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Abstract7

Annual greenhouse gas emissions have increased more than threefold between

1950 and 2014, posing a major threat to the integrity of the entire earth sys-

tem and subsequently to humankind. Consequently, roadmaps towards low-

carbon pathways are urgently needed. Our study contributes to a more detailed

understanding of the dynamics of country based emission patterns and uses

them to discuss prospective low-carbon pathways for countries. As availability

of databases on sectoral emissions substantially increased, we employ machine

learning techniques to classify emission features and pathways. By doing so,

18 representative emission patterns are derived. Overall emissions from seven

sectors and for 167 countries covering the time span from 1950 to 2014 have

been used in the analyses. The following significant trends can be observed: a)

increasing per capita emissions due to growing fossil fuel use in many parts of

the world, b) a decline in per capita emissions in some countries, and c) a shift

in the emission shares, i.e., a reduction of agricultural and land use contribu-

tions in certain regions. Using the emission patterns, their dynamics, and best

performing countries as role models, we show the possibility for gaining a decent

human development without significantly increasing per capita emissions.
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1. Introduction10

The consumption of fossil fuels is the major source of emissions followed11

by deforestation and agriculture (Gütschow et al., 2016). While the increasing12

global trend of greenhouse gas emissions is still unbowed, large differences exist13

in terms of emission drivers and how certain sectors contribute to emission14

profiles of different countries (IPCC, 2014).15

Today, countries are usually grouped according to spatial and political crite-16

ria for a global analyses (IPCC, 2014; UNEP, 2017) and together with sectoral17

information these groups are used to analyze the global emission dynamics, i.e.,18

changes in emission quantities and sources over time (Olivier et al., 2017; Tim-19

ilsina, 2016; UNEP, 2017). However, such analysis neglects the characteristics20

of countries and may therefore blur their emission quantities and sources. More-21

over, it is difficult to understand why some countries perform better in terms of22

emissions although they are characterized by similar development stages. De-23

spite recent progress in the analysis of trends in national emission dynamics,24

these are mostly carried out for selected countries only, e.g. Emission Gap Re-25

port 2017 (UNEP, 2017) and are of limited use for gathering global solutions.26

Hence, comprehensive understanding on the global emission dynamics based on27

national emission time series is still required.28

With more than 20 years of efforts policymakers agreed to limit global warm-29

ing to well below 2 ◦C as ratified in the Paris Agreement in 2015 (UN, 1992;30

UNFCCC, 2015). Nevertheless, actual climate policy and agreed reduction am-31

bitions, as expressed in Nationally Determined Contributions (NDCs), are yet32

far away from a reliable climate protection target (Roelfsema et al., 2018; Rogelj33

et al., 2016). Consequently, roadmaps to guide human civilizations towards low-34

carbon pathways are urgently needed (Rockström et al., 2017). An approach35

for identifying the pathways is to look for countries, which are performing best,36

to act as role models and set best-practice standards. So far two attempts ex-37

ist to rate and rank countries according to their emissions and NDC ambitions38

(Burck et al., 2017; Climate Action Tracker, 2017). Climate Action Tracker39
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(2017) analyzed how compatible are a country’s current policies, NDC, long-40

term targets, and 2020 pledges to meet the Paris Agreement. Similarly, Burck41

et al. (2017) evaluated the climate protection performances of countries based42

on their emissions, renewable energies, energy use, and climate policy. However,43

these studies cover only 56 (Burck et al., 2017) and 33 (Climate Action Tracker,44

2017) countries, i.e., they cannot provide a global overview. In addition, they do45

not consider differences in the origin of emissions and thus disparate endeavors46

for countries facing mitigation needs are neglected.47

To contribute to the above discussion we provide a data driven classification48

of emission patterns, based on both sectoral and national emission time series49

data. To our knowledge underlying trends of these emission dynamics have50

never been studied using machine learning techniques, despite their application51

in many other studies in the environmental field e.g. Hsieh (2009); Kanevski52

et al. (2009). In the short term it is rather unlikely to obtain sufficient knowl-53

edge about the intrinsic country dynamics and how this may materialize in54

emission profiles. Moreover, in case of an inadequate a priori knowledge system55

components are being determined by many unknown and nonlinear interactions56

between their sectoral components, inductive methods may supply valuable re-57

sults for understanding the behavior of systems in a more qualitative context.58

Especially in complex modeling problems or in the context of analysis and fore-59

casting of whole systems, elucidation of knowledge from data sets therefore has60

advantages. Thus, in the first step we identify emission patterns by using a61

self-organizing neural network approach. In the second step national and tem-62

poral changes in emission profiles have been examined for the last six decades.63

This approach enables us to examine national and sectoral emission dynamics64

with machine learning techniques in order to identify underlying trends. The65

analyses have been complemented by the identification of best practice countries66

as role models in terms of low emissions and desirable human development to67

explore future low-carbon pathways.68
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2. Data and methods69

2.1. Data sources and preprocessing70

We used sectoral emission data version 1.1 from Gütschow et al. (2017) for71

this study. Gütschow et al. (2017) aggregated sectoral emissions on country72

scale from multiple publicly available sources through an extensive process of73

prioritization and extrapolation. The dataset covers all Kyoto gas emissions74

from each UNFCCC member state and different non-UNFCCC territories for75

the period 1850 to 2014. The data is available for seven sectors: “Total En-76

ergy”, “Industrial Processes”, “Solvent and other product use”, “Agriculture”,77

“Land Use, Land Use Change, and Forestry (LULUCF)”, “Waste”, and “Other”78

(Gütschow et al., 2016). Population data is needed to convert national emis-79

sions into per capita emissions (UN, 2015), which is available for 233 countries80

and for the period 1950 to 2015. The sectoral emissions were selected according81

to their global warming potential based on the fourth Assessment Report of the82

IPCC and the period covered by the population dataset, i.e., from 1950 to 201483

(Gütschow et al., 2017).84

In the first step sectoral national emissions have been converted into sectoral85

per capita emissions using the population data. In a second step all countries86

with data gaps in the emission data were excluded, because handling data gaps87

would impose a slightly different analytical method. As the performance of emis-88

sion sources and emission savings should be analyzed, LULUCF are defined as89

zero if this sector is a net emission sink that is indicated by negative num-90

bers. In addition sectoral per capita emissions for “Total Energy” and “Solvent91

and other product use” reveal some extreme values, providing unstable results.92

Therefore, we exclude countries that are characterized by sectoral per capita93

emissions in the top 99th quantile in these sectors.94

The final aggregated input dataset used for neural network analysis consists95

of 10,855 data points and includes per capita emission time series for seven96

sectors and 167 countries for the period 1950 to 2014 (Table S1). These 16797

countries emitted approx. 52 Gt CO2eq and were responsible for 98.7% of the98
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global emissions in 2014. The sectoral per capita emissions of a country for a99

year is considered as a data point. In the input data, the total emissions per100

capita range between 0.3 t CO2eq/cap/yr and 65.8 t CO2eq/cap/yr with a mean101

value of 8.54 t CO2eq/cap/yr.102

As there exists a dependency between human development and carbon diox-103

ide emissions (Costa et al., 2011; Reusser et al., 2013), we also considered data104

on the human development index (HDI) (UNDP, 2017). Consequently, low105

emissions combined with a high HDI can be characterized as best practice ex-106

amples. We selected the HDI data for the countries that belong to the final107

emission dataset (Table S2). The selected HDI data contains yearly values for108

132 countries in 1990, with an over time increasing coverage to 161 countries in109

2014.110

Sectoral per-capita 
emissions

Emission patterns

Emission dynamics

Best practice 
frontiers

Low carbon pathways

HDI data

SOMTOP 
approach

Per-
formance 
analysis

Mitigation 
potential 
analysis

Emission 
dynamics 
analysis

Figure 1: An overview of the applied methodology. The data on sectoral per capita emissions

is analyzed by applying the Self-Organizing Map with Topographical Product (SOMTOP) to

identify emission patterns and transitions. This is supplemented by an performance analysis

using the Human Development Index (HDI) to estimate mitigation potentials.
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2.2. Methodological approach111

An overview of the applied methodological approach is given in Figure 1. As-112

suming that data are representative for a system under investigation, complex113

signal processing tasks can be solved by an appropriate encoding of the rele-114

vant information of the underlying data set on an object. Consequently, this115

motivates the use of Self-organizing map (SOM), an artificial neural network,116

together with topographical product (TOP). This approach has several advan-117

tages against classical methods, e.g., a low susceptibility against noisy data and118

can immanently discover salient features in a data distribution and categorize119

each pattern according to these features.120

2.2.1. Self-organizing map (SOM)121

Self-organizing map (SOM) extracts in a self-supervising way structural in-122

formation from numerical data as opposed to memorizing all of it (Kohonen,123

2001). Thus, SOM’s are capable of displaying both the phenomenological pat-124

tern hidden in an input data set and the neighborhood relations between the125

structural units. The interpretation of the information stored in the trained126

network provides cross-sectional phenomena of the system being observed. It127

has been applied frequently in environmental systems analysis, i.e. landscape128

analysis or anthropogenic structures, which are complex and characterized by129

an inadequate a priori knowledge on processes occurring within and between130

different system components or noisy data.131

During the learning it maps an m-dimensional continuous input space V onto132

an n-dimensional discrete space A, representing the structural information of the133

input data (clusters, types). The SOM learning process can be formulated as134

follows (Astudillo and Oommen, 2014; Kropp, 1998; Skupin and Agarwal, 2008):135

1. The weight vectors ωi of the nodes in the output space A are initialized136

by the assignment of random values.137

2. With each iteration t an input vector v from the input space V is stochas-138

tically selected and than presented to A, where all nodes compete to best139

represent v.140
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3. Step (2) is repeated until a predefined threshold of the average changing141

rate of the map, or the mapping error, or number of iterations is reached.142

To ensure high quality results the topological distortion of the mapping143

is measured in addition and used as an evaluation criteria (cf. section144

below). All three measure together has been used a termination criteria145

(Table S3).146

The data are finally represented by a “hyperplane” of lower dimensionality,147

which is embedded within data space. Therefore, the approach can be inter-148

preted as a clustering and non-linear dimensionality reduction technique (e.g.,149

in the sense of a non-linear principal component analysis) (Skupin and Agar-150

wal, 2008). The technique offers a convenient method to reduce the amount151

of information as well as to form an implicit model, without having to develop152

a traditional physical model of the underlying problem. The major advantage153

of a SOM is that it can preserve the topological order in the input data set154

(cf. below). This is of particular relevance for the analyses as we compare155

countries, which show regional interdependencies in terms of their geographical156

distribution or in regard to similar HDI values.157

2.2.2. Topographical Product (TOP)158

It might happen, due to unsuitable experimental settings, that the network159

training would produce topological distortion, e.g., in terms for twisted output160

networks. To avoid this, the network is combined with an algorithm which can161

quantify neighborhood distortions (Bauer and Pawelzik, 1992). The combined162

SOMTOP approach is applied to classify representative emission patterns based163

on the sectoral per capita emissions of 167 countries for the period 1950 to164

2014. This approach has been used in several studies (Kropp, 1998; Kropp and165

Schellnhuber, 2008; Pradhan et al., 2013).166

As the SOMTOP training consumes a considerable amount of computational167

time it is worth to know an upper boundary for the embedding dimension of168

the data set. For this purpose the principal component analysis (PCA) has169
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been used. Although the PCA is a linear approach it can be assumed that the170

obtained value provides an upper boundary for the SOMTOP learning.171

2.3. Analysis of emission dynamics172

Since emission patterns are identified for the period 1950-2014 across the173

world, sectoral emissions of a country can belong to different emission patterns174

at different years. We capture the emission dynamics for the last six decades175

by analyzing frequencies and likelihoods of observed emission transitions. By176

the means of the generated emission patterns a transition of a country can be177

observed as a change in emission patterns. Thus, we define a transition as the178

change of a country from one emission pattern to another and staying in the179

new pattern for at least three years. The three year restriction is introduced to180

only capture significant transitions, as some countries yearly alternated between181

two patterns without displaying major changes in emissions. The likelihood is182

calculated for each transition possibility, and describes the statistically observed183

chance of a country in one pattern to move to another specific pattern.184

2.4. Performance analysis185

We applied a performance analysis to identify the best practice frontiers,186

using per capita emissions as input and HDI as output. Performance analysis187

in connection with artificial neural networks have been carried out in different188

studies, e.g., in context of greenhouse gas emissions from agricultural produc-189

tion, operational and environmental efficiency of primary sectors, and human190

well-being (Carboni and Russu, 2015; Vlontzos and Pardalos, 2017a,b). Our191

analysis considered that a country’s objective is to maximize its HDI and to192

minimize its per capita emissions. By doing this, we were able to estimate hy-193

pothetical emissions of countries to achieve their HDIs if they were on the best194

practice frontier (Section 2.5). Our analysis has two assumptions: i) constant195

returns to scale, i.e., a linear relation between input and output at any scale;196

and ii) the best practice countries have a decent standard of living with high197
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human development, i.e., HDI ≥ 0.7 (UNDP, 2016). Therefore, the best prac-198

tice frontiers were represented by straight lines with the slope derived based on199

ratios between HDI and per capita emissions.200

We identified the frontiers considering two different scenarios to understand201

variations between the best practices within the emission patterns and world-202

wide. In Scenario A the frontiers were determined for each emission pattern,203

while in Scenario B they were estimated for each year from 1990 to 2014. We204

first calculated the ratio between HDI and per capita emissions for each country205

and year (henceforward country entry). The larger the value of the ratio, the206

better the country entry is in attaining higher HDI with lower emissions. After-207

wards, we identified the three country entries with the largest HDI and emission208

ratios within the respective peer group (pattern and year). The best practice209

frontiers were estimated by taking an average of these three ratios within each210

pattern (Scenario A) and each year (Scenario B) so that the frontiers were not211

only influenced by an extremely best performer.212

2.5. Analysis of mitigation potentials213

The mitigation potentials were calculated for each country based on the214

performance analysis (Figure S1). We defined the mitigation potential as the215

difference between the country’s emissions and the hypothetical emissions of216

the country to achieve its HDI if the country were on the best practice frontier.217

The hypothetical emissions were estimated by multiplying country’s population218

with the per capita emissions obtained by dividing the slope of the frontier by219

the country’s HDI. Similar to the performance analysis only countries with an220

HDI of at least 0.7 were considered to estimate the mitigation potential. By221

doing so, we reserved a fair emission path for developing countries to proceed222

with their development as suggested by Costa et al. (2011).223

For both scenarios A and B, we estimated the hypothetical emissions for224

each country for the period 1990 to 2014. Here scenario A represented the225

emissions of a country if the country were as efficient as the best examples within226

its emission pattern in obtaining higher HDI with lower emissions. Whereas227
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scenario B provided country’s emissions if the country were as efficient as the228

best examples worldwide for the particular year. Afterwards, we obtained the229

global hypothetical emissions for the period 1990 to 2014 by summing up the230

emissions for each country.231

3. Results232

3.1. Emission patterns233

The sectoral per capita emissions for the period 1950 to 2014 can be ex-234

plained by 18 emission patterns that consist of different amount and compo-235

sition of emissions (Figure 2). We obtained these patterns by applying the236

SOMTOP approach that suggests 18 nodes (a two-dimensional network: 6x3)237

as the best representation of the emission data with the topographical product238

being closest to zero (Table S3). Our PCA also indicated a two dimensional239

network as two PCs explained the majority of variation in the data (Table S4).240

We used the linear approach based on the PCA to estimate an upper bound241

of the dimensionality reduction for the SOMTOP approach that is a clustering242

in addition to non-linear dimensionality reduction technique. For a brief dis-243

cussion, we categorized the emission patterns into four groups according to the244

quantity of per capita emissions: low (A–C), moderate (D–J), high (K–P), and245

very high (Q and R) emitters.246
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Figure 2: The 18 emission patterns identified by the SOMTOP approach. The patterns are

categorized in low, moderate, high and very high emitters according to quantity. The sectoral

composition is mostly dominated either by the energy (D, E, F, J, K, N, P, R), or the Land

Use, Land Use Change, and Forestry (LULUCF) (G, H, O, Q) sector, or a mixed sources (A,

B, C, I, L, M).

Low emitters, A–C with emissions up to 5 t CO2eq/cap/yr, are present on247

every continent, with Africa and Asia being core areas (Figure 2). Among the248

low emitters, B and C have higher emissions mainly coming from energy and249

agricultural sector, respectively. Patterns D, E, F, and J are energy dominated250

moderate emitters (5 to 10 t CO2eq/cap/yr), which existed mainly in Europe,251

as well as in China in more recent years (1995–2014). Other member countries252

of the moderate emitters (G, H, I) have large shares of emissions from LULUCF253

and agricultural sectors, and are mostly located in tropical regions. High emit-254

ters (10 to 20 t CO2eq/cap/yr) are dispersed worldwide. They have either large255

shares of emissions from energy (K, L, N, P), agricultural (M) or LULUCF (O)256

sectors. Very high emitters (>20 t CO2eq/cap/yr) belong to either LULUCF257

(Q) or energy (R) dominated patterns.258

The 18 emission patterns show that emission mitigation potentials need to259

be explored in the energy, the LULUCF, and the agricultural sector (Figure260
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2). The energy sector is the biggest emission contributor for almost half of the261

patterns. Similarly, the LULUCF sector has the largest emission share in three262

patterns. Within the six patterns of mixed sources, emissions are mainly coming263

from two of the three sectors (energy, LULUCF, and agriculture).264

Globally, only a small number of countries had high and very high per capita265

emissions (Figure 3). The highest number of countries belongs to the low emitter266

A, followed by the LULUCF dominated moderate emitter G. The data points267

belonging to other patterns range between 324 (Pattern R) and 791 (Pattern268

B). Altogether, the majority of country entries are rather low and moderate269

emitters. In addition, the patterns of mixed source composition (I, L, M) tend270

to contain less data points than especially energy dominated patterns (e.g. D,271

J, K, N).272
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Figure 3: The number of data points in the emission pattern. The pattern with the lowest per

capita emissions (A) has by far the most country entries (1864), while the pattern with the

highest per capita emissions (R) contains the least (324). In general, low emitting patterns

(<5 t CO2eq/cap/yr) have more country entries than higher emitting patterns.

3.2. Spatial variation of emission patterns273

The emission patterns vary widely among continents and over time (Fig-274

ure 4). In Asia, most countries from the Middle East, the former Soviet Union,275
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and East Asia become energy dominated high and very high emitters over time.276

South East Asia mostly transforms from moderate LULUCF dominated to high277

energy dominated or mixed source emitters. This trend goes along with an in-278

crease in HDI values in the respective countries. On the contrary, South Asia279

remain low emitters, although HDI values increase steadily but at low rates.280

Emission patterns in Africa are quite diverse. Countries in the Sahel and281

East Africa are predominantly low emitters. In the Congo basin, countries tend282

towards LULUCF dominated patterns of very high emitters in the beginning283

of 1950s, which has reduced later on. In addition, a few African countries are284

high emitters with a large share of emissions from the agriculture or the energy285

sector.286

North America is split in two parts throughout the study period. Canada287

and the USA are characterized as energy dominated high and very high emitters.288

While Central American countries are low and moderate emitters with LULUCF289

dominated or mixed sources.290

Countries in South America are mostly moderate and high emitters with291

LULUCF dominated or mixed sources. While LULUCF dominated emitters292

predominate in the beginning of 1950s, most countries start emitting from mixed293

sources over time. Further, an increase in number of energy dominated emitters294

is observed by 2014. The changes in emission sources in most countries go295

conjointly with an increase in their HDIs.296
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Figure 4: Spatial distribution of emission patterns in 1950, 1980, and 2014. China and

Australia undergo great changes towards energy dominated patterns. Sub-Saharan Africa,

with the exception of South Africa, show land use and agriculture dominated patterns, while

countries in Northern Africa and the Middle East mostly move towards energy dominated

patterns. Countries in South East Asia change from Land Use, Land Use Change, and Forestry

(LULUCF) to mixed or energy dominated patterns. North America and Russia stay in energy

dominated classes.
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In Europe different energy dominated emitters prevail. In the 1950s, Center,297

West, and North Europe are moderate and high energy dominated emitters,298

while countries in the Mediterranean and the former Eastern Block are mainly299

low energy dominated emitters. By 1990 almost all countries transform to300

high energy dominated emitters. Overall, per capita emissions are increasing in301

most European states in the first half of the study period, and then decrease302

again in the second half. Reasons for the decline are technological changes and303

fuel switches (Henriques and Borowiecki, 2017), and economical changes in the304

former Soviet states after 1990s (Brizga et al., 2013).305

In Oceania three widely different emission categories exist. New Zealand and306

Australia are high emitters with emissions from mixed and energy dominated307

sources, respectively. All other countries are low or moderate emitters.308

3.3. Emission dynamics309

In the last six decades, many countries have shifted from low to higher per310

capita emissions, mainly due to an increase in fossil fuel use (Figure 5). In par-311

ticular, the number of the low emitters has reduced by almost one third. The312

number of the high emitters more than doubled until 2004 and fell slowly after-313

wards. In contrast, the number of countries with large shares of emissions from314

the LULUCF and agricultural sectors has decreased until 2014. The global emis-315

sions from the LULUCF and agricultural sectors has recently reduced (IPCC,316

2014).317

Contrary to the number of countries associated with low emitters, population318

in this group almost doubled from around 1.5 to 2.9 billion in the past six319

decades (Figure S2). This is mainly due to high population growth rates in320

member countries of this group. More interestingly, we observe considerable321

increase in population associated with moderate and high emitters, mainly in322

energy dominated or mixed source patterns. These patterns represent a small323

number of population in the beginning, however, it has grown to almost half of324

the world population by 2014. A reason for such increase is China became a325

moderate emitter from a low emitter between 1950 and 2014.326
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Figure 5: Changes in the size of the emission patterns over time in terms of country entries.

The size of low emitters (A–C) and Land Use, Land Use Change, and Forestry (LULUCF)

dominated emitters (G, O, Q) have decreased. Contrary, most energy dominated patterns has

increased (D, J, K, N). This reflects the shift from low to higher per capita emissions in many

countries due to growing fossil fuel uses.

We observe the highest frequencies for the transition from low to moderate327

energy dominated emitters (Figure 6). The connections A→B→D→J build a328

transition pathway, which is characterized by the highest observed frequencies329

and high likelihoods (Table S5 and S6). This pathway or parts of it are mostly330

taken by countries in Europe and Asia, e.g., Spain, Croatia, China, India, South331

Korea. Another pathway, reflecting a decrease in LULUCF related per capita332

emissions, is highlighted by Q→O→G. This is mainly present in tropical coun-333

tries, e.g., Brazil, Colombia, Angola, Côte d’Ivoire, Malaysia. Although LU-334

LUCF dominated per capita emissions decrease over time, this does not reflect335

the increase in total emissions from LULUCF in most of the tropical countries,336

with Brazil and Mexico being exceptions (Zarin et al., 2016).337

We find pattern G (a LULUCF dominated moderate emitter) as an inter-338

esting intersection, with the most connections to other patterns. A country,339

transiting from pattern G, becomes either low or moderate emitter with mixed340
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Figure 6: Prominent transitions from one emission pattern to another (only transitions of at

least 5 times are shown). Most frequent transitions are observed from A to B (30 times), D

to J (27 times), B to D (25 times), C to A (18 times), and O to G (18 times). In general,

transitions often occurred from low to moderate energy dominated, moderate to high energy

dominated, and high to moderate LULUCF emitters.

(e.g., I and H) or LULUCF dominated sources (O). Most frequently observed341

transition is from G to I that reflects an increase of per capita emissions from342

the energy sector with progress in human development. For examples, Brazil,343

Colombia, and Panama recently moved from G to I pattern. We also observe344

frequent transitions from G to A and C (low emitters), which translates in a345

decrease of LULUCF related per capita emissions mainly in Asia and Africa.346

This can be linked to population growth and a decrease in deforestation in some347

Asian and Africa countries in the last two decades (Mayaux et al., 2013).348

3.4. Best practice frontiers349

Looking at ratios between countries’ HDI and per capita emissions, we found350

that the best practice frontiers show huge differences among the patterns in the351

plane (Table 1 and Figure S3). The best practice frontiers are represented by352

straight lines with slopes defined by the ratios. The larger the ratio is the better353

a country performs in achieving higher HDI with lower emissions. In general,354
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the frontier slopes of low and moderate energy dominated or mixed source emit-355

ters are larger than those of high, very high, and LULUCF dominated emitters.356

Countries that are energy dominated high and very high emitters, also have rel-357

atively larger HDI. This indicates that improvements in HDI might be achieved358

through activities that use fossil energy. HDIs and per capita emissions from359

fossil fuel combustion shows the existence of a positive and time-dependent cor-360

relation (Costa et al., 2011). On the contrary, the HDIs of LULUCF dominated361

emitters are relatively low. This reflects that emissions from LULUCF do not362

contribute much to countries for reaching very high human development. For363

achieving a higher gross domestic product (GDP), an important component of364

the HDI, a country needs to transform its economy from agriculture to industries365

and services (Lutz et al., 2013).366

Sri Lanka (pattern A and B), Georgia (pattern E), and Armenia (pattern F)367

are example countries showing high ratios between HDI and per capita emissions368

of greater than 0.26. This is because of multiple reasons. In terms of HDI, these369

countries have a) above average life expectancies (WHO, 2016), b) high school370

enrollment rates (Lamb, 2016), and c) a midfield ranking in GDP per capita371

(The World Bank, 2018). In terms of low emissions, Sri Lanka and Georgia have372

large shares of renewable energies, and Armenia obtains much of its energy from373

a nuclear power plant (IEA, 2018). Renewable energy plays an important role in374

lowering countries GHG emissions, which can also be observed for Sweden, a best375

performer in pattern J and K. More than 70% of Swedish energy supply comes376

from renewable sources including nuclear power (IEA, 2018). Additionally, the377

economic recession following the collapse of the former Eastern Block plays an378

important role in the emission development of Georgia and Armenia (Brizga379

et al., 2013). In Sri Lanka the service orientation of the economy might be a380

further reason for its low per capita emissions (Jayasooriya, 2017).381

We found that the yearly best practice frontiers improved unevenly over time382

(Table S7 and Figure S4). Between 1990 and 2002 the frontier slopes remain383

almost stable and then escalate significantly for four years with a slightly drop384

afterwards. Overall, members of low and moderate energy dominated patterns385
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Table 1: Best practice countries in each pattern from 1990 to 2014. No best practice country

could be identified for pattern C, as no country reached an HDI of 0.7. *VCT is Saint Vincent

and the Grenadines.

Pattern
Best

performance

2nd best

performance

3rd best

performance

Frontier

slope

A Sri Lanka (2005) Sri Lanka (2003) Sri Lanka (2004) 0.26

B Sri Lanka (2007) Sri Lanka (2006) Sri Lanka (2008) 0.52

C NA NA NA NA

D Jamaica (2012) Jamaica (2010) Jamaica (2013) 0.20

E Georgia (2007) VCT* (2014) Georgia (2006) 0.26

F Armenia (2006) Armenia (2007) Armenia (2008) 0.26

G Panama (2004) Panama (2005) Panama (2003) 0.10

H Grenada (2011) Grenada (2010) Grenada (2012) 0.23

I VCT* (2010) VCT* (2006) VCT* (2008) 0.16

J Sweden (2014) Sweden (2012) Sweden (2013) 0.15

K Croatia (2013) Sweden (2006) Sweden (2005) 0.12

L Mauritius (2013) Mauritius (2004) Mauritius (2005) 0.18

M Uruguay (2000) Uruguay (2001) Uruguay (2002) 0.06

N Japan (2006) Japan (2007) Japan (2001) 0.08

O Belize (2011) Suriname (2011) Belize (2013) 0.06

P Israel (2007) Israel (2005) Israel (2004) 0.07

Q Belize (2010) Belize (2009) Belize (2006) 0.03

R Luxembourg (2013) Luxembourg (2014) USA (2011) 0.04

represent the yearly top performers, with two exceptions (Mauritius in 2004 and386

2005). One of the frequent best practice countries was Hong Kong until 2002,387

which can be attributed to its high life expectancy (UNDP, 2017) and a high388

share of service sectors in its GDP (To and Lee, 2017). Some countries with389

low per capita emissions meet the high human development threshold after 2002390

(e.g., Sri Lanka, Georgia, Armenia, etc.), defining the frontier. This shows the391

possibility to gain a decent human development without significantly increasing392

per capita emissions. Recently, some countries with very high human devel-393

opment (e.g., Sweden, Switzerland, and France) are lowering their per capita394
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emissions but not enough to be the global best performer.395

3.5. Low carbon pathways396

Global greenhouse emissions could be reduced if the countries were as ef-397

ficient as the best frontiers without undermining their HDIs (Figure 7), i.e.,398

move in the plane along the HDI axis (Figure S1). However, this is not the case399

as shown by the differences between the historical and the hypothetical emis-400

sions for both scenarios. Under scenario A, the differences, so called mitigation401

potentials, alter between 5.5 Gt CO2eq and 7.7 Gt CO2eq from 1990 to 2010,402

and then rise to 16.8 Gt CO2eq by 2014. In comparison, the differences vary403

between 11.3 Gt CO2eq and 13.6 Gt CO2eq from 1990 to 2002, under scenario B404

and then increase to 29.8 Gt CO2eq by 2014. The large growth in the differences405

after 2002 are due to improved best practice frontiers with higher values and406

China hitting the high human development threshold of 0.7 in 2010. Similar407

to the performance analysis, the hypothetical emissions were only estimated for408

countries with an HDI of at least 0.7.409
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Figure 7: Emissions mitigation potentials under scenarios A and B. The differences between

the total emissions (black line) and the hypothetical emissions (blue and orange lines) provide

the mitigation potential. The large decrease in the hypothetical emissions after 2010 is due

to consideration of China as it obtained an HDI of 0.7 in 2010.
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The above results show that the best practice frontiers can act as inspira-410

tions for transitions towards low-carbon development pathways. Countries may411

attempt to be as efficient as the frontiers within their emission patterns (Sce-412

nario A) to mitigate climate change. However, following this pathway might not413

be ambitious enough to meet the Paris Agreement because of the limited mit-414

igation potential (Figure 7). To limit the global warming well-below 2 ◦C, the415

world needs to reach net-zero emissions by 2050 (Rockström et al., 2017). An416

ambitious low-carbon development pathways would be to become more efficient417

than the global frontiers (Scenario B), regardless of their current development418

status. Strategies for such low-carbon pathways consists of multiple dimensions,419

including increased share of renewable energy, reduced deforestation, diversified420

economy, and holistic development beyond economic growth.421

4. Discussion422

Our discussion focuses on several key findings this study presents on the423

interplay of emission patterns, their dynamics, and mitigation potentials. First,424

our study identifies the 18 emission patterns that represent the sectoral emissions425

from 1950 to 2014 based on a neural network approach. These patterns are426

motivated by the structure and composition of the emission data in contrast427

to spatial and political categories [e.g., IPCC (2014); Timilsina (2016); UNEP428

(2017)]. The identified patterns also enable us to capture emission dynamics429

that reflect countries’ transitions from one pattern to another.430

Second, we observe three striking emission trends. In the last six decades, per431

capita emissions have increased in most countries, mainly due to growing fossil432

energy use. This trend has also been reported by previous studies (IPCC, 2014;433

Olivier et al., 2017). In comparison to these studies, we additionally highlight434

a fossil energy dependent development pathway taken by Japan, South Korea,435

and some European countries that have very low per capita emissions in the436

1950s. Recently, China is also following the similar trajectory. This opens up437

the question of how current low per capita emitters can leapfrog towards a438
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low-carbon development pathway (Kainuma et al., 2017).439

Additionally, we identify distinctive tendencies towards decreasing per capita440

emissions in certain regions. These findings are similar to different regional stud-441

ies, e.g., Brazil (Song et al., 2015), the former Eastern Block (Brizga et al., 2013),442

Europe, and the USA (Henriques and Borowiecki, 2017). However, our study443

also highlights decreasing per capita emissions in African and Asian countries,444

due to much higher growth of their population in comparison to their emissions.445

Another novel trend is shifting emission compositions in South East Asia,446

and South and Central America. While existing studies usually focus on emis-447

sions from LULUCF activities in these regions [e.g., Pearson et al. (2017); Zarin448

et al. (2016)], we additionally highlight an increasing emission share from the449

energy sector. Hence, these regions are facing a twofold mitigation challenge: i)450

to halt deforestation and ii) to curb increasing fossil energy use.451

Third, we provide a global overview of best practice countries and frontiers452

in terms of emissions and human developments in comparison to other studies453

[e.g., (Climate Action Tracker, 2017) and (Burck et al., 2017)]. These studies454

covered only 56 (Burck et al., 2017) and 33 (Climate Action Tracker, 2017)455

countries. The top performers of these studies have either HDI below 0.7 (e.g.,456

Morocco, Bhutan, Ethiopia, India) or are not on our best frontiers according457

to their HDI emission ratios (e.g., Norway, UK, Finland). Nevertheless, Costa458

Rica and Sweden are top ranked by Climate Action Tracker (2017) or Burck459

et al. (2017) and also marked as best performers in our analysis. These countries460

have special geographical and economic characteristics, e.g., use of hydro-power461

in both countries (Hoes et al., 2017; MINAE, 2015), nuclear power in Sweden462

(Qvist and Brook, 2015), and a large tourism industry in Costa Rica (Vanegas463

et al., 2015). Although nuclear power produces electricity with low emissions,464

it is controversial due to associated threats to people and the environment.465

We additionally discuss the need of adopting and exceeding the global best466

frontiers to meet the Paris Agreement. The latest Emissions Gap Report shows467

that the gap between current policy scenarios and 1.5 ◦C pathways could be468

closed with technically and economically feasible measures by 2030 (UNEP,469
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2017). However, achieving the best frontiers within own emission pattern might470

not be ambitious enough to limit global warming well below 2 ◦C. A far-reaching471

transformation is needed to get there (Rockström et al., 2017; Schellnhuber472

et al., 2016).473

Although our study provides clear findings, they come along with some474

caveats, implied from the data sources and chosen methodology. On the data475

side, there might be inconsistencies because Gütschow et al. (2016) compiled476

the emission data from multiple sources, which are produced using different477

methodologies. However, all datasets are reviewed to produce a reliable and478

comprehensive emission database (Gütschow et al., 2016). Further, the applied479

IPCC emission categories might not be ideal for reflecting differences in major480

emission sources. Nevertheless, currently Gütschow et al. (2016) offers the best481

temporal and spatial coverage among publicly available emission dataset.482

On the method side, it might be impossible to entirely avoid misclassification483

while identifying the emission patterns. Such errors can occur in the stochastic484

learning procedure, through unsuitable learning parameters or the differences in485

the dimensionality of input and output nodes (Kropp and Schellnhuber, 2008).486

However, we limit such errors to a minimum by applying the SOM in connection487

with the TOP and the concise finding of best learning parameters. Further, the488

performance analysis is a simplified model that relies only on two indicators489

and other relevant factors to characterize a role model country in terms of emis-490

sion mitigation might have been neglected. Nevertheless, HDI is the composite491

index of life expectancy, education, and per capita income, and we provide a492

transparent and comprehensive method, open for further development.493

In summary, our study provides a more detailed understanding of the dy-494

namics of country based emission patterns and uses them to discuss prospective495

low-carbon pathways. The findings contribute to the discussions on mitiga-496

tion potentials by showing the possibility to follow and exceed the global best497

frontiers for meeting the Paris Agreement. However, further research is needed498

to identify and to implement best practice solutions. For example, emissions499

from the agriculture and the land use sector can be reduced by avoiding food500
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loss and waste (Hiç et al., 2016) and consuming less animal products (Prad-501

han et al., 2013; Reusser et al., 2013). Accordingly, valuable insights could502

be gained by analyzing emission dynamics at sub-national scale. Moreover, a503

further development of the performance analysis could include additional char-504

acteristics of role model countries, considering Sustainable Development Goals505

(SDGs). Low carbon-development pathways that reduce material and environ-506

mental footprints (e.g., GHG emissions) will play a crucial role in the successful507

implementation of the 2030 development agenda (Pradhan et al., 2017).508
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