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ABSTRACT Traditional biological neural networks lack the capability of reflecting variable synaptic
weights when simulating associative memory of human brains. In this paper, we propose a novel memristive
multidirectional associative memory neural networks (MAMNNs) model with mixed time-varying delays.
More precisely, the proposed model is investigated with time-varying delays and distributed delays. Then,
we design two kinds of delay-independent and delay-dependent controllers to analyze the problem of
finite-time synchronization. Based on the drive-response concept and Lyapunov function, some sufficient
criteria guaranteeing the finite-time synchronization of the drive-response system are derived. With the
removal of certain constraints on the weight parameters, the results we obtained for synchronization are
less conservative. To illustrate the chaotic characteristics of the memristive MAMNNs, an image encryption
scheme is designed. Meanwhile, the effectiveness of the proposed theories is validated with numerical
experiments.

INDEX TERMS Finite-time synchronization, image encryption, memristor, multidirection associative
memory neural networks.

I. INTRODUCTION
Images play an important role in human life. With the rapid
development of network communication, secure transfers
of large amounts of image data have become a challeng-
ing task. Therefore, encryption technologies have become
highly important tools. Recently, image encryption methods
based on chaotic mapping have attracted the attention of
many researchers in [1]–[4]. In [1], an encryption algorithm
that uses the chaos based S-BOX was developed for secure
and speed image encryption. A visually meaningful image
encryption scheme based on the lift wavelet transformation
was proposed in [2]. In [3], a chaotic system based image
encryption scheme with identical encryption and decryp-
tion algorithm was analyzed. Meanwhile, the authors in [4]
proposed a chaotic system for color image encryption by

combining Logistic, Sine and Tent systems. Although the
image encryption methods based on chaotic mapping have
been widely developed, there are few studies of biological
neural networks [5]–[12], especially for memristive neural
networks (MNNs) [11], [12]. The problem of image encryp-
tion based on chaotic neural networks was studied in [5]–[7]
and the methods of image encryption based on the synchro-
nization were showed in [8]–[10]. Meanwhile, the authors
presented a novel image encryption scheme employing the
memristive hyperchaotic system, cellular automata and DNA
sequence operations in [11]. In [12], a new memristive
chaotic system was presented, and its dynamical behav-
iors were analyzed. Therefore, an image encryption scheme
based on memristive chaotic sequences is still a substantial
topic.
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Memristors have typical non-linear characteristics, and
they are employed to replace the fixed-value resistors [13] in
artificial neural networks to form MNNs [14]–[16]. In recent
years, the dynamic behaviors of MNNs were analyzed
in [17]–[19], where the dynamic behaviors have been widely
applied to associative memory [20], medical image pro-
cessing [21], [22], etc.. Meanwhile, memristive bidirectional
associative memory neural networks (BAMNNs) have been
extensively studied in [23]–[27]. In addition, as an extension
of BAMNNs,MAMNNs are similar to BAMNNs in structure.
MAMNNs were proposed by Hagiwara [28] and the dynamic
behaviors of MAMNNs have attracted great attention of
many researchers in [29]–[31]. The authors proposed a multi-
valued exponential associative memory model in [29], and
they analyzed the stability of this model. A discrete-time
MAMNNs model with varying-time delays was formulated
in [30], in which the global exponential stability of the system
was analyzed. The authors devised a method in [31], which
can accurately detect nodes able to exert strong influence over
the multilayer networks. However, there exist few literatures
about memristive MAMNNs. Thus, it is significant to study
the dynamic behaviors of memristive MAMNNs.

It is generally known that time delays are inevitable in the
hardware implementation of MNNs due to the switching of
amplifiers. Various types of time delays, such as time-varying
delays [32], distributed delays [33] and mixed delays [34] are
often considered. Meanwhile, stability and synchronization
of chaotic systems play an important role due to their poten-
tial applications to image encryption [5]–[12], secure com-
munication [35], secure image transmission [36], intelligent
data analysis [37], etc.. However, in practical applications,
it is desirable that a synchronization objective is realized in
finite-time. In recent years, some results on the synchroniza-
tion of chaotic MNNs were obtained in [38]–[41], but there
are few studies about the finite-time synchronization of mem-
ristive MAMNNs. Therefore, it is meaningful to analyze the
finite-time synchronization of chaoticmemristiveMAMNNs.

Motivated by the above discussions, the main contributions
of this paper can be summarized in the following:
• We propose a novel memristive MAMNNs model with
mixed time-varying delays. More precisely the proposed
model is investigated with time-varying delays and dis-
tributed delays.

• We design two kinds of delay-independent and delay-
dependent controllers to analyze the synchronization of
the drive-response system.

• Sufficient criteria guaranteeing the finite-time synchro-
nization of the drive-response system are derived based
on the drive-response concept and Lyapunov function.

• With the removal of certain constraints on the weight
parameters and discuss the cases in detail, we obtain less
conservative results for the synchronization of the drive-
response system.

• To illustrate the performance of the proposed criteria,
an image encryption scheme based on chaotic memris-
tive MAMNNs sequences is designed.

The rest of this paper is organized as follows. The proposed
memeristive MAMNNs model with mixed delays is intro-
ducedwith some preliminaries in Section 2. Sufficient criteria
for ensuring finite-time synchronization of the drive-response
system are described in section 3. An image encryption
method based on chaotic sequences of memristiveMAMNNs
is designed in Section 4. Numerical examples are discussed
in Section 5, while Section 6 concludes this paper.

II. MODEL DESCRIPTION AND PRELIMINARIES
In this section, we introduce the following memristive
MAMNNs with mixed delays :

dxki(t)
dt
= Iki − dki(xki(t))xki(t)

+

m∑
p = 1,
p 6= k

np∑
j=1

apjki(xki(t))fpj(xpj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

bpjki(xki(t))fpj(xpj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

cpjki(xki(t))
∫ t

t−ρ(t)
fpj(xpj(s))ds, (1)

where xki(t) denotes the voltage of the ith neuron in the field
k , m is the total number of fields and np corresponds to
the number of neurons in the field p. dki(xki(t)), apjki(xki(t)),
bpjki(xki(t)) and cpjki(xki(t)) denote the synptic connection
weights. The time delays τpjki(t) and ρ(t) are time-varying
delays and distributed delay, respectively. fki(x) is activation
function. Iki represents the external input constants of the ith
neuron in the field k .

Throughout this paper, a column vector is defined as
col(xki) = (x11, x12, · · · , xmnm )

T . co[ξ, ξ ] denotes the convex
closure on [ξ, ξ ]. In the Banach space, all sets of continuous
functions are expressed as C([−τ, 0],Rn). Besides, the ini-
tial values of system (1) are given as follows : φ(s) =
(φ11(s), φ12(s), · · · , φmnm (s))

T
∈ C([−τ, 0],Rn), in which

τ = max
1≤p≤m,p 6=k

max
1≤j≤np

{τpjki(t), ρ(t)}.

Some notations are defined as follows:
dki = max{d́ki, d̀ki}, dki = min{d́ki, d̀ki}, apjki = max
{ápjki, àpjki}, apjki=min{ápjki, àpjki}, bpjki = max{b́pjki, b̀pjki},
bpjki = min{b́pjki, b̀pjki}, cpjki = max{ćpjki, c̀pjki}, cpjki =
min{ćpjki, c̀pjki}, 0 ≤ τpjki(t) ≤ τ1, 0 ≤ ρ(t) ≤ ρ1, τ̇pjki(t) ≤
τ2 < 1.
According to the features of memristors and the current-

voltage characteristics, as well as the applied set-valued map-
ping theorem and the stochastic differential inclusion theo-
rem, for convenience, we define:

co(dki(xki(t))) =


d́ki, |xki(t)| < 0ki,

co{d́ki, d̀ki}, |xki(t)| = 0ki,
d̀ki, |xki(t)| > 0ki,
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co(apjki(xki(t))) =


ápjki, |xki(t)| < 0ki,

co{ápjki, àpjki}, |xki(t)| = 0ki,
àpjki, |xki(t)| > 0ki,

co(bpjki(xki(t))) =


b́pjki, |xki(t)| < 0ki,

co{b́pjki, b̀pjki}, |xki(t)| = 0ki,
b̀pjki, |xki(t)| > 0ki,

co(cpjki(xki(t))) =


ćpjki, |xki(t)| < 0ki,

co{ćpjki, c̀pjki}, |xki(t)| = 0ki,
c̀pjki, |xki(t)| > 0ki.

Obviously, co{d́ki, d̀ki} = [dki, dki], co{ápjki, àpjki}= [apjki,
apjki], co{b́pjki, b̀pjki} = [bpjki, bpjki] and co{ćpjki, c̀pjki} =
[cpjki, cpjki], for k, p = 1, 2, · · · ,m, p 6= k ,i =

1, 2, · · · , nk ,j = 1, 2, · · · , np. According to the above def-
initions, system (1) can be written as follows

dxki(t)
dt
∈ Iki − co(dki(xki(t)))xki(t)

+

m∑
p = 1,
p 6= k

np∑
j=1

co(apjki(xki(t)))fpj(xpj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

co(bpjki(xki(t)))fpj(xpj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

co(cpjki(xki(t)))
∫ t

t−ρ(t)
fpj(xpj(s))ds,

(2)

or equivalently, there exist d̂ki(xki(t)) ∈ co(dki(xki(t))),
âpjki(xki(t)) ∈ co(apjki(xki(t))), b̂pjki(xki(t)) ∈ co(bpjki(xki(t)))
and ĉpjki(xki(t)) ∈ co(cpjki(xki(t))), such that

dxki(t)
dt
= Iki − d̂ki(xki(t))xki(t)

+

m∑
p = 1,
p 6= k

np∑
j=1

âpjki(xki(t))fpj(xpj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b̂pjki(xki(t))fpj(xpj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

ĉpjki(xki(t))
∫ t

t−ρ(t)
fpj(xpj(s))ds. (3)

In this paper, we consider system (2) or (3) as the drive
system. Then the corresponding response system is described
as follows:
dyki(t)
dt
∈ Iki + µki(t)− co(dki(yki(t)))yki(t)

+

m∑
p = 1,
p 6= k

np∑
j=1

co(apjki(yki(t)))fpj(ypj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

co(bpjki(yki(t)))fpj(ypj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

co(cpjki(yki(t)))
∫ t

t−ρ(t)
fpj(ypj(s))ds,

(4)

or equivalently, there exist d̂ki(yki(t)) ∈ co(dki(yki(t))),
âpjki(yki(t)) ∈ co(apjki(yki(t))), b̂pjki(yki(t)) ∈ co(bpjki(yki(t)))
and ĉpjki(yki(t)) ∈ co(cpjki(yki(t))), such that

dyki(t)
dt
= Iki + µki(t)− d̂ki(yki(t))yki(t)

+

m∑
p = 1,
p 6= k

np∑
j=1

âpjki(yki(t))fpj(ypj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b̂pjki(yki(t))fpj(ypj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

ĉpjki(yki(t))
∫ t

t−ρ(t)
fpj(ypj(s))ds, (5)

where µki(t) represent the appropriate control inputs and

co(dki(yki(t))) =


d́ki, |yki(t)| < 0ki,

co{d́ki, d̀ki}, |yki(t)| = 0ki,
d̀ki, |yki(t)| > 0ki,

co(apjki(yki(t))) =


ápjki, |yki(t)| < 0ki,

co{ápjki, àpjki}, |yki(t)| = 0ki,
àpjki, |yki(t)| > 0ki,

co(bpjki(yki(t))) =


b́pjki, |yki(t)| < 0ki,

co{b́pjki, b̀pjki}, |yki(t)| = 0ki,
b̀pjki, |yki(t)| > 0ki,

co(cpjki(yki(t))) =


ćpjki, |yki(t)| < 0ki,

co{ćpjki, c̀pjki}, |yki(t)| = 0ki,
c̀pjki, |yki(t)| > 0ki.

The initial values of system (4) are given as follows :
8(s) = (811(s),812(s), · · · ,8mnm (s))

T
∈ C([−τ, 0],Rn),

in which τ = max{τ1, ρ1}.
We define the synchronization errors of the system as

follows:

eki(t) = yki(t)− xki(t),

where the initial values are defined as follows:9(s) = 8(s)−
φ(s) = (911(s), 912(s), · · · , 921(s), · · · , 9mnm (s))

T
∈

C([−τ, 0],Rn), in which τ = max{τ1, ρ1}.
Assumption 1: For k = 1, 2, · · · ,m,i = 1, 2, · · · , nk ,
∀s1, s2 ∈ R and s1 6= s2, the activation function fki(·) is odd
bounded and satisfies the Lipschitz condition

|fki(s1)− fki(s2)| ≤ Lki|s1 − s2|, |fki(·)| ≤ F,

where Lki and F are nonnegative constants.
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Definition 1: The response system is said to be synchro-
nized with drive system in finite-time, if under a suitable con-
troller, there exists a constant T > 0 such that lim

t→T
eki(t) = 0

and eki(t) ≡ 0, for t ≥ T , where T is called the setting time.
Lemma 1: (Chain Rule). Suppose that V (x) : Rn → R is

C-regular and x(t) : [0,+∞) → R is absolutely continuous
on any compact subinterval of [0,+∞). Then V (x(t)) :
[0,+∞) → R is differentiable for a.a.t∈ [0,+∞), and we
have

dV (x(t))
dt

= $ (t)ẋ(t), ∀$ (t) ∈ ∂V (x(t)).

Lemma 2: Assume that a continuous, positive-definite
function V (t) and real numbers h > 0 and 0 < η < 1, such
that

V̇ (t) ≤ −hV η(t), t ≥ t0, V (t) ≥ 0.

Then the synchronization error system is finite-time stable,
i.e., V (t) satisfies

V 1−η(t) ≤ V 1−η(t0)− h(1− η)(t − t0), t0 ≤ t ≤ T ,

and V (t) ≡ 0 for ∀t ≥ T , with the setting time T given by

T = t0 +
V 1−η(t0)
h(1− η)

.

III. MAIN RESULTS
In this section, some sufficient criteria guaranteeing the syn-
chronization of the drive-response system are derived.

A. DELAY-INDEPENDENT CONTROLLER
In this subsection, we investigate the synchronization of the
drive system (2) and the response system (4) with mixed
delays. We design a delay-independent controller as follows:

µki(t) = −δkieki(t)− θkisign(eki(t))

−
1
2
sign(eki(t))h|eki(t)|η−1, (6)

where δki and θki are constants determined later, and the real
numbers h and η satisfy h > 0 and 0 < η < 1.
Theorem 1: Suppose that Assumption 1 holds. Then under

the control law (6), the response system (4) can synchronize
with the drive system (2) in finite-time

T =
[V (0)]1−η

h(1− η)
,

where δki ≥ max
{
− d́ki+ 1

2

m∑
p = 1,
p 6= k

np∑
j=1

[
á2pjkiL

2
pj+1+ b́

2
pjkiL

2
pj+

ρ1ć2pjkiL
2
pj +

1
1−τ2
+ ρ1

]
,−d̀ki + 1

2

m∑
p = 1,
p 6= k

np∑
j=1

[
à2pjkiL

2
pj + 1 +

b̀2pjkiL
2
pj + ρ1c̀

2
pjkiL

2
pj +

1
1−τ2
+ ρ1

]}
, θki ≥

∣∣d́ki − d̀ki
∣∣0ki +

m∑
p = 1,
p 6= k

np∑
j=1

[∣∣ápjki − àpjki
∣∣Lpj0pj + ∣∣b́pjki − b̀pjki

∣∣F + ∣∣ćpjki −

c̀pjki
∣∣ρ1F], V (0) = e2ki(0)+

1
1−τ2

m∑
p = 1,
p 6= k

np∑
j=1

∫ 0
−τpjki(0)

e2pj(s)ds+

m∑
p = 1,
p 6= k

np∑
j=1

∫ 0
−ρ1

∫ 0
s e2pj(z)dzds, h > 0 and 0 < η < 1.

Proof: Please see Appendix A.
Corollary 1: Suppose that Assumption 1 holds. Then under

the control law (6), the response system (4) can synchronize
with the drive system (2) in finite-time

T =
[V (0)]1−η

h(1− η)
,

where δki ≥ max
{
− d́ki+ 1

2

m∑
p = 1,
p 6= k

np∑
j=1

[
á2pjkiL

2
pj+1+ b́

2
pjkiL

2
pj+

1
1−τ2

]
,−d̀ki + 1

2

m∑
p = 1,
p 6= k

np∑
j=1

[
à2pjkiL

2
pj + 1 + b̀2pjkiL

2
pj +

1
1−τ2

]}
,

θki ≥
∣∣d́ki− d̀ki∣∣0ki+ m∑

p = 1,
p 6= k

np∑
j=1

[∣∣ápjki− àpjki∣∣Lpj0pj+ ∣∣b́pjki−
b̀pjki

∣∣F], h > 0, 0 < η < 1 and V (0) = e2ki(0) +

1
1−τ2

m∑
p = 1,
p 6= k

np∑
j=1

∫ 0
−τpjki(0)

e2pj(s)ds.

Proof: Let the distributed delay ρ(t) = 0. The process
of the proof is similar to Theorem 1, so it is omitted here.
Remark 1: There are some previous related works

about synchronization of MNNs under the following condi-
tions [42], [43]:

co[dki, dki]ypj(t)− co[dki, dki]xpj(t)

⊆ co[dki, dki](ypj(t)− xpj(t)), co[apjki, apjki]fpj(ypj(t))

− co[apjki, apjki]fpj(xpj(t))

⊆ co[apjki, apjki](fpj(ypj(t))− fpj(xpj(t))),

co[bpjki, bpjki]fpj(ypj(t − τpjki(t)))

− co[bpjki, bpjki]fpj(xpj(t − τpjki(t)))

⊆ co[bpjki, bpjki](fpj(ypj(t − τpjki(t)))

− fpj(xpj(t − τpjki(t)))), co[cpjki, cpjki]
∫ t

t−ρ(t)
fpj(ypj(s))ds

− co[cpjki, cpjki]
∫ t

t−ρ(t)
fpj(xpj(s))ds

⊆ co[cpjki, cpjki](
∫ t

t−ρ(t)
fpj(ypj(s))ds−

∫ t

t−ρ(t)
fpj(xpj(s))ds).

It is easily checked that when xki(t) and yki(t) have same
signs, or xki(t) = 0 or yki(t) = 0, the above conditions
hold. Moreover, the results obtained in [42] and [43] are
independent on the switching jumps 0ki. Hence, in this paper,
with the removal of these strict conditions, the results we
obtained are less conservative.
Remark 2: In the controllers 6, the discontinuous terms

sign(eki(t)) may be undesirable in some practical applica-
tions. In this case, the continuous terms eki(t)

|eki(t)|+a
can be
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chosen as approximations of sign(eki(t)), in which a > 0 is
sufficiently small.

B. DELAY-DEPENDENT CONTROLLER
In this subsection, we investigate the synchronization of the
drive system (2) and the response system (4) with mixed
delays. We design a delay-dependent controller as follows:

µki(t) = −δkieki(t)− θkisign(eki(t))|epj(t − τpjki(t))|

− εkisign(eki(t))|
∫ t

t−ρ(t)
epj(s)ds|

− sign(eki(t))(γki + h|eki(t)|η), (7)

where δki, θki, εki and γki are constants determined later, real
numbers h and η satisfy h > 0 and 0 < η < 1.
Theorem 2: Suppose that Assumption 1 holds. Then under

the control law (7), the response system (4) can synchronize
with the drive system (2) in finite-time

T =
[V (0)]1−η

h(1− η)
,

where δki ≥ max
m∑

p = 1,
p 6= k

np∑
j=1

{
− d́ki + ápjkiLpj,−d̀ki +

àpjkiLpj
}
, θki ≥ max

m∑
p = 1,
p 6= k

np∑
j=1

{
b́pjkiLpj, b̀pjkiLpj

}
, εki ≥

max
m∑

p = 1,
p 6= k

np∑
j=1

{
ćpjkiLpj, c̀pjkiLpj

}
, γki >

∣∣d́ki − d̀ki
∣∣0ki +

m∑
p = 1,
p 6= k

np∑
j=1

[∣∣ápjki − àpjki
∣∣Lpj0pj + ∣∣b́pjki − b̀pjki

∣∣F + ∣∣ćpjki −
c̀pjki

∣∣ρ1F], h > 0, 0 < η < 1 and V (0) = sign(eki(0))eki(0).

Proof: Please see Appendix B.
Corollary 2: Suppose that Assumption 1 holds. Then under

the control law µki(t) = −δkieki(t) − θkisign(eki(t))|epj(t −
τpjki(t))|−sign(eki(t))(γki+h|eki(t)|η), the response system (4)
can synchronize with the drive system (2) in finite-time

T =
[V (0)]1−η

h(1− η)
,

where δki ≥ max
m∑

p = 1,
p 6= k

np∑
j=1

{
− d́ki+ ápjkiLpj,−d̀ki+ àpjkiLpj

}
,

θki ≥ max
m∑

p = 1,
p 6= k

np∑
j=1

{
b́pjkiLpj, b̀pjkiLpj

}
, γki >

∣∣d́ki − d̀ki∣∣0ki +
m∑

p = 1,
p 6= k

np∑
j=1

[∣∣ápjki − àpjki∣∣Lpj0pj + ∣∣b́pjki − b̀pjki∣∣F], h > 0, 0 <

η < 1 and V (0) = sign(eki(0))eki(0).
Proof: Let the distributed delay ρ(t) = 0. The process

of the proof is similar to Theorem 2, so it is omitted here.
Remark 3: Theorem 1 takes into account the influence

of delay-independent controllers on system synchronization,
while Theorem 2 considers the influence of delay-dependent

controllers on system stability. The two theorems show the
importance of controllers for the system synchronization.
Remark 4: Due to the state of the neuron is not only

related to itself, but also the changes in the neuron associated
with it will have an impact on it. Therefore, in Theorem 2,
we consider the delay-dependent control strategy.

IV. IMAGE ENCRYPTION
Image encryption technologies play an important role in
transmitting large amounts of image data. In this section,
we propose an image encryption algorithm based on the
chaotic memristive MAMNNs obtained in Main Results. The
specific steps of the algorithm are as follows:

1) Read the original color image, its size is m ∗ n ∗ 3.
2) Use the Mchange and Nchange functions to per-

form row permutation and column permutation for the
image, respectively.

3) Trichromatic separation.
• The R, G and B components of the image are
separated, and their respective matrices are IR =
image(:, :, 1), IG = image(:, :, 2) and IB = image
(:, :, 3) respectively.

4) Generate three chaotic sequences.
• According to the Corollary 1, we choose appropri-
ate parameters and layers of the drive system, then
we obtain three chaotic sequences yint(1,m ∗ n),
yint(2,m∗n) and yint(3,m∗n) from different fields
of memristive MAMNNs, respectively.

• In order to make the numerical values of chaotic
sequences between 0 and 255, the following oper-
ations are performed to the chaotic sequences
yint(j,m ∗ n), where j = 1, 2, 3. (See Table 1.)

TABLE 1. Chaotic sequence yint(j, m ∗ n).

• The three primary color matrices obtained in
step 2 are converted into a one-dimensional
matrix, respectively. Then we obtain three one-
dimensional matrices imageR = IR(:)′, imageG =
IG(:)′ and iamgeB = IB(:)′.

5) Image encryption.
• Perform the XOR operations on the three chaotic
sequences yint(j,m ∗ n)(j = 1, 2, 3) and
image sequences. The encrypted image is found
in Table 2.

6) Trichromatic combination.
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TABLE 2. XOR operation.

• The three components R, G, B are combined and
normalized by image(:, :, 1) = reshape(a,m, n),
image(:, :, 2) = reshape(b,m, n), image(:, :, 3) =
reshape(c,m, n) and image = mat2gray(image).

V. NUMERICAL SIMULATION
In this section, several numerical examples are given to
illustrate the effectiveness of our proposed synchronization
criteria.
Example 1: We consider the following memristive

MAMNNs with mixed delays. There are three fields and one
neuron in each field.

dxk1(t)
dt

= Ik1 − dk1(xk1(t))xk1(t)

+

3∑
p = 1,
p 6= k

ap1k1(xk1(t))fp1(xp1(t))

+

3∑
p = 1,
p 6= k

bp1k1(xk1(t))fp1(xp1(t − τp1k1(t)))

+

3∑
p = 1,
p 6= k

cp1k1(xk1(t))
∫ t

t−ρ(t)
fp1(xp1(s))ds,

where

d11(x11(t)) =

{
1.3, |x11| ≤ 011,
1.4, |x11| > 011,

d21(x21(t)) =

{
0.1, |x11| ≤ 021,
0.2, |x11| > 021,

d31(x31(t)) =

{
0.3, |x31| ≤ 031,
0.4, |x31| > 031,

a1121(x21(t)) =

{
−0.45, |x21(t)| ≤ 021,
0.32, |x21(t)| > 021,

a1131(x31(t)) =

{
0.36, |x31(t)| ≤ 031,
0.38, |x31(t)| > 031,

a2111(x11(t)) =

{
−1.1, |x11(t)| ≤ 011,
1.24, |x11(t)| > 011,

a2131(x31(t)) =

{
1.14, |x31(t)| ≤ 031,
0.32, |x31(t)| > 031,

a3111(x11(t)) =

{
1.2, |x11(t)| ≤ 011,
1.18, |x11(t)| > 011,

a3121(x21(t)) =

{
−0.28, |x21(t)| ≤ 021,
0.12, |x21(t)| > 021,

b1121(x21(t)) =

{
0.32, |x21(t)| ≤ 021,
0.24, |x21(t)| > 021,

b1131(x31(t)) =

{
−0.34, |x31(t)| ≤ 031,
0.42, |x31(t)| > 031,

b2111(x11(t)) =

{
1.38, |x11(t)| ≤ 011,
1.1, |x11(t)| > 011,

b2131(x31(t)) =

{
0.15, |x31(t)| ≤ 031,
−0.49, |x31(t)| > 031,

b3111(x11(t)) =

{
−0.38, |x11(t)| ≤ 011,
−0.95, |x11(t)| > 011,

b3121(x21(t)) =

{
−0.45, |x21(t)| ≤ 021,
−0.22, |x21(t)| > 021.

c1121(x21(t)) =

{
−0.84, |x21(t)| ≤ 021,
0.18, |x21(t)| > 021,

c1131(x31(t)) =

{
0.68, |x31(t)| ≤ 031,
0.42, |x31(t)| > 031,

c2111(x11(t)) =

{
0.24, |x11(t)| ≤ 011,
−0.58, |x11(t)| > 011,

c2131(x31(t)) =

{
−0.62, |x31(t)| ≤ 031,
−0.44, |x31(t)| > 031,

c3111(x11(t)) =

{
−0.82, |x11(t)| ≤ 011,
−0.84, |x11(t)| > 011,

c3121(x21(t)) =

{
0.78, |x21(t)| ≤ 021,
0.19, |x21(t)| > 021.

Let 011 = 021 = 031 = 1. We set the action func-
tions as fki(x) = tanh(x). The time-varying delays and dis-
tributed delays are τpjki(t) = 0.5cos(t) + 0.5 and ρ(t) =
0.5sin(t) + 0.5, respectively. According to Assumption 1,
we have Lki = Lpj = 1, F = 1. By calculating,
we get τ1 = 1, τ2 = 0.5 and ρ1 = 1. The initial val-
ues are set as [x11(t), x21(t), x31(t)] = [1.05, 0.25,−0.75],
[y11(t), y21(t), y31(t)] = [−0.3, 0.45, 0.2].
Fig.1 represents the drive system (2) and the response

system (4). They have chaotic attractors with the initial val-
ues given above. Fig.2 depicts the state trajectories of the
drive system (2) and the response system (4). According
to the conditions of Theorem 1, the delay-independent con-
trollers are set as µ11(t) = −4e11(t) − 5sign(e11(t)) − 1

2
sign(e11(t))|e11(t)|−0.5, µ21(t) = −3e21(t)− 4sign(e21(t))−
1
2 sign(e21(t))|e21(t)|

−0.5,µ31(t) = −3e31(t)−3sign(e31(t))−
1
2 sign(e31(t))|e31(t)|

−0.5. According to the conditions of
Theorem 2, the delay-dependent controllers are set as
µ11(t) = −1.2e11(t) − 1.2sign(e11(t))|epj(t − τpj11(t))| −
0.1sign(e11(t)) |

∫ t
t−ρ(t) epj(s)ds|−sign(e11(t))(5+|e11(t)|

0.5),
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FIGURE 1. Phase trajectories of system (2)(corresponds to x) and
system (4)(corresponds to y) with mixed delays.

FIGURE 2. State trajectories of the drive system (2)(corresponds to x) and
the response system (4)(corresponds to y).

µ21(t) = −0.5e21(t) − 0.1sign(e21(t))|epj(t − τpj21(t))| −
0.5sign(e21(t)) |

∫ t
t−ρ(t) epj(s)ds|−sign(e21(t))(4+|e21(t)|

0.5),
µ31(t) = −1.5e31(t) − 0.1sign(e31(t))|epj(t − τpj31(t))| −
0.1sign(e31(t)) |

∫ t
t−ρ(t) epj(s)ds|−sign(e31(t))(3+|e31(t)|

0.5).
Then (a-c) in Fig.3 describe the state trajectories of the errors
system without controllers, with delay-independent and with
delay-dependent controllers, respectively. It implies that the
corresponding response system (4) can synchronize with the
drive system (2) in finite-time, in which the setting time
according to Theorem 1 is T11 ≈ 2.7, T21 ≈ 0.4 and
T31 =≈ 1.9, the setting time according to Theorem 2 is
T21 ≈ 2.3238, T22 ≈ 0.8944 and T23 ≈ 1.9494.
Then we investigate system (2) and system (4) without

distributed delays. Under the same parameters, Fig.4 rep-
resents the drive system (2) and the response system (4)
without distributed delays. They have chaotic attractors
with the initial values given above. Fig.5 depicts the state
trajectories of system (2) and system (4). According to
the conditions of Corollary 1, the delay-independent con-
trollers are set as µ11(t) = −3.5e11(t) − 3.5sign(e11(t)) −
1
2 sign(e11(t))|e11(t)|

−0.5, µ21(t) = −2.5e21(t) − 2sign
(e21(t)) − 1

2 sign(e21(t))|e21(t)|
−0.5, µ31(t) = −2.5e31(t) −

2.5sign(e31(t)) − 1
2 sign(e31(t))|e31(t)|

−0.5. According to the
conditions of Corollary 2, the delay-dependent controllers
are set as µ11(t) = −1.2e11(t) − 1.2sign(e11(t))|epj(t −
τpj11(t))| − sign(e11(t))(3.5 + |e11(t)|0.5), µ21(t) = −0.5

FIGURE 3. State trajectories of errors between the drive system (2) and
the response system (4). (a) The errors without controllers. (b) The errors
with delay-independent controllers. (c) The errors with delay-dependent
controllers.

FIGURE 4. Phase trajectories of system (2)(corresponds to x) and
system (4)(corresponds to y) without distributed delays.

e21(t) − 0.1sign(e21(t))|epj(t − τpj21(t))| − sign(e21(t))
(2 + |e21(t)|0.5), µ31(t) = −1.5e31(t) − 0.1sign(e31(t))|epj
(t − τpj31(t))| − sign(e31(t))(2.5 + |e31(t)|0.5). Then (a-c)
in Fig.6 describe the state trajectories of the errors system
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FIGURE 5. State trajectories of the drive system (2)(corresponds to x) and
the response system (4)(corresponds to y) without distributed delays.

FIGURE 6. State trajectories of errors between system (2) and system (4)
without distributed delays. (a) The errors without controllers. (b) The
errors with delay-independent controllers. (c) The errors with
delay-dependent controllers.

without controllers, with delay-independent and with delay-
dependent controllers, respectively. It implies that the corre-
sponding response system (4) can synchronize with the drive
system (2) in finite-time.

FIGURE 7. Phase trajectories of system (2) without distributed delays.

FIGURE 8. The process of encryption of an image.

Example 2: We consider the following memristive
MAMNNs without distributed delays. There are three fields
and one neuron in each field.

dxk1(t)
dt

= Ik1 − dk1(xk1(t))xk1(t)

+

3∑
p = 1,
p 6= k

ap1k1(xk1(t))fp1(xp1(t))

+

3∑
p = 1,
p 6= k

bp1k1(xk1(t))fp1(xp1(t − τp1k1(t))),

where the parameters are the same as in Example 1. The initial
values are set as [x11(t), x21(t), x31(t)] = [1.2,−0.3, 0.4],
and Fig.7 represents system (2) without distributed delays.
It has chaotic attractor with the initial values.

Then we select a standard color image of the size of
512 ∗ 512 to encrypt the image (lena.tif) based on the mem-
ristive MAMNNs without distributed delays. Fig.8 describes
the process of encryption of the original image. It can be seen
that the encrypted image has lost the original image feature
based on the given encryption method.

The gray histogram is a powerful attribute to describe
the statistical characteristics of the image. Fig.9 displays the
gray histogram of the original image, and it can be seen that
there exist distribution characteristics in the gray histogram
of the three components. Fig.10 describes the gray histogram
of the encrypted image. It can be seen that the gray his-
togram of the three components is uniformly distributed. This
implies that our encryptionmethod can effectively encrypt the
image.

Correlation analysis of adjacent pixels is an important
indicator to evaluate the encryption effect of an image.
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FIGURE 9. The histogram of the original image. (a) Original image—
R component. (b) Original image—G component. (c) Original image—
B component.

TABLE 3. Correlation analysis of adjacent pixel of the original image.

We randomly select 1000 pairs of pixel values, in which
Fig.11 shows the correlation analysis of adjacent pixels of the
original image, Fig.12 describes the correlation analysis of
adjacent pixels of the encrypted image. The specific correla-
tion is shown in Table 3 and Table 4.

FIGURE 10. The histogram of the encrypted image. (a) Encrypted
image—R component. (b) Encrypted image—G component. (c) Encrypted
image—B component.

TABLE 4. Correlation analysis of adjacent pixel of the encrypted image.

According to Table 3, we can see that the correlation
coefficients of adjacent pixels of the original image are close
to 1, i.e. it has a strong correlation. However, we can see that
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FIGURE 11. Correlation analysis of adjacent pixels of the original image.
(a) Horizontal direction. (b) Vertical direction. (c) Diagonal direction.

the correlation coefficients of adjacent pixels of the encrypted
image are close to 0 in Table 4, i.e. they are almost irrele-
vant. This shows that our encryption method can effectively
encrypt the image.

Compared with the results of literature [44], our proposed
method has less correlation coefficients of adjacent pixels of
the encrypted image, so it has better ability to encrypt images.
At the same time, we combine the two encryption methods of

FIGURE 12. Correlation analysis of adjacent pixels of the encrypted
image. (a) Horizontal direction. (b) Vertical direction. (c) Diagonal
direction.

replacement and chaos, which is more effective than using
only one encryption method.

VI. CONCLUSION
In this paper, we propose a novel memristive MAMNNs
model, which includes time-varying delays and distributed
time delays. Then the finite-time synchronization of our pro-
posed model is analyzed by creating appropriate controllers.
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In the proposed approach, we obtain some less conservative
results by removing certain strict conditions. By construct-
ing a suitable Lyapunov function and using some inequal-
ity techniques, some sufficient criteria for guaranteeing the
finite-time synchronization of the drive-response system are
obtained. An image encryption scheme is designed based
on the chaotic memristive MAMNNs. Furthermore, some
numerical simulations are delivered to demonstrate the effec-
tiveness of our proposed theories.

APPENDIX A
PROOF OF THEOREM 1
Construct the following Lyapunov function:

V (t) = e2ki(t)+
1

1− τ2

m∑
p = 1,
p 6= k

np∑
j=1

∫ t

t−τpjki(t)
e2pj(s)ds

+

m∑
p = 1,
p 6= k

np∑
j=1

∫ 0

−ρ1

∫ t

t+s
e2pj(z)dzds. (8)

According to the differential inclusion theorem,
Theorem 1 will be proved in nine cases.

¬ |xki(t)| < 0ki, |yki(t)| < 0ki.
The drive system (2) can be written as follows:

dxki(t)
dt
= Iki − d́kixki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

ápjkifpj(xpj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b́pjkifpj(xpj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

ćpjki

∫ t

t−ρ(t)
fpj(xpj(s))ds. (9)

The response system (4) can be written as follows:

dyki(t)
dt
= Iki − d́kiyki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

ápjkifpj(ypj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b́pjkifpj(ypj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

ćpjki

∫ t

t−ρ(t)
fpj(ypj(s))ds+ µki(t). (10)

Then the error system is obtained as follows:

deki(t)
dt
= µki(t)− d́kieki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

ápjki f̃pj(epj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b́pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

ćpjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds, (11)

where f̃pj(epj(t)) = fpj(ypj(t)) − fpj(xpj(t)), f̃pj(epj(t −
τpjki(t))) = fpj(ypj(t − τpjki(t)))−fpj(xpj(t − τpjki(t))),∫ t
t−ρ(t) f̃pj(epj(s))ds=

∫ t
t−ρ(t) fpj(ypj(s))ds−

∫ t
t−ρ(t) fpj(xpj(s))ds.

Along the trajectory of system (11), we calculate the
derivative as follows:

V̇
(
t
)
= 2eki(t)

[
− d́kieki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

ápjki f̃pj(epj(t))

+µki(t)+
m∑

p = 1,
p 6= k

np∑
j=1

b́pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

ćpjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds

]
+

1
1− τ2

×

m∑
p = 1,
p 6= k

np∑
j=1

e2pj(t)−
m∑

p = 1,
p 6= k

np∑
j=1

e2pj(t − τpjki(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

ρ1e2pj(t)−
m∑

p = 1,
p 6= k

np∑
j=1

∫ t

t−ρ(t)
e2pj(s)ds.

(12)

According to Assumption 1, we obtain

V̇
(
t
)
≤ −(2d́ki + 2δki)e2ki(t)− 2θki|eki(t)| − h|eki(t)|η

+ 2|eki(t)|
m∑

p = 1,
p 6= k

np∑
j=1

ápjkiLpj|epj(t)| + 2|eki(t)|

×

m∑
p = 1,
p 6= k

np∑
j=1

b́pjkiLpj|epj(t − τpjki(t))| + 2|eki(t)|

×

m∑
p = 1,
p 6= k

np∑
j=1

ćpjkiLpj

∫ t

t−ρ(t)
|epj(s)|ds+

1
1− τ2

×

m∑
p = 1,
p 6= k

np∑
j=1

e2pj(t)−
m∑

p = 1,
p 6= k

np∑
j=1

e2pj(t − τpjki(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

ρ1e2pj(t)−
m∑

p = 1,
p 6= k

np∑
j=1

∫ t

t−ρ(t)
e2pj(s)ds.

(13)

By using the mean-value inequality, then we have

2|eki(t)|ápjkiLpj|epj(t)|

≤ á2pjkiL
2
pje

2
ki(t)+ e

2
pj(t), 2|eki(t)|b́pjkiLpj|epj(t − τpjki(t))|

≤ b́2pjkiL
2
pje

2
ki(t)+ e

2
pj(t − τpjki(t)), 2|eki(t)|ćpjkiLpj

×

∫ t

t−ρ(t)
|epj(s)|ds

≤ ρ1ć2pjkiL
2
pje

2
ki(t)+

∫ t

t−ρ(t)
e2pj(s)ds.
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Then we get

V̇
(
t
)
≤
[
− 2d́ki − 2δki +

m∑
p = 1,
p 6= k

np∑
j=1

(á2pjkiL
2
pj

+ b́2pjkiL
2
pj + ρ1ć

2
pjkiL

2
pj + 1+

1
1− τ2

+ ρ1)
]
e2ki(t)

− 2θki|eki(t)| − h|eki(t)|η. (14)

Under the conditions of Theorem 1, we obtain

V̇
(
t
)
≤ −h|eki(t)|η. (15)

Then, according to Lemma 2, the drive system (2) and
the response system (4) are synchronized in the finite-time
T = t0 +

V 1−η(t0)
h(1−η) . This implies the proof is completed.

 |xki(t)| > 0ki, |yki(t)| > 0ki.
The drive system (2) can be written as follows:

dxki(t)
dt
= Iki − d̀kixki(t)+

m∑
p = 1,

p 6= k

np∑
j=1

àpjkifpj(xpj(t))

+

m∑
p = 1,

p 6= k

np∑
j=1

b̀pjkifpj(xpj(t − τpjki(t)))

+

m∑
p = 1,

p 6= k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
fpj(xpj(s))ds. (16)

The response system (4) can be written as follows:

dyki(t)
dt
= Iki − d̀kiyki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

àpjkifpj(ypj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b̀pjkifpj(ypj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
fpj(ypj(s))ds+µki(t). (17)

Then the error system is obtained as follows:

deki(t)
dt
= µki(t)− d̀kieki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

àpjki f̃pj(epj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b̀pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds. (18)

The proof of the rest is similar to ¬, so it is omitted
here.

® |xki(t)| < 0ki, |yki(t)| > 0ki.
The drive system (2) can be written as system (9),

the response system (4) can be written as system (17). Then
the error system is obtained as follows:

deki(t)
dt
= µki(t)− d̀kieki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

àpjki f̃pj(epj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b̀pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds

+ (d́ki − d̀ki)xki(t)

+

m∑
p = 1,
p 6= k

np∑
j=1

(àpjki − ápjki)fpj(xpj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

(b̀pjki − b́pjki)fpj(xpj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

(c̀pjki−ćpjki)
∫ t

t−ρ(t)
fpj(xpj(s))ds. (19)

Along the trajectory of system (19), we calculate the
derivative as follows:

V̇
(
t
)
≤
[
− 2d̀ki − 2δki +

m∑
p = 1,
p 6= k

np∑
j=1

(à2pjkiL
2
pj + b̀

2
pjkiL

2
pj

+ ρ1c̀2pjkiL
2
pj + 1+

1
1− τ2

+ ρ1)
]
e2ki(t)

+ 2
[
(d́ki − d̀ki)0ki +

m∑
p = 1,
p 6= k

np∑
j=1

(àpjki − ápjki)Lpj0pj

+

m∑
p = 1,
p 6= k

np∑
j=1

[(b̀pjki − b́pjki)F + (c̀pjki − ćpjki)ρ1F]

− θki

]
|eki(t)| − h|eki(t)|η. (20)

Under the conditions of Theorem 1, we obtain

V̇
(
t
)
≤ −h|eki(t)|η. (21)

Then, according to Lemma 2, the drive system (2) and the
response system (4) are synchronized in the finite-time T =
t0 +

V 1−η(t0)
h(1−η) . This implies the proof is completed.

¯ |xki(t)| > 0ki, |yki(t)| < 0ki.
The drive system (2) can be written as system (16),

the response system (4) can be written as system (10).
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Then the error system is obtained as follows:

deki(t)
dt
= µki(t)− d̀kieki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

àpjki f̃pj(epj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

b̀pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds

+ (d̀ki − d́ki)yki(t)

+

m∑
p = 1,
p 6= k

np∑
j=1

(ápjki − àpjki)fpj(ypj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

(b́pjki − b̀pjki)fpj(ypj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

(ćpjki−c̀pjki)
∫ t

t−ρ(t)
fpj(ypj(s))ds. (22)

The proof of the rest is similar to ®, so it is omitted here.
° |xki(t)| = 0ki or |yki(t)| = 0ki.
The rest of five cases are similar to cases ® and ¯, and

the process of proof is omitted here. To sum up, Theorem 1
is proved.

APPENDIX A
PROOF OF THEOREM 2
Construct the following Lyapunov function:

V (t) = sign(eki(t))eki(t).

According to the differential inclusion theorem, Theo-
rem 2 will be proved in nine cases.

¬ |xki(t)| < 0ki, |yki(t)| < 0ki.
The drive system (2) can be written as system (9),

the response system (4) can be written as system (10). Then
the error system can be written as system (11).

Along the trajectory of system (11), we calculate the
derivative as follows:

V̇
(
t
)
≤ sign(eki(t))

[
µki(t)− d́kieki(t)+

m∑
p = 1,
p 6= k

np∑
j=1

ápjki

× f̃pj(epj(t))+
m∑

p = 1,
p 6= k

np∑
j=1

b́pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

ćpjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds

]
. (23)

Then we obtain

V̇
(
t
)
≤ −d́ki|eki(t)| +

m∑
p = 1,
p 6= k

np∑
j=1

|ápjki f̃pj(epj(t))|

+

m∑
p = 1,
p 6= k

np∑
j=1

|b́pjki f̃pj(epj(t − τpjki(t)))|

+

m∑
p = 1,
p 6= k

np∑
j=1

|ćpjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds| − δki|eki(t)|

− θki|epj(t − τpjki(t))| − εki|
∫ t

t−ρ(t)
epj(s)ds|

− (γki + h|eki(t)|η). (24)

According to Assumption 1, we have

V̇
(
t
)
≤ −(d́ki + δki)|eki(t)| +

m∑
p = 1,
p 6= k

np∑
j=1

|ápjkiLpjepj(t)|

+

m∑
p = 1,
p 6= k

np∑
j=1

|b́pjkiLpjepj(t − τpjki(t))|

+

m∑
p = 1,
p 6= k

np∑
j=1

|ćpjkiLpj

∫ t

t−ρ(t)
epj(s)ds|

− θki|epj(t − τpjki(t))| − εki|
∫ t

t−ρ(t)
epj(s)ds|

− (γki + h|eki(t)|η)

≤

m∑
p = 1,
p 6= k

np∑
j=1

(−d́ki + ápjkiLpj − δki)|eki(t)|

+

m∑
p = 1,
p 6= k

np∑
j=1

(b́pjkiLpj − θki)|epj(t − τpjki(t))|

+

m∑
p = 1,
p 6= k

np∑
j=1

(ćpjkiLpj − εki)|
∫ t

t−ρ(t)
epj(s)ds|

− h|eki(t)|η. (25)

Under the conditions of Theorem 2, we obtain

V̇
(
t
)
≤ −h|eki(t)|η. (26)

Then, according to Lemma 2, the drive system (2) and
the response system (4) are synchronized in the finite-time
T = t0 +

V 1−η(t0)
h(1−η) . This implies the proof is completed.

 |xki(t)| > 0ki, |yki(t)| > 0ki.
The drive system (2) can be written as system (16),

the response system (4) can be written as system (17).
Then the error system can be written as system (18).
The proof of the rest is similar to ¬, so it is omitted
here.
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® |xki(t)| < 0ki, |yki(t)| > 0ki.
The drive system (2) can be written as system (9),

the response system (4) can be written as system (17). Then
the error system can be written as system (19).

Along the trajectory of system (19), we calculate the
derivative as follows:

V̇
(
t
)
≤ −d́ki|eki(t)| +

m∑
p = 1,
p 6= k

np∑
j=1

|ápjki f̃pj(epj(t))|

+

m∑
p = 1,
p 6= k

np∑
j=1

|b́pjki f̃pj(epj(t − τpjki(t)))|

+

m∑
p = 1,
p 6= k

np∑
j=1

|ćpjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds|

+ sign(eki(t))(d́ki − d̀ki)xki(t)

+ sign(eki(t))
[ m∑

p = 1,
p 6= k

np∑
j=1

(àpjki − ápjki)fpj(xpj(t))

+

m∑
p = 1,
p 6= k

np∑
j=1

(b̀pjki − b́pjki)fpj(xpj(t − τpjki(t)))

+

m∑
p = 1,
p 6= k

np∑
j=1

(c̀pjki − ćpjki)
∫ t

t−ρ(t)
fpj(xpj(s))ds

]
− δki|eki(t)| − θki|epj(t − τpjki(t))|

− εki|

∫ t

t−ρ(t)
epj(s)ds| − (γki + h|eki(t)|η). (27)

According to Assumption 1, we have

V̇
(
t
)
≤

m∑
p = 1,
p 6= k

np∑
j=1

(−d́ki + ápjkiLpj − δki)|eki(t)|

+

m∑
p = 1,
p 6= k

np∑
j=1

(b́pjkiLpj − θki)|epj(t − τpjki(t))|

+

m∑
p = 1,
p 6= k

np∑
j=1

(ćpjkiLpj − εki)|
∫ t

t−ρ(t)
epj(s)ds|

+

{
|d́ki − d̀ki|0ki +

m∑
p = 1,
p 6= k

np∑
j=1

[
|àpjki − ápjki|Lpj0pj

+ |b̀pjki − b́pjki|F + |c̀pjki − ćpjki|ρ1F
]
− γki

}
− h|eki(t)|η. (28)

Under the conditions of Theorem 2, we obtain

V̇
(
t
)
≤ −h|eki(t)|η. (29)

Then, according to Lemma 2, the drive system (2) and the
response system (4) are synchronized in the finite-time T =
t0 +

V 1−η(t0)
h(1−η) . This implies the proof is completed.

¯ |xki(t)| > 0ki, |yki(t)| < 0ki.
The drive system (2) can be written as system (16),

the response system (4) can be written as system (10). Then
the error system can be written as system (22). The proof of
the rest is similar to ®, so it is omitted here.

° |xki(t)| = 0ki or |yki(t)| = 0ki.
The rest of five cases are similar to cases ® and ¯, and

the process of proof is omitted here. To sum up, Theorem 2
is proved.
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