (Feng et al., 2008). Third, LPJmL 550 

utilizes a big-leaf approach to scale from molecular processes to ecosystem level. This 551 

simplification neglects differential effects of O3 on young and old leaves or other plant parts 552 

(Ewert and Porter, 2000), but is deemed necessary for the global scale. Fourth, a direct impact 553 

of O3 on stomata apart from the coupling via photosynthesis effects (Lombardozzi et al., 554 

2012) is not considered since no data are available for crops. Fifth, the amount of ozone that 555 

is scavenged without any effect on the plant may change over time or in stressful conditions 556 

when ROS defense mechanisms may also be required under, for example, drought stress 557 

(Ewert and Porter, 2000; McGrath et al., 2015). This is not considered due to lacking data on 558 

crops. Sixth, damage repair is not explicitly considered but subsumed with detoxification for 559 

the sake of model simplicity. This is inaccurate, though, since repair capacities diminish with 560 

leaf age (Ewert and Porter, 2000). Seventh, the daily time step may be too coarse to capture 561 

non-linear impacts of sub-daily ozone peaks. We account for this uncertainty by calibrating 562 

model parameters for daily time step simulations. Overall, we developed an ozone damage 563 

module of intermediate complexity that does not capture sub-daily, leaf-specific effects but 564 

runs swiftly, globally and accounts for co-variates like temperature and water. The level of 565 

detail for capturing ozone effects on crops suggested by Emberson et al. (2018) is thus only 566 

partly fulfilled. Of their recommendations we do, specifically, consider daily variations in 567 

stomatal conductance, timing of ozone peaks during the growing season, influences of 568 

management (dynamic growing seasons, spring/winter cultivar choice and irrigation) and 569 

interaction with climate and CO2. But our model does not include leaf-specific dynamics 570 

(stomatal conductance and repair capacity dependent on leaf age), differential effects during 571 

particularly sensitive times during the growing season like anthesis, sub-daily variations in 572 
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ozone and stomatal conductance or a variable harvest index (see also the seven points above). 573 

Note, though, that it is recognized also by Emberson et al. (2018) that the necessary 574 

experimental data set to calibrate a model of such depth are yet to be identified. Therefore we 575 

consider our ozone module as a first step towards more advanced modelling of physiological 576 

effects. Recently, new model types have been proposed accounting for the phytotoxic ozone 577 

dose (POD) i.e. the effectively damaging amount of O3 entering the plant, which consider 578 

stomatal conductance and phenology in a simplified way (Mills et al., 2018a; Mills et al., 579 

2018b) and are thus preferable over purely exposure-based damage functions (Mills et al., 580 

2011). Yet our module, integrated in a larger vegetation model, in principle allows for an 581 

integral study of advanced research questions for the following reasons. The simulation of 582 

ozone damage is directly coupled with plant growth which is, in turn, dependent on 583 

phenology, dynamic soil water content, allocation of photosynthates to plant compartments 584 

and available nutrients. The use of daily climate information allows for non-linear responses 585 

over the growing season, for example when vernalization requirements for winter wheat have 586 

not been met. Furthermore, an interaction with other vegetation (e.g. weeds) is, in principle, 587 

possible. A particular example for the advantage of an integrated crop model is to consider the 588 

modulating effect of actually available irrigation water on ozone damages, as demonstrated in 589 

this study.  590 

4.2 Parameter calibration and sensitivity 591 

The high model sensitivity towards the detoxified fraction is due to its influence on all 592 

downstream processes (respiration, photosynthesis, senescence). Basal scavenging is an 593 

additive reduction and therefore does not show as large an influence as the respiration-driven 594 

detoxification dPFT. Precocious senescence displays substantial influence on yields since it 595 

deprives the plant of radiation interception twice: less new leaves are formed and the existing 596 

ones are less active. The sensitivity towards parameters depends on crop and absolute 597 
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parameter value. Therefore the parameters can only be interpreted as a complete set since they 598 

are dependent on each other and the rather few experimental observations do not allow for an 599 

unambiguous quantification of mechanisms. This suggests that possibly a more simple 600 

reduction of net photosynthesis by a combined factor (including respiration changes) would 601 

also be sufficient, as long as further experimental constraints are not available. Calibration is 602 

more reliable for experiments that measure several considered target variables simultaneously 603 

(e.g. experiments 4 and 5 for soybeans) than for experiments with only few observed 604 

variables. 605 

 606 

Though dynamics of stomatal conductance, ozone uptake and photosynthesis response are 607 

captured by the model, there is a bias towards lower yield losses in the model than observed 608 

in experiments. This bias is small for Western wheat and concerns only some experiments for 609 

Asian wheat, but is more substantial for soybeans. The three experiments with the highest 610 

deviation (numbers 1, 2, and 11; Figure 2) show, however, unusually high yield losses within 611 

the experiments for a given O3 concentration (SI Figure 10). Therefore the deviance of 612 

LPJmL from these observations is not considered problematic. The agreement between 613 

previous and our national soybean loss estimates indicates that this underestimation in 614 

experiments is not present under large-scale conditions, for which LPJmL is designed. 615 

The usage of a global model with parameters that have been calibrated with point-based 616 

experiments may entail uncertainties. This concerns management, weather or unobserved 617 

influences on yields that are not resolved at larger scales. We aimed to limit these 618 

uncertainties by using different types of experiments with varying locations and conditions. 619 

Experimental results should also be treated with caution since among them there is 620 

uncertainty in the magnitude of ozone effects (Bernacchi et al., 2006). Therefore it is 621 

reasonable to allow some error in the reproduction of experimental observations as long as 622 
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these are unbiased and the dynamic range – large response differences from largely different 623 

conditions – is captured. 624 

 625 

The association of predominant wheat type (Western or Asian) with country in our study is 626 

arbitrary and does not account for differences within each group. Additionally, except the 627 

ozone factors, all other crop parameters – which are derived from literature and intended to 628 

cover a broad range of wheat-type cereals like barley or rye (Bondeau et al., 2007) – are kept 629 

constant, which may not reflect physiological reality. But the different values for ozone 630 

factors after calibration, with higher penalties for Asian wheat, and the agreement with 631 

previous studies of coherently larger losses in Asia support the geographical split into two 632 

types. Yet hypotheses about physiological reasons for the different response, e.g. a 633 

particularly sensitive photosynthesis in Asian types, cannot be deduced in the light of the 634 

current uncertainties with a global model. 635 

 636 

4.3 Sensitivity towards input data 637 

Simulated responses to different climate conditions agree with expectations. The antagonistic 638 

roles of O3 and CO2 (Bernacchi et al., 2006; Ewert and Porter, 2000) and the protective role of 639 

water deficit against O3 damage (at the price of generally lower yields) are captured. Higher 640 

ozone loads or longer exposure also lead to more damage, as expected. 641 

 642 

Absolute and relative yield losses depend on management intensity. Management including 643 

fertilizer, cultivar choice or pest control is reflected only by the parameterized maximum leaf 644 

area index (LAImax) in LPJmL (Fader et al., 2010), since the utilized version does not contain 645 

explicit nitrogen cycles or pest dynamics. Therefore the correct adjustment of management in 646 

the model is of salient importance (SI Figure S1). Experimental evidence also suggests that a 647 
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scaling of losses with better management is reasonable, in particular when leading to higher 648 

stomatal conductance (Biswas et al., 2008). LAImax was separately scaled for each country 649 

and crop between 1 and 7 such that national average yield levels between 2008 and 2010 (the 650 

time frame with available ozone data) match between LPJmL simulations and FAO reported 651 

yields (Fader et al., 2010). The calibration considers reported ozone values to avoid implicit 652 

ozone damage in the national management settings when atmospheric concentrations are 653 

altered in an experiment. Calibration at national level does not account for within-country 654 

differences in production intensity, as is the case e.g. in France or the US. We argue, however, 655 

that comparisons between nations are nonetheless possible, in particular when considering 656 

that the required time series of sub-national yield data are not everywhere available (Ray et 657 

al., 2012). An earlier onset of senescence with higher LAImax (SI Figure S6) can be expected, 658 

since better plant growth allows ozone damage to accumulate faster. 659 

  660 

4.4 Reliability of ozone input data 661 

We compared monthly ozone data, derived from hourly or daily ozone concentrations from 662 

six models, to the observational data set provided by Sofen et al. (2016); see SI Figure S2. 663 

Both ACCMIP and HTAP2 ensembles tend to overestimate low monthly ozone pollution, in 664 

particular in northern latitudes. Reasons for this bias are discussed in Fiore et al. (2009), 665 

Schnell et al. (2015), Guo et al. (2018) and Solazzo et al. (2017). A local-mean-based bias 666 

correction was attempted for our study, but did not alter results much (data not shown). The 667 

existing uncertainties in ozone modeling require more sophisticated methods for correction, 668 

which we did not aim for in this study. A study on pollution-related mortality (Fang et al., 669 

2013) used ozone inputs with a similar bias as our ensemble. Therefore we used the 670 

uncorrected single models and ensembles, assuming to cover uncertainties regarding ozone 671 

input by this approach.  672 
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 673 

Ozone input was assumed as static in our study, i.e. daily concentrations are not modified by 674 

uptake or dry deposition. An atmospheric coupling between transpiration, vapor pressure 675 

deficit and uptake of CO2 or O3 would be necessary to capture the full dynamics of this 676 

complex process. This is currently not included in any crop model and requires interaction 677 

between biosphere and atmosphere models. Thus we assume static ozone fields as sufficient 678 

to assess national yield losses due to ozone. 679 

 680 

4.5 Comparison to previous loss estimates 681 

Our loss estimates for rainfed soybeans largely agree in magnitude with previous results. The 682 

LPJmL-based loss estimate for total US soybeans is 10.4% (range is 8.5 to 12.6%). For only 683 

rainfed yields this figure is 10.1% (8.2-12.3%), and for only irrigated yields 13.1% (11.7-684 

15.6%). The value estimated by LPJmL is therefore double the value of 5.5% for rainfed US 685 

soybeans provided by McGrath et al. (2015), possibly due to an overestimation of ozone 686 

concentration in the US (SI Figure S2). Indian soybean yield loss estimates by LPJmL are 687 

5.3% (3.9-8.4%), corresponding in magnitude with the 2.7% (+/- 1.9%) estimated by Ghude 688 

et al. (2014). For Indian wheat, there is agreement in the range of losses between LPJmL with 689 

39.4% (32.0-50.9%) and the study by Burney and Ramanathan (2014), who estimate 40% 690 

(20-60%, depending on the state). Note that Burney and Ramanathan (2014) consider black 691 

carbon and ozone together and do not feed concentrations but rather precursor emissions into 692 

their equations. Therefore estimates are not directly comparable. Loss calculations in Ghude 693 

et al. (2014), however, are eight-fold lower with 5.0% (+/- 1.2%). In that study, even the 694 

region most affected by ozone is estimated to suffer from only 17% yield loss. A possible 695 

reason for differences is water stress: LPJmL explicitly simulates the interaction of water and 696 

ozone, while most statistical studies use a linear relationship between ozone and yields under 697 
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all circumstances. A precipitation control is included in McGrath et al. (2015) and Burney and 698 

Ramanathan (2014), but not Ghude et al. (2014). This may explain the difference for wheat, 699 

which is mostly irrigated in India, and the better match for soybeans, which are dominantly 700 

rainfed in India. Therefore we conclude that the consideration of water availability is of 701 

importance when assessing ozone losses. There may even be an economic trade-off for 702 

irrigation when ozone load is high (Mills et al., 2018a; Mills et al., 2018b): more irrigation 703 

also leads to more ozone damage, such that the benefit of irrigation may just be leveled by the 704 

costs of ozone damage. This relationship has to be studied in more detail, though. 705 

 706 

Our loss estimates agree only limitedly (Table 3) with the global studies by Avnery et al. 707 

(2011) and Van Dingenen et al. (2009). Possible reasons for differences are divergences in 708 

ozone concentration due to different chemistry models, the consideration of different years, 709 

no distinction between Asian and Western wheat types and, above all, the lack of water levels 710 

in their ozone response. This may lead to overestimation of losses in water-stressed regions 711 

but to an underestimation in well-watered regions. Other putative causes for differences 712 

include a possible mismatch between real and assumed growing seasons (for all three studies), 713 

a wrong adjustment of management settings with LAImax in LPJmL or temperature effects on 714 

crops not considered in the ERF studies. Overall we assume loss assessments by LPJmL as a 715 

supplement to the previous estimates, not as a replacement. Although LPJmL integrates co-716 

factors like temperature or water provision including its limited physical availability, the new 717 

approach also brings new uncertainties (see above) such that superiority of LPJmL over ERFs 718 

is not warranted. But for future assessments, where interaction between CO2 and O3 may play 719 

a larger role than today, or when soil dynamics or atmospheric couplings are of interest, 720 

LPJmL is better equipped for such simulations. 721 

 722 
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4.6 Historical loss estimations 723 

The estimation of historical yield losses due to ozone pollution suggests that ozone is a major 724 

yield-reducing factor in several regions on the globe. This agrees with expectations founded 725 

on experimental findings and observed ozone pollution. Reduction on the field is usually less 726 

than in chambers due to protective effects of water status (Fuhrer, 1995), sub-daily timing 727 

(Heath et al., 2009), though not reflected in LPJmL, and a possible shift between growing 728 

season and peak ozone load, depending on crop and region (Van Dingenen et al., 2009). 729 

 730 

LPJmL estimates relative yield losses from irrigated yields as consistently higher than from 731 

rainfed yields. This is due to a higher stomatal conductance allowing more ozone to penetrate. 732 

Several experiments have shown this relative protective effect of water deficit (Bou Jaoudé et 733 

al., 2008; Fuhrer, 1995; Khan and Soja, 2003). In McGrath et al. (2015), however, the authors 734 

find the opposite for rainfed soybeans in the US: losses are higher under dry conditions. They 735 

argue for a decoupling of stomatal conductance and water status by impaired abscisic acid 736 

(ABA) signaling. This eventually allows more ozone to enter under drought than under 737 

unstressed conditions, which aggravates losses. Another possible explanation for their finding 738 

could be that water-stressed plants have a limited capacity to detoxify ozone as antioxidant 739 

compounds are also necessary to combat drought consequences. Since neither model is 740 

currently able to resolve these processes, more detailed models and experimental studies are 741 

necessary to identify causes for differences. 742 

 743 

Asian countries are simulated as particularly susceptible to losses for two reasons: higher 744 

pollution and higher sensitivity of crops (Emberson et al., 2009). The high loss estimation of 745 

39% for wheat in India can be explained by combining these two factors and an almost 746 

exclusively irrigated cultivation, which allows for stomata to stay open and for more ozone to 747 
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enter. Yet this may be an overestimation given the sensitivity of the model towards 748 

management intensity and the uncertainty of ozone input data with very few observations in 749 

this region. Additionally, our simulations may still assume too much available water for 750 

irrigation since environmental flows are not considered here (Jagermeyr et al., 2017). Rather 751 

high reductions of around 20% for wheat in France, Germany and UK are unexpected, but 752 

may be reasonable in the light of substantial ozone pollution, limited water stress and high 753 

management intensity. Another explaining factor is the slight overestimation of ozone 754 

pollution in Western Europe by the ozone model ensemble (SI Figure S2). Finally, despite 755 

already high loss fractions and the considerations above, it is possible that LPJmL loss 756 

estimates are rather conservative given the deviation to lower losses when compared to 757 

experiments (Figure 2). Yield losses in similar ranges (averaged over country classes) have 758 

recently been provided by Mills et al. (2018a) and Mills et al. (2018b), indicating that 759 

substantial crop damage by ozone is plausible also in developed nations. 760 

 761 

In our assessment a baseline of zero O3 was used for comparison. This is unrealistic in 762 

practice since background biogenic emission of precursors, as well as contributions from the 763 

stratosphere, can hardly be mitigated. A more realistic estimate of avoidable ozone damage is 764 

therefore provided by the 20% emission reduction (corresponding to a globally averaged 765 

3.3% reduction in ozone concentration) experiments in the HTAP2 simulations (SI Figure 766 

S9). These calculations still point to several percent of unnecessary yield sacrifices.  767 

Further model developments could comprise the inclusion of C4 crops like maize, the 768 

combination of O3 effects with other pollutants like SO2 or NO2 (Rai et al., 2007) or other 769 

stressors similar to Mills et al. (2018b) or the usage of different cultivars and sensitivities. 770 

Further questions that can be answered are adaptation options (e.g. shifting growing season, 771 

using different cultivars, ozone-sensitive water management) or assessment of future losses 772 
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due to O3. A coupled modelling between atmosphere, chemistry and biosphere would 773 

additionally allow for assessing the effects of O3 mitigation more realistically. 774 

 775 

4.7 Conclusion 776 

Our implementation of a process-based global model to estimate historical yield losses from 777 

ozone has confirmed previous findings: major crop producers suffer from substantial 778 

production damage due to ozone pollution. Our research has emphasized that damaging 779 

effects are dependent on co-factors, in particular water status, which should be considered 780 

when establishing O3 pollution thresholds. We consequently consider the inclusion of O3 781 

effects on crops as relevant for climate change impact studies, as climate change can alter 782 

water cycles, temperatures and ozone pollution. This would lead to modified yield 783 

expectations, with modifications possibly in a similar range as current uncertainties of crop 784 

projections (Rosenzweig et al., 2014). As a corollary of our assessment we propose that more 785 

surface ozone observation stations in particular in Asia, Africa and Latin America are 786 

established, as these regions are currently data scarce (Sofen et al., 2016) but suffer from 787 

ozone damage to crops. 788 

 789 

 790 

 791 

 792 
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