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The paper addresses the issue of synchronization of memristive bidirectional associative memory neural networks (MBAMNNs)
with mixed time-varying delays and stochastic perturbation via a sampled-data controller. First, we propose a new model of
MBAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying distributed delays
and discrete delays. Second, we design a new method of sampled-data control for the stochastic MBAMNNs. Traditional control
methods lack the capability of reflecting variable synaptic weights. In this paper, the methods are carefully designed to confirm the
synchronization processes are suitable for the feather of the memristor. Third, sufficient criteria guaranteeing the synchronization
of the systems are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated
with numerical experiments.

1. Introduction

Associate memory is one of the most significant activities
of human brain, which can be applied in study of brain-like
systems [1], intelligent thinking for intelligent robots [2], and
so on. Since Kosko discussed the concept of bidirectional
associative memory neural networks (BAMNNs) [3] in 1988,
BAMNNs occupied the great researchers’ time and have
been studied for several years. Nowadays, due to the wide
applications in signal processing, associativememory, pattern
recognition, and so on [4], chaos control and synchronization
of BAMNNs have been intensively investigated. Owing to
the special characters of the memristor [5], researchers have
replaced resistor with memristor in large scale integration

circuits to construct the MBAMNNs [6]. MBAMNNs are
more suitable for mimicking the associative memory process
of human brain contrast with the BAMNNs. Thus, more
and more researchers build the MBAMNNs models for
investigating a variety of applications [7–10].

In practical MBAMNNs systems, an ever-present phe-
nomenon is the threshold of the sensitive memristor with
a nonlinear drift effect [11], such as the voltages, current,
and magnetic flux. It is well known that the presence of
the threshold input may drastically deteriorate the desired
performance, even inducing the inaccuracy of closed-loop
systems under investigation. Hence, it is important to take
the nonlinear characteristic of the MBAMNNs into consid-
eration in the dynamical systems. In general, two common
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methods are utilized to cope with the nonlinear charac-
teristic of the MBAMNNs. One is treating the parameters
as constants [12, 13], and the other is making a study of
antisynchronization [14]. Recently, the problem of nonlin-
ear characteristic has also been considered to the field of
memristive neural networks (MNNs) [15–22]. Although the
importance of nonlinear characteristic has been rather well
recognized, but few related results have been reported on the
synchronization ofMBAMNNs.This is the first motivation of
the present paper.

Synchronization is an elementary collective phenomenon
that enables coherent behavior in neural networks (NNs),
where neurons coact with each other and achieve a common
dynamic behavior. Synchronization is of great significance
for its potential applications in many areas, including har-
monic oscillation generation, biology systems, and secure
communication. Looking through the literatures on the
synchronization ofMBAMNNs, one can find that most of the
results are based on the two kinds of continuous-time control
strategies: the state feedback control [23–28] and adaptive
control [29]. A prerequisite of these approaches is that the
controllers must obtain signals from sensors in a continuous
way [30].This will increase the control cost heavily and cause
a waste of communication bandwidth [31].

In contrast to the continuous-time control, the sampled-
data control merely makes use of the sampling signals
at discrete time instants. Consequently, the sampled-data
control can eliminate the continuous monitoring of system
states as well as the continuous information transmission.
Therefore, the sampled-data control is a more managing
choice in applications. Till now, numerous results have been
reported in this aspect [30–33]. However, to the best of our
knowledge, there are few relevant achievements that consider
the sampled-data synchronization of MBAMNNs.This is the
second motivation of the present paper.

Owing to the limited speed of signal transmission
between the neurons, the finite switching speed between dif-
ferent circuit elements in hardware implementations of NNs,
and the viscosity of synapses triggered by biological NNs,
time delay is an inevitable phenomenon in NNs. There are
many types of delays, like discrete delay, leakage time delay,
distributed delay, neutral-type delay, and so on. These delays
are the main factors that contribute to the oscillation, insta-
bility, and the performance degradation to the dynamical
systems [34].Therefore, the dynamic systems with time delay
becomes a hot topic in the theoretical and application realms.

Besides, the actual communication between real systems
is usually disturbed by a stochastic perturbation from various
uncertainties. In secure communication systems, the digital
signal is transmitted by switching forth and back continu-
ously between synchronization. The stochastic perturbation
will probably lead to package losses or influences the signal
transmission. Hence, it is important to discuss the effect of
probabilistic delays, stochastic perturbations, and so on [35–
38].Therefore, it is valuable and practical to discuss the effect
of the stochastic perturbations and time-varying delays on
MBAMNNs.

Motivated by the foregoing discussions, this paper aims
at investigating the synchronization of MBAMNNs with

mixed time-varying delays and stochastic perturbations
by designing a suitable sampled-data controller. The main
contributions of this paper are summarized as follows.

(1) We first investigate the globally asymptotic synchro-
nization of MBAMNNs with mixed time-varying
delays and stochastic perturbations.

(2) According to the characters ofmemristor, we consider
the parameters mismatch between the drive-response
systems and design a suitable sampled-data controller
to fit the features of the memristor.

(3) We also analyze the feasible region of the sampling
period according to simulations, which is signifi-
cant to some potential future research. Owing to
the sampled-data synchronization analysis, Lyapunov
functional method, and stochastic analysis theory,
the synchronization criteria of the parameters mis-
matched MBAMNNs are derived.

The rest of this paper is organized as follows.The systems
and problems formulation are presented in Section 2. In
Section 3, based on Lyapunov functional method, stochastic
analysis theory, and inequality techniques, sufficient crite-
ria that depend on such system for synchronization are
obtained. Numerical simulations are demonstrated to verify
the effectiveness of the obtained results in Section 4. Finally,
conclusions are given in Section 5.

2. Model Description and Preliminaries

2.1. Model Description. In order to better understand the
MBAMNNs, firstly we describe the circuit of a general class
of BAMNNs with the architecture as shown in Figure 1. Take
the 𝑖th subsystem and the 𝑗th subsystem as the unit of analysis
so as to simplify illustration [39]; one can clearly see that the
Kirchhoff ’s current law (KCL) of the subsystems of BAMNNs
[3] is described as the following differential equation:

𝑑𝑥𝑖 (𝑡) = −𝑥𝑖 (𝑡) + 1
C𝑖

𝑚∑
𝑗=1

𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))
F𝑗𝑖

× sign𝑗𝑖

+ I𝑖 (𝑡)
C𝑗

, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

𝑑𝑦𝑗 (𝑡) = −𝑦𝑗 (𝑡) + 1̃
C𝑖

𝑛∑
𝑖=1

𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))
R𝑖𝑗

× sign𝑖𝑗

+ J𝑗 (𝑡)
C̃𝑗

, 𝑡 ≥ 0, 𝑗 = 1, 2, . . . , 𝑚,

(1)

where 𝑥𝑖(𝑡) and 𝑦𝑗(𝑡) are the voltages of capacitors C𝑖 and
C̃𝑗, respectively. And F𝑗𝑖 presents the resistor between the
feedback function 𝑓𝑗(𝑦𝑗(𝑡 − 𝜏(𝑡))) and 𝑥𝑖(𝑡); R𝑖𝑗 depicts the
resistor between the feedback function 𝑔𝑖(𝑥𝑖(𝑡 − 𝜏(𝑡))) and𝑦𝑗(𝑡). Then the transmission time-varying delay is illustrated
by 𝜏(𝑡),I𝑖(𝑡) is the bias function or external input on the 𝑖th
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Figure 1: The circuits implementing of BAMNNs with transmission time-varying delay.

subsystem at time 𝑡, J𝑗(𝑡) denotes the bias function or
external input on the 𝑗th subsystem at time 𝑡, and

sign𝑖𝑗 = sign𝑗𝑖
{{{
1, 𝑖 ̸= 𝑗,
−1, 𝑖 = 𝑗. (2)

Remark 1. Enlightened by [23–29], especially for [39], we
proposed the following system which contains not only
discrete time-varying delays 𝜏(𝑡) and𝜎(𝑡), but also distributed
time-varying delays 𝜇(𝑡) and 𝜀(𝑡). And self-inhibitionweights𝑑𝑖(𝑥𝑖(𝑡)) and 𝑝𝑗(𝑦𝑗(𝑡)) are also time-varying. Therefore, the
obtained results are more general and practical than some
existing results.

Based on the physical properties of a memristor, the
proposed MBAMNNs with mixed time-varying delays are
described by the following differential equations:

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖 (𝑥𝑖 (𝑡)) 𝑥𝑖 (𝑡) + 𝐼𝑖 (𝑡)

+ 𝑚∑
𝑗=1

𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) 𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏𝑗𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 (𝑥𝑖 (𝑡)) ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠]]
𝑑𝑡 + 𝑚∑
𝑗=1

𝛽𝑗𝑖
⋅ (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,

𝑑𝑦𝑗 (𝑡) = [−𝑝𝑗 (𝑦𝑗 (𝑡)) 𝑦𝑗 (𝑡) + 𝐼𝑗 (𝑡)

+ 𝑛∑
𝑖=1

𝑚𝑖𝑗 (𝑦𝑗 (𝑡)) 𝑔𝑖 (𝑥𝑖 (𝑡))

+ 𝑛∑
𝑖=1

𝑛𝑖𝑗 (𝑦𝑗 (𝑡 − 𝜎 (𝑡))) 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡)))

+ 𝑛∑
𝑖=1

𝑞𝑖𝑗 (𝑦𝑗 (𝑡)) ∫𝑡
𝑡−𝜀(𝑡)

𝑔𝑖 (𝑥𝑖 (𝑠)) 𝑑𝑠] 𝑑𝑡 + 𝑛∑
𝑖=1

𝛽𝑖𝑗
⋅ (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) ,

(3)

where 𝑥𝑖(𝑡) and 𝑦𝑗(𝑡) denote the voltages of capacitors𝐶𝑖 and𝐶𝑗 at time 𝑡, for 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛, and 𝑗 = 1, 2, . . . , 𝑚. 𝑑𝑖 >0 and 𝑝𝑗 > 0 represent the self-feedback connection weight.
Then 𝑎𝑗𝑖(𝑥𝑖(𝑡)), 𝑏𝑗𝑖(𝑥𝑖(𝑡−𝜏(𝑡))), 𝑐𝑗𝑖(𝑥𝑖(𝑡)),𝑚𝑖𝑗(𝑦𝑗(𝑡)), 𝑛𝑖𝑗(𝑦𝑗(𝑡−𝜎(𝑡))), and 𝑞𝑖𝑗(𝑦𝑗(𝑡)) represent the memristor-based weights.
In addition, 𝑓𝑗(𝑦𝑗(𝑡)) and 𝑔𝑖(𝑥𝑖(𝑡)) are feedback functions,𝜏(𝑡) and 𝜎(𝑡) are discrete time-varying delays, 𝜇(𝑡) and 𝜀(𝑡)
are finite distributed time-varying delays. In addition, 𝐼𝑖(𝑡)
and 𝐼𝑗(𝑡) denote the continuous external inputs, respectively.
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According to the current-voltage characteristic and the
property of a memristor, the memristive connection weights
of system (3) can be modeled as

𝑑𝑖 (𝑥𝑖 (𝑡)) = {{{
̌𝑑𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑇𝑖,

𝑑𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 > 𝑇𝑖,
𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) = {{{

̌𝑎𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑇𝑖,
𝑎𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 > 𝑇𝑖,

𝑝𝑗 (𝑦𝑗 (𝑡)) = {{{
̌𝑝𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑅𝑗,

𝑝𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑅𝑗,
𝑚𝑖𝑗 (𝑦𝑗 (𝑡)) = {{{

𝑚̌𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑅𝑗,
𝑚̂𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑅𝑗,

𝑐𝑗𝑖 (𝑥𝑖 (𝑡)) = {{{
̌𝑐𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑇𝑖,

𝑐𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 > 𝑇𝑖,
𝑞𝑖𝑗 (𝑦𝑗 (𝑡)) = {{{

̌𝑞𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑅𝑗,
𝑞𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑅𝑗,

𝑏𝑗𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) = {{{
𝑏̌𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 ≤ 𝑇𝑖,
𝑏̂𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 > 𝑇𝑖,

𝑛𝑖𝑗 (𝑦𝑗 (𝑡 − 𝜎 (𝑡))) = {{{
̌𝑛𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨󵄨 ≤ 𝑅𝑗,

𝑛𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨󵄨 > 𝑅𝑗,

(4)

in which switching jumps 𝑇𝑖 > 0, ̌𝑑𝑖 > 0, 𝑑𝑖 > 0 and ̌𝑎𝑗𝑖, 𝑎𝑗𝑖,𝑏̌𝑗𝑖, 𝑏̂𝑗𝑖, ̌𝑐𝑗𝑖, 𝑐𝑗𝑖, for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚 are constants,
so do 𝑅𝑗, ̌𝑝𝑗, 𝑝𝑗, 𝑚̌𝑖𝑗, 𝑚̂𝑖𝑗, ̌𝑞𝑖𝑗, 𝑞𝑖𝑗, ̌𝑛𝑖𝑗, and 𝑛𝑖𝑗.

In this paper, we treat system (3) as the drive system;
then the corresponding response system with stochastic
perturbations is described as

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖 (𝑥𝑖 (𝑡)) 𝑥𝑖 (𝑡) + 𝑚∑

𝑗=1

𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) 𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏𝑗𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 (𝑥𝑖 (𝑡)) ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝐼𝑖 (𝑡)

+ 𝑈𝑖 (𝑡)]]
𝑑𝑡 + 𝑚∑
𝑗=1

𝛽𝑗𝑖
⋅ (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,

𝑑𝑦𝑗 (𝑡) = [−𝑝𝑗 (𝑦𝑗 (𝑡)) 𝑦𝑗 (𝑡)

+ 𝑛∑
𝑖=1

𝑚𝑖𝑗 (𝑦𝑗 (𝑡)) 𝑔𝑖 (𝑥𝑖 (𝑡))

+ 𝑛∑
𝑖=1

𝑛𝑖𝑗 (𝑦𝑗 (𝑡 − 𝜎 (𝑡))) 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡)))
+ 𝑛∑
𝑖=1

𝑞𝑖𝑗 (𝑦𝑗 (𝑡)) ∫𝑡
𝑡−𝜀(𝑡)

𝑔𝑖 (𝑥𝑖 (𝑠)) 𝑑𝑠 + 𝐼𝑗 (𝑡)

+ 𝑈𝑗 (𝑡)] 𝑑𝑡 + 𝑛∑
𝑖=1

𝛽𝑖𝑗
⋅ (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) ,

(5)

where

𝑑𝑖 (𝑥𝑖 (𝑡)) = {{{
̌𝑑𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑇𝑖,

𝑑𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 > 𝑇𝑖,
𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) = {{{

̌𝑎𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑇𝑖,
𝑎𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 > 𝑇𝑖,

𝑐𝑗𝑖 (𝑥𝑖 (𝑡)) = {{{
̌𝑐𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑇𝑖,

𝑐𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 > 𝑇𝑖,
𝑝𝑗 (𝑦𝑗 (𝑡)) = {{{

𝑝̌𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑅𝑗,
𝑝𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑅𝑗,

𝑚𝑖𝑗 (𝑦𝑗 (𝑡)) = {{{
𝑚̌𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑅𝑗,
𝑚̂𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑅𝑗,

𝑞𝑖𝑗 (𝑦𝑗 (𝑡)) = {{{
̌𝑞𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑅𝑗,

𝑞𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑅𝑗,
𝑏𝑗𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) = {{{

𝑏̌𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 ≤ 𝑇𝑖,
𝑏̂𝑗𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 > 𝑇𝑖,

𝑛𝑖𝑗 (𝑦𝑗 (𝑡 − 𝜎 (𝑡))) = {{{
̌𝑛𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨󵄨 ≤ 𝑅𝑗,

𝑛𝑖𝑗, 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨󵄨 > 𝑅𝑗.

(6)

𝑈𝑖(𝑡) and𝑈𝑗(𝑡) are the appropriate controllers that will be
proposed in order to gain the certain control objectives. Con-
sider the following state feedback sampled-data controllers:

𝑈𝑖 (𝑡) = 𝐾𝑖𝑒𝑖 (𝑡𝑘1) − 𝜆𝑖 sign (𝑒𝑖 (𝑡)) ,
𝑈𝑗 (𝑡) = 𝐾𝑗𝑒𝑗 (𝑡𝑘2) − 𝜆𝑗 sign (𝑒𝑗 (𝑡)) , (7)

where𝐾𝑖 and𝐾𝑗 are the sampled-data controllers gain matri-
ces to be designed. 𝜆𝑖 and 𝜆𝑗 are positive scalars. Then 𝑒𝑖(𝑡𝑘1)



Mathematical Problems in Engineering 5

and 𝑒𝑗(𝑡𝑘2) are discrete measurements of 𝑒𝑖(𝑡) and 𝑒𝑗(𝑡) at the
sampling instant 𝑡𝑘1 and 𝑡𝑘2, respectively. And the sampling
instants satisfy the following conditions:

0 = 𝑡01 < 𝑡11 < ⋅ ⋅ ⋅ < 𝑡𝑘1 < ⋅ ⋅ ⋅ < lim
𝑛→∞

𝑡𝑘1 = +∞,
0 = 𝑡02 < 𝑡12 < ⋅ ⋅ ⋅ < 𝑡𝑘2 < ⋅ ⋅ ⋅ < lim

𝑛→∞
𝑡𝑘2 = +∞. (8)

Remark 2. According to the discussions above, the inner con-
nectionmatrices 𝑑𝑖(𝑥𝑖(𝑡)), 𝑎𝑗𝑖(𝑥𝑖(𝑡), 𝑏𝑗𝑖(𝑥𝑖(𝑡−𝜏(𝑡))), 𝑐𝑗𝑖(𝑥𝑖(𝑡)),𝑝𝑗(𝑦𝑗(𝑡)), 𝑚𝑖𝑗(𝑦𝑗(𝑡)), 𝑞𝑖𝑗(𝑦𝑗(𝑡)), 𝑛𝑖𝑗(𝑦𝑗(𝑡 − 𝜎(𝑡))), 𝑑𝑖(𝑥𝑖(𝑡)),𝑎𝑗𝑖(𝑥𝑖(𝑡), 𝑏𝑗𝑖(𝑥𝑖(𝑡 − 𝜏(𝑡))), 𝑐𝑗𝑖(𝑥𝑖(𝑡)), 𝑝𝑗(𝑦𝑗(𝑡)), 𝑚𝑖𝑗(𝑦𝑗(𝑡)),𝑞𝑖𝑗(𝑦𝑗(𝑡)), and 𝑛𝑖𝑗(𝑦𝑗(𝑡−𝜎(𝑡))) of systems (3) and (5) are vary-
ing with the state of memristance.Therefore, theMBAMNNs
are considered as the state-dependent systems. When the
parameters are all constants, systems (3) and (5) become a
general class of BAMNNs.

We define the following error system as follows:

𝑑𝑒𝑖 (𝑡) = 𝑑𝑥𝑖 (𝑡) − 𝑑𝑥𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛,
𝑑𝑒𝑗 (𝑡) = 𝑑𝑦𝑗 (𝑡) − 𝑑𝑦𝑗 (𝑡) , 𝑗 = 1, 2, . . . , 𝑚. (9)

Remark 3. Some of the published papers studied the synchro-
nization of MNNs [24, 25] through the following assumption
to design the error system:

co [𝑎𝑖𝑗, 𝑎𝑖𝑗] 𝑓𝑗 (𝑦𝑗 (𝑡)) − co [𝑎𝑖𝑗, 𝑎𝑖𝑗] 𝑓𝑗 (𝑥𝑗 (𝑡))
⊆ co [𝑎𝑖𝑗, 𝑎𝑖𝑗] (𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗 (𝑥𝑗 (𝑡))) . (10)

Let co[𝑎, 𝑏] denote the closure of convex hull generated
by real numbers 𝑎 and 𝑏 or real matrices 𝑎 and 𝑏. However
this assumption has not always been proved to be correct. In
[26], authors tried to deal with the synchronization issue of
MABMNNs, but the results are unreasonable without taking
the switching jumps into account.

The antisynchronization can avoid the problems men-
tioned above by constructing the error system as the follow-
ing assumption:

co [𝑎𝑖𝑗, 𝑎𝑖𝑗] 𝑓𝑗 (𝑦𝑗 (𝑡)) + co [𝑎𝑖𝑗, 𝑎𝑖𝑗] 𝑓𝑗 (𝑥𝑗 (𝑡))
⊆ co [𝑎𝑖𝑗, 𝑎𝑖𝑗] (𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝑓𝑗 (𝑥𝑗 (𝑡))) . (11)

But it still has limitations in practical applications, such
as associative memory and associative learning. It is worth
mentioning that we fully consider the complex property of
the inner connection and take the switching jumps into con-
sideration. Therefore, the obtained results are more practical
and less conservative than some published literatures.

2.2. Definitions and Assumptions. In order to get our primary
conclusions in the next section, we make the following
assumptions. For the sampling interval, one has the following.

Assumption 4 (see [40]). It is supposed that the interval
between any two sampling instants is bounded by 𝑑 (𝑑 > 0):

Δ 𝑘1 = 𝑡𝑘1+1 − 𝑡𝑘1 ≤ 𝑑1, ∀𝑘1 ≥ 0,
Δ 𝑘2 = 𝑡𝑘2+1 − 𝑡𝑘2 ≤ 𝑑2, ∀𝑘2 ≥ 0. (12)

The constants 𝑑1, 𝑑2 denote the maximum time span
between 𝑡𝑘1+1 and 𝑡𝑘1, 𝑡𝑘2+1 and 𝑡𝑘2. The state is sampled, and𝑡𝑘1+1, 𝑡𝑘2+1 are the next update reaching the destination.

Due to the discrete terms 𝑒𝑖(𝑡𝑘1) and 𝑒𝑗(𝑡𝑘2), it is difficult
to analyze the synchronization ofMBAMNNsdirectly.There-
fore, according to the input delay approach, 𝑡𝑘1 and 𝑡𝑘2 are
defined as

𝑡𝑘1 = 𝑡 − (𝑡 − 𝑡𝑘1) fl 𝑡 − 𝑑1 (𝑡) ,
𝑡𝑘2 = 𝑡 − (𝑡 − 𝑡𝑘2) fl 𝑡 − 𝑑2 (𝑡) , (13)

where 0 ≤ 𝑑1(𝑡) ≤ 𝑑1, 0 ≤ 𝑑2(𝑡) ≤ 𝑑2, and the controllers can
be designed as

𝑈𝑖 (𝑡) = 𝐾𝑖𝑒𝑖 (𝑡 − 𝑑1 (𝑡)) − 𝜆𝑖 sign (𝑒𝑖 (𝑡)) ,
𝑈𝑗 (𝑡) = 𝐾𝑗𝑒𝑗 (𝑡 − 𝑑2 (𝑡)) − 𝜆𝑗 sign (𝑒𝑗 (𝑡)) . (14)

Remark 5. It should be noted that [41] has made use of the
sampled-data control to the MNNs, but to the best of our
knowledge little attention has been paid to the MBAMNNs
with mixed time-varying delays and stochastic perturbations
based on sampled-data control theory, which motivates our
present study.

Definition 6. Systems (3) and (5) are said to be asymptotically
synchronized if and only if the error systems are globally
asymptotically stable for the equilibrium points 𝑒𝑖(𝑡) ≡ 0 and𝑒𝑗(𝑡) ≡ 0. That is, 𝑒𝑖(𝑡) → 0, 𝑒𝑗(𝑡) → 0 as 𝑡 → 0, for any initial
conditions

𝜙 (𝑠) = (𝜙1 (𝑠) , 𝜙2 (𝑠) , . . . , 𝜙𝑛 (𝑠))𝑇 ∈ C ([−], 0] ,R𝑛) ,
𝛾 (𝑠) = (𝛾1 (𝑠) , 𝛾2 (𝑠) , . . . , 𝛾𝑚 (𝑠))𝑇 ∈ C ([−𝜍, 0] ,R𝑚) ,
𝜑 (𝑠) = (𝜑1 (𝑠) , 𝜑2 (𝑠) , . . . , 𝜑𝑛 (𝑠))𝑇 ∈ C ([−], 0] ,R𝑛) ,
𝜓 (𝑠) = (𝜓1 (𝑠) , 𝜓2 (𝑠) , . . . , 𝜓𝑚 (𝑠))𝑇

∈ C ([−𝜍, 0] ,R𝑚) ,

(15)

where ] = max1≤𝑖≤𝑛{𝜏𝑖, 𝜇𝑖} which denotes the Banach space
of all continuous functions mapping [−], 0] into R𝑛 with 2-
norm defined by ‖𝜙‖ = (∑𝑛𝑖=1 𝜙2𝑖 ), ‖𝜑‖ = (∑𝑛𝑖=1 𝜑2𝑖 ), and𝜍 = max1≤𝑗≤𝑚{𝜎𝑗, 𝜀𝑗}. They denote the Banach space of all
continuous functions mapping [−𝜍, 0] into R𝑚 with 2-norm
defined by ‖𝛾‖ = (∑𝑚𝑗=1 𝛾2𝑗 ), ‖𝜓‖ = (∑𝑚𝑗=1 𝜓2𝑗 ).
Assumption 7 (see [42]). The activation functions 𝑓𝑗(⋅) (𝑗 =1, 2, . . . , 𝑚) and 𝑔𝑖(⋅) (𝑖 = 1, 2, . . . , 𝑛) are bounded and glob-
ally Lipschitz continuous in R; namely, there exist constants𝛼𝑖, 𝛽𝑖, 𝛼𝑗, and 𝛽𝑗 for all 𝑠1, 𝑠2 ∈ R, 𝑠1 ̸= 𝑠2 such that

𝛼𝑗 ≤ 𝑓𝑗 (𝑠1) − 𝑓𝑗 (𝑠2)𝑠1 − 𝑠2 ≤ 𝛽𝑗, 󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (⋅)󵄨󵄨󵄨󵄨󵄨 ≤ Γ𝑗,
𝛼𝑖 ≤ 𝑔𝑖 (𝑠1) − 𝑔𝑖 (𝑠2)𝑠1 − 𝑠2 ≤ 𝛽𝑖, 󵄨󵄨󵄨󵄨𝑔𝑖 (⋅)󵄨󵄨󵄨󵄨 ≤ Δ 𝑖,

(16)

where the constants𝛼𝑖,𝛽𝑖,𝛼𝑗, and𝛽𝑗 can be positive numbers,
negative numbers, or zero.
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Assumption 8 (see [37]). There exist constants𝑅1 ⩾ 0,𝑅2 ⩾ 0,
such that

Trace [𝜎𝑇 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜉 (𝑡)))
⋅ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜉 (𝑡)))] ≤ 𝑥𝑇 (𝑡) 𝑅1𝑥 (𝑡) + 𝑥𝑇 (𝑡
− 𝜉 (𝑡)) 𝑅2𝑥 (𝑡 − 𝜉 (𝑡)) .

(17)

For the stochastic system [42],

𝑑𝑦 (𝑡) = 𝑔 (𝑡, 𝑦 (𝑡)) 𝑑𝑡 + 𝜎 (𝑡, 𝑦 (𝑡)) 𝑑𝜔 (𝑡) , (18)

where𝜔(𝑡) is the Brownianmotion and it is clearlyE𝜔(𝑡) = 0.
L is the operator defined as follows:

L𝑉 (𝑡, 𝑦) = 𝑉𝑡 (𝑡, 𝑦) + 𝑉𝑦 (𝑡, 𝑦)
+ 12Trace [𝜎𝑇 (𝑡, 𝑦 (𝑡)) 𝑉𝑦𝑦𝜎 (𝑡, 𝑦 (𝑡))] , (19)

where

𝑉𝑡 (𝑡, 𝑦) = 𝜕𝑉𝑡 (𝑡, 𝑦)𝜕𝑡 ,
𝑉𝑦𝑦 (𝑡, 𝑦) = (𝜕2𝑉𝑡 (𝑡, 𝑦)𝜕𝑦𝑖𝜕𝑦𝑗 ) ,

𝑉𝑦 (𝑡, 𝑦) = (𝜕𝑉𝑡 (𝑡, 𝑦)𝜕𝑦1 , 𝜕𝑉𝑡 (𝑡, 𝑦)𝜕𝑦2 , . . . , 𝜕𝑉𝑡 (𝑡, 𝑦)𝜕𝑦𝑛 )𝑇 .
(20)

Assumption 9. Thetime-varying delays 𝜏(𝑡),𝜎(𝑡) in this paper
are differential functions, where

0 < 𝜏 (𝑡) < 𝜏,
0 < 𝜎 (𝑡) < 𝜎,

̇𝜏 (𝑡) ≤ 𝜏1 < 1,
𝜎̇ (𝑡) ≤ 𝜎1 < 1,
𝜇 (𝑡) ≤ 𝜇,
𝜀 (𝑡) ≤ 𝜀,
̇𝑑1 (𝑡) ≤ 𝑑󸀠1 < 1,
̇𝑑2 (𝑡) ≤ 𝑑󸀠2 < 1,

(21)

for all 𝑡 ≥ 0.
Lemma 10 (see [43]). Given any real matrix 𝑋,𝑍, 𝑃 of
appropriate dimensions, a scalar 𝜖0 > 0, and 𝑃 > 0, the
following inequality holds:

𝑋𝑇𝑍 + 𝑍𝑇𝑋 ≤ 𝜖0𝑋𝑇𝑃𝑋 + 𝜖−10 𝑍𝑇𝑃−1𝑍. (22)

In particular, if𝑋 and𝑍 are vectors,𝑋𝑇𝑍 ≤ (1/2)(𝑋𝑇𝑋+𝑍𝑇𝑍).

3. Main Results

In this section, we get some new sufficient conditions to
ensure the synchronization of MBAMNNs by the designed
sampled-data controller.

Theorem 11. Assume that Assumption 7 is satisfied; then error
system (9) achieves global stable situation under the designed
sampled-data feedback controller (7) with the control law as
follows:

𝐾2𝑖 ≤ min {Ξ1, Ξ2} ,
𝐾2𝑗 ≤ min {Π1, Π2} ,
𝜆𝑖 > 𝑛∑
𝑖=1

[
[
󵄨󵄨󵄨󵄨󵄨 ̌𝑑𝑖 − 𝑑𝑖󵄨󵄨󵄨󵄨󵄨 𝑇𝑖 +

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖 − 𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿𝑦𝑅𝑗

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 Γ𝑗 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝜇𝐿𝑦𝑅𝑗]]
,

𝜆𝑗 > 𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨 ̌𝑝𝑗 − 𝑝𝑗󵄨󵄨󵄨󵄨󵄨 𝑅𝑗 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑚̌𝑖𝑗 − 𝑚̂𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖
+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑛𝑖𝑗 − 𝑛𝑖𝑗󵄨󵄨󵄨󵄨󵄨 Δ 𝑖 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑞𝑖𝑗 − 𝑞𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝜀𝐿𝑥𝑇𝑖] ,

(23)

where

𝐿𝑥 = max {󵄨󵄨󵄨󵄨𝛼𝑖󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝛽𝑖󵄨󵄨󵄨󵄨} ,
𝐿𝑦 = max {󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨} ,
Ξ1 = 2 ̌𝑑𝑖 − 𝑚∑

𝑗=1

( ̌𝑎2𝑗𝑖𝐿2𝑦 + 𝑏̌2𝑗𝑖𝐿2𝑦 + ̌𝑐2𝑗𝑖) − 11 − 𝑑󸀠1 − 𝐽1
− 𝑚𝜀𝐿2𝑥 − 1 + 𝐽21 − 𝜎1 ,

Ξ2 = 2𝑑𝑖 − 𝑚∑
𝑗=1

(𝑎2𝑗𝑖𝐿2𝑦 + 𝑏̂2𝑗𝑖𝐿2𝑦 + 𝑐2𝑗𝑖) − 11 − 𝑑󸀠1 − 𝐽1
− 𝑚𝜀𝐿2𝑥 − 1 + 𝐽21 − 𝜎1 ,

Π1 = 2 ̌𝑝𝑗 − 𝑛∑
𝑖=1

(𝑚̌2𝑖𝑗𝐿2𝑥 + ̌𝑛2𝑖𝑗𝐿2𝑥 + ̌𝑞2𝑖𝑗) − 11 − 𝑑󸀠2 − 𝐻1
− 𝑛𝜇𝐿2𝑦 − 1 + 𝐻21 − 𝜏1 ,

Π2 = 2𝑝𝑗 − 𝑛∑
𝑖=1

(𝑚̂2𝑖𝑗𝐿2𝑥 + 𝑛2𝑖𝑗𝐿2𝑥 + 𝑞2𝑖𝑗) − 11 − 𝑑󸀠2 − 𝐻1
− 𝑛𝜇𝐿2𝑦 − 1 + 𝐻21 − 𝜏1 ,

(24)

and 𝐽1, 𝐽2, 𝐻1, 𝐻2 are all positive constants.



Mathematical Problems in Engineering 7

Proof. Consider the following Lyapunov function for syn-
chronization error system (9):

𝑉 (𝑡) = 𝑉𝑥 (𝑡) + 𝑉𝑦 (𝑡) , (25)

where

𝑉𝑥 (𝑡) = 12
𝑛∑
𝑖=1

𝑒𝑇𝑖 (𝑡) 𝑒𝑖 (𝑡)

+ 𝑛∑
𝑖=1

12 (1 − 𝑑󸀠1) ∫
𝑡

𝑡−𝑑
1
(𝑡)

𝑒𝑇𝑖 (𝑠) 𝑒𝑖 (𝑠) 𝑑𝑠

+ 𝑚∑
𝑗=1

1 + 𝐻22 (1 − 𝜏1) ∫
𝑡

𝑡−𝜏(𝑡)
𝑒𝑇𝑗 (𝑠) 𝑒𝑗 (𝑠) 𝑑𝑠

+ 12
𝑛∑
𝑖=1

𝑚∑
𝑗=1

∫0
−𝜇

∫𝑡
𝑡+𝑠

𝑒𝑇𝑗 (𝑧) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑧) 𝑑𝑧 𝑑𝑠,

(26)

𝑉𝑦 (𝑡) = 12
𝑚∑
𝑗=1

𝑒𝑇𝑗 (𝑡) 𝑒𝑗 (𝑡)

+ 𝑚∑
𝑗=1

12 (1 − 𝑑󸀠2) ∫
𝑡

𝑡−𝑑
2
(𝑡)

𝑒𝑇𝑗 (𝑠) 𝑒𝑗 (𝑠) 𝑑𝑠

+ 𝑛∑
𝑖=1

1 + 𝐽22 (1 − 𝜎1) ∫
𝑡

𝑡−𝜎(𝑡)
𝑒𝑇𝑖 (𝑠) 𝑒𝑖 (𝑠) 𝑑𝑠

+ 12
𝑛∑
𝑖=1

𝑚∑
𝑗=1

∫0
−𝜀

∫𝑡
𝑡+𝑠

𝑒𝑇𝑖 (𝑧) 𝐿𝑇𝑥𝐿𝑥𝑒𝑖 (𝑧) 𝑑𝑧 𝑑𝑠.

(27)

Case 1. If |𝑥𝑖(𝑡)| ≤ 𝑇𝑖, |𝑥𝑖(𝑡)| ≤ 𝑇𝑖, |𝑦𝑗(𝑡)| ≤ 𝑅𝑗, |𝑦𝑗(𝑡)| ≤ 𝑅𝑗
at time 𝑡, according to the jumping rules, systems (3) and (5)
are reduced to systems (28) and (29), respectively:

𝑑𝑥𝑖 (𝑡) = [
[
− ̌𝑑𝑖𝑥𝑖 (𝑡) + 𝑚∑

𝑗=1

̌𝑎𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̌𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

̌𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝐼𝑖 (𝑡)]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,
𝑑𝑦𝑗 (𝑡) = [−𝑝̌𝑗𝑦𝑗 (𝑡) + 𝑛∑

𝑖=1

𝑚̌𝑖𝑗𝑔𝑖 (𝑥𝑖 (𝑡))

+ 𝑛∑
𝑖=1

̌𝑛𝑖𝑗𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡)))

+ 𝑛∑
𝑖=1

̌𝑞𝑖𝑗 ∫𝑡
𝑡−𝜀(𝑡)

𝑔𝑖 (𝑥𝑖 (𝑠)) 𝑑𝑠 + 𝐼𝑗 (𝑡)] 𝑑𝑡

+ 𝑛∑
𝑖=1

𝛽𝑖𝑗 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) .
(28)

Then we define the corresponding response system

𝑑𝑥𝑖 (𝑡) = [
[
− ̌𝑑𝑖𝑥𝑖 (𝑡) + 𝑚∑

𝑗=1

̌𝑎𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̌𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡))) + 𝐼𝑖 (𝑡) + 𝑈𝑖 (𝑡)

+ 𝑚∑
𝑗=1

̌𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,

𝑑𝑦𝑗 (𝑡) = [−𝑝̌𝑗𝑦𝑗 (𝑡) + 𝑛∑
𝑖=1

𝑚̌𝑖𝑗𝑔𝑖 (𝑥𝑖 (𝑡))

+ 𝑛∑
𝑖=1

̌𝑛𝑖𝑗𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡))) + 𝐼𝑗 (𝑡) + 𝑈𝑗 (𝑡)

+ 𝑛∑
𝑖=1

̌𝑞𝑖𝑗 ∫𝑡
𝑡−𝜀(𝑡)

𝑔𝑖 (𝑥𝑖 (𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝑛∑
𝑖=1

𝛽𝑖𝑗 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) .

(29)

And error system (9) can be rewritten:

𝑑𝑒𝑖 (𝑡) = 𝑑𝑥𝑖 (𝑡) − 𝑑𝑥𝑖 (𝑡) = [
[
− ̌𝑑𝑖𝑥𝑖 (𝑡)

+ 𝑚∑
𝑗=1

̌𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) 𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̌𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡))) + 𝐼𝑖 (𝑡) + 𝑈𝑖 (𝑡)

+ 𝑚∑
𝑗=1

̌𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + ̌𝑑𝑖𝑥𝑖 (𝑡)

− 𝑚∑
𝑗=1

̌𝑎𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑚∑
𝑗=1

𝑏̌𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))
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− 𝑚∑
𝑗=1

̌𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) .
(30)

Then

𝑑𝑒𝑖 (𝑡) = [
[
− ̌𝑑𝑖𝑒𝑖 (𝑡) + 𝑚∑

𝑗=1

̌𝑎𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̌𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

̌𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝐹𝑗 (𝑒𝑗 (𝑠)) 𝑑𝑠 + 𝐾𝑖𝑒𝑖 (𝑡 − 𝑑1 (𝑡))

− 𝜆𝑖 sign (𝑒𝑖 (𝑡))]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) .

(31)

We conclude that

𝑑𝑒𝑗 (𝑡) = 𝑑𝑦𝑗 (𝑡) − 𝑑𝑦𝑗 (𝑡) = [−𝑝̌𝑗𝑒𝑗 (𝑡)

+ 𝑛∑
𝑖=1

𝑚̌𝑖𝑗𝐺𝑖 (𝑒𝑖 (𝑡)) + 𝑛∑
𝑖=1

̌𝑛𝑖𝑗𝐺𝑖𝑒𝑖 (𝑡 − 𝜎 (𝑡))

+ 𝑛∑
𝑖=1

̌𝑞𝑖𝑗 ∫𝑡
𝑡−𝜀(𝑡)

𝐺𝑖 (𝑒𝑖 (𝑠)) 𝑑𝑠 + 𝐾𝑗𝑒𝑗 (𝑡 − 𝑑2 (𝑡))

− 𝜆𝑗 sign (𝑒𝑗 (𝑡))] 𝑑𝑡

+ 𝑛∑
𝑖=1

𝛽𝑖𝑗 (𝑡, 𝑒𝑖 (𝑡) , 𝑒𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) ,

(32)

where

𝐹𝑗 (𝑒𝑗 (𝑡)) = 𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗 (𝑦𝑗 (𝑡)) ,
𝐹𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡))) = 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

− 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡))) ,
𝐺𝑖 (𝑒𝑖 (𝑡)) = 𝑔𝑖 (𝑥𝑖 (𝑡)) − 𝑔𝑖 (𝑥𝑖 (𝑡)) ,

𝐺𝑖 (𝑒𝑖 (𝑡 − 𝜎 (𝑡))) = 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡)))
− 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡))) .

(33)

From all the above discussion, we get

𝑉̇𝑥 (𝑡) = 𝑛∑
𝑖=1

𝑒𝑖 (𝑡) ̇𝑒𝑖 (𝑡) + 𝑚∑
𝑗=1

[ 1 + 𝐻22 (1 − 𝜏1) 𝑒
2
𝑗 (𝑡) − 1 + 𝐻22

⋅ 𝑒2𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑛∑
𝑖=1

[ 12 (1 − 𝑑󸀠1) 𝑒
2
𝑖 (𝑡) − 12𝑒2𝑖 (𝑡

− 𝑑1 (𝑡))] + 12
𝑛∑
𝑖=1

𝑚∑
𝑗=1

[∫0
−𝜇

𝑒𝑇𝑗 (𝑡) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑡) 𝑑𝑠

− ∫0
−𝜇

𝑒𝑇𝑗 (𝑡 + 𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑡 + 𝑠) 𝑑𝑠] ,

(34)

and then

𝑉̇𝑥 (𝑡) ≤ 𝑛∑
𝑖=1

𝑒𝑖 (𝑡) ̇𝑒𝑖 (𝑡) + 𝑚∑
𝑗=1

[ 1 + 𝐻22 (1 − 𝜏1) 𝑒
2
𝑗 (𝑡) − 1 + 𝐻22

⋅ 𝑒2𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑛∑
𝑖=1

[ 12 (1 − 𝑑󸀠1) 𝑒
2
𝑖 (𝑡) − 12𝑒2𝑖 (𝑡

− 𝑑1 (𝑡))] + 12
𝑛∑
𝑖=1

𝑚∑
𝑗=1

[𝜇𝑒𝑇𝑗 (𝑡) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑡)

− ∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠] .

(35)

According to (31), one has

𝑉̇𝑥 (𝑡) = 𝑛∑
𝑖=1

𝑒𝑖 (𝑡){{{
− ̌𝑑𝑖𝑒𝑖 (𝑡) + 𝑚∑

𝑗=1

̌𝑎𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̌𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡))) − 𝜆𝑖 sign (𝑒𝑖 (𝑡)) + 𝑚∑
𝑗=1

̌𝑐𝑗𝑖

⋅ ∫𝑡
𝑡−𝜇(𝑡)

𝐹𝑗 (𝑒𝑗 (𝑠)) 𝑑𝑠 + 𝐾𝑖𝑒𝑖 (𝑡 − 𝑑1 (𝑡))}}}
+ 12

⋅ 𝑚∑
𝑗=1

Tr [𝛽𝑇𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡)))

⋅ 𝛽𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡)))] + 𝑚∑
𝑗=1

[ 1 + 𝐻22 (1 − 𝜏1)
⋅ 𝑒2𝑗 (𝑡) − 1 + 𝐻22 𝑒2𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑛∑

𝑖=1

[ 12 (1 − 𝑑󸀠1)
⋅ 𝑒2𝑖 (𝑡) − 12𝑒2𝑖 (𝑡 − 𝑑1 (𝑡))] + 12
⋅ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

[𝜇𝑒𝑇𝑗 (𝑡) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑡)

− ∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠] .

(36)
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Due to Assumptions 7 and 8, we obtain the following
inequality:

𝑉̇𝑥 (𝑡) ≤ 𝑛∑
𝑖=1

𝑒𝑖 (𝑡){{{
− ̌𝑑𝑖𝑒𝑖 (𝑡) + 𝑚∑

𝑗=1

̌𝑎𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̌𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡))) − 𝜆𝑖 sign (𝑒𝑖 (𝑡)) + 𝑚∑
𝑗=1

̌𝑐𝑗𝑖

⋅ ∫𝑡
𝑡−𝜇(𝑡)

𝐹𝑗 (𝑒𝑗 (𝑠)) 𝑑𝑠 + 𝐾𝑖𝑒𝑖 (𝑡 − 𝑑1 (𝑡))}}}
+ 12

⋅ 𝑚∑
𝑗=1

[𝑒𝑇𝑗 (𝑡)𝐻1𝑒𝑗 (𝑡) + 𝑒𝑇𝑗 (𝑡 − 𝜏 (𝑡))𝐻2𝑒𝑗 (𝑡 − 𝜏 (𝑡))]

+ 𝑚∑
𝑗=1

[ 1 + 𝐻22 (1 − 𝜏1) 𝑒
2
𝑗 (𝑡) − 1 + 𝐻22 𝑒2𝑗 (𝑡 − 𝜏 (𝑡))]

+ 𝑛∑
𝑖=1

[ 12 (1 − 𝑑󸀠1) 𝑒
2
𝑖 (𝑡) − 12𝑒2𝑖 (𝑡 − 𝑑1 (𝑡))] + 12

⋅ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

[𝜇𝑒𝑇𝑗 (𝑡) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑡)

− ∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠] ,

(37)

and then

𝑉̇𝑥 (𝑡) ≤ 𝑛∑
𝑖=1

{{{
− ̌𝑑𝑖𝑒2𝑖 (𝑡) + 𝑚∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝐿𝑦 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝐿𝑦 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨󵄨 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨
⋅ ∫𝑡
𝑡−𝜇(𝑡)

𝐿𝑦 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠 + 𝐾𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝑑1 (𝑡))󵄨󵄨󵄨󵄨
− 𝜆𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨}}}

+ 12
𝑚∑
𝑗=1

[𝑒𝑇𝑗 (𝑡)𝐻1𝑒𝑗 (𝑡) + 𝑒𝑇𝑗 (𝑡 − 𝜏 (𝑡))

⋅ 𝐻2𝑒𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑚∑
𝑗=1

[ 1 + 𝐻22 (1 − 𝜏1) 𝑒
2
𝑗 (𝑡) − 1 + 𝐻22

⋅ 𝑒2𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑛∑
𝑖=1

[ 12 (1 − 𝑑󸀠1) 𝑒
2
𝑖 (𝑡) − 12𝑒2𝑖 (𝑡

− 𝑑1 (𝑡))] + 12
𝑛∑
𝑖=1

𝑚∑
𝑗=1

[𝜇𝑒𝑇𝑗 (𝑡) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑡)

− ∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠] .

(38)

Based on Lemma 10, we get the inequalities as follows:

𝐾𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝑑1 (𝑡)) ≤󵄨󵄨󵄨󵄨 12𝑒𝑇𝑖 (𝑡) 𝐾𝑇𝑖 𝐾𝑖𝑒𝑖 (𝑡)
+ 12𝑒𝑇𝑖 (𝑡 − 𝑑1 (𝑡)) 𝑒𝑖 (𝑡 − 𝑑1 (𝑡)) ,

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝐿𝑦 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 12𝑒𝑇𝑖 (𝑡) 𝐿𝑇𝑦 ̌𝑎𝑇𝑗𝑖 ̌𝑎𝑗𝑖𝐿𝑦𝑒𝑖 (𝑡)
+ 12𝑒𝑇𝑗 (𝑡) 𝑒𝑗 (𝑡) ,

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝐿𝑦 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨󵄨 ≤ 12𝑒𝑇𝑖 (𝑡) 𝐿𝑇𝑦𝑏̌𝑇𝑗𝑖 𝑏̌𝑗𝑖𝐿𝑦𝑒𝑖 (𝑡)
+ 12𝑒𝑇𝑗 (𝑡 − 𝜏 (𝑡)) 𝑒𝑗 (𝑡 − 𝜏 (𝑡)) ,

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 ∫
𝑡

𝑡−𝜇(𝑡)
𝐿𝑦 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 12𝑒𝑇𝑖 (𝑡) ̌𝑐𝑇𝑗𝑖 ̌𝑐𝑗𝑖𝑒𝑖 (𝑡)

+ 12 ∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠.

(39)

Thus, we infer that

𝑉̇𝑥 (𝑡) ≤ 𝑛∑
𝑖=1

{{{
− ̌𝑑𝑖𝑒2𝑖 (𝑡) + 12

𝑚∑
𝑗=1

̌𝑎2𝑗𝑖𝐿2𝑦𝑒2𝑖 (𝑡) + 12
𝑚∑
𝑗=1

𝑒2𝑗 (𝑡)

+ 12
𝑚∑
𝑗=1

𝑏̌2𝑗𝑖𝐿2𝑦𝑒2𝑖 (𝑡) + 12
𝑚∑
𝑗=1

𝑒2𝑗 (𝑡 − 𝜏 (𝑡)) + 12
⋅ 𝑚∑
𝑗=1

̌𝑐2𝑗𝑖𝑒2𝑖 (𝑡) + 12
𝑚∑
𝑗=1

∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠 + 12
⋅ 𝐾2𝑖 𝑒2𝑖 (𝑡) + 12𝑒2𝑖 (𝑡 − 𝑑1 (𝑡)) − 𝜆𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨}}}

+ 12
⋅ 𝑚∑
𝑗=1

[𝐻1𝑒2𝑗 (𝑡) + 𝐻2𝑒2𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑚∑
𝑗=1

[ 1 + 𝐻22 (1 − 𝜏1)
⋅ 𝑒2𝑗 (𝑡) − 1 + 𝐻22 𝑒2𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑛∑

𝑖=1

[ 12 (1 − 𝑑󸀠1)
⋅ 𝑒2𝑖 (𝑡) − 12𝑒2𝑖 (𝑡 − 𝑑1 (𝑡))] + 12
⋅ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

[𝜇𝑒𝑇𝑗 (𝑡) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑡)

− ∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠] .

(40)
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After organizing the above formulas, we deduce that

𝑉̇𝑥 (𝑡) ≤ 𝑛∑
𝑖=1

[
[
− ̌𝑑𝑖 + 12

𝑚∑
𝑗=1

̌𝑎2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑏̌2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

̌𝑐2𝑗𝑖

+ 12𝐾2𝑖 + 12 (1 − 𝑑󸀠1)]]
𝑒2𝑖 (𝑡) + 𝑚∑

𝑗=1

[12 + 12𝐻1

+ 𝑛2𝜇𝐿2𝑦 + 1 + 𝐻22 (1 − 𝜏1)] 𝑒2𝑗 (𝑡) .

(41)

With similar process of 𝑉̇𝑥(𝑡), we obtain 𝑉̇𝑦(𝑡) as follows:

𝑉̇𝑦 (𝑡) ≤ 𝑚∑
𝑗=1

[−𝑝̌𝑗 + 12
𝑛∑
𝑖=1

𝑚̌2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑞2𝑖𝑗

+ 12𝐾2𝑗 + 12 (1 − 𝑑󸀠2)] 𝑒2𝑗 (𝑡) + 𝑛∑
𝑖=1

[12 + 12𝐽1
+ 𝑚2 𝜀𝐿2𝑥 + 1 + 𝐽22 (1 − 𝜎1)] 𝑒2𝑖 (𝑡) .

(42)

So according to (25) and the compilation of the above
equations, we have

𝑉̇ (𝑡) = 𝑉̇𝑥 (𝑡) + 𝑉̇𝑦 (𝑡) ≤ 𝑛∑
𝑖=1

[
[
− ̌𝑑𝑖 + 12

𝑚∑
𝑗=1

̌𝑎2𝑗𝑖𝐿2𝑦

+ 12
𝑚∑
𝑗=1

𝑏̌2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

̌𝑐2𝑗𝑖 + 12𝐾2𝑖 + 12 (1 − 𝑑󸀠1) + 12
+ 12𝐽1 + 𝑚2 𝜀𝐿2𝑥 + 1 + 𝐽22 (1 − 𝜎1)]]

𝑒2𝑖 (𝑡) + 𝑚∑
𝑗=1

[−𝑝̌𝑗

+ 12
𝑛∑
𝑖=1

𝑚̌2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑞2𝑖𝑗 + 12𝐾2𝑗
+ 12 (1 − 𝑑󸀠2) + 12 + 12𝐻1 + 𝑛2𝜇𝐿2𝑦 + 1 + 𝐻22 (1 − 𝜏1)]
⋅ 𝑒2𝑗 (𝑡) ≤ 0.

(43)

According to the definitions of𝐾2𝑖 and𝐾2𝑗 , one has 𝑉̇(𝑡) ≤0. Then

− ̌𝑑𝑖 + 12
𝑚∑
𝑗=1

̌𝑎2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑏̌2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

̌𝑐2𝑗𝑖 + 12𝐾2𝑖
+ 12 (1 − 𝑑󸀠1) + 12 + 12𝐽1 + 𝑚2 𝜀𝐿2𝑥

+ 1 + 𝐽22 (1 − 𝜎1) ≤ 0,
− 𝑝̌𝑗 + 12

𝑛∑
𝑖=1

𝑚̌2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑞2𝑖𝑗 + 12𝐾2𝑗
+ 12 (1 − 𝑑󸀠2) + 12 + 12𝐻1 + 𝑛2𝜇𝐿2𝑦
+ 1 + 𝐻22 (1 − 𝜏1) ≤ 0.

(44)

Case 2. If |𝑥𝑖(𝑡)| > 𝑇𝑖, |𝑥𝑖(𝑡)| > 𝑇𝑖, |𝑦𝑗(𝑡)| > 𝑅𝑗, |𝑦𝑗(𝑡)| > 𝑅𝑗
at time 𝑡, systems (3) and (5) can be reduced to the following
systems, respectively:

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖𝑥𝑖 (𝑡) + 𝑚∑

𝑗=1

𝑎𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̂𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝐼𝑖 (𝑡)]]
𝑑𝑡 + 𝑚∑
𝑗=1

𝛽𝑗𝑖
⋅ (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,

(45)

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖𝑥𝑖 (𝑡) + 𝑚∑

𝑗=1

𝑎𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̂𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡))) + 𝐼𝑖 (𝑡)

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝑈𝑖 (𝑡)]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) .

(46)

Then the corresponding error system can be defined as
follows:

𝑑𝑒𝑖 (𝑡) = [
[
−𝑑𝑖𝑒𝑖 (𝑡) + 𝑚∑

𝑗=1

̌𝑎𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̂𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝐹𝑗 (𝑒𝑗 (𝑠)) 𝑑𝑠 − 𝜆𝑖 sign𝑒𝑖 (𝑡)
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+ 𝐾𝑖𝑒𝑖 (𝑡 − 𝑑1 (𝑡))]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) .
(47)

The following line is similar to 𝑉̇𝑥(𝑡) of Case 1, and we
obtain 𝑉̇𝑦(𝑡) and 𝑉̇(𝑡) as follows:

𝑉̇ (𝑡) = 𝑉̇𝑥 (𝑡) + 𝑉̇𝑦 (𝑡) ≤ 𝑛∑
𝑖=1

[
[
−𝑑𝑖 + 12

𝑚∑
𝑗=1

𝑎2𝑗𝑖𝐿2𝑦

+ 12
𝑚∑
𝑗=1

𝑏̂2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑐2𝑗𝑖 + 12𝐾2𝑖 + 12 (1 − 𝑑󸀠1) + 12
+ 12𝐽1 + 𝑚2 𝜀𝐿2𝑥 + 1 + 𝐽22 (1 − 𝜎1)]]

𝑒2𝑖 (𝑡) + 𝑚∑
𝑗=1

[−𝑝𝑗

+ 12
𝑛∑
𝑖=1

𝑚̂2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

𝑞2𝑖𝑗 + 12𝐾𝑗 (𝑡)

+ 12 (1 − 𝑑󸀠2) + 12 + 12𝐻1 + 𝑛2𝜇𝐿2𝑦 + 1 + 𝐻22 (1 − 𝜏1)]
⋅ 𝑒2𝑗 (𝑡) ≤ 0.

(48)

According to the definitions of𝐾2𝑖 and𝐾2𝑗 , one has 𝑉̇(𝑡) ≤0. Thus

− 𝑑𝑖 + 12
𝑚∑
𝑗=1

𝑎2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑏̂2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑐2𝑗𝑖 + 12𝐾2𝑖
+ 12 (1 − 𝑑󸀠1) + 12 + 12𝐽1 + 𝑚2 𝜀𝐿2𝑥
+ 1 + 𝐽22 (1 − 𝜎1) ≤ 0,

− 𝑝𝑗 + 12
𝑛∑
𝑖=1

𝑚̂2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

𝑞2𝑖𝑗 + 12𝐾2𝑗
+ 12 (1 − 𝑑󸀠2) + 12 + 12𝐻1 + 𝑛2𝜇𝐿2𝑦
+ 1 + 𝐻22 (1 − 𝜏1) ≤ 0.

(49)

Case 3. If |𝑥𝑖(𝑡)| ≤ 𝑇𝑖, |𝑥𝑖(𝑡)| > 𝑇𝑖, |𝑦𝑗(𝑡)| ≤ 𝑅𝑗, |𝑦𝑗(𝑡)| >𝑅𝑗 at time 𝑡, on the basis of memristive connection weights,

systems (3) and (5) can be rewritten as the following systems,
respectively:

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖𝑥𝑖 (𝑡) + 𝑚∑

𝑗=1

𝑎𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̂𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝐼𝑖 (𝑡)]]
𝑑𝑡 + 𝑚∑
𝑗=1

𝛽𝑗𝑖
⋅ (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) .

(50)

Therefore the corresponding response system can be
described as

𝑑𝑥𝑖 (𝑡) = [
[
− ̌𝑑𝑖𝑥𝑖 (𝑡) + 𝑚∑

𝑗=1

̌𝑎𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̌𝑗𝑖𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡))) + 𝐼𝑖 (𝑡)

+ 𝑚∑
𝑗=1

̌𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝑈𝑖 (𝑡)]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) .

(51)

We define the error system

𝑑𝑒𝑖 (𝑡) = [
[
−𝑑𝑖𝑒𝑖 (𝑡) + 𝑚∑

𝑗=1

𝑎𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̂𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡))) + (𝑑𝑖 − ̌𝑑𝑖) 𝑥𝑖 (𝑡)

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝐹𝑗 (𝑒𝑗 (𝑠)) 𝑑𝑠

+ 𝑚∑
𝑗=1

( ̌𝑎𝑗𝑖 − 𝑎𝑗𝑖) 𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

(𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))
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+ 𝑚∑
𝑗=1

( ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖)∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠

+ 𝐾𝑖𝑒𝑖 (𝑡 − 𝑑1 (𝑡)) − 𝜆𝑖 sign (𝑒𝑖 (𝑡))]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) .

(52)

We infer the following inequality through (26):

𝑉̇𝑥 (𝑡) ≤ 𝑛∑
𝑖=1

𝑒𝑖 (𝑡) ̇𝑒𝑖 (𝑡) + 𝑚∑
𝑗=1

[ 1 + 𝐻22 (1 − 𝜏1) 𝑒
2
𝑗 (𝑡) − 1 + 𝐻22

⋅ 𝑒2𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑛∑
𝑖=1

[ 12 (1 − 𝑑󸀠1) 𝑒
2
𝑖 (𝑡) − 12𝑒2𝑖 (𝑡

− 𝑑1 (𝑡))] + 12
𝑛∑
𝑖=1

𝑚∑
𝑗=1

[𝜇𝑒𝑇𝑗 (𝑡) 𝐿𝑇y𝐿𝑦𝑒𝑗 (𝑡)

− ∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠] .

(53)

According to (52), we have

𝑉̇𝑥 (𝑡) = 𝑛∑
𝑖=1

𝑒𝑖 (𝑡){{{
−𝑑𝑖𝑒𝑖 (𝑡) + 𝑚∑

𝑗=1

𝑎𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̂𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡))) + 𝑚∑
𝑗=1

𝑐𝑗𝑖
⋅ ∫𝑡
𝑡−𝜇(𝑡)

𝐹𝑗 (𝑒𝑗 (𝑠)) 𝑑𝑠 + (𝑑𝑖 − ̌𝑑𝑖) 𝑥𝑖 (𝑡) + 𝑚∑
𝑗=1

( ̌𝑎𝑗𝑖
− 𝑎𝑗𝑖) 𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝑚∑

𝑗=1

(𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

( ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖)∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝐾𝑖𝑒𝑖 (𝑡

− 𝑑1 (𝑡)) − 𝜆𝑖 sign (𝑒𝑖 (𝑡))}}}
+ 12

⋅ 𝑚∑
𝑗=1

Tr [𝛽𝑇𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡)))

× 𝛽𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡)))] + 𝑚∑
𝑗=1

[ 1 + 𝐻22 (1 − 𝜏1)
⋅ 𝑒2𝑗 (𝑡) − 1 + 𝐻22 𝑒2𝑗 (𝑡 − 𝜏 (𝑡))] + 𝑛∑

𝑖=1

[ 12 (1 − 𝑑󸀠1)

⋅ 𝑒2𝑖 (𝑡) − 12𝑒2𝑖 (𝑡 − 𝑑1 (𝑡))] + 12
⋅ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

[𝜇𝑒𝑇𝑗 (𝑡) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑡)

− ∫𝑡
𝑡−𝜇(𝑡)

𝑒𝑇𝑗 (𝑠) 𝐿𝑇𝑦𝐿𝑦𝑒𝑗 (𝑠) 𝑑𝑠] .

(54)

Through Assumptions 7 and 8 and Lemma 10, we get

𝑉̇𝑥 (𝑡) ≤ 𝑛∑
𝑖=1

[
[
−𝑑𝑖 + 12

𝑚∑
𝑗=1

𝑎2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑏̂2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑐2𝑗𝑖

+ 12𝐾2𝑖 + 12 (1 − 𝑑󸀠1)]]
𝑒2𝑖 (𝑡) + 𝑚∑

𝑗=1

[12𝐻1 + 𝑛2𝜇𝐿2𝑦

+ 1 + 𝐻22 (1 − 𝜏1)] 𝑒2𝑗 (𝑡) + 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 {{{
󵄨󵄨󵄨󵄨󵄨𝑑𝑖 − ̌𝑑𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖 − 𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑦𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨
+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))󵄨󵄨󵄨󵄨󵄨

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

𝑡−𝜇(𝑡)
𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 − 𝜆𝑖}}}
.

(55)

According to Assumption 7 and switching jumps, we
obtain

󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑦𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨 ≤ 𝐿𝑦𝑅𝑗,󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))󵄨󵄨󵄨󵄨󵄨 ≤ Γ𝑗,
∫𝑡
𝑡−𝜇(𝑡)

󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨 ≤ ∫𝑡
𝑡−𝜇(𝑡)

𝐿𝑦𝑅𝑗𝑑𝑠 = 𝐿𝑦𝑅𝑗𝜇 (𝑡)
≤ 𝐿𝑦𝑅𝑗𝜇.

(56)

Then, (55) can be written as

𝑉̇𝑥 (𝑡) ≤ 𝑛∑
𝑖=1

[
[
−𝑑𝑖 + 12

𝑚∑
𝑗=1

𝑎2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑏̂2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑐2𝑗𝑖

+ 12𝐾2𝑖 + 12 (1 − 𝑑󸀠1)]]
𝑒2𝑖 (𝑡) + 𝑚∑

𝑗=1

[12𝐻1 + 𝑛2𝜇𝐿2𝑦
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+ 1 + 𝐻22 (1 − 𝜏1)] 𝑒2𝑗 (𝑡) + 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 {{{
󵄨󵄨󵄨󵄨󵄨𝑑𝑖 − ̌𝑑𝑖󵄨󵄨󵄨󵄨󵄨 𝑇𝑖

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖 − 𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿𝑦𝑅𝑗 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝜇𝐿𝑦𝑅𝑗

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 Γ𝑗 − 𝜆𝑖}}}
.

(57)

According to a similar process of 𝑉̇𝑥(𝑡), we have 𝑉̇(𝑡) be
extended as follows:

𝑉̇ (𝑡) = 𝑉̇𝑥 (𝑡) + 𝑉̇𝑦 (𝑡) ≤ 𝑛∑
𝑖=1

𝑒2𝑖 (𝑡) [[
−𝑑𝑖 + 12

𝑚∑
𝑗=1

𝑎2𝑗𝑖𝐿2𝑦
+ 12
𝑚∑
𝑗=1

𝑏̂2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑐2𝑗𝑖 + 12𝐾2𝑖 + 12 (1 − 𝑑󸀠1) + 12𝐽1

+ 𝑚2 𝜀𝐿2𝑥 + 1 + 𝐽22 (1 − 𝜎1)]]
+ 𝑚∑
𝑗=1

𝑒2𝑗 (𝑡) [−𝑝̌𝑗 + 12
⋅ 𝑛∑
𝑖=1

𝑚̂2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑞2𝑖𝑗 + 12𝐾2𝑗
+ 12 (1 − 𝑑󸀠2) + 12𝐻1 + 𝑛2𝜇𝐿2𝑦 + 1 + 𝐻22 (1 − 𝜏1)]

+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 [[
󵄨󵄨󵄨󵄨󵄨𝑑𝑖 − ̌𝑑𝑖󵄨󵄨󵄨󵄨󵄨 𝑇𝑖 +

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖 − 𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿𝑦𝑅𝑗

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝜇𝐿𝑦𝑅𝑗 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 Γ𝑗 − 𝜆𝑖]]
+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨󵄨𝑝𝑗 − 𝑝̌𝑗󵄨󵄨󵄨󵄨󵄨 𝑅𝑗 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑚̌𝑖𝑗 − 𝑚̂𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖
+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑛𝑖𝑗 − 𝑛𝑖𝑗󵄨󵄨󵄨󵄨󵄨 Δ 𝑖 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑞𝑖𝑗 − 𝑞𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖𝜀 − 𝜆𝑗] ≤ 0.

(58)

According to the definitions of𝐾2𝑖 ,𝐾2𝑗 , 𝜆𝑖, and 𝜆𝑗, one has𝑉̇(𝑡) ≤ 0. Then we get

− 𝑑𝑖 + 12
𝑚∑
𝑗=1

𝑎2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑏̂2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑐2𝑗𝑖 + 12𝐾2𝑖
+ 12 (1 − 𝑑󸀠1) + 12𝐽1 + 𝑚2 𝜀𝐿2𝑥 + 1 + 𝐽22 (1 − 𝜎1) ≤ 0,

− 𝑝̌𝑗 + 12
𝑛∑
𝑖=1

𝑚̂2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑞2𝑖𝑗 + 12𝐾2𝑗
+ 12 (1 − 𝑑󸀠2) + 12𝐻1 + 𝑛2𝜇𝐿2𝑦 + 1 + 𝐻22 (1 − 𝜏1) ≤ 0,

󵄨󵄨󵄨󵄨󵄨𝑑𝑖 − ̌𝑑𝑖󵄨󵄨󵄨󵄨󵄨 𝑇𝑖 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖 − 𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿𝑦𝑅𝑗 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝜇𝐿𝑦𝑅𝑗
+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 Γ𝑗 − 𝜆𝑖 ≤ 0,
󵄨󵄨󵄨󵄨󵄨𝑝𝑗 − 𝑝̌𝑗󵄨󵄨󵄨󵄨󵄨 𝑅𝑗 +

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑚̌𝑖𝑗 − 𝑚̂𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑛𝑖𝑗 − 𝑛𝑖𝑗󵄨󵄨󵄨󵄨󵄨 Δ 𝑖
+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑞𝑖𝑗 − 𝑞𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖𝜀 − 𝜆𝑗 ≤ 0.
(59)

Case 4. If |𝑥𝑖(𝑡)| > 𝑇𝑖, |𝑥𝑖(𝑡)| ≤ 𝑇𝑖, |𝑦𝑗(𝑡)| > 𝑅𝑗, |𝑦𝑗(𝑡)| ≤ 𝑅𝑗 at
time 𝑡, in accordance with switching jumps, the error systems
can be redefined as follows:

𝑑𝑒𝑖 (𝑡) = [
[
−𝑑𝑖𝑒𝑖 (𝑡) + 𝑚∑

𝑗=1

𝑎𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡))

+ 𝑚∑
𝑗=1

𝑏̂𝑗𝑖𝐹𝑗 (𝑒𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 ∫𝑡
𝑡−𝜇(𝑡)

𝐹𝑗 (𝑒𝑗 (𝑠)) 𝑑𝑠 + ( ̌𝑑𝑖 − 𝑑𝑖) 𝑥𝑖 (𝑡)

+ 𝑚∑
𝑗=1

(𝑎𝑗𝑖 − ̌𝑎𝑗𝑖) 𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

(𝑏̂𝑗𝑖 − 𝑏̌𝑗𝑖) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

(𝑐𝑗𝑖 − ̌𝑐𝑗𝑖) ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠

+ 𝐾𝑖𝑒𝑖 (𝑡 − 𝑑1 (𝑡)) − 𝜆𝑖 sign (𝑒𝑖 (𝑡))]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑒𝑗 (𝑡) , 𝑒𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) .

(60)

Similarly, evaluating 𝑉̇𝑥(𝑡) along the trajectories of (60),
we get 𝑉̇𝑦(𝑡) and 𝑉̇(𝑡).

𝑉̇ (𝑡) = 𝑉̇𝑥 (𝑡) + 𝑉̇𝑦 (𝑡) ≤ 𝑛∑
𝑖=1

𝑒2𝑖 (𝑡) [[
−𝑑𝑖 + 12

𝑚∑
𝑗=1

𝑎2𝑗𝑖𝐿2𝑦

+ 12
𝑚∑
𝑗=1

𝑏̂2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑐2𝑗𝑖 + 12𝐾2𝑖 + 12 (1 − 𝑑󸀠1) + 12𝐽1
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+ 𝑚2 𝜀𝐿2𝑥 + 1 + 𝐽22 (1 − 𝜎1)]]
+ 𝑚∑
𝑗=1

𝑒2𝑗 (𝑡) [−𝑝̌𝑗 + 12
⋅ 𝑛∑
𝑖=1

𝑚̂2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑞2𝑖𝑗 + 12𝐾2𝑗
+ 12 (1 − 𝑑󸀠2) + 12𝐻1 + 𝑛2𝜇𝐿2𝑦 + 1 + 𝐻22 (1 − 𝜏1)]

+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 [[
󵄨󵄨󵄨󵄨󵄨 ̌𝑑𝑖 − 𝑑𝑖󵄨󵄨󵄨󵄨󵄨 𝑇𝑖 +

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑗𝑖 − ̌𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿𝑦𝑅𝑗

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖 − ̌𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝜇𝐿𝑦𝑅𝑗 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̂𝑗𝑖 − 𝑏̌𝑗𝑖󵄨󵄨󵄨󵄨󵄨 Γ𝑗 − 𝜆𝑖]]
+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨󵄨𝑝̌𝑗 − 𝑝𝑗󵄨󵄨󵄨󵄨󵄨 𝑅𝑗 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑚̂𝑖𝑗 − 𝑚̌𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖

+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑛𝑖𝑗 − ̌𝑛𝑖𝑗󵄨󵄨󵄨󵄨󵄨 Δ 𝑖 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑞𝑖𝑗 − ̌𝑞𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖𝜀 − 𝜆𝑗] ≤ 0.
(61)

According to the definitions of 𝐾2𝑖 , 𝐾2𝑗 , 𝜆𝑖, and 𝜆𝑗, we
obtain the following estimation 𝑉̇(𝑡) ≤ 0. So we get

− 𝑑𝑖 + 12
𝑚∑
𝑗=1

𝑎2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑏̂2𝑗𝑖𝐿2𝑦 + 12
𝑚∑
𝑗=1

𝑐2𝑗𝑖 + 12𝐾2𝑖
+ 12 (1 − 𝑑󸀠1) + 12𝐽1 + 𝑚2 𝜀𝐿2𝑥 + 1 + 𝐽22 (1 − 𝜎1) ≤ 0,

− 𝑝̌𝑗 + 12
𝑛∑
𝑖=1

𝑚̂2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

𝑛2𝑖𝑗𝐿2𝑥 + 12
𝑛∑
𝑖=1

̌𝑞2𝑖𝑗 + 12𝐾2𝑗
+ 12 (1 − 𝑑󸀠2) + 12𝐻1 + 𝑛2𝜇𝐿2𝑦 + 1 + 𝐻22 (1 − 𝜏1) ≤ 0,

󵄨󵄨󵄨󵄨󵄨 ̌𝑑𝑖 − 𝑑𝑖󵄨󵄨󵄨󵄨󵄨 𝑇𝑖 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑗𝑖 − ̌𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿𝑦𝑅𝑗 − 𝜆𝑖
+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖 − ̌𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝜇𝐿𝑦𝑅𝑗 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̂𝑗𝑖 − 𝑏̌𝑗𝑖󵄨󵄨󵄨󵄨󵄨 Γ𝑗 ≤ 0,
󵄨󵄨󵄨󵄨󵄨𝑝̌𝑗 − 𝑝𝑗󵄨󵄨󵄨󵄨󵄨 𝑅𝑗 +

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑚̂𝑖𝑗 − 𝑚̌𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖 − 𝜆𝑗
+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑞𝑖𝑗 − ̌𝑞𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖𝜀 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑛𝑖𝑗 − ̌𝑛𝑖𝑗󵄨󵄨󵄨󵄨󵄨 Δ 𝑖 ≤ 0.

(62)

The proof of Theorem 11 is completed.

Remark 12. In some previous studies [23–27, 44] the authors
treated the self-inhibition 𝑑𝑖(𝑥𝑖(𝑡)) = 1 or 𝑑𝑖(𝑥𝑖(𝑡)) = 𝑑𝑖 >0. It should be mentioned that the above researches cannot

refer to the case that the self-inhibition switches at two
states. Because the discontinuous self-inhibition can make
the system illustrate the complicated nonlinear dynamic
behaviors, thus we considered the self-inhibitions 𝑑𝑖(𝑥𝑖(𝑡))
and 𝑝𝑗(𝑦𝑗(𝑡)) as the state switching parameters.

Corollary 13. If Assumption 7 holds, systems (31) and (32)
without perturbations are asymptotically stable when the
following conditions are satisfied:

𝐾2𝑖 ≤ min {Ξ1, Ξ2} ,
𝐾2𝑗 ≤ min {Π1, Π2} ,
𝜆𝑖 > 𝑛∑
𝑖=1

[
[
󵄨󵄨󵄨󵄨󵄨 ̌𝑑𝑖 − 𝑑𝑖󵄨󵄨󵄨󵄨󵄨 𝑇𝑖 +

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖 − 𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿𝑦𝑅𝑗

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 Γ𝑗 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝜇𝐿𝑦𝑅𝑗]]
,

𝜆𝑗 > 𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨 ̌𝑝𝑗 − 𝑝𝑗󵄨󵄨󵄨󵄨󵄨 𝑅𝑗 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑚̌𝑖𝑗 − 𝑚̂𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖
+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑛𝑖𝑗 − 𝑛𝑖𝑗󵄨󵄨󵄨󵄨󵄨 Δ 𝑖 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑞𝑖𝑗 − 𝑞𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝜀𝐿𝑥𝐿 𝑖] ,

(63)

where

𝐿𝑥 = max {󵄨󵄨󵄨󵄨𝛼𝑖󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝛽𝑖󵄨󵄨󵄨󵄨} ,
𝐿𝑦 = max {󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨} ,
Ξ1 = 2 ̌𝑑𝑖 − 𝑚∑

𝑗=1

[ ̌𝑎2𝑗𝑖𝐿2𝑦 + 𝑏̌2𝑗𝑖𝐿2𝑦 + ̌𝑐2𝑗𝑖] − 11 − 𝑑󸀠1 − 𝑚𝜀𝐿2𝑥
− 11 − 𝜎1 ,

Ξ2 = 2𝑑𝑖 − 𝑚∑
𝑗=1

[𝑎2𝑗𝑖𝐿2𝑦 + 𝑏̂2𝑗𝑖𝐿2𝑦 + 𝑐2𝑗𝑖] − 11 − 𝑑󸀠1 − 𝑚𝜀𝐿2𝑥
− 11 − 𝜎1 ,

Π1 = 2 ̌𝑝𝑗 − 𝑛∑
𝑖=1

[𝑚̌2𝑖𝑗𝐿2𝑥 + ̌𝑛2𝑖𝑗𝐿2𝑥 + ̌𝑞2𝑖𝑗] − 11 − 𝑑󸀠2
− 𝑛𝜇𝐿2𝑦 − 11 − 𝜏1 ,

Π2 = 2𝑝𝑗 − 𝑛∑
𝑖=1

[𝑚̂2𝑖𝑗𝐿2𝑥 + 𝑛2𝑖𝑗𝐿2𝑥 + 𝑞2𝑖𝑗] − 11 − 𝑑󸀠2
− 𝑛𝜇𝐿2𝑦 − 11 − 𝜏1 .

(64)

Proof. Theproof process is similar toTheorem 11. So the proof
is omitted.
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Remark 14. Usually, we observe that the actual commu-
nication between subsystems of MBAMNNs is inevitably
disturbed by the time-varying leakage delays from various
uncertainties.Thus, we considered the time-varying delays in
the leakage term, and then we get the asymptotic synchro-
nization criterion for the drive and response systems.

Under Assumption 9, the drive system of MBAMNNs
with mixed time-varying delays can be described by

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖 (𝑥𝑖 (𝑡)) 𝑥𝑖 (𝑡 − 𝛿 (𝑡))

+ 𝑚∑
𝑗=1

𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) 𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝐼𝑖 (𝑡)

+ 𝑚∑
𝑗=1

𝑏𝑗𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 (𝑥𝑖 (𝑡)) ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,

𝑑𝑦𝑗 (𝑡) = [−𝑝𝑗 (𝑦𝑗 (𝑡)) 𝑦𝑗 (𝑡 − 𝜁 (𝑡))

+ 𝑛∑
𝑖=1

𝑚𝑖𝑗 (𝑦𝑗 (𝑡)) 𝑔𝑖 (𝑥𝑖 (𝑡)) + 𝐼𝑗 (𝑡)

+ 𝑛∑
𝑖=1

𝑛𝑖𝑗 (𝑦𝑗 (𝑡 − 𝜎 (𝑡))) 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡)))

+ 𝑛∑
𝑖=1

𝑞𝑖𝑗 (𝑦𝑗 (𝑡)) ∫𝑡
𝑡−𝜀(𝑡)

𝑔𝑖 (𝑥𝑖 (𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝑛∑
𝑖=1

𝛽𝑖𝑗 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) .

(65)

And the corresponding response system can be defined as

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖 (𝑥𝑖 (𝑡)) 𝑥𝑖 (𝑡 − 𝛿 (𝑡))

+ 𝑚∑
𝑗=1

𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) 𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝐼𝑖 (𝑡) + 𝑈𝑖 (𝑡)

+ 𝑚∑
𝑗=1

𝑏𝑗𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝑚∑
𝑗=1

𝑐𝑗𝑖 (𝑥𝑖 (𝑡)) ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠]]
𝑑𝑡

+ 𝑚∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,
𝑑𝑦𝑗 (𝑡) = [−𝑝𝑗 (𝑦𝑗 (𝑡)) 𝑦𝑗 (𝑡 − 𝜁 (𝑡))

+ 𝑛∑
𝑖=1

𝑚𝑖𝑗 (𝑦𝑗 (𝑡)) 𝑔𝑖 (𝑥𝑖 (𝑡)) + 𝐼𝑗 (𝑡) + 𝑈𝑗 (𝑡)

+ 𝑛∑
𝑖=1

𝑛𝑖𝑗 (𝑦𝑗 (𝑡 − 𝜎 (𝑡))) 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡)))

+ 𝑛∑
𝑖=1

𝑞𝑖𝑗 (𝑦𝑗 (𝑡)) ∫𝑡
𝑡−𝜀(𝑡)

𝑔𝑖 (𝑥𝑖 (𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝑛∑
𝑖=1

𝛽𝑖𝑗 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) .
(66)

Corollary 15. Suppose Assumption 7 is satisfied, then systems
(65) and (66) globally achieve synchronization under designed
sampled-data feedback controller (7) with the control law as
follows:

𝐾2𝑖 ≤ min {Ξ1, Ξ2} ,
𝐾2𝑗 ≤ min {Π1, Π2} ,
𝜆𝑖 > 𝑛∑
𝑖=1

[
[
󵄨󵄨󵄨󵄨󵄨 ̌𝑑𝑖 − 𝑑𝑖󵄨󵄨󵄨󵄨󵄨 𝑇𝑖 +

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑎𝑗𝑖 − 𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿𝑦𝑅𝑗

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̌𝑗𝑖 − 𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 Γ𝑗 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑐𝑗𝑖 − 𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝜇𝐿𝑦𝑅𝑗]]
,

𝜆𝑗 > 𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨 ̌𝑝𝑗 − 𝑝𝑗󵄨󵄨󵄨󵄨󵄨 𝑅𝑗 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑚̌𝑖𝑗 − 𝑚̂𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑥𝑇𝑖
+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑛𝑖𝑗 − 𝑛𝑖𝑗󵄨󵄨󵄨󵄨󵄨 Δ 𝑖 +
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨 ̌𝑞𝑖𝑗 − 𝑞𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝜀𝐿𝑥𝐿 𝑖] ,

(67)

where
𝐿𝑥 = max {󵄨󵄨󵄨󵄨𝛼𝑖󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝛽𝑖󵄨󵄨󵄨󵄨} ,
𝐿𝑦 = max {󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨} ,
Ξ1 = ̌𝑑𝑖 − 𝑚∑

𝑗=1

( ̌𝑎2𝑗𝑖𝐿2𝑦 + 𝑏̌2𝑗𝑖𝐿2𝑦 + ̌𝑐2𝑗𝑖) − 11 − 𝑑󸀠1 − 𝑚𝜀𝐿2𝑥
− 11 − 𝜎1 ,

Ξ2 = 𝑑𝑖 − 𝑚∑
𝑗=1

(𝑎2𝑗𝑖𝐿2𝑦 + 𝑏̂2𝑗𝑖𝐿2𝑦 + 𝑐2𝑗𝑖) − 11 − 𝑑󸀠1 − 𝑚𝜀𝐿2𝑥
− 11 − 𝜎1 ,
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Π1 = ̌𝑝𝑗 − 𝑛∑
𝑖=1

(𝑚̌2𝑖𝑗𝐿2𝑥 + ̌𝑛2𝑖𝑗𝐿2𝑥 + ̌𝑞2𝑖𝑗) − 11 − 𝑑󸀠2 − 𝑛𝜇𝐿2𝑦
− 11 − 𝜏1 ,

Π2 = 𝑝𝑗 − 𝑛∑
𝑖=1

(𝑚̂2𝑖𝑗𝐿2𝑥 + 𝑛2𝑖𝑗𝐿2𝑥 + 𝑞2𝑖𝑗) − 11 − 𝑑󸀠2 − 𝑛𝜇𝐿2𝑦
− 11 − 𝜏1 .

(68)
Proof. Theproof process is similar toTheorem 11. So the proof
is omitted.

Remark 16. Some existing researches show the criterion
for systems with differentiable delays, bounded in the in
the leakage term. However, when the time-varying delays𝛿(𝑡) and 𝜁(𝑡) are not differentiable or their derivatives are
unknown or no bounded, the criterion cannot be applicable
any more. Under these circumstances, the conclusion we
obtained is more valid and effective than the exciting results.

Corollary 17. Assume that Assumption 7 is satisfied; then
systems (65) and (66) with constant delays in the leakage term(𝛿(𝑡) = 𝛿, 𝜁(𝑡) = 𝜁) will achieve asymptotic synchronization
under the same criteria.

Remark 18. There is no extra restraint on activation functions
demanding that they are bounded and the time-varying
delays are mixed. Furthermore, overall consideration of our
obtained results with sampled-data control schemes is shown,
which can be expected to have a powerful potential appli-
cation in areas like associative memory, image encryption,
digital processing, and so on.

4. Numerical Simulation

In this section, numerical examples are presented to demon-
strate the results for plausibility and validity. Based on the fol-
lowing parameters, consider two-dimensional MBAMNNs
with mixed time-varying delays and stochastic perturbations
as follows:

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖 (𝑥𝑖 (𝑡)) 𝑥𝑖 (𝑡)

+ 2∑
𝑗=1

𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) 𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝐼𝑖 (𝑡)

+ 2∑
𝑗=1

𝑏𝑗𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 2∑
𝑗=1

𝑐𝑗𝑖 (𝑥𝑖 (𝑡)) ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠]]
𝑑𝑡 + 2∑
𝑗=1

𝛽𝑗𝑖
⋅ (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,

𝑑𝑦𝑗 (𝑡) = [−𝑝𝑗 (𝑦𝑗 (𝑡)) 𝑦𝑗 (𝑡)
+ 2∑
𝑖=1

𝑚𝑖𝑗 (𝑦𝑗 (𝑡)) 𝑔𝑖 (𝑥𝑖 (𝑡)) + 𝐼𝑗 (𝑡)
+ 2∑
𝑖=1

𝑛𝑖𝑗 (𝑦𝑗 (𝑡 − 𝜎 (𝑡))) 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡)))
+ 2∑
𝑖=1

𝑞𝑖𝑗 (𝑦𝑗 (𝑡)) ∫𝑡
𝑡−𝜀(𝑡)

𝑔𝑖 (𝑥𝑖 (𝑠)) 𝑑𝑠] 𝑑𝑡
+ 2∑
𝑖=1

𝛽𝑖𝑗 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) ,
(69)

and the corresponding response system can be defined as

𝑑𝑥𝑖 (𝑡) = [
[
−𝑑𝑖 (𝑥𝑖 (𝑡)) 𝑥𝑖 (𝑡)

+ 2∑
𝑗=1

𝑎𝑗𝑖 (𝑥𝑖 (𝑡)) 𝑓𝑗 (𝑦𝑗 (𝑡))

+ 2∑
𝑗=1

𝑏𝑗𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡)))

+ 2∑
𝑗=1

𝑐𝑗𝑖 (𝑥𝑖 (𝑡)) ∫𝑡
𝑡−𝜇(𝑡)

𝑓𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝐼𝑖 (𝑡)

+ 𝐾𝑖𝑒𝑖 (𝑡 − 𝑑1 (𝑡)) − 𝜆𝑖 sign (𝑒𝑖 (𝑡))]]
𝑑𝑡

+ 2∑
𝑗=1

𝛽𝑗𝑖 (𝑡, 𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔𝑗 (𝑡) ,
𝑑𝑦𝑗 (𝑡) = [−𝑝𝑗 (𝑦𝑗 (𝑡)) 𝑦𝑗 (𝑡)

+ 2∑
𝑖=1

𝑚𝑖𝑗 (𝑦𝑗 (𝑡)) 𝑔𝑖 (𝑥𝑖 (𝑡))

+ 2∑
𝑖=1

𝑛𝑖𝑗 (𝑦𝑗 (𝑡 − 𝜎 (𝑡))) 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜎 (𝑡)))

+ 2∑
𝑖=1

𝑞𝑖𝑗 (𝑦𝑗 (𝑡)) ∫𝑡
𝑡−𝜀(𝑡)

𝑔𝑖 (𝑥𝑖 (𝑠)) 𝑑𝑠 + 𝐼𝑗 (𝑡)

+ 𝐾𝑗𝑒𝑗 (𝑡 − 𝑑2 (𝑡)) − 𝜆𝑗 sign (𝑒𝑗 (𝑡))] 𝑑𝑡

+ 2∑
𝑖=1

𝛽𝑖𝑗 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜎 (𝑡))) 𝑑𝜔𝑖 (𝑡) ,
(70)
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Table 1: The relationship between convergence time and sampling period.

Sampling period 𝑑 = 0.001 𝑑 = 0.01 𝑑 = 0.1 𝑑 = 1 𝑑 = 10 𝑑 = 100
Convergence time 1.616 1.566 1.515 3.030 10.510 Unstable
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Figure 2: (a) Phase trajectories of the 𝑥-layer of system (3). (b) Phase trajectories of the 𝑦-layer of system (3).

where

𝑑1 (𝑥1 (𝑡)) = {{{
−1.1, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
−1.2, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑎11 (𝑥1 (𝑡)) = {{{
1.3, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
1.4, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑐21 (𝑥1 (𝑡)) = {{{
0.18, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
−0.13, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑑2 (𝑥2 (𝑡)) = {{{
−1, 󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
−1.1, 󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑝1 (𝑦1 (𝑡)) = {{{
−1.2, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
−1.1, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑚11 (𝑦1 (𝑡)) = {{{
1.4, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
1.33, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑞21 (𝑦1 (𝑡)) = {{{
0.17, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
−0.16, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑝2 (𝑦2 (𝑡)) = {{{
−0.9, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
−1.3, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑎12 (𝑥2 (𝑡)) = {{{
1.8, 󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
1.9, 󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑎22 (𝑥2 (𝑡)) = {{{
0.48, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
1.51, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑚12 (𝑦2 (𝑡)) = {{{
1.75, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
1.79, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑚22 (𝑦2 (𝑡)) = {{{
0.51, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
1.48, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑐12 (𝑥2 (𝑡)) = {{{
0.21, 󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
0.32, 󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑐22 (𝑥2 (𝑡)) = {{{
−0.32, 󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
−0.43, 󵄨󵄨󵄨󵄨𝑥2 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑚21 (𝑦1 (𝑡)) = {{{
6.83, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
4.96, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑞11 (𝑦1 (𝑡)) = {{{
−0.48, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
−0.24, 󵄨󵄨󵄨󵄨𝑦1 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑎21 (𝑥1 (𝑡)) = {{{
7.2, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
5.1, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 > 1,
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Figure 3: (a) and (b) show the time response curves of drive-response systems (69) and (70); (c) and (d) show the curves of error systems
without or with delay-dependent controller (14), respectively.

𝑐11 (𝑥1 (𝑡)) = {{{
0.56, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 1,
−0.4, 󵄨󵄨󵄨󵄨𝑥1 (𝑡)󵄨󵄨󵄨󵄨 > 1,

𝑞12 (𝑦2 (𝑡)) = {{{
0.49, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
0.42, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 > 2,

𝑞22 (𝑦2 (𝑡)) = {{{
−0.31, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 ≤ 2,
−0.42, 󵄨󵄨󵄨󵄨𝑦2 (𝑡)󵄨󵄨󵄨󵄨 > 2.

𝑏12 (𝑥2 (𝑡 − 𝜏 (𝑡))) = {{{
0.76, 󵄨󵄨󵄨󵄨𝑥2 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 ≤ 1,
0.98, 󵄨󵄨󵄨󵄨𝑥2 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 > 1,

𝑏22 (𝑥2 (𝑡 − 𝜏 (𝑡))) = {{{
−1.32, 󵄨󵄨󵄨󵄨𝑥2 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 ≤ 1,
−1.43, 󵄨󵄨󵄨󵄨𝑥2 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 > 1,

𝑛11 (𝑦1 (𝑡 − 𝜎 (𝑡))) = {{{
−1.51, 󵄨󵄨󵄨󵄨𝑦1 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨 ≤ 2,
−1.20, 󵄨󵄨󵄨󵄨𝑦1 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨 > 2,

𝑛21 (𝑦1 (𝑡 − 𝜎 (𝑡))) = {{{
0.81, 󵄨󵄨󵄨󵄨𝑦1 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨 ≤ 2,
0.9, 󵄨󵄨󵄨󵄨𝑦1 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨 > 2,

𝑏11 (𝑥1 (𝑡 − 𝜏 (𝑡))) = {{{
−1.48, 󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 ≤ 1,
−1.19, 󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 > 1,
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Figure 4: (a) The synchronization error of drive-response systems (69) and (70) without perturbations and control; (b) the synchronization
error of drive-response systems (69) and (70) without perturbations but under control.
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Figure 5: (a) The synchronization error of drive-response systems (65) and (66) without control; (b) the synchronization error of drive-
response systems (65) and (66) under control.

𝑏21 (𝑥1 (𝑡 − 𝜏 (𝑡))) = {{{
0.88, 󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 ≤ 1,
0.75, 󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝜏 (𝑡))󵄨󵄨󵄨󵄨 > 1,

𝑛12 (𝑦2 (𝑡 − 𝜎 (𝑡))) = {{{
0.83, 󵄨󵄨󵄨󵄨𝑦2 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨 ≤ 2,
0.99, 󵄨󵄨󵄨󵄨𝑦2 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨 > 2,

𝑛22 (𝑦2 (𝑡 − 𝜎 (𝑡))) = {{{
−1.42, 󵄨󵄨󵄨󵄨𝑦2 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨 ≤ 2,
−1.52, 󵄨󵄨󵄨󵄨𝑦2 (𝑡 − 𝜎 (𝑡))󵄨󵄨󵄨󵄨 > 2.

(71)

Taking the activation function as 𝑓1(⋅) = 𝑔1(⋅) = sin(| ⋅ |)
and 𝑓2(⋅) = 𝑔2(⋅) = tanh(| ⋅ |), we have 𝜏(𝑡) = 𝜎(𝑡) = 0.4 −0.1 sin 𝑡, 𝜇(𝑡) = 𝜀(𝑡) = 0.5 + 0.5 cos 𝑡, 𝛿(𝑡) = 𝜁(𝑡) = 0.15𝑡. The
sampling period is taken as 𝑑1(𝑡) = 𝑑2(𝑡) = 0.1 sin 𝑡.

We choose the initial values of the state variables as[𝑥1(𝑡), 𝑥2(𝑡)] = [−0.15, −0.35], [𝑥1(𝑡), 𝑥2(𝑡)] = [−1.15, −1.35],[𝑦1(𝑡), 𝑦2(𝑡)] = [0.55, 0.75], and [𝑦1(𝑡), 𝑦2(𝑡)] = [1.55, 1.75].
We also define the external input [𝐼𝑖(𝑡), 𝐼𝑗(𝑡)]𝑇 = [0, 0]𝑇.

Wemake𝐿𝑥 = 𝐿𝑦 = 0.001, 𝐽1 = 𝐽2 = 𝐻1 = 𝐻2 = 0.00001;
thus according to the Theorem 11, we calculate 𝐾𝑖 = −0.2,𝐾𝑗 = −1, 𝜆𝑖 = 𝜆𝑗 = −0.2.
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Figure 6: (a) The synchronization error of drive-response systems (65) and (66) with constant leakage delays but without control; (b) the
synchronization error of drive-response systems (65) and (66) with constant leakage delays and control.

The Brownian motion satisfies 𝐸𝜔(𝑡) = 0,𝐷𝜔(𝑡) = 1.
𝛽ji (t) , ej (t) , ej (t − 𝜏 (t)) = diag {0.4𝑒𝑗 (𝑡)

+ 0.3𝑒𝑗 (𝑡 − 𝜏 (𝑡)) , −0.5𝑒𝑗 (𝑡) + 0.2𝑒𝑗 (𝑡 − 𝜏 (𝑡))} ,
𝛽ij (t) , ei (t) , ei (t − 𝜎 (t)) = diag {0.4𝑒𝑖 (𝑡)

+ 0.3𝑒𝑖 (𝑡 − 𝜎 (𝑡)) , −0.5𝑒𝑖 (𝑡) + 0.2𝑒𝑖 (𝑡 − 𝜎 (𝑡))} .
(72)

The dynamic behaviors of drive-response systems are
given in Figure 2, and the following simulations are con-
ducted on the basis of this situation. In order to verify
Theorem 11, we take systems (69) and (70) as example.
Figure 3 shows the state trajectories of such systems with-
out control; then it illustrates the synchronization errors
correlation between the drive-response systems without and
under control. From the above illustration, we conclude
that systems (69) and (70) will achieve globally asymptotic
synchronizationwith the help of the proposed controller (14).

Based onTheorem 11, we indicate the considered systems
without perturbations. Under these circumstances, define the
errors as 𝑑𝑒𝑖(𝑡) = 𝑑𝑥𝑖(𝑡) − 𝑑𝑥𝑖(𝑡) and 𝑑𝑒𝑗(𝑡) = 𝑑𝑦𝑗(𝑡) −𝑑𝑦𝑗(𝑡); the error states without control and under control are
depicted in Figure 4. The comparison between (a) and (b)
provides the clearest significant role of the controller played
in the synchronization control.

According to Corollary 15, for given time-varying delays𝛿(𝑡) and 𝜁(𝑡), systems (65) and (66) are globally asymptoti-
cally synchronized under controller (14). In this simulation,
we take 𝛿(𝑡) = 𝜁(𝑡) = 0.15𝑡, and Figure 5 depicts the
trajectories of error states. In order to testify Corollary 17,
we make 𝛿 = 𝜁 = 0.15 in the leakage terms; Figure 6
illustrates the error states of the proposed systems. From the
comparison results we conclude the sampled-data control

inputs which contribute to the effective chaos synchroniza-
tion.

Based on the model of Corollary 15, we choose the
different sampling periods to verify the relationship between
sampling period and the convergence time of error systems.
We set 𝑑1(𝑡) = 𝑑2(𝑡) = 0.001 sin 𝑡, 𝑑1(𝑡) = 𝑑2(𝑡) = 0.01 sin 𝑡,𝑑1(𝑡) = 𝑑2(𝑡) = 0.1 sin 𝑡, 𝑑1(𝑡) = 𝑑2(𝑡) = 1 sin 𝑡, 𝑑1(𝑡) =𝑑2(𝑡) = 10 sin 𝑡, 𝑑1(𝑡) = 𝑑2(𝑡) = 100 sin 𝑡, respectively.
Figure 7 depicts the different error convergence correspond-
ing to the different sampling period. Table 1 gives the specific
convergence times corresponding to the different sampling
periods. We find that the larger the sampling period we take,
the worse the effect on the error convergence.

The error system becomes unstable when we choose
sampling period 𝑑1 = 𝑑2 = 100. Under these circumstances,
it means the sampled-data controller with the feedback gains𝐾𝑖 and 𝐾𝑗 is not enough to guarantee the stability of the
error systems. For comparing and analyzing the influence of
the sampling period relationship, we make the state feedback
controller with the same feedback gains. Figure 7 depicts the
trajectories of error states. From Figure 8 we detect that the
error system becomes stable at 11.921. So we conclude that
when we take the sampled-data controller, the effect on error
convergence is not only relevant to the feedback gains but
also related to the sampling period. Table 1 illustrates that the
best sampling period for our simulations is 𝑑1(𝑡) = 𝑑2(𝑡) =0.01 sin 𝑡.
Remark 19. Comparing with the exciting researches on
MBAMNNs, we investigate the relationship between the
sampling period and convergence time. It can be found that
even the longer sampling periodwill cause the lower commu-
nication channel occupation, less packet transmission, and
little actuation of the controller; it also sacrifices the accuracy
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Figure 7: (a) The synchronization error of sampled period 𝑑1(𝑡) = 𝑑2(𝑡) = 0.001 sin 𝑡; (b) 𝑑1(𝑡) = 𝑑2(𝑡) = 0.01 sin 𝑡; (c) 𝑑1(𝑡) = 𝑑2(𝑡) =0.1 sin 𝑡; (d) 𝑑1(𝑡) = 𝑑2(𝑡) = 1 sin 𝑡; (e) 𝑑1(𝑡) = 𝑑2(𝑡) = 10 sin 𝑡; (f) 𝑑1(𝑡) = 𝑑2(𝑡) = 100 sin 𝑡.
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Figure 8: The synchronization error of drive-response systems
(69) and (70) without perturbations but under normal feedback
controller.

of controller at the same time. Thus the suitable sampling
period has important significance to the stable of error
systems. So our conclusion is greatly helpful to some potential
future research topics including synchronization or stability
on sampled-data synchronization strategy to NNs.

5. Conclusion

In this paper, a synchronization problem has been inves-
tigated for MBAMNNs with stochastic perturbations and
mixed time-varying delays. The dynamics of the synaptic
weights between the drive and response systems were con-
sidered and analyzed rather than treating them as conso-
nants. Firstly, both various mixed time-varying delays and
stochastic perturbations are considered in this paper, which
include no-delay, finite distributed time-varying delays, dis-
crete time-varying delays, and leakage time-varying delays.
Secondly, we have proposed a sampled-data synchronization
strategy for each node of the MBAMNNs. By utilizing the
sign function and the definition of asymptotic stability, a
suitable nonlinear state feedback sampled-data controller is
designed. In addition, we verify the sampling period effect on
the convergence of error system according to simulations. By
utilizing the Lyapunov functionalmethod, stochastic analysis
theory, and inequality techniques, some sufficient conditions
are derived to guarantee synchronization of the MBAMNNs
model. Simulation examples have been presented to validate
the theoretical results.
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