
 
 
 

Originally published as:  
 
Fan, J., Meng, J., Ashkenazy, Y., Havlin, S., Schellnhuber, H. J. (2018): Climate network 
percolation reveals the expansion and weakening of the tropical component under 
global warming. - Proceedings of the National Academy of Sciences of the United States 
of America (PNAS), 115, 52, E12128-E12134  
 
DOI: 10.1073/pnas.1811068115 
 

http://dx.doi.org/10.1073/pnas.1811068115


Climate network percolation reveals the expansion
and weakening of the tropical component under
global warming
Jingfang Fana,b,c,1,2, Jun Menga,b,c,1, Yosef Ashkenazya, Shlomo Havlinb, and Hans Joachim Schellnhuberc,2

aDepartment of Solar Energy and Environmental Physics, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet
Ben-Gurion 84990, Israel; bDepartment of Physics, Bar Ilan University, Ramat Gan 52900, Israel; and cPotsdam Institute for Climate Impact Research, 14412
Potsdam, Germany

Contributed by Hans Joachim Schellnhuber, October 19, 2018 (sent for review July 5, 2018; reviewed by Pinhas Alpert and Piet Van Mieghem)

Global climate warming poses a significant challenge to humanity;
it is associated with, e.g., rising sea level and declining Arctic sea
ice. Increasing extreme events are also considered to be a result
of climate warming, and they may have widespread and diverse
effects on health, agriculture, economics, and political conflicts.
Still, the detection and quantification of climate change, both in
observations and climate models, constitute a main focus of the
scientific community. Here, we develop an approach based on net-
work and percolation frameworks to study the impacts of climate
changes in the past decades using historical models and reanaly-
sis records, and we analyze the expected upcoming impacts using
various future global warming scenarios. We find an abrupt tran-
sition during the evolution of the climate network, indicating a
consistent poleward expansion of the largest cluster that cor-
responds to the tropical area, as well as the weakening of the
strength of links in the tropic. This is found both in the reanaly-
sis data and in the Coupled Model Intercomparison Project Phase
5 (CMIP5) 21st century climate change simulations. The analysis
is based on high-resolution surface (2 m) air temperature field
records. We discuss the underlying mechanism for the observed
expansion of the tropical cluster and associate it with changes in
atmospheric circulation represented by the weakening and expan-
sion of the Hadley cell. Our framework can also be useful for
forecasting the extent of the tropical cluster to detect its influence
on different areas in response to global warming.
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The series of powerful Atlantic hurricanes that hammered
the Americas, the “Lucifer” heat wave that stifled Europe,

and the unusually dry June in Australia, all occurring in 2017,
have been associated with the increased risks of extreme weather
events (1). Indeed, recent strong evidence supports the claim
that this increase in extreme events is directly related to global
warming (2). Although some scientists question the significance
of and the role played by human activity in global warming, the
majority of the scientific community agrees that the warming is
anthropogenic, due to elevated concentrations of heat-trapping
(greenhouse) gases, especially triggered by the increased burn-
ing of fossil fuels and deforestation (3). Global climate warming
could influence the nature of societies and the performance of
economies (4–8) by impacts on global temperature, sea level,
precipitation, ocean currents, and so on (9–12).

Network theory has demonstrated its potential as a useful
tool for exploring the dynamical and structural properties of
real-world systems from a wide variety of disciplines in physics,
biology, and social science (13–19). Network approaches have
been successfully implemented in climate sciences to construct
“climate networks,” in which the geographical locations are
regarded as network nodes, and the level of similarity between
the climate records of different grid points represents the net-
work links (strength). Climate networks have been successfully
used to analyze, model, and even predict climate phenomena

(20–24). Percolation theory was found to be an effective tool
for understanding the resilience of connected clusters to node
breakdowns through topological and structural properties (25–
27). The essence of the analysis is the identification of a system’s
different components and the connectivity between them. Per-
colation theory was applied to many natural and human-made
systems (18, 25, 28–30). Here, we combine climate network and
percolation theory approaches to develop a framework with
which to study and quantify the dynamical structure of the global
climate system. Our results suggest that an abrupt first-order
percolation (phase) transition occurs during the evolution of
the spatiotemporal climate networks. This evolution indicates
the weakening and expansion of the giant component (tropical
cluster) and is consistent with reported changes (expansion and
weakening) of the tropical (Hadley) circulation.

Spatiotemporal Climate Networks
Similar to earlier studies (21, 23), we construct a climate net-
work based on the near-surface (monthly mean), high-resolution
(0.125◦), air temperature of the ERA-Interim reanalysis data
(31). (Details are discussed in Data and Methods.) We focus on
the surface-temperature field since it probably is the most com-
monly discussed global-warming field; other variables, as well
as other vertical layers, can be analyzed similarly to the way
described below. Our evolving clustering process starts globally
with N = 1439× 2880 isolate nodes. (The South and North Pole
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grid points are eliminated.) We then embed the network into
a 2D lattice where only nearest neighbor links are considered.
The links are sorted in decreasing order of strength and then
added one by one according to decreasing strength W (see Eq.
4 below); i.e., we first choose the link with the highest weight,
then the second strongest link, and so on. More specifically, the
nodes that are more similar (based on their temperature vari-
ations) are connected first. Existing clusters grow when a new
link connects one cluster to another cluster (as small as a single
node). We find that the climate network undergoes an abrupt
and statistically significant phase transition, i.e., exhibiting a sig-
nificant discontinuity in the order parameter G1, the relative size
of the largest cluster. Our results indicate that links with higher
similarities tend to localize into a few large components (clusters
of nodes) in the tropics and in the higher latitude regions (poles)
of the Northern Hemisphere (NH) and Southern Hemisphere
(SH). (We show the dynamical evolution of the climate networks
in Movie S1.)

Fig. 1A shows the climate network component (cluster) struc-
ture in the globe map at the percolation threshold (just before
the largest jump that is indicated by the orange arrow in Fig. 1B).
We find that the network, just before this jump, is character-
ized by three major communities; the largest one is located in
the tropical region (indicated by red color); the second and third
largest are located in the high latitudes of the SH (indicated by
blue color) and NH (indicated by green color). In the next step,
a critical bond will connect and merge the tropical cluster with
the SH cluster, resulting in a giant component. Fig. 1B depicts
the relative size of the largest cluster (the order parameter), G1,

as a function of the bond/link occupation probability r in the
evolution of the climate network. We find that G1 exhibits an
abrupt jump at the percolation threshold rc ≈ 0.53. The proba-
bility density function (PDF) of the weight Wi,j of links is shown
in Fig. 1D.

To study the significance of these results, we constructed the
PDF of (temporally or spatially) reshuffled temperature records.
In this way, either the memory within each record or the cross-
correlations between the records are destroyed. We repeated the
shuffling procedure 100 times and calculated their correspond-
ing PDFs. The results, shown in Fig. 1 B and D, indicate that in
contrast to the randomly shuffled case, where the transition is con-
tinuous, the giant component in our real climate network shows an
abrupt change. The vertical line in Fig. 1D indicates the strength
of the critical link Wc at the percolation threshold rc . In addition,
we find that Wc is also larger than the 95% confidence level of the
randomly shuffled data. We find that the percolation threshold
in the real network at r ≈ 0.53 is larger than the expected 0.5 in
the random (reshuffled) lattice and G1 seems to increase almost
“piece-wise” linear with r . The possible explanation is as follows:
the transition for the shuffled (random) case span r values from a
value that is slightly smaller than 0.5 to r value that is larger than
0.5—we conjecture that for infinitely long time series, the transi-
tion would have been more pronounced and narrower, converging
to the theoretical transition value of 0.5. As for the piece-wise lin-
ear dependence of the data, as seen in Movie S1, links with higher
similarities tend to localize into a few large components (clusters
of nodes), in the tropics and in the higher latitude regions (poles)
of the NH and SH. Thus, when two of these clusters join together,

Fig. 1. Snapshots of the component structures of the climate network. (A) Just before the percolation threshold (the largest jump at r≈ 0.53). Different
colors represent different clusters; the grid resolution is 0.125◦. (B) The giant cluster relative size G1 versus the fraction number of bonds/links, r, for real
(red), spatially shuffled (blue), and temporally shuffled (purple) records. (C) Just before the formation of the spanning cluster (at the second largest jump at
r≈ 0.8). (D) The PDF of the weight of links Wi,j around the globe, in real (solid line) and shuffled (dashed lines) data. The vertical line (orange) indicates the
strength of the critical link, Wc, at the percolation threshold rc ≈ 0.53; it is also higher than the 95% confidence level of the randomly shuffled links.
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there is an abrupt jump in the curve—the linear like increase
in between is due to the (linear) increase of very small neigh-
boring clusters. For the continuous phase transition, there is no
localized clustering mechanism of spatial structure, since links are
added randomly.

During the growth of the climate network, we find, in Fig. 1B,
that there are other smaller jumps. For example, the second
largest jump occurs at r ≈ 0.8, which is caused by the merging
of the global cluster with the NH high-latitude cluster shown in
blue in Fig. 1C.

To determine the temporal evolution of the size of the largest
component Gc (just before the largest jump at rc) and its inten-
sity Wc (the weight of the critical link that leads to the largest
transition; for more details on Gc and Wc , see Data and Meth-
ods), we construct a sequence of networks based on successive
and nonoverlapping temporal windows with lengths of 60 mo
(5 y) each. Fig. 2A depicts Wc as a function of time, indicating
a significant decrease with time; Gc shown in Fig. 2B, however,
exhibits an increasing trend with time. Specifically, by compar-
ing the topological tropical component structures of the first and
the last climate networks (shown in SI Appendix, Fig. S1), we
find that the tropical cluster is expanding poleward. This weak-
ening and poleward expansion of the tropical component may be
associated with global warming, as discussed below. An alterna-
tive definition of the cluster intensity is 〈W 〉, the average weight
of links in the tropical cluster at the percolation threshold; this
yields similar results (see SI Appendix, Fig. S2).

Next, we investigate the response of the tropical component to
global warming using 21st century global warming experiments
CMIP5 (32). We used the Representative Concentration Path-
ways 8.5 (RCP8.5) and 4.5 (RCP4.5) and Historical scenarios;
the first two are future (21st century) climate simulations under
the assumption of warming by 8.5 and 4.5 W /m2, respectively.
The results indicate a significant weakening and expansion of
the tropical component for 26 out of 31 models in the RCP8.5

scenario. (Details are summarized in SI Appendix, Table S1.) In
Fig. 2 C and D, we illustrate the changes of Wc and Gc with
time, from 2006 to 2100 for one model, MIROC-ESM, under the
RCP8.5 scenario. These Wc and Gc exhibit significant decreas-
ing and increasing trends where the slope of the trends (i.e., the
rate of change of Wc and Gc with time), ξW and ξG , can be
used to quantify the trend of each model (see Eq. 7). Fig. 3 A–C
shows the results of ξW and ξG for all 31 models, for the RCP8.5,
RCP4.5, and Historical scenarios. We find that most of the mod-
els [26/31 (RCP8.5), 17/20 (RCP4.5), 22/31 (Historical)] show
a stable trend and are located in the same phase (i.e., ξW < 0
and ξG > 0). The details (label number and resolution) of the 31
models we used are summarized in SI Appendix, Table S1. Since
the values (or the PDF) of Wij strongly depend on three fea-
tures: (i) datasets, (ii) the range of the time lags, and (iii) the
length of the records, there is no high motivation to compare dif-
ferent datasets, lags, and records for the values of Wij . We note
that the values of ξG (ξW , ξφH ) scales for future RCP4.5 and
RCP8.5 are very different from the Historical values (in Fig. 3).
This is since for the Historical data, we used only 25-y data, from
1980 to 2005 (due to the significant warming trend observed dur-
ing this period), while for the RCP8.5 and RCP4.5 data, we used
95 y data, from 2006 to 2100.

Mechanism
To study a possible climatological origin of the aforementioned
results—weakening and expansion of the tropical cluster—we
consider now the atmospheric circulation, especially, the Hadley
cell (HC), which plays a pivotal role in the earth’s climate by
transporting energy and heat poleward. The HC is a global
scale tropical atmospheric circulation that features air rising near
the Equator, flowing poleward at 10–15 km above the surface,
descending in the subtropics, and then returning equator-ward
near the surface. We conjecture that the tropical component of
the climate network can be linked to the HC, since both of them
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Fig. 2. Weakening and expansion of the tropical component for (A and B) the ERA-Interim reanalysis data and for (C and D) a CMIP5 model, MIROC-ESM,
under the RCP8.5 global warming scenario. Wc is the weight of the critical link; Gc is the normalized size of the tropical component just below rc, as shown
in Fig. 1A with red color. Linear correlation coefficients (r values) are given in the panels.
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Fig. 3. Changes in the size of the giant component against changes in the intensity for the network tropical component and the HC. The scatter plots of
the increasing (size) and decreasing (intensity) trends for the RCP8.5 scenario (A and D); RCP4.5 scenario (B and E); and Historical scenario (C and F). (G–I)
Changes in the intensity of the HC against the network tropical component. Linear correlation coefficients (r value) are given in the different panels. We use
the yellow arrows lines to indicate the location of MIROC-ESM. The numbers in the circles corresponding to the 31 models are summarized in SI Appendix,
Table S1.

exhibit consistent weakening and poleward expansion under
global warming. In other words, the poleward expansion and
weakening of the HC under global warming scenarios are linked
to the expansion and weakening of the network-based tropical
cluster. Below, we present results that support this conjecture.

An analysis of satellite observations indicates a poleward
expansion of the HC by∼ 2◦ latitude from 1979 to 2005 (33). The
main mechanisms for changes in the HC and its relation to global
warming have yet to be elucidated (34). A possible mechanism
for the changes in the HC’s and its relation to global warming
has been proposed in ref. 35. Also, a possible mechanism for the
changes in the HC’s strength and its relation to global warming
was developed in ref. 36. Both abovementioned observations and
theories suggest a weakening and poleward expansion of the HC
under global warming.

To find the relationship between the evolution of the climate
network and the HC, we further calculate the stream function
(Eq. 8; see ref. 37) as a function of time, and from this, we eval-
uate the changes in the meridional width φH and strength Ψ

of the HC. We show the results in SI Appendix, Fig. S3 for the
ERA-Interim reanalysis data and for a CMIP5 model under the
RCP8.5 scenario; this model was chosen due to its relatively high
r value. Similarly, we define ξφH and ξΨ as the change rates (the
slope of the trend line) for the width and intensity of the HC.
Fig. 3 D–F shows the corresponding results, where, as previously
reported (35, 36, 38), most of the CMIP5 models exhibit weaken-
ing and expansion of the HC (i.e., ξΨ < 0, ξφH > 0). SI Appendix,
Fig. S4 depicts the results of a few CMIP5 models and indicates
that there is a significant positive correlation between the tropi-
cal cluster intensity, Wc , and the intensity of the HC, Ψ. Similar
correlations have also been observed between the width of the
tropical cluster, Gc , and the width of the HC, φH , for each indi-
vidual model. A similar significant positive relationship has been
found across all models by comparing ξW and ξΨ (Fig. 3 G–I).
SI Appendix, Fig. S5 shows the positive relationship between the
width of the tropical cluster and the HC. These results indicate
that the tropical component of the climate network is correlated
with the HC.
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It should be noted that in contrast to model and theory (36,
38), an increasing trend is found in the strength of HC in ERA
Interim (SI Appendix, Fig. S3A). This is also confirmed by other
NCEP–NCAR and ERA-40 reanalysis datasets (39). A tentative
hypothesis trying to resolve this contradiction was recently sug-
gested (38). It is assumed that the increasing trends are artifacts
related to the fact that the tropical lapse rate in the radiosonde
data are increasing rather than staying close to a moist adiabat.
However, researchers still have not found a way to deal with
these artifacts. Our network–percolation approach seems to be
more robust as it yields consistent decreasing trend strength for
the different datasets, including models and reanalysis, as well as
different time periods. This is most likely due to the fact that the
network–percolation approach is based on surface temperature
data only. SI Appendix, Fig. S6 shows our network results tested
on the ERA-40 reanalysis—we find the same tendency of a weak-
ening and an expansion of the tropical component under global
warming.

Potential Effects and Practical Applications
The Intergovernmental Panel on Climate Change (IPCC) fore-
casts a temperature rise of 1.4 to 5.6 ◦C over this century (by
2100) (4). Here, we associate the HC circulation with the trop-
ical component found by the network–percolation approach.
The locations of the subtropical dry zones and the major tropi-
cal/subtropical deserts are associated with the subsiding branches
of the HC (38, 40). Therefore, the poleward expansion of the HC
may result in a drier future in some tropical/subtropical regions
(35); the network–percolation analysis we propose here may help
identify (to some degree) the regions that are more probable to
experience decline in precipitation. Another potential effect is

the poleward migration of the location of tropical cyclone max-
imum intensity (41); again, the method we propose may help
(to some degree) to forecast these “high risk” regions. There
is thus a great interest in clarifying/predicting the influenced
climatological areas in response to global warming.

To identify the climate change response, for simplicity but
without loss of generality, we compare, in Fig. 4, the topology of
the tropical component for the first and last twenty years of the
21st century, i.e., 2080–2100 vs. 2006–2026. Counting the num-
ber of models that simulate these changes (Fig. 4), one can see
that the overall pattern of stable node change is robust across
most models; the patterns of adding nodes or removing nodes
are shown in Fig. 4 B and C. We find that some regions, for exam-
ple, northern India, southern Africa, and western Australia have
a higher probability to be influenced by the tropical component
(or HC), whereas the impacts in other regions, e.g., the North-
east Pacific, will become weaker in the future. We note that our
method cannot detect the Fertile Crescent region that was shown
to be one of the regions to dry significantly in the 21st century (42,
43). For ease of comparison, the datasets are interpolated into a
1◦× 1◦ longitude–latitude grid.

Discussion
As discussed above, although the conventional analysis of satel-
lite observations and the climate change simulations of the IPCC
Fourth Assessment Report project indicates a poleward expan-
sion of the HC (33, 35), there are still two main unsolved issues.
(i) The spatial (zonal) structure of this expansion is not fully
resolved. (ii) In contrast to models and theoretical considerations
(36, 38), which predict decreasing intensity of the HC, an increas-
ing trend was found in the intensity of HC in reanalysis datasets

A

C

B

Fig. 4. The evolution of the largest (tropical) cluster under the RCP8.5 scenario for the 31 models. For each grid point (node), we compare the first and the
last 20 y of the 21st century and show the number of models with stable nodes (i.e., nodes that were part of the topical cluster for both the first and the
last 20 y of the 21st century) (A), added nodes (i.e., nodes that were part of the tropical cluster for the last 20 y of the 21st century but not for the first 20 y)
(B), and removed nodes (i.e., nodes that were part of the tropical cluster for the first 20 y of the 21st century but not for the last 20 y) (C).
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(39). Both issues can be resolved by the network–percolation
approach we developed. (i) It provides both latitude and lon-
gitude evolution of the tropical component structure (Fig. 1A),
and (ii) our approach exhibits a decreasing trend in the inten-
sity of the HC in reanalysis datasets, as predicted by models and
theory. This is probably since the network–percolation approach
proposed here depends solely on the 2D surface temperature
field, while the more conventional methods are based on the 3D
(pressure levels) wind field.

In our report, the “abrupt” term is a concept from physical
phase transitions and not necessarily related to abrupt (tempo-
ral) climate changes. It indicates discontinues or first-order phase
transitions. It has been pointed out that a random network or
lattice system always undergoes a continuous percolation phase
transition and shows standard scaling features during a random
process (25, 44). The question of whether percolation transitions
could be discontinuous has attracted much attention recently in
the context of interdependent networks (45) and the so-called
explosive percolation models (46–48). Interestingly, the dynamic
evolution of our climate network indicates the possibility of dis-
continuous phase transition, as shown in Fig. 1B. To further test
the order of the percolation phase transitions, we study the finite
size effects of our network by altering the resolution of nodes.
The results are shown in SI Appendix, Fig. S7. It suggests a dis-
continuous percolation. For comparison, we also show the results
for shuffled data (shuffled spatial), which exhibit a continuous
phase transition. A first-order phase transition is abrupt and
discontinuous, and a second order phase transition is a contin-
uous transition (with a discontinuous derivative). In addition, an
abrupt, first order, transition is much more “dangerous” than a
continuous, second-order, one, since one failure is sufficient to
completely disrupt the network. In that sense, the critical link
with Wc is crucial and affects the whole climate with a shock.

In summary, we have used a network and percolation analysis
on surface air temperature data and found that the largest (trop-
ical) cluster expands poleward and experiences weakening under
the influence of global warming. We show that these trends are
significant, and we relate them to the weakening and poleward
expansion of the HC atmospheric circulation. By comparing the
topology of the tropical component for the first and last 20 y of
the 21st century, i.e., 2080–2100 vs. 2006–2026, we clarify/predict
the influenced climatological areas in response to global warm-
ing. Furthermore, we find an abrupt jump during the dynamical
evolution of the climate network; using a finite size scaling anal-
ysis, we argue that the percolation transition is first order. The
study of the climate system may enrich the understanding of
the discontinuous phase transition. The proposed method and
analysis provide a deep perspective on global warming and can
potentially be used as a template to study other climate change
phenomena.

Data and Methods
Data. In this study, we employ the monthly 2 m near-surface air
temperature and 37 pressure level meridional wind velocity V
of ERA-Interim (31) and ERA-40 (49) reanalysis datasets. The
resolution is 0.125◦, the time period spans from 1979 to 2016 for
ERA-Interim and 1980 to 2005 for ERA-40. The data can be
downloaded from apps.ecmwf.int/datasets.

For the climate projection, we used the RCP8.5, RCP4.5 and
Historical scenarios of the CMIP5. RCP8.5 is the upper bound
of the RCPs and does not include any specific climate mitigation
target. The RCP8.5 assumes that greenhouse gas emissions and
concentrations increase considerably over time, leading to a radia-
tive forcing that will stabilize at about 8.5 Wm−2 at the end of the
21st century. All analyzed data are monthly mean surface air (2 m)
temperatures and the meridional component of wind, V . The
details of all 31 models we used are summarized in SI Appendix,
Table S1. The data can be downloaded in pcmdi9.llnl.gov.

For each node i (i.e., longitude–latitude grid point), given a
temperature record T̃i(t), where t stands for the month, we
consider the month-to-month temperature difference

Ti(t) = T̃i(t + 1)− T̃i(t). [1]

We take the difference in Eq. 1 since we focus on climate change
and how a change in one node affects other nodes; we repeated
the analysis using the original time series and obtained similar
clusters.

To obtain the strengths of the links between each pair of nodes
i and j , we define the time-delayed, cross-correlation function as

Ci,j (τ) =
〈Ti(t)Tj (t − τ)〉− 〈Ti(t)〉〈Tj (t − τ)〉

σTi (t)σTj (t−τ)

, [2]

and
Ci,j (−τ) =Cj ,i(τ), [3]

where σTi (t) is the SD (the square root) of Ti(t), and τ is the
time lag between 0 and 24 mo; for the networks that span a short
time of 5 y, we set τ ∈ [0, 12]. Eq. 2 is the definition for τ > 0,
while Eq. 3 is actually the definition for τ < 0. Eq. 2 implicitly
assumes that our process (the recordings of temperature Ti) is
stationary, because the left-hand side only depends on the time
lag, irrespective of the starting time t . We define the strength of
the link as

Wi,j =
max(|Ci,j (τ)|)−mean(Ci,j (τ))

std(Ci,j (τ))
, [4]

where “max”, “mean,” and “std” are the maximum, mean, and
standard deviations of the cross-correlation (23). In the present
work, we do not consider the direction but only the strength Wij

of each link. One should note that Eq. 2 is the time-delayed, cross-
correlation function between two different nodes, and Cij lies
between −1 and 1. However, Wij is calculated from Cij , and its
variations, and therefore according to Eq. 4, can have values> 1.

Based on classic graph theory, a component is a subset of net-
work nodes such that there exists at least one path from each
node in the subset to another (14, 16). We denote Sm(M ) as a
series of subnetworks; specifically, S1(M ) indicates the largest
cluster, S2(M ) indicates the second largest cluster, and so forth,
where M is the number of links (ordered by decreasing weight
value) we added. In this study, due to the earth’s spherical shape,
the largest component in the climate networks is defined as

G1(M ) =

max

[ ∑
i∈S1(M )

cos(φi), . . . ,
∑

i∈Sm (M )

cos(φi), . . . ,

]
N∑
i=1

cos(φi)

,

[5]
where φi is the latitude of node i . Since our network is finite, we
use the following procedure to determine the percolation thresh-
old. We first calculate, during the growth process, the largest
change of G1 in Eq. 5,

∆≡max [G1(2)−G1(1), . . . ,G1(M + 1)−G1(M ), · · · ]. [6]

The step with the largest jump in Eq. 6 is regarded as the phase
transition point. We consider and analyze the weight of the crit-
ical link Wc and the size of the largest component Gc , which
represent the intensity and size of the component. To measure
the change of Wc and Gc within time, we anticipate the slope of
the trend lines

Wc(t) = a + ξW ∗ t
Gc(t) = b + ξG ∗ t , [7]
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where ξW and ξG denote the increasing or decreasing trend rate,
a and b are constants, and t is the time; we use a time inter-
val of 5 y. We also performed a test for Fig. 2 and SI Appendix,
Figs. S2–S6 by using exponential fit for Wc , Gc , Ψ, and φ and
find that there are no significant differences (based on r val-
ues) between them. The reason for choosing linear fitting (Eq.
7) is that in the conventional analysis, climate researchers found
that the relationship of the change of HC and global warming
(or time) follows linear scaling relations (not exponentially) (see
refs. 34–36).

HC Index. The strength of the HC is computed using observed
zonal-mean meridional wind in the stream function Ψ (37),

[V ] =
g

2πR cosφ

∂Ψ

∂p
, [8]

where V is the meridional velocity in pressure coordinates, R is
the mean radius of the earth, and p is the pressure. The opera-
tors¯and [ ] stand for temporal and zonal averaging, respectively.
We compute the Ψ field, assuming Ψ = 0 at the top of the atmo-
sphere and integrating Eq. 8 downward to the surface. Since, in
the winter, the HC is stronger, we only focus on the winter HC
intensity. The analyses are performed on December–January–
February (DJF) for the NH and June–July–August (JJA) for

the SH separately. SI Appendix, Fig. S8 shows the mean stream
function Ψ based on ERA-Interim during DJF and JJA.

Then we denote the maximum (minimum, respectively) of Ψ
as ΨN (ΨS ) during DJF (JJA) over the tropics [−20◦, 20◦]; the
corresponding pressure level is denoted as pN (pS ). The HC
strength is defined as the difference between the values of the
maximum and minimum, Ψ = ΨN −ΨS .

We identified the northern (southern) boundary φN (φS ) of
the HC as the first latitude north (south) poleward of ΨN (ΨS )
at pN (pS ) becomes zero. The poleward edges of the HC are
defined as φH =φN −φS . To measure the change of Ψ and φH

within time, we define ξΨ and ξφH , analogous to Eq. 7.
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