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Spatially embedded networks have attracted increasing attention in the past decade. In this context, network
characteristics have been introduced which explicitly take spatial information into account. Among others, edge
directionality properties have recently gained particular interest. In this work, we investigate the applicability
of mean edge direction, anisotropy, and local mean angle as geometric characteristics in complex spherical
networks. By studying these measures, both analytically and numerically, we demonstrate the existence of a
systematic bias in spatial networks where individual nodes represent different shares on a spherical surface, and
we describe a strategy for correcting for this effect. Moreover, we illustrate the application of the mentioned
edge directionality properties to different examples of real-world spatial networks in spherical geometry (with
or without the geometric correction depending on each specific case), including functional climate networks,
transportation, and trade networks. In climate networks, our approach highlights relevant patterns, such as large-
scale circulation cells, the El Niño–Southern Oscillation, and the Atlantic Niño. In an air transportation network,
we are able to characterize distinct air transportation zones, while we confirm the important role of the European
Union for the global economy by identifying convergent edge directionality patterns in the world trade network.
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I. INTRODUCTION

During the past decades, complex network theory has
become a vibrant and growing research field, which utilizes
graphs as representations of complex systems [1–4]. In diverse
fields like sociology, neuroscience, and Earth system science,
networks have become a powerful tool to investigate interre-
lations among multiple interacting entities [5–9].

In many real-world complex networks nodes are placed in
a metric space and are therefore characterized by a specific
location [10–12]. Hence, an increasing number of studies has
discussed the properties of such spatially embedded networks
[13–16]. Specifically, different measures have been proposed
for complementing topological information by considering
the spatial coordinates of nodes [12]. One recent example of
such a measure is the edge anisotropy, which takes the spatial
directionality of edges adjacent to a given node into account. It
has been shown that edge anisotropy supplements traditional
topological measures like degree or betweenness by indicating
the orientation of flows underlying networks constructed from
spatiotemporal data [17].

In real-world spatially embedded networks, not all nodes
may necessarily represent the same area or volume. Com-
mon examples include transportation as well as functional
climate and brain networks [18–21]. In climate networks, for
instance, correlations between time series from differently
sized grid-cells are used to abstract climate variability into a
network representation [7,21,22]. To respect varying areas of
representation (AOR) diverse node-weighted measures have
been proposed [23–26].

In this work, we pursue two main objectives. On the
one hand, we discuss how to combine edge directionality
properties and differing AORs. Specifically, we use analyt-
ical considerations together with a numerical toy example
to identify biases which occur when investigating edge di-
rectionality in spherical networks with heterogeneous AORs.
We demonstrate that such biases can be corrected by intro-
ducing proper edge weights. On the other hand, we discuss
some examples of real-world spherical networks to highlight
which type of additional information can be obtained by
using edge directionality properties to supplement classical
network characteristics. By addressing both aforementioned
aspects, we introduce a framework for quantitatively charac-
terizing edge directionality in networks embedded in spherical
geometry.

According to this twofold objective, this paper is structured
as follows: First, we recall the concept of edge anisotropy [17]
and study the mean edge direction as an additional geometric
network measure. Second, we investigate edge directionality
in angularly regular spherical grids, which are often used in
climate data sets, and show that the grid parcellation itself
induces generic anisotropy. We also introduce a scheme to
avoid the occurring biases, which we utilize to study three
functional climate networks. Finally, by investigating two ad-
ditional real-world examples—an air transportation network
and the world trade network of the year 2009—we further
demonstrate the broad applicability of edge directionality
properties (with or without corrections for spherical geometry
effects, depending on the specific case) to a wide range of
real-world spherical networks.
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II. THEORETICAL BACKGROUND

We consider a network G with N nodes and E edges, the
topology of which is encoded in the binary adjacency matrix
A whose elements aij are 1 if node i is connected to node
j and 0 otherwise. For undirected networks, the adjacency
matrix is symmetric [1]. However, many complex systems
are better described by directed and weighted networks, such
as supply chains where goods are transferred to different
consumers in differing quantities. In such cases, the adjacency
matrix is replaced by a weight matrix W with the edge
weights as its entries wij [3]. In addition to the topological
information, in spatially embedded graphs each node i is
specified by its spatial position.

A. Anisotropy in Euclidean geometry with homogenous
areas of representation

The concept of edge anisotropy [17] as a local (per-node)
and global characteristic of spatially embedded networks has
extended previous studies on node-based distributions of edge
directions [27–30]. In Ref. [17], the authors describe the
direction of an edge by the d-dimensional unit vector �emn,
centered at the position of a node m and pointing toward that
of another node n. Assigning each connection of a single node
m a corresponding unit vector enables us to define the local
anisotropy of the edges adjacent to m [17],

Rm = 1

km

∣∣∣∣∣
∣∣∣∣∣

K∑
n=1

amn�emn

∣∣∣∣∣
∣∣∣∣∣, (1)

where
∑

n amn = km denotes the degree of node m. In the
following, we will also refer to the mean edge direction [17],

�rm = 1

km

K∑
n=1

amn�emn, (2)

with Rm = ||�rm||.
In weighted networks, we replace the adjacency matrix by

the weight matrix and redefine the normalization by the sum
of all weights [17] (known as the node strength) to compute
the weighted local anisotropy as

Rw
m = 1∑

n wmn

∣∣∣∣∣
∣∣∣∣∣

K∑
n=1

wmn�emn

∣∣∣∣∣
∣∣∣∣∣. (3)

The definition of the weighted mean edge direction follows
accordingly.

To account for directed networks, we consider the in- and
out-degree. Molkenthin et al. [17] defined the in- and out-edge
anisotropy as

Rin
m = 1∑

n amn

∣∣∣∣∣
∣∣∣∣∣

K∑
n=1

amn�emn

∣∣∣∣∣
∣∣∣∣∣, (4)

Rout
m = 1∑

n anm

∣∣∣∣∣
∣∣∣∣∣

K∑
n=1

anm�enm

∣∣∣∣∣
∣∣∣∣∣. (5)

For weighted, directed graphs we can again substitute the
adjacency matrix with the weight matrix [17].

B. Anisotropy in spherical geometry with homogeneous
areas of representation

On spherical surfaces embedded in three-dimensional
space (like in good approximation the surface of the Earth),
each node m is characterized, in addition to its topological
attributes, by a latitude φm and longitude λm. Using such
spherical coordinates we can assign course angles γmn to
each edge pointing from node m to node n (for a detailed
derivation, see the Appendix) by setting

γmn = arccos cmn, (6)

with

cmn = cos φm sin φn − cos(λm − λn) cos φn sin φm√
1 − (cos(λm − λn) cos φm cos φn + sin φm sin φn)2

.

(7)

Course angles γmn have their origin in navigation and
denote the angle between the geodetic north and the course of
a moving ship, which we replace here by the edge direction.
Since γmn ∈ [0, π ], we associate edges with an eastward com-
ponent with the angle βmn = γmn and such with an westward
component with the angle βmn = 2π − γmn.

For analyzing a node’s edge anisotropy we locally neglect
curvature and use polar coordinates to define unit vectors

for each edge as �emn =
(

sin βmn

cos βmn

)
(with the second coordinate

corresponding to the northward component) which enables us
to apply Eq. (1).

We call the angle δm which is measured between the mean
edge direction �rm [Eq. (2)] and the arbitrary reference axis
(e.g., the geodetic north) the local mean angle of the edges
adjacent to node m.

In contrast to Euclidean angles, course angles are not as
easily determined. In particular, course angles are not sym-
metric. Up to now, we have considered all links connecting
node m with km other nodes and studied the angles between
the edges and an arbitrary axis centered at node m. In turn, we
can also account for the angles measured at all other km nodes
and define the external anisotropy as

R∗
m = 1

km

∣∣∣∣∣
∣∣∣∣∣

K∑
n=1

amn�enm

∣∣∣∣∣
∣∣∣∣∣ (8)

and the mean external edge direction as

�r∗
m = 1

km

K∑
n=1

amn�enm. (9)

In Euclidean geometry, straightforward calculations show
that R∗

m = Rm and �rm = −�r∗
m, which, however, does not gen-

erally hold for spherical geometry.

C. Anisotropy in spherical geometry with heterogeneous
areas of representation

Heterogenous placement of nodes can induce biases in
various network measures. In climate networks, for instance,
the consideration of nodes on an angularly regular spherical
grid (i.e., with constant differences in latitude and longitude
between neighboring grid points) systematically biases the
resulting network properties due to an overemphasis of nodes
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close to the poles [23,24,31]. To account for this problem,
the framework of node-splitting invariance (n.s.i.) has been
developed, which makes use of appropriate node weights to
correct for such biases [23–25]. Specifically, the authors of
Ref. [23] developed a comprehensive framework to tackle
heterogeneous node placement by node splitting and twin
merging.

In the following, we will address the corresponding generic
bias of edge directionality properties in a spherical grid. For
this purpose, we utilize edge weights, which, in this case, can
also be derived from the n.s.i. framework as node weights
of the adjacent nodes. However, utilizing node weights could
induce ambiguous edge weight allocations, especially for the
external anisotropy R∗

m. Therefore, we refer to the correction
of biases resulting from the heterogeneous area of represen-
tation by using the term AOR correction. Next, we propose
a general definition of the AOR corrected edge anisotropy
before defining proper edge weights for the special case of
the local anisotropy in an angularly regular spherical grid.

We compute the AOR corrected local anisotropy by uti-
lizing Eq. (3) and replacing the edge weights by the AOR
weights:

RAOR
m = 1∑

n wAOR
mn

∣∣∣∣∣
∣∣∣∣∣

K∑
n=1

wAOR
mn �emn

∣∣∣∣∣
∣∣∣∣∣. (10)

For weighted graphs, we suggest multiplicative combina-
tions between intrinsic weights and the AOR correction. The
AOR corrected weighted local anisotropy then reads

Rw,AOR
m = 1∑

n wAOR
mn wmn

∣∣∣∣∣
∣∣∣∣∣

K∑
n=1

wAOR
mn wmn�emn

∣∣∣∣∣
∣∣∣∣∣. (11)

For the external anisotropy, we accordingly suggest

R∗AOR
m = 1∑

n wAOR
nm

∣∣∣∣∣
∣∣∣∣∣

K∑
n=1

wAOR
mn �enm

∣∣∣∣∣
∣∣∣∣∣. (12)

In the remainder of this work, we will focus on the local
anisotropy on homogeneous and heterogenous spherical grids
and will not further discuss the external anisotropy.

D. Anisotropy bias on an angularly regular spherical grid

As already mentioned above, in functional climate net-
works nodes are often associated with an angularly regular
spherical grid with constant latitudinal and longitudinal dis-
tances between neighboring grid points. To illustrate possible
anisotropy biases, which arise due to the spatial embedding
using such grids, we first consider the resulting properties
of some synthetic network. In line with previous work [23],
we study a rotationally and translationally symmetric network
by independently linking nodes on some angularly regular
spherical grid depending on their angular distance αmn with
the probability

p(αmn) = min[1, exp(0.4 − 0.09αmn)]. (13)

The parameters are chosen such as to result in a link density
of approximately 0.035, which is of the order of values
commonly used in climate network studies [22,23]. For our
analysis, we use a single realization of the corresponding

random graph on an angularly regular spherical grid with a
spatial resolution of approximately 1.875◦ × 1.875◦ resulting
in N = 18 432 grid points. The obtained results are extremely
stable among different realizations due to the high number of
nodes considered (not shown).

Although we connect nodes independently at random, the
synthetic network exhibits nontrivial local anisotropy and lo-
cal mean angle patterns if not corrected for the bias discussed
above, as it is shown in Fig. 1. Figure 1(a) displays the
mean angle between geodetic north and the actual mean edge
direction. One can distinguish the hemispheres as local mean
angles on the northern hemisphere exhibit values around 0 or
2π and those in the southern hemisphere around π . The local
anisotropy [Fig. 1(c)] increases gradually from minimum
values around the equator to higher latitudes and decreases
around the poles, which is clearly visible in the corresponding
zonal mean [Fig. 1(e)].

The observed behavior apparently contradicts the homoge-
neous linkage mechanism of our model. The reason for this
latitude-dependent bias is therefore not the benchmark net-
work itself but solely its spatial embedding on the angularly
regular spherical grid. Over a vast range of latitudes, only
excluding the polar regions, the local anisotropy increases
as the spatial node density rises. This heterogeneous node
density is a well-known issue on such spherical grids [23].
In particular, the node density increases with the cosine
of the latitude, which can be derived in a straightforward
manner. Each node is associated with a specific AOR that
is proportional to the area A� of the spherical rectangle in
which the node is placed. We denote the separation between
two neighboring latitudes φi and φj of the considered grid as
�φ. This enables us to compute the difference between the
areas A1,2 of two spherical caps cut at latitudes φi − 1

2�φ and
φi + 1

2�φ, which in turn is proportional to A�. Thus, we can
simplify:

A� ∝ A1 − A2 ∝ sin

(
φi + 1

2
�φ

)
− sin

(
φi − 1

2
�φ

)

= 2 sin
�φ

2
cos φi ∝ cos φi. (14)

Let us assume that we randomly choose a node in the
northern hemisphere. We observe, that within the vicinity
of the node the distance between neighboring nodes differs
in different directions. Therefore, a distance-based linkage
mechanism induces more edges that point northward (respec-
tively, southward for nodes in the southern hemisphere). The
marked reduction at the poles is due to cross-polar edges,
which occur when a critical portion of the links traverse the
polar region and connect to nodes of a similar latitude but
opposite longitude. In our parameter setting, the probability
p(αmn) decreases to 1

e
at αmn ∼ 15◦, causing the reduction for

latitudes � | ± 75◦|.

E. Bias correction scheme for spherical grids

As shown above, even an angularly regular spherical grid
induces a systematic bias in the estimated edge directionality
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FIG. 1. (a, c, e) Uncorrected and (b, d, f) AOR corrected values of (a, b) local mean angle, (c, d) local anisotropy, and (e, f) zonal mean
anisotropy for one realization of the benchmark network. Note the different color scales in panels (c) and (d).

properties. To correct for this bias, we can apply the edge-
weighted anisotropy with a proper choice of edge weights. In
climate networks, n.s.i. node weights that are chosen propor-
tional to the AOR of a node have already been demonstrated to
correct for corresponding biases in topological network char-
acteristics [23,25]. Following the same rationale, we propose
here to utilize Eq. (3) and weigh an edge between node m and
node n with wAOR

mn = cos φn to obtain unbiased estimates of
edge directionality properties like the local anisotropy of node

m, which is very similar to the correction scheme suggested
in the n.s.i. framework [23]. The result of the application of
these edge weights is presented in Fig. 1. Figure 1(b) shows
the thus corrected mean angles, which exhibit a uniform
distribution on [0, 2π ] without spatial pattern. We also do not
observe any significant local anisotropy [Fig. 1(d)]. In our
parameter setting, the maximum zonal average anisotropy is
approximately by a factor 102 smaller than without the edge
weights [Fig. 1(f)].
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III. DATA

To further illustrate the potential of edge directionality
properties, we consider various data sets from different back-
grounds. Initially, we analyze different functional climate
networks constructed from aquaplanet simulations and re-
analysis data, respectively. However, the applicability of edge
directionality properties is not limited to climate networks. To
illustrate the general usefulness of such measures, we also
discuss some of the corresponding characteristics of an air
transportation network and the world trade network.

A. Functional climate networks

The construction of climate networks follows an estab-
lished procedure [22,32]. We start with a set of time series at
grid points that are located on an angularly regular spherical
grid over the Earth’s surface. After removing the seasonal
cycle by subtracting the annual mean climatology for each
grid point, we compute the absolute value of the Pearson
correlation coefficient at zero time lag for each pair of time
series describing the variability of the observable of interest
at the respective grid points. We threshold the entries of
the resulting correlation matrix at some value to obtain the
adjacency matrix of an associated network representation
of the strongest covariability structures from the underlying
spatiotemporal data set. The threshold is set according to the
desired link density. A link density of ρ ≈ 0.005 has been
shown to be appropriate for climate networks with a high
spatial resolution [21,22] and will be employed here. We
delete all self-loops as each time series is perfectly correlated
with itself at zero lag.

For constructing functional climate networks, we utilize
two different data sets.

On one hand, we study a model dataset with aquaplanet
simulations performed within the TRACMIP coordinated ex-
periment, where an idealized planet is studied that consists
of a thermodynamic slab ocean with interactive sea-surface
temperatures and air-sea coupling [33,34]. In particular, we
consider surface air temperature (SAT) time series from
the ECHAM6.1 AquaControl simulation without continental
landmasses, which covers 30 years of climate dynamics with
monthly values and a spatial resolution of approximately
1.875◦ × 1.875◦. The simulation utilizes present day insola-
tion and hemispherically asymmetric, but zonally symmetric
meridional heat transport resulting in asymmetric circulation
cells and a northward shift of the mean intertropical conver-
gence zone (ITCZ, mean location at 4.6◦N) [33].

On the other hand, we utilize global data from the ERA-
Interim reanalysis [35], which provides continuously updated
data of different variables at a resolution of 2.5◦ × 2.5◦. For
our study, we consider monthly precipitation sums and SAT
averages from 1979 to 2016.

B. Air transportation network

We utilize the OpenFlights database [36]. In our study, we
consider airport and route data sets. The network contains
N = 3 425 airports with locations and E = 37 595 weighted,
directed edges representing served routes, corresponding to
an edge density of about 0.3%. The weights are chosen ac-

cording to the number of flights that serve a specific, directed
connection.

C. World trade network

We finally make use of the year 2009 world trade network
inferred from the Eora multi-regional input-output database
[37]. The network contains E = 7 043 directed and weighted
edges which represent the trade of goods between pairs of
N = 186 countries (with an edge density of about 20%).
Each node represents a country and its location is defined
by its geographical midpoint, while the directed trade volume
defines the edge weights.

IV. RESULTS

In this paper, we aim to outline the broad applicability
of edge directionality properties in spherical networks by
extracting several meaningful insights from each data set.
Therefore, this illustration does not provide a full analysis of
the data sets but highlights the applicability of our approach
to a wide class of systems.

A. Functional climate networks

1. Aquaplanet SAT climate network

Due to the implemented heat flux correction in the aqua-
planet simulation, the annual mean ITCZ is shifted northwards
causing enlarged circulation patterns on the southern hemi-
sphere as opposed to narrowed northern hemisphere counter-
parts [33]. Specifically, Figs. 2(a) and 2(c) feature a region
of elevated degree in the northernmost part of the south-
ern hemisphere Hadley cell, while there is no clear indication
of the circulation cells themselves. However, we observe in
general a strong similarity between the zonal mean profiles
of meridional wind and node degree [Fig. 2(c)]. In line with
previous studies [17], we hypothesize that this agreement
is caused by fast north/southward directed winds inducing
large-scale transport of temperature fluctuations. Other topo-
logical network measures like betweenness or closeness of the
SAT climate network either exhibit no directly interpretable
patterns or solely indicate the hemispheric asymmetry of the
aquaplanet’s climate (not shown).

In comparison to the degree, the resulting local AOR
weighted anisotropy reveals more complex spatial patterns,
as shown in Figs. 2(b) and 2(d). Notably, we observe that at
the zonal average, the dominant wind directions are related
to the anisotropy and the mean edge direction (not shown) of
the SAT network in some nontrivial way, as we will detail in
the following.

One interesting observation is that the ITCZ is char-
acterized by a small zonal low anisotropy band, centered
north of the equator in line with the mean position of the
ITCZ at approximately 4.6◦N [33]. As indicated by the term
convergence zone, connections point north- and southward
representing oppositely directed near-surface wind patterns
and, hence, strong correlations in the SAT fields [17] (here in
meridional direction), resulting in relatively small anisotropy
values. Moreover, we recognize the edges of the circulation
cells in the southern hemisphere (in terms of vanishing zonal
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FIG. 2. (a) N.s.i. degree and (b) AOR corrected anisotropy of the aquaplanet SAT climate network. (c, d) Corresponding zonal means of
(a, b) together with the meridonal wind at 925 hPa (rescaled to dimensionless units) to indicate the circulation cells. The edges of the Hadley
(Hs/n), Ferrel (Fs/n) and Polar cells (Ps/n) are indicated, with subscripts specifying the hemisphere.

mean meridional wind), which mostly coincide with relatively
low zonal mean anisotropy [Fig. 2(d)].

The southern hemisphere Hadley cell (Hs) ranges from
∼4◦N to ∼30◦S and the Ferrel cell (Fs) extends up to ∼60◦S
[Fig. 2(d)]. Interestingly, we recognize the southern hemi-
sphere Hadley cell as being represented by a double peak in
the zonal mean anisotropy. We hypothesize that this could
be characteristic for a cross-section (which is here realized
by the zonal averaging) through large areas with densely
connected nodes as we do not observe any preferred link
direction in the central parts, but recognize a preferred link
direction toward the interior (not shown) at the outer parts of
such regions, followed by a decrease of edge anisotropy at the
boundaries, due to a complete change in the preferred edge
direction.

In the northern hemisphere, especially the Hadley cell
(Hn) is less evident due to the weaker tropical wind fields
and smaller cell size. But we clearly see trade wind struc-
tures (Southwest-to-Northeast and Northwest-to-Southeast
high anisotropy bands on the northern and southern hemi-
sphere, respectively) in Fig. 2(b) blurring the edges of the
Ferrel (Fn) and Hadley cell (Hn).

As the most prominent common feature of the six circu-
lation cells, we find some pronounced anisotropy minima in
the centers of these cells [with the southern hemisphere Ferrel
cell as a possible exception, cf. Fig. 2(d)]. To understand
this general observation, note again that the edges of these
cells are characterized by—on average—either convergent or
divergent near-surface winds, which lead to some preferred
wind direction at the corresponding latitudes. The resulting
near-surface wind patterns determine the spatial directions
along which fluctuations of temperature are transported (over
possibly large distances) with the atmospheric flow [17].
However, due to seasonal (but possibly also interannual)
variations in the exact positions of the different circulation
cells, the edges of these cells vary and, hence, cannot be
identified well by the observed mean anisotropy patterns.
Together with previous observations for simple spatiotem-
poral model systems suggesting that regions of fast directed
flow commonly coincide with large degree rather than large
anisotropy [17], this could explain why the largest anisotropy
values are somewhat meridionally shifted with respect to the
(mean) boundaries of the circulation cells, whereas marked
anisotropy minima emerge in the centers of these cells. We

012301-6



EDGE DIRECTIONALITY PROPERTIES IN COMPLEX … PHYSICAL REVIEW E 99, 012301 (2019)

FIG. 3. (a, b) Local anisotropy and (c, d) mean edge direction of the (a, c) SAT and (b, d) precipitation network from the ERA-Interim
data for all nodes with Rm > 0.25 and km > 10. The color code indicates the cardinal direction. Nodes with degree zero are assigned zero
anisotropy and represented by grey dots.

emphasize that even without the variability in the positions
of the circulation cells, we would not expect a one-by-one
correspondence between the meridional wind strength and
the anisotropy patterns because of the existence of multiple
superposed effects, like the action of the Coriolis force or
possible atmospheric instabilities leading to the formation of
large-scale planetary wave patterns, which additionally blur
the general pattern of the circulation cells as suggested by
the marked spatial variability of edge anisotropy along most
latitudinal bands [Fig. 2(b)].

2. Real-world climate networks—SAT field

Figures 3(a) and 3(c) show the AOR-corrected local
anisotropy values and the mean edge directions for the cli-
mate network representation of the real-world SAT field,
highlighting the continental coastlines by elevated values and
markedly directed structures, respectively. To understand this
observation, note that a first-order approximation of the global
temperature variability would distinguish between land and
ocean regions as the heat capacity of large water masses
dampens temperature fluctuations. Hence, the coastal regions
are characterized by high anisotropy values and coincide

with a localized change of the preferred edge directionality.
Especially the west coasts appear to be highly anisotropic
zones, as the zonal west winds get deflected by orography and
pressure patterns in coastal areas. Additionally, we observe
lower degree over land masses possibly reflecting the larger
persistence of SAT over the oceans leading to spatial auto-
correlations and, hence, a tendency toward a higher number of
connections (not shown). We therefore mainly show the mean
edge direction over the ocean in coastal areas in Fig. 3(c).

The El Niño–Southern Oscillation (ENSO) region in the
tropical eastern-to-central Pacific also appears highlighted
in Figs. 3(a) and 3(c), because the ENSO exhibits highly
correlated temperature variations on a monthly scale, which
induces elevated degree in the corresponding region.

3. Real-world climate networks—Precipitation

We also constructed climate networks from the ERA-
Interim precipitation data. We are aware, that there are known
issues with the cloud cover in the ERA-Interim reanalysis
[38], but, in contrast to local rainfall events, large-scale precip-
itation patterns at monthly time scales can still be reproduced
with sufficient accuracy for the purpose of this study.
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(a)

(b)

mean edge direction

FIG. 4. (a) Mean edge direction of the air transportation network
for all nodes with Rm > 0.3 and km > 25. (b) Mean edge direction of
the air transportation network over Eurasia. The color code indicates
the cardinal direction.

Figure 3(d) shows the mean edge directions of the pre-
cipitation network, which reveal several features. First, we
again observe an ENSO related structure in the eastern trop-
ical Pacific. Similarly to the double band structure of the
anisotropy in the previously described aquaplanet scenario
[Fig. 2(d)], which had represented the southern hemisphere
Hadley cell, here the edge direction exhibits two regions
of opposite orientation, with a transition region in between,
representing the ENSO [Fig. 3(d)]. Second, we also identify
a clear but less pronounced pattern spatially coinciding with
the Atlantic Niño region between South America and Africa
in Fig. 3(d) [39]. This is remarkable as we did not analyze
the topology of the network but only considered the spatial
distribution and orientation of links.

B. Air transportation network

Airline networks have previously been analyzed revealing
complex degree distributions and topologies [10,40]. Here we
study a weighted and directed air transportation network as an
example for the application of edge directionality properties
to transportation networks.

Figure 4 shows the mean edge directions of the outgoing
flights, for the approximately 600 of 7 184 airports with Rm >

0.3 and km > 30, colored according to their cardinal direction.
Thereby, we filter out all weakly anisotropic nodes and nodes
with just a few connections. Note that we do not use any AOR
correction in this example. Here, nodes directly represent the
airports rather than large-scale regions of possibly different
size, which is why there is no AOR related bias in the
network structure that needs to be corrected for. However,

airports obviously exhibit different sizes and heterogeneous
spatial locations, so that including additional AOR weights
may provide interesting complementary information. Since
we only attempt here to highlight the general applicability of
edge directionality properties, we refrain from a more detailed
analysis of the resulting properties.

Figure 4(a) reveals several features of the global air trans-
portation network. Only a minority of all outgoing flights
cross the Pacific ocean: All airports along the North and
South American west coast exhibit large anisotropy toward
the east, while Asia’s coastal airports have predominately
westward pointing outgoing connections. Apparently, in the
air transportation network, we cannot argue, that coastal
airports mainly serve short distance flights. If this held, all
coastal airports would exhibit mean edge directions pointing
toward the continental interiors. In turn, the majority of the
North and South American east coast airports also exhibit
mean edge directions pointing eastward crossing the Atlantic
ocean.

The Eurasian air traffic exhibits two additional interesting
features [Fig. 4(b)]: First, most highly anisotropic nodes in
Europe show mean edge directions pointing southward. This
is due to the fact that most important global destinations are
located further south than Europe while zonal (East/West)
components average out. Secondly, East Asia shows a very
interesting and different edge directionality pattern. The
airspace over central China is the hotspot of the East Asian
air transportation. Most surrounding airports (in Korea, Japan,
South East Asia, Mongolia, western China) exhibit mean edge
directions pointing towards or across this region.

C. World trade network

Trade networks have been vastly studied with different
types of complex network approaches [19,41]. In the context
of this work, we consider the global trade network from
2009 [37].

Figure 5 shows the mean edge directions of the weighted
and directed world trade network for both the incoming [im-
port, Fig. 5(a)] and outgoing flow of products and services
[export, Fig. 5(b)]. Again, we threshold the anisotropy at
Rm = 0.3 and the degree at km = 25, which removes only 15
of 186 nodes. The world trade network is highly anisotropic
and densely connected as only a few countries do not exceed
these thresholds. In line with the previous example, we do not
employ a correction for the AOR since individual economic
relevance has already been accounted for in the edge weights
representing the monetary value of mutual demand and supply
relationships.

One striking feature is that import and export patterns can
be clearly distinguished. The difference is an inherent aspect
of trade and heterogeneous among countries. On the one hand,
most countries exhibit opposite import and export directions.
On the other hand, there are countries like Canada for which
the import and export directions align (Canada apparently
receives a vast amount of imports from Asian counties and
exports mainly eastward). One reason for this heterogeneity is
that some countries represent intermediate elements of global
supply chains, while others rather combine different goods to
complete high-end technical devices.
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N E S W N
mean edge directionmean edge direction

(a)

(b)

FIG. 5. Mean edge direction of the global (a) import and (b)
export network of 2009 for all nodes with Rm > 0.3 and km > 25.
The color code indicates the cardinal direction. The arrows point
towards (import) or away from (export) the centers of the respective
countries.

As the European Union is accountable for approximately
one-third of the worldwide export, its role becomes especially
visible in the import network (Fig. 6). The mean edge direc-
tions of countries from the Middle East, North and Central
Africa, and South America point mostly away from Europe
as they primarily import goods from the EU member states.
Another interesting feature is that most western EU countries
(except for Austria and Italy) exhibit mean edge directions
pointing westward and most eastern (post-2004) EU member
states such pointing eastward. Of course, this is also induced
by the large trade volume in the EU domestic market (all-to-all
trade in a confined region automatically leads to converg-
ing/diverging edge directions), but it is very interesting that
the post eastward enlargement members are characterized by
eastward (blue) pointing mean edge directions. In addition,
one can distinguish non-EU members which are not well in-
tegrated into the EU domestic market, such as Serbia, Kosovo
(west, red), and San Marino (north, green).

V. CONCLUSIONS AND OUTLOOK

We have studied edge directionality as a geometric network
concept for analyzing spatially embedded networks with ho-
mogeneous and heterogeneous node placement. Specifically,

N E S W N
mean edge directionmean edge direction

FIG. 6. Mean edge direction of an excerpt of the global import
network including Europe and northern Africa.

we have utilized the mean edge direction and the local mean
angle as geometric network characteristics and discussed
their definitions in spherical geometry. Together with the
previously introduced edge anisotropy [17] as well as metric
properties associated with physical edge lengths, these mea-
sures complement spatial network analysis by a geometric
perspective.

Motivated by the study of functional climate networks, we
have shown that angularly regular spherical grids induce a
generic bias in both, local mean angle and edge anisotropy,
which can be corrected by choosing edge weights according
to the area of representation of the adjacent nodes. Even more,
we argue that a similar bias necessarily appears for any type
of heterogeneous areas of representation of nodes, e.g., when
considering weighted networks based on general non-regular
spherical graphs along with the corresponding Voronoi tes-
salation on the sphere. The bias correction approach proposed
here is general enough to also cope with such more complex
situations.

By applying our edge directionality measures to func-
tional climate networks, we have demonstrated that the local
edge anisotropy in surface air temperature (SAT) networks
from idealized aquaplanet simulations reflects the structure
of large-scale circulation cells. Mean edge direction and local
edge anisotropy of networks generated from real-world ERA-
Interim reanalysis SAT and precipitation data have demon-
strated that nodes located at continental west coasts often
exhibit highly anisotropic edge directions in the SAT network,
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and have revealed the El Niño Southern Oscillation and the
Atlantic Niño as significant structures with opposing mean
edge directions in the precipitation network.

Last but not least, we have investigated the edge direction-
ality in a global air transportation network and the world trade
network from 2009. Our results underline the complexity of
the global air transportation system, as we have identified var-
ious regions with distinct edge directionality. While the mean
edge directions of outgoing flights in Europe point southward,
we have observed convergent edge directions in East Asia.
In the import and export relations of the trade network, we
have found two striking features: first, the difference between
import and export relations, which are clearly distinguishable
in a geometric network perspective, and second, the influence
of the export of the European Union on global trade patterns,
which is characterized by divergent mean edge directions.

Our study has demonstrated that edge directionality mea-
sures complement classical network analysis, where often
only topological characteristics are utilized. While this paper
has mainly served to introduce the methodological framework
and illustrate its applications to diverse examples of spatial
networks, we have not attempted here to analyze the presented
data sets comprehensively. Among others, an analysis of the
climate data separately for each season or, more generally, a
temporal view on dynamical changes of edge directionality
patterns could provide meaningful insights into the specific
networks studied. To study smaller components of spherical
networks in greater detail and reveal interpretable information
on local changes of edge directionality, we would further need
to account for boundary effects resulting from the exclusion of
information from outside the spatial domain of interest, which
may strongly affect the latter [42]. In the present work, we
have not discussed these effects as we have investigated global
networks only. Finally, we emphasize that geometric network
measures can be defined for networks embedded in general
(nonspherical and non-Euclidean) geometries, which remains
an open research question so far. To this end, we outline corre-
sponding further investigations and developments as subjects
of future research.
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APPENDIX: ANALYTICAL EXPRESSION
FOR SPHERICAL COURSE ANGLES

The derivation of analytical expressions for course angles
requires utilizing basic concepts from spherical geometry. Let
us consider an arbitrary spherical triangle with three sides

of length a, b, and c, respectively. The three corners are
labeled with A, B, and C (such that the side with length a

is opposite to A, etc.), and are associated with angles α, β,
and γ , respectively. Put differently, a is the geodetic distance
between B and C, etc. Figure 7 provides a corresponding
schematic illustration. For convenience, the angular distances
a, b, and c are measured in radians on a unit sphere, and actual
(physical) distances can be obtained by multiplying them with
the radius of the considered sphere.

First, we recall the spherical law of cosine (cosine rule for
sides on a sphere) as

cos a = cos b cos c + sin b sin c cos α

⇔ cos α = cos a − cos b cos c

sin b sin c
. (A1)

For computing the angle between the side with length c and
the true northern direction we identify the point C with the
North Pole. We can now write the angular distance between
A and C (and B and C, respectively) in terms of the latitudes
φA and φB of A and B as cos a = sin φB and sin b = cos φA.
Thus, we find

cos α = sin φB − sin φA cos c

cos φA sin c
= sin φB − sin φA cos c

cos φA

√
1 − cos2 c

.

(A2)

Note that the second identity in Eq. (A2) ignores the second
possible (negative) solution of sin c = ±√

1 − cos2 c, which
would lead to the supplement angle π − α that is not of
interest here given our definition of course angles.

In a similar fashion, the angular distance between the two
points A and B can be expressed as

cos c = sin φA sin φB + cos φA cos φB cos(λB − λA), (A3)

which can be calculated in a straightforward manner from the
scalar product in spherical coordinates between two vectors
pointing toward A and B.

A( A, A)

B( B, B)

C( C=90°)

a

b

c

FIG. 7. Schematic illustration of a spherical triangle �ABC as
utilized for the derivation of the course angle. Note that point C is
identified with the North Pole (φC = 90◦).
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Inserting Eq. (A3) into Eq. (A2) and making use of stan-
dard trigonometric identities results in the expression given in

Eq. (6) when identifying α with the course angle associated
with the geodetic between A and B.

[1] S. H. Strogatz, Nature 410, 268 (2001).
[2] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[3] M. E. J. Newman, SIAM Rev. 45, 167 (2003).
[4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U.

Hwang, Phys. Rep. 424, 175 (2006).
[5] J. A. Dunne, R. J. Williams, and N. D. Martinez, Ecol. Lett. 5,

558 (2002).
[6] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA

99, 7821 (2002).
[7] A. A. Tsonis and P. J. Roebber, Phys. A 333, 497 (2004).
[8] C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J.

Kurths, Phys. Rev. Lett. 97, 238103 (2006).
[9] A. Landherr, B. Friedl, and J. Heidemann, Bus. Inf. Syst. Eng.

2, 371 (2010).
[10] M. T. Gastner and M. E. J. Newman, Eur. Phys. J. B 49, 247

(2006).
[11] A. P. Masucci, D. Smith, A. Crooks, and M. Batty, Eur. Phys. J.

B 71, 259 (2009).
[12] M. Barthelemy, Phys. Rep. 499, 1 (2011).
[13] S. Bialonski, M. T. Horstmann, and K. Lehnertz, Chaos 20,

013134 (2010).
[14] S. H. Y. Chan, R. V. Donner, and S. Laemmer, Eur. Phys. J. B

84, 563 (2011).
[15] P. Schultz, J. Heitzig, and J. Kurths, Eur. Phys. J. Spec. Top.

223, 2593 (2014).
[16] M. Wiedermann, J. F. Donges, J. Kurths, and R. V. Donner,

Phys. Rev. E 96, 042304 (2017).
[17] N. Molkenthin, H. Kutza, L. Tupikina, N. Marwan, J. F. Donges,

U. Feudel, and R. V. Donner, Chaos 27, 035802 (2017).
[18] J. R. Banavar, A. Maritan, and A. Rinaldo, Nature 399, 130

(1999).
[19] M. Á. Serrano and M. Boguñá, Phys. Rev. E 68, 015101 (2003).
[20] S. Achard, J. Neurosci. 26, 63 (2006).
[21] J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett.

87, 48007 (2009).
[22] R. V. Donner, M. Wiedermann, and J. F. Donges, in Nonlinear

Stoch. Clim. Dyn., 1st ed., edited by C. Franzke and T. O’Kane
(Cambridge University Press, Cambridge, 2017), pp. 159–183.

[23] J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, Eur.
Phys. J. B 85, 38 (2012).

[24] M. Wiedermann, J. F. Donges, J. Heitzig, and J. Kurths,
Europhys. Lett. 102, 28007 (2013).

[25] D. C. Zemp, M. Wiedermann, J. Kurths, A. Rammig, and J. F.
Donges, Europhys. Lett. 107, 58005 (2014).

[26] M. Wiedermann, J. F. Donges, D. Handorf, J. Kurths, and R. V.
Donner, Int. J. Climatol. 37, 3821 (2017).

[27] A. Gudmundsson and N. Mohajeri, Sci. Rep. 3, 3324 (2013).
[28] N. Mohajeri, J. R. French, and A. Gudmundsson, Entropy 15,

3340 (2013).
[29] N. Boers and A. Rheinwalt, Geophys. Res. Lett. 41, 7397

(2014).
[30] A. Rheinwalt, N. Boers, N. Marwan, J. Kurths, P. Hoffmann,

F. W. Gerstengarbe, and P. Werner, Clim. Dyn. 46, 1065 (2016).
[31] A. Radebach, R. V. Donner, J. Runge, J. F. Donges, and J.

Kurths, Phys. Rev. E 88, 052807 (2013).
[32] A. A. Tsonis, K. L. Swanson, and P. J. Roebber, Bull. Am.

Meteorol. Soc. 87, 585 (2006).
[33] A. Voigt, M. Biasutti, J. Scheff, J. Bader, S. Bordoni, F. Codron,

R. D. Dixon, J. Jonas, S. M. Kang, N. P. Klingaman, R. Leung,
J. Lu, B. Mapes, E. A. Maroon, S. McDermid, J. Park, R.
Roehrig, B. E. J. Rose, G. L. Russell, J. Seo, T. Toniazzo, H.
Wei, M. Yoshimori, and L. R. Vargas Zeppetello, J. Adv. Model.
Earth Syst. 8, 1868 (2016).

[34] B. Stevens, M. Giorgetta, M. Esch, T. Mauritsen, T. Crueger, S.
Rast, M. Salzmann, H. Schmidt, J. Bader, K. Block, R. Brokopf,
I. Fast, S. Kinne, L. Kornblueh, U. Lohmann, R. Pincus, T.
Reichler, and E. Roeckner, J. Adv. Model. Earth Syst. 5, 146
(2013).

[35] D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P.
Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo,
P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J.
Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J.
Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L.
Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally,
B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P.
de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, Q.J.R.
Meteorol. Soc. 137, 553 (2011).

[36] https://openflights.org/data.html, May 2, 2018.
[37] M. Lenzen, K. Kanemoto, D. Moran, and A. Geschke, Environ.

Sci. Technol. 46, 8374 (2012).
[38] https://confluence.ecmwf.int/display/CKB/ERA-Interim+

issues+with+cloud+cover.
[39] N. S. Keenlyside and M. Latif, J. Clim. 20, 131 (2007).
[40] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespig-

nani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004).
[41] J. Maluck and R. V. Donner, PLoS ONE 10, e0133310 (2015).
[42] A. Rheinwalt, N. Marwan, J. Kurths, P. Werner, and F.-W.

Gerstengabe, Europhys. Lett. 100, 28002 (2012).

012301-11

https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1046/j.1461-0248.2002.00354.x
https://doi.org/10.1046/j.1461-0248.2002.00354.x
https://doi.org/10.1046/j.1461-0248.2002.00354.x
https://doi.org/10.1046/j.1461-0248.2002.00354.x
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1140/epjb/e2006-00046-8
https://doi.org/10.1140/epjb/e2006-00046-8
https://doi.org/10.1140/epjb/e2006-00046-8
https://doi.org/10.1140/epjb/e2006-00046-8
https://doi.org/10.1140/epjb/e2009-00290-4
https://doi.org/10.1140/epjb/e2009-00290-4
https://doi.org/10.1140/epjb/e2009-00290-4
https://doi.org/10.1140/epjb/e2009-00290-4
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1063/1.3360561
https://doi.org/10.1063/1.3360561
https://doi.org/10.1063/1.3360561
https://doi.org/10.1063/1.3360561
https://doi.org/10.1140/epjb/e2011-10889-3
https://doi.org/10.1140/epjb/e2011-10889-3
https://doi.org/10.1140/epjb/e2011-10889-3
https://doi.org/10.1140/epjb/e2011-10889-3
https://doi.org/10.1140/epjst/e2014-02279-6
https://doi.org/10.1140/epjst/e2014-02279-6
https://doi.org/10.1140/epjst/e2014-02279-6
https://doi.org/10.1140/epjst/e2014-02279-6
https://doi.org/10.1103/PhysRevE.96.042304
https://doi.org/10.1103/PhysRevE.96.042304
https://doi.org/10.1103/PhysRevE.96.042304
https://doi.org/10.1103/PhysRevE.96.042304
https://doi.org/10.1063/1.4971785
https://doi.org/10.1063/1.4971785
https://doi.org/10.1063/1.4971785
https://doi.org/10.1063/1.4971785
https://doi.org/10.1038/20144
https://doi.org/10.1038/20144
https://doi.org/10.1038/20144
https://doi.org/10.1038/20144
https://doi.org/10.1103/PhysRevE.68.015101
https://doi.org/10.1103/PhysRevE.68.015101
https://doi.org/10.1103/PhysRevE.68.015101
https://doi.org/10.1103/PhysRevE.68.015101
https://doi.org/10.1523/JNEUROSCI.3874-05.2006
https://doi.org/10.1523/JNEUROSCI.3874-05.2006
https://doi.org/10.1523/JNEUROSCI.3874-05.2006
https://doi.org/10.1523/JNEUROSCI.3874-05.2006
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1140/epjb/e2011-20678-7
https://doi.org/10.1140/epjb/e2011-20678-7
https://doi.org/10.1140/epjb/e2011-20678-7
https://doi.org/10.1140/epjb/e2011-20678-7
https://doi.org/10.1209/0295-5075/102/28007
https://doi.org/10.1209/0295-5075/102/28007
https://doi.org/10.1209/0295-5075/102/28007
https://doi.org/10.1209/0295-5075/102/28007
https://doi.org/10.1209/0295-5075/107/58005
https://doi.org/10.1209/0295-5075/107/58005
https://doi.org/10.1209/0295-5075/107/58005
https://doi.org/10.1209/0295-5075/107/58005
https://doi.org/10.1002/joc.4956
https://doi.org/10.1002/joc.4956
https://doi.org/10.1002/joc.4956
https://doi.org/10.1002/joc.4956
https://doi.org/10.1038/srep03324
https://doi.org/10.1038/srep03324
https://doi.org/10.1038/srep03324
https://doi.org/10.1038/srep03324
https://doi.org/10.3390/e15093340
https://doi.org/10.3390/e15093340
https://doi.org/10.3390/e15093340
https://doi.org/10.3390/e15093340
https://doi.org/10.1002/2014GL061829
https://doi.org/10.1002/2014GL061829
https://doi.org/10.1002/2014GL061829
https://doi.org/10.1002/2014GL061829
https://doi.org/10.1007/s00382-015-2632-z
https://doi.org/10.1007/s00382-015-2632-z
https://doi.org/10.1007/s00382-015-2632-z
https://doi.org/10.1007/s00382-015-2632-z
https://doi.org/10.1103/PhysRevE.88.052807
https://doi.org/10.1103/PhysRevE.88.052807
https://doi.org/10.1103/PhysRevE.88.052807
https://doi.org/10.1103/PhysRevE.88.052807
https://doi.org/10.1175/BAMS-87-5-585
https://doi.org/10.1175/BAMS-87-5-585
https://doi.org/10.1175/BAMS-87-5-585
https://doi.org/10.1175/BAMS-87-5-585
https://doi.org/10.1002/2016MS000748
https://doi.org/10.1002/2016MS000748
https://doi.org/10.1002/2016MS000748
https://doi.org/10.1002/2016MS000748
https://doi.org/10.1002/jame.20015
https://doi.org/10.1002/jame.20015
https://doi.org/10.1002/jame.20015
https://doi.org/10.1002/jame.20015
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://openflights.org/data.html
https://doi.org/10.1021/es300171x
https://doi.org/10.1021/es300171x
https://doi.org/10.1021/es300171x
https://doi.org/10.1021/es300171x
https://confluence.ecmwf.int/display/CKB/ERA-Interim+issues+with+cloud+cover
https://doi.org/10.1175/JCLI3992.1
https://doi.org/10.1175/JCLI3992.1
https://doi.org/10.1175/JCLI3992.1
https://doi.org/10.1175/JCLI3992.1
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1371/journal.pone.0133310
https://doi.org/10.1371/journal.pone.0133310
https://doi.org/10.1371/journal.pone.0133310
https://doi.org/10.1371/journal.pone.0133310
https://doi.org/10.1209/0295-5075/100/28002
https://doi.org/10.1209/0295-5075/100/28002
https://doi.org/10.1209/0295-5075/100/28002
https://doi.org/10.1209/0295-5075/100/28002



