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ABSTRACT In this paper, we investigate the synchronization in the mean square sense of memristive
multidirectional associative memory neural networks with mixed time-varying delays and stochastic pertur-
bations. In the proposed approach, the mixed delays include time-varying delays and distributed time delays.
Sufficient criteria guaranteeing the synchronization of the drive-response system are derived based on the
drive-response concept, the stochastic differential theory and Lyapunov function.With the removal of certain
strict conditions of weight parameters, less conservative results are generated. To illustrate the performance
of the proposed synchronization criteria, a secure communication scheme to realize secure data transmission
is designed. Meanwhile, the effectiveness of the proposed theories is validated with numerical experiments.

INDEX TERMS Memristive multidirection associative memory, mixed delays, secure communication,
stochastic perturbations, synchronization control.

I. INTRODUCTION
With the rapid development of network communication,
secure transfers of a large amount of data have become
a challenging task. Therefore, secure communication tech-
nologies have become very important tools. Recently, secure
communication technologies based on chaotic systems and
synchronization have been widely studied in [1]–[4]. In [1],
the authors proposed a secure communication scheme based
on parameter modulation via the synchronization of hyper-
chaotic systems. In [2], in order to improve the physical
realization of secure communication based on chaotic sys-
tems, the authors proposed a novel chaos masking encoding
method. The authors presented a method based on the state
observer design, which applied to secure communications
in [3]. The secure communication method was designed

based on exponential synchronization, masking method and
parameter modulation in [4]. Although the secure communi-
cationmethods based on chaotic systems and synchronization
have attracted the attentions of many researchers, there are
few studies for memristive neural networks (MNNs) [5].
Therefore, it is meaningful to analyze secure communication
methods based on MNNs.

Traditional biological neural networks lack the capabil-
ity of reflecting variable synaptic weights when simulating
associative memory of human brains. Therefore, memristors
instead of resistors were employed in artificial neural net-
works to form MNNs [6]–[8]. In recent years, the dynamic
behaviors of MNNs were studied in [9]–[11], in which the
dynamic behaviors have been widely applied to associative
memory [12], medical image processing [13], [14], etc..
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Meanwhile, memristive bidirectional associate memory
neural networks (BAMNNs) have been extensively studied
in [15]–[17]. In addition, as an extension of BAMNNs,
MAMNNs were proposed by Hagiwara [18] and their
dynamic behaviors have been widely studied in [19]–[21].
However, there are few studies for memristive MAMNNs.
Thus, it is necessary to study the dynamic behaviors of mem-
ristive MAMNNs.

In the real world, the stability and synchronization of
chaotic systems play an important role due to their potential
applications to image encryption [22], secure communica-
tion [23], secure image transmission [24], intelligent data
analysis [25], etc.. However, the stability and synchroniza-
tion of memristive MAMNNs are rarely reported in litera-
tures. Thus, the stability and synchronization of memristive
MAMNNs desire more research attentions.

It is well known that time delays and stochastic perturba-
tions are ubiquitous in practical applications. The time delays
are inevitable in the hardware implementation due to the
switching of amplifiers. Various types of time delays, such
as time-varying delays [26], discrete time delays [27], dis-
tributed delays [28], leakage delays [29], additive delays [30]
and mixed delays [31] are often considered. Moreover, in real
nervous systems, synaptic transmission is a noisy process,
which is caused by random fluctuations from the release of
neurotransmitters and other probabilistic causes. Therefore,
stochastic perturbations are also inevitable in the real world.
The related literatures [32], [33] take into account the effect
of stochastic perturbations. Since time delays and stochas-
tic perturbations may induce the instability or oscillation of
systems, we require appropriate control strategies to make
systems stable. Over the past few years, various control
methods have been utilized for stabilization and synchro-
nization [34]–[36]. Hence, it is meaningful to analyze the
dynamic behaviors of MNNs with time delays and stochastic
perturbations.

In this paper, we propose a new model by combining
the characters of both MAMNNs and MNNs, which can
simulate the associative memory process of human brains
more effectively. The main contributions of this paper can be
summarized in the following:

(1) We propose a novel stochastic memristive MAMNNs
model, which includes time-varying delays, distributed
delays and stochastic perturbations.

(2) Sufficient criteria guaranteeing the synchronization of
the chaotic drive-response system are derived, which based
on the drive-response concept, the stochastic differential the-
ory and Lyapunov function.

(3) With the removal of certain strict conditions on the
weight parameters and discuss the cases in detail, we obtain
some less conservative results for the synchronization of the
drive-response system.

(4) To illustrate the performance of the proposed synchro-
nization criteria, we design a secure communication scheme
based on chaotic memristive MAMNNs, which can realize
secure data transmission.

The rest of this paper is organized as follows. The proposed
memristive MAMNNsmodel with mixed delays and stochas-
tic perturbations is introduced with some preliminaries
in Section 2. Based on the drive-response concept,
the stochastic differential theory and some inequality tech-
niques, some sufficient criteria for ensuring the syn-
chronization of drive-response system are obtained in
section 3. A secure communication scheme is designed in
Section 4. Numerical examples are discussed in Section 5,
while Section 6 concludes this paper with some insights
provided.

II. PRELIMINARIES
In this section, we introduce the following memristive
MAMNNs with mixed delays :

dxki(t)
dt
= Iki − dki(xki(t))xki(t)

+

m∑
p=1,
p6=k

np∑
j=1

apjki(xki(t))fpj(xpj(t))

+

m∑
p=1,
p6=k

np∑
j=1

bpjki(xki(t))fpj(xpj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

cpjki(xki(t))
∫ t

t−ρ(t)
fpj(xpj(s))ds, (1)

where xki(t) denotes the voltage of the ith neuron in the
field k , m is the total number of fields and np corre-
sponds to the number of neurons in the field p. fki(x) shows
activation functions. dki(xki(t)), apjki(xki(t)), bpjki(xki(t)) and
cpjki(xki(t)) denote the synptic connection weights. The time
delays τpjki(t) and ρ(t) are time-varying delays and dis-
tributed delay, respectively. Iki represents the external input
constants.

Throughout this paper, co[ξ, ξ ] denotes the convex clo-
sure on [ξ, ξ ]. Rn represents n-dimensional Euclidean
space. A column vector is defined as col(xki) = (x11,
x12, · · · , xmnm )

T . Besides, the initial values of system (1) are
given as follows: φ(s) = (φ11(s), φ12(s), · · · , φmnm (s))

T
∈

C([−τ, 0],Rn), inwhich τ = max
1≤p≤m,p6=k

max
1≤j≤np

{τpjki(t), ρ(t)}.

Some notations are defined as follows: dki = max{d́ki, d̀ki},
dki = min{d́ki, d̀ki}, apjki = max{ápjki, àpjki}, apjki =
min{ápjki, àpjki}, bpjki = max{b́pjki, b̀pjki}, bpjki =

min{b́pjki, b̀pjki}, cpjki = max{ćpjki, c̀pjki}, cpjki = min{ćpjki,
c̀pjki}, 0 ≤ τpjki(t) ≤ τ1, 0 ≤ ρ(t) ≤ ρ1, τ̇pjki(t) ≤ τ2 < 1.
According to the features of memristors and the current-

voltage characteristics, for convenience, we define the fol-
lowing formulas by applying the set-valued mapping theorem
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and the stochastic differential inclusion theorem.

co(dki(xki(t))) =


d́ki, |xki(t)| < 0ki,

co{d́ki, d̀ki}, |xki(t)| = 0ki,
d̀ki, |xki(t)| > 0ki,

co(apjki(xki(t))) =


ápjki, |xki(t)| < 0ki,

co{ápjki, àpjki}, |xki(t)| = 0ki,
àpjki, |xki(t)| > 0ki,

co(bpjki(xki(t))) =


b́pjki, |xki(t)| < 0ki,

co{b́pjki, b̀pjki}, |xki(t)| = 0ki,
b̀pjki, |xki(t)| > 0ki,

co(cpjki(xki(t))) =


ćpjki, |xki(t)| < 0ki,

co{ćpjki, c̀pjki}, |xki(t)| = 0ki,
c̀pjki, |xki(t)| > 0ki,

where the switching jumps 0ki > 0, for k = 1, 2, · · · ,m
and i = 1, 2, · · · , nk . d́ki > 0, d̀ki > 0, ápjki, àpjki, b́pjki,
b̀pjki, ćpjki and c̀pjki are constants. Obviously, co{d́ki, d̀ki} =
[dki, dki], co{ápjki, àpjki} = [apjki, apjki], co{b́pjki, b̀pjki} =
[bpjki, bpjki] and co{ćpjki, c̀pjki} = [cpjki, cpjki], for k,
p = 1, 2, · · · ,m, p 6= k ,i = 1, 2, · · · , nk ,j = 1, 2, · · · , np.
According to the above definitions, system (1) can be

written as follows
dxki(t)
dt
∈ Iki − co(dki(xki(t)))xki(t)

+

m∑
p=1,
p 6=k

np∑
j=1

co(apjki(xki(t)))fpj(xpj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

co(bpjki(xki(t)))fpj(xpj(t − τpjki(t)))

+

m∑
p=1,
p 6=k

np∑
j=1

co(cpjki(xki(t)))
∫ t

t−ρ(t)
fpj(xpj(s))ds, (2)

or equivalently, for k = 1, 2, · · · ,m, p 6= k ,i =
1, 2, · · · , nk , there exist d̂ki(xki(t)) ∈ co(dki(xki(t))),
âpjki(xki(t)) ∈ co(apjki(xki(t))), b̂pjki(xki(t)) ∈ co(bpjki(xki(t)))
and ĉpjki(xki(t)) ∈ co(cpjki(xki(t))), such that

dxki(t)
dt
= Iki − d̂ki(xki(t))xki(t)

+

m∑
p=1,
p 6=k

np∑
j=1

âpjki(xki(t))fpj(xpj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

b̂pjki(xki(t))fpj(xpj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

ĉpjki(xki(t))
∫ t

t−ρ(t)
fpj(xpj(s))ds. (3)

In this paper, system (2) or (3) is considered as the drive
system. Then the corresponding response system is described
as

dyki(t)
dt
∈ Iki + µki(t)− co(dki(yki(t)))yki(t)

+

m∑
p=1,
p6=k

np∑
j=1

co(apjki(yki(t)))fpj(ypj(t))

+

m∑
p=1,
p6=k

np∑
j=1

co(bpjki(yki(t)))fpj(ypj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

co(cpjki(yki(t)))
∫ t

t−ρ(t)
fpj(ypj(s))ds,

(4)

or equivalently, for k = 1, 2, · · · ,m, p 6= k ,i =
1, 2, · · · , nk , there exist d̂ki(yki(t)) ∈ co(dki(yki(t))),
âpjki(yki(t)) ∈ co(apjki(yki(t))), b̂pjki(yki(t)) ∈ co(bpjki(yki(t)))
and ĉpjki(yki(t)) ∈ co(cpjki(yki(t))), such that

dyki(t)
dt
= Iki + µki(t)− d̂ki(yki(t))yki(t)

+

m∑
p=1,
p 6=k

np∑
j=1

âpjki(yki(t))fpj(ypj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

b̂pjki(yki(t))fpj(ypj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

ĉpjki(yki(t))
∫ t

t−ρ(t)
fpj(ypj(s))ds, (5)

where µki(t) represent the appropriate control inputs and

co(dki(yki(t))) =


d́ki, |yki(t)| < 0ki,

co{d́ki, d̀ki}, |yki(t)| = 0ki,
d̀ki, |yki(t)| > 0ki,

co(apjki(yki(t))) =


ápjki, |yki(t)| < 0ki,

co{ápjki, àpjki}, |yki(t)| = 0ki,
àpjki, |yki(t)| > 0ki,

co(bpjki(yki(t))) =


b́pjki, |yki(t)| < 0ki,

co{b́pjki, b̀pjki}, |yki(t)| = 0ki,
b̀pjki, |yki(t)| > 0ki,

co(cpjki(yki(t))) =


ćpjki, |yki(t)| < 0ki,

co{ćpjki, c̀pjki}, |yki(t)| = 0ki,
c̀pjki, |yki(t)| > 0ki.

The initial values of system (4) are given as follows :
8(s) = (811(s),812(s), · · · ,8mnm (s))

T
∈ C([−τ, 0],Rn),

in which τ = max{τ1, ρ1}.
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Based on the discussions above, a class of memris-
tive MAMNNs model with mixed time-varying delays and
stochastic perturbations is proposed as follows:

dxki(t) =
[
Iki − dki(xki(t))xki(t)

+

m∑
p=1,
p6=k

np∑
j=1

apjki(xki(t))fpj(xpj(t))

+

m∑
p=1,
p6=k

np∑
j=1

bpjki(xki(t))fpj(xpj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

cpjki(xki(t))
∫ t

t−ρ(t)
fpj(xpj(s))ds

]
dt

+ σki

(
t, xpj(t), xpj(t − τpjki(t))

)
dω(t), (6)

where σki
(
t, xpj(t), xpj(t − τpjki(t))

)
is the noise intensity and

d
(
ω11(t), ω12(t), · · · , ωmnm (t)

)
represents a standard Brown

notions defined on the probability space (�,F , {Ft }t≥0,P).
(�,F , {Ft }t≥0,P) is a complete probability space with a
natural filtration {Ft }t≥0 satisfying the usual conditions.
E(·) denotes the expectation operator with the respect to the
given probability measure P.

In this paper, system (6) is considered as the drive system.
Then the corresponding response system is described as

dyki(t) =
[
Iki − dki(yki(t))yki(t)

+

m∑
p=1,
p6=k

np∑
j=1

apjki(yki(t))fpj(ypj(t))

+

m∑
p=1,
p6=k

np∑
j=1

bpjki(yki(t))fpj(ypj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

cpjki(yki(t))
∫ t

t−ρ(t)
fpj(ypj(s))ds

]
dt

+ σki

(
t, ypj(t), ypj(t − τpjki(t))

)
dω(t). (7)

In order to obtain our main results, we define the synchro-
nization error of the system as follows:

eki(t) = yki(t)− xki(t),

where the initial values of error systems are defined as
follows: 9(s) = 8(s) − φ(s) = (911(s), 912(s), · · · ,
921(s), · · · , 9mnm (s))

T
∈ C([−τ, 0],Rn), in which τ =

max{τ1, ρ1}.
Assumption 1: For k = 1, 2, · · · ,m,i = 1, 2, · · · , nk ,
∀s1, s2 ∈ R and s1 6= s2, the activation functions fki(·) are
odd bounded and satisfy the Lipschitz condition

|fki(s1)− fki(s2)| ≤ Lki|s1 − s2|,

|fki(·)| ≤ F,

where Lki and F are nonnegative constants.

Assumption 2: For k = 1, 2, · · · ,m,i = 1, 2, · · · , nk ,
the noise intensity σki

(
t, xpj(t), xpj(t − τpjki(t))

)
satisfies the

linear growth condition with σ (t, 0, 0) = 0 and there exist
two nonnegative constants α and β, such that∣∣∣σki(t, xpj(t), xpj(t − τpjki(t)))∣∣∣2

≤ α|xpj(t)|2 + β|xpj(t − τpjki(t))|2.

Definition 1: For any initial values 9(s) ∈ L2F0
([−τ, 0];

Rn), if there exist λ > 0 and M > 0 such that

E(|eki(t)|2) ≤ Me−λt sup
−τ≤s≤0

E(|9(s)|2), t ≥ 0,

then the equilibrium point of system is exponentially stable
in the mean square.

III. MAIN RESULTS
In this section, we will design proper controllers µki(t) to
realize exponential synchronization ofmemristiveMAMNNs
with mixed delays and stochastic perturbations. In the follow-
ing, our main results are described:

A. SYNCHRONIZATION CONTROL OF MEMERISTIVE
MAMNNS WITH MIXED DELAYS AND WITHOUT
STOCHASTIC PERTURBATION
In this subsection, we investigate the memristive MAMNNs
with mixed delays and without stochastic perturbations.
Theorem 1: Suppose that the Assumption 1 holds, the non-

linear controllers are designed as µki(t) = hkieki(t) −
ηkisign(eki(t)). If there exist constants hki and ηki > 0, such
that

hki ≤ min
{
d́ki −

1
2

m∑
p=1,
p 6=k

np∑
j=1

[
á2pjkiL

2
pj + b́

2
pjkiL

2
pj

+ ρ1ć2pjkiL
2
pj + 1+

1
1− τ2

+ ρ1
]
,

×d̀ki −
1
2

m∑
p=1,
p6=k

np∑
j=1

[
à2pjkiL

2
pj + b̀

2
pjkiL

2
pj

+ ρ1c̀2pjkiL
2
pj + 1+

1
1− τ2

+ ρ1
]}
, (8)

ηki >
∣∣d́ki − d̀ki∣∣0ki + m∑

p=1,
p 6=k

np∑
j=1

∣∣ápjki − àpjki∣∣Lpj0pj
+F

m∑
p=1,
p6=k

np∑
j=1

[∣∣b́pjki − b̀pjki∣∣+ ρ1∣∣ćpjki − c̀pjki∣∣], (9)

then the drive system (2) and response system (4) are mean
square exponential synchronization.

Proof: Please see Appendix A.
Remark 1: There are some previous related works

about synchronization of MNNs under the following
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conditions [37]:

co[dki, dki]ypj − co[dki, dki]xpj
⊆ co[dki, dki](ypj − xpj), co[apjki, apjki]fpj(ypj(t))

− co[apjki, apjki]fpj(xpj(t))

⊆ co[apjki, apjki](fpj(ypj(t))− fpj(xpj(t))),

×co[bpjki, bpjki]fpj(ypj(t − τpjki(t)))

−co[bpjki, bpjki]fpj(xpj(t − τpjki(t)))

⊆ co[bpjki, bpjki](fpj(ypj(t − τpjki(t)))− fpj(xpj(t − τpjki(t)))),

× co[cpjki, cpjki]
∫ t

t−ρ(t)
fpj(ypj(s))ds− co[cpjki, cpjki]

×

∫ t

t−ρ(t)
fpj(xpj(s))ds

⊆ co[cpjki, cpjki](
∫ t

t−ρ(t)
fpj(ypj(s))ds−

∫ t

t−ρ(t)
fpj(xpj(s))ds).

It is easy to know that the above conditions hold when
xki(t) and yki(t) have same signs, or xki(t) = 0 or
yki(t) = 0. Meanwhile, the switching jumps 0ki are ignored
in [37]. Compared with the results obtained in [37], with the
removal of certain strict conditions and discuss the cases in
detail, the results we obtained are less conservative.
Corollary 1: Suppose that the Assumption 1 holds, the non-

linear controllers are designed as µki(t) = hkieki(t) −
ηkisign(eki(t)). If there exist constants hki and ηki > 0, such
that

hki(t) ≤ min
{
d́ki −

1
2

m∑
p=1,
p 6=k

np∑
j=1

(á2pjkiL
2
pj + b́

2
pjkiL

2
pj

+ 1+
1

1− τ2
), d̀ki −

1
2

m∑
p=1,
p 6=k

np∑
j=1

(à2pjkiL
2
pj

+ b̀2pjkiL
2
pj + 1+

1
1− τ2

)
}
, (10)

ηki >
∣∣d́ki − d̀ki∣∣0ki + m∑

p=1,
p 6=k

np∑
j=1

∣∣ápjki − àpjki∣∣Lpj0pj
+

m∑
p=1,
p 6=k

np∑
j=1

∣∣b́pjki − b̀pjki∣∣F, (11)

then the drive system (2) and response system (4) are mean
squre exponential synchronization.

Proof: Let the distributed delay ρ(t) = 0. The process
of proof is similar to Theorem 1, so it is omitted here.

Corollary 2: Suppose that the Assumption 1 holds,
the linear controllers are described as µki(t) = hkieki(t).
If there exists a constant hki, such that

hki(t)≤Dki −
1
2

m∑
p=1,
p 6=k

np∑
j=1

(A2pjkiL
2
pj+B

2
pjkiL

2
pj + 1+

1
1− τ2

),

(12)

where Dki = min{|dki|, |dki|}, Akipj = max{|akipj|, |akipj|},
Bpjki = max{|bkipj|, |bkipj|}, then the drive system (2)
and response system (4) are mean squre exponential
synchronization.

Proof: The proof process is similar to the Corollary 1,
so it is omitted here.

B. SYNCHRONIZATION CONTROL OF MEMERISTIVE
MAMNNS WITH MIXED DELAYS AND STOCHASTIC
PERTURBATION
In this subsection, we investigate the memristive MAMNNs
with mixed delays and stochastic perturbations, in which the
nonlinear controllers are showed as µki(t) = hkieki(t) −
ηkisign(eki(t)).
Theorem 2: Suppose that the Assumptions 1 and 2 hold.

Then the drive system (6) and response system (7) are
mean square exponential synchronization, if there exist
constants hki and ηki > 0, such that

hki ≤ min
{
d́ki −

1
2

m∑
p=1,
p 6=k

np∑
j=1

[
á2pjkiL

2
pj + b́

2
pjkiL

2
pj

+ ρ1ć2pjkiL
2
pj + 1+ α +

1+ β
1− τ2

+ ρ1
]
,

× d̀ki −
1
2

m∑
p=1,
p 6=k

np∑
j=1

[
à2pjkiL

2
pj + b̀

2
pjkiL

2
pj

+ ρ1c̀2pjkiL
2
pj + 1+ α +

1+ β
1− τ2

+ ρ1
]}
, (13)

ηki >
∣∣d́ki − d̀ki∣∣0ki + m∑

p=1,
p 6=k

np∑
j=1

∣∣ápjki − àpjki∣∣Lpj0pj
+F

m∑
p=1,
p6=k

np∑
j=1

[∣∣b́pjki − b̀pjki∣∣+ ρ1∣∣ćpjki − c̀pjki∣∣]. (14)

Proof: Please see Appendix B.
Corollary 3: Suppose that the Assumptions 1 and 2

hold. Then the drive system (6) and response system (7)
are mean square exponential synchronization, if there exist
constants hki and ηki > 0, such that

hki(t) ≤ min
{
d́ki −

1
2

m∑
p=1,
p 6=k

np∑
j=1

[
á2pjkiL

2
pj + b́

2
pjkiL

2
pj

+ 1+ α +
1+ β
1− τ2

]
, d̀ki −

1
2

m∑
p=1,
p 6=k

np∑
j=1

[
à2pjkiL

2
pj

+ b̀2pjkiL
2
pj + 1+ α +

1+ β
1− τ2

]}
, (15)

ηki >
∣∣d́ki − d̀ki∣∣0ki + m∑

p=1,
p 6=k

np∑
j=1

∣∣ápjki − àpjki∣∣Lpj0pj
+

m∑
p=1,
p 6=k

np∑
j=1

∣∣b́pjki − b̀pjki∣∣F . (16)
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FIGURE 1. The process of secure communication.

Proof: Let the distributed delay ρ(t) = 0. The process
of proof is similar to Theorem 2, so it is omitted here.
Remark 2: In Theorem 1, we only consider the effect

of time delays on the synchronization of system. However,
we consider the effects of time delays and stochastic pertur-
bations on the synchronization of system in Theorem 2.
Remark 3: In practical applications, the effect of stochastic

perturbations on the synchronization of system is inevitable.
Therefore, we introduce stochastic perturbations to make the
system more realistic in Theorem 2.

IV. DESIGN PROCESS OF SECRET COMMUNICATION
SCHEME
Secure transfers of a large amount of data have always
been a hot topic. In this section, we propose a secure com-
munication scheme based on the synchronization criteria.
The specific process of security communication is shown
in Fig.1.

1) Based on the memristive MAMNNs model and the
drive-response concept, we design a proper drive sys-
tem X and the corresponding response system Y.

2) An error system is constructed and the system can be
synchronized by designing suitable linear controllers
based on Corollary 2.

3) Transmitter: suppose the plaintext signals to be sent
are rki(t). The plaintext signals rki(t) and the adaptive
tracking signals vki(t) are introduced into the drive
system X to generate the corresponding chaotic signals
xki(t). The chaotic signals xki(t) are superimposed with
the plaintext signals rki(t) to produce encrypted trans-
mission signals ski(t) = xki(t)+ rki(t).

4) Receiver: the received encrypted signals ski(t), adap-
tive tracking signals Vki(t) and linear controllers are
introduced into the response system Y to generate
corresponding chaotic signals yki(t). Then, according
to the chaotic signals yki(t) and received encrypted
signals ski(t), the decrypted plaintext signals Rki(t) =
ski(t)− yki(t) are obtained.

Remark 4: The chaotic path of the memristive
MAMNNs used in the secure communication scheme is
more complicated, which improves the confidentiality of the
network transmission. In the transmission process, only one
transmission signal can be realized, the physical realization
is more convenient and universal.

V. NUMERICAL SIMULATION
In this section, in order to illustrate the performance of the
proposed synchronization criteria, several numerical exam-
ples are given to illustrate the effectiveness of our proposed
results.
Example 1: We consider the following memristive

MAMNNs with mixed delays and without stochastic pertur-
bations, there are three fields and one neuron in each field.

dxk1(t)
dt

= Ik1 − dk1(xk1(t))xk1(t)

+

3∑
p=1,
p 6=k

ap1k1(xk1(t))fp1(xp1(t))

+

3∑
p=1,
p 6=k

bp1k1(xk1(t))fp1(xp1(t − τp1k1(t)))

+

3∑
p=1,
p 6=k

cp1k1(xk1(t))
∫ t

t−ρ(t)
fp1(xp1(s))ds, (17)

where

d11(x11(t)) =

{
1.2, |x11| ≤ 011,
1.3, |x11| > 011,

d21(x21(t)) =

{
0.3, |x11| ≤ 021,
0.4, |x11| > 021,

d31(x31(t)) =

{
0.5, |x31| ≤ 031,
0.7, |x31| > 031,

a1121(x21(t)) =

{
−0.92, |x21(t)| ≤ 021,
0.33, |x21(t)| > 021,

a1131(x31(t)) =

{
0.24, |x31(t)| ≤ 031,
0.37, |x31(t)| > 031,

a2111(x11(t)) =

{
−0.6, |x11(t)| ≤ 011,
0.4, |x11(t)| > 011,

a2131(x31(t)) =

{
1.12, |x31(t)| ≤ 031,
0.36, |x31(t)| > 031,

a3111(x11(t)) =

{
0.98, |x11(t)| ≤ 011,
0.1, |x11(t)| > 011,

a3121(x21(t)) =

{
−0.58, |x21(t)| ≤ 021,
0.12, |x21(t)| > 021,

b1121(x21(t)) =

{
0.36, |x21(t)| ≤ 021,
0.21, |x21(t)| > 021,

b1131(x31(t)) =

{
−0.52, |x31(t)| ≤ 031,
0.62, |x31(t)| > 031,

b2111(x11(t)) =

{
0.85, |x11(t)| ≤ 011,
0.29, |x11(t)| > 011,
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b2131(x31(t)) =

{
0.85, |x31(t)| ≤ 031,
−0.39, |x31(t)| > 031,

b3111(x11(t)) =

{
−0.98, |x11(t)| ≤ 011,
−0.95, |x11(t)| > 011,

b3121(x21(t)) =

{
−0.65, |x21(t)| ≤ 021,
−0.72, |x21(t)| > 021.

c1121(x21(t)) =

{
−0.52, |x21(t)| ≤ 021,
0.47, |x21(t)| > 021,

c1131(x31(t)) =

{
0.44, |x31(t)| ≤ 031,
0.48, |x31(t)| > 031,

c2111(x11(t)) =

{
−0.46, |x11(t)| ≤ 011,
−0.2, |x11(t)| > 011,

c2131(x31(t)) =

{
−0.55, |x31(t)| ≤ 031,
−0.47, |x31(t)| > 031,

c3111(x11(t)) =

{
0.68, |x11(t)| ≤ 011,
0.35, |x11(t)| > 011,

c3121(x21(t)) =

{
0.81, |x21(t)| ≤ 021,
−0.67, |x21(t)| > 021.

Let 011 = 021 = 031 = 1. We set the action func-
tions as fki(x) = tanh(x). The time-varying delays and dis-
tributed delays are τpjki(t) = 0.5cos(t) + 0.5 and ρ(t) =
0.5sin(t) + 0.5, respectively. According to Assumption 1,
we have Lki = Lpj = 1, F = 1. By calculating,
we get τ1 = 1, τ2 = 0.5 and ρ1 = 1. The initial val-
ues are set as [x11(t), x21(t), x31(t)] = [1.05, 0.25,−0.75],
[y11(t), y21(t), y31(t)] = [0.3, 0.45, 0.2].

Fig.2 represents the drive system (2) without stochastic
perturbations. It has chaotic attractor with the initial val-
ues given above. Fig.3 depicts the state trajectories of the
drive system (2) and the response system (4). According

FIGURE 2. Phase trajectories of system (2) (corresponds to x) and
system (4) (corresponds to y) with mixed delays and without
stochastic perturbations.

FIGURE 3. State trajectories of drive system (2) (corresponds to x) and
response system (4) (corresponds to y).

FIGURE 4. State trajectories of error between the drive system (2) and the
response system (4) without stochastic perturbations. . (a) The error
without controller. (b) The error with nonlinear controller.

to the conditions of Theorem 1, the nonlinear controllers
are set as µ11(t) = −3e11(t) − 4sign(e11(t)), µ21(t) =
−4e21(t)− 5sign(e21(t)), µ31(t) = −3e31(t)− 4sign(e31(t)).
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FIGURE 5. Phase trajectories of system (2) (corresponds to x) and system
(4)(corresponds to y) without distributed time delays and stochastic
perturbations.

FIGURE 6. State trajectories of drive system (2) (corresponds to x) and
response system (4) (corresponds to y).

Then (a) and (b) in Fig.4 describe the state trajectories of
the error system without controllers and with nonlinear con-
trollers, respectively. It implies that the drive system (2)
and the corresponding response system (4) are mean square
exponential synchronization.

Then we investigate system (2) and system (4) without dis-
tributed delays and stochastic perturbations. Under the same
parameters, Fig.5 represents the drive system (2) without
distributed delays and stochastic perturbations. It has chaotic
attractor with the initial values given above. Fig.6 depicts the
state trajectories of system (2) and system (4). According to
the conditions of Corollary 1, the nonlinear controllers are set
as µ11(t) = −2e11(t) − 3sign(e11(t)), µ21(t) = −3e21(t) −
3sign(e21(t)), µ31(t) = −3e31(t) − 4sign(e31(t)). According
to the conditions of Corollary 2, the linear controllers are
set as µ11(t) = −2e11(t), µ21(t) = −3e21(t), µ31(t) =
−3e31(t). Then Fig.7 describes the state trajectories of the
error system without controllers, with nonlinear controllers
and with linear controllers, it implies that the drive system (2)
and the corresponding response system (4) are mean square
exponential synchronization.

FIGURE 7. State trajectories of error between the drive system (2) and the
response system (4) without distributed time delays and stochastic
perturbations. (a) The error without controller. (b) The error with
nonlinear controller. (c) The error with linear controller.

Example 2: We consider the following stochastic
memristive MAMNNs with mixed delays and stochastic
perturbations, there are three fields and one neuron in
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each field.

dxk1(t) =
[
Ik1 − dk1(xk1(t))xk1(t)

+

3∑
p=1,
p6=k

ap1k1(xk1(t))fp1(xp1(t))

+

3∑
p=1,
p6=k

bp1k1(xk1(t))fp1(xp1(t − τp1k1(t)))

+

3∑
p=1,
p6=k

cp1k1(xk1(t))
∫ t

t−ρ(t)
fp1(xp1(s))ds

]
dt

+ σk1

(
t, xp1(t), xp1(t − τp1k1(t))

)
dω(t), (18)

where

d11(x11(t)) =

{
1.3, |x11| ≤ 011,
1.4, |x11| > 011,

d21(x21(t)) =

{
1.1, |x11| ≤ 021,
1.2, |x11| > 021,

d31(x31(t)) =

{
1.5, |x31| ≤ 031,
1.7, |x31| > 031,

a1121(x21(t)) =

{
−0.25, |x21(t)| ≤ 021,
0.32, |x21(t)| > 021,

a1131(x31(t)) =

{
0.26, |x31(t)| ≤ 031,
0.36, |x31(t)| > 031,

a2111(x11(t)) =

{
−1.3, |x11(t)| ≤ 011,
1.4, |x11(t)| > 011,

a2131(x31(t)) =

{
1.54, |x31(t)| ≤ 031,
0.32, |x31(t)| > 031,

a3111(x11(t)) =

{
1.8, |x11(t)| ≤ 011,
1.1, |x11(t)| > 011,

a3121(x21(t)) =

{
−0.68, |x21(t)| ≤ 021,
0.12, |x21(t)| > 021,

b1121(x21(t)) =

{
0.32, |x21(t)| ≤ 021,
0.24, |x21(t)| > 021,

b1131(x31(t)) =

{
−0.54, |x31(t)| ≤ 031,
0.42, |x31(t)| > 031,

b2111(x11(t)) =

{
1.48, |x11(t)| ≤ 011,
1.19, |x11(t)| > 011,

b2131(x31(t)) =

{
0.35, |x31(t)| ≤ 031,
−0.49, |x31(t)| > 031,

b3111(x11(t)) =

{
−0.88, |x11(t)| ≤ 011,
−0.75, |x11(t)| > 011,

b3121(x21(t)) =

{
−0.45, |x21(t)| ≤ 021,
−0.22, |x21(t)| > 021.

c1121(x21(t)) =

{
0.72, |x21(t)| ≤ 021,
0.42, |x21(t)| > 021,

c1131(x31(t)) =

{
−0.54, |x31(t)| ≤ 031,
0.68, |x31(t)| > 031,

c2111(x11(t)) =

{
−0.86, |x11(t)| ≤ 011,
0.8, |x11(t)| > 011,

c2131(x31(t)) =

{
0.84, |x31(t)| ≤ 031,
0.72, |x31(t)| > 031,

c3111(x11(t)) =

{
−0.58, |x11(t)| ≤ 011,
0.63, |x11(t)| > 011,

c3121(x21(t)) =

{
−0.76, |x21(t)| ≤ 021,
−0.82, |x21(t)| > 021.

Let 011 = 021 = 031 = 1. We set the action func-
tions as fki(x) = tanh(x). The time-varying delays and dis-
tributed delays are τpjki(t) = 0.5cos(t) + 0.5 and ρ(t) =
0.5sin(t) + 0.5, respectively. According to Assumption 1,
we have Lki = Lpj = 1, F = 1. By calculating, we get
τ1 = 1, τ2 = 0.5 and ρ1 = 1. We set the stochastic
perturbations are σki(t, xpj(t), xpj(t − τpjki(t))) = −xpj(t) −
0.2xpj(t − τpjki(t)), then we have α = 2, β = 0.1. The initial
values are set as [x11(t), x21(t), x31(t)] = [1.05, 0.25,−0.75],
[y11(t), y21(t), y31(t)] = [0.3, 0.45, 0.2].

Fig.8 represents the drive system (6) with mixed delays
and stochastic perturbations. It has chaotic attractor with the
initial values given above. Fig.9 depicts the state trajectories
of the drive system (6) and the response system (7). Accord-
ing to the conditions of Theorem 2, the nonlinear controllers
are set as µ11(t) = −7e11(t) − 7sign(e11(t)), µ21(t) =
−3e21(t)− 3sign(e21(t)), µ31(t) = −4e31(t)− 5sign(e31(t)).
Then Fig.10 describes the state trajectories of error system

FIGURE 8. Phase trajectories of system (6) (corresponds to x) and
system (7) (corresponds to y) with mixed delays and stochastic
perturbations.
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FIGURE 9. State trajectories of system (6) (corresponds to x) and
system (7) (corresponds to y).

FIGURE 10. State trajectories of error between the drive system (6) and
the response system (7) with mixed delays and stochastic perturbations.
(a) The error without controller. (b) The error with nonlinear controller.

without controllers and with nonlinear controllers, it implies
that the drive system (6) and the corresponding response
system (7) are mean square exponential synchronization.

Then we investigate the drive system (6) and the response
system (7) without distributed time delays. Under the
same parameters, we set the stochastic perturbations are
σki(t, xpj(t), xpj(t−τpjki(t))) = −1.4xpj(t)−0.2xpj(t−τpjki(t)),

FIGURE 11. Phase trajectories of system (6) (corresponds to x) and
system (7) (corresponds to y) without distributed time delays.

FIGURE 12. State trajectories of system (6) (corresponds to x) and
system (7) (corresponds to y).

then we have α = 4, β = 0.1. Then the drive system (6)
has chaotic attractor with the initial values which can be
seen in Fig.11. Fig.12 depicts the state trajectories of the
drive system (6) and the response system (7). According
to the conditions of Corollary 3, the nonlinear controllers
are set as µ11(t) = −7e11(t) − 4sign(e11(t)), µ21(t) =
−3e21(t)− 2sign(e21(t)), µ31(t) = −4e31(t)− 4sign(e31(t)).
Then Fig.13 describes the state trajectories of error system
without controllers and with nonlinear controllers, it implies
that the drive system (6) and the corresponding response sys-
tem (7) are mean square exponential synchronization under
the controller.
Example 3: In this example, the secret communication

based on the memristive MAMNNs is realized by hiding the
signals in the chaotic system. We consider the memristive
MAMNNs without distributed delays and stochastic pertur-
bation, there are three fields and one neuron in each field.
In the following, the specific steps are displayed:

1) Based on the drive-response concept, we choose the
driver system and response system without distributed
delays and stochastic perturbations.

2) An error system is constructed as follows:

eki(t) = yki(t)− xki(t),
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FIGURE 13. State trajectories of error between the drive system (6) and
the response system (7) without distributed time delays. (a) The error
without controller. (b) The error with nonlinear controller.

and according to the conditions of Corollary 2, the lin-
ear controllers are set as µ11(t) = −3e11(t), µ21(t) =
−2e21(t), µ31(t) = −3e31(t).

3) Transmitter: suppose the plaintext signals to be sent are
r11(t) = 0.05sin(t), r21(t) = 0.1cos(0.8t)+ 0.06sin(t)
and r31(t) = 0.2sin(t) − 2tanh(t). The plaintext sig-
nals rki(t) and the adaptive tracking signals vki(t) are
introduced into the drive system to generate the corre-
sponding chaotic signal xki(t) as follows:

dxk1(t)
dt

= Ik1 − dk1(xk1(t))xk1(t)

+

3∑
p=1,
p6=k

ap1k1(xk1(t))fp1(xp1(t))

+

3∑
p=1,
p6=k

bp1k1(xk1(t))fp1(xp1(t − τp1k1(t)))

+qk1 ∗ (rk1(t)− vk1(t)),
dvk1(t)
dt

= q̂k1 ∗ (rk1(t)− vk1(t)),

(19)

where the parameters are set the same as in Example 1,
q11 = q21 = q31 = 0.1, q̂11 = q̂31 = q̂31 = 1.
The initial values of v11(t), v21(t) and v31(t) are
v11(0) = v21(0) = v31(0) = 0. The chaotic signals
xki(t) are superimposed with the plaintext signals rki(t)
to produce encrypted transmission signals ski(t) =
xki(t)+ rki(t).

4) Receiver: the received encrypted signals ski(t), adap-
tive tracking signals Vki(t) and linear controller are
introduced into the response system to generate corre-
sponding chaotic signals yki(t). So the corresponding
response system is defined as follows:

dyk1(t)
dt

= Ik1 − dk1(yk1(t))yk1(t)

+

3∑
p=1,
p 6=k

ap1k1(yk1(t))fp1(yp1(t))

+

3∑
p=1,
p 6=k

bp1k1(yk1(t))fp1(yp1(t − τp1k1(t)))

+µk1(t)+qk1 ∗ (sk1(t)−yk1(t)−Vk1(t)),
dVk1(t)
dt

= q̂k1 ∗ (sk1(t)− yk1(t)− Vk1(t)),

(20)

where the initial values of V11(t), V21(t) and V31(t) are
V11(0) = V21(0) = V31(0) = 0. Then, according to
the chaotic signals yki(t) and received encrypted signals
ski(t), the decrypted plaintext signals Rki(t) = ski(t) −
yki(t) are obtained.

The (a) in Fig.14 represents time response curves of the
plaintext signals rk1(t), the decrypted signals Rk1(t) and
encrypted transmission signals sk1(t) of three fields, respec-
tively. The (b) in Fig.14 represents time response curves
of the plaintext signal r(t), the decrypted signal R(t),and
encrypted transmission signal s(t) of each field, respectively.
The (c) in Fig.14 describes the error between the plaintext
signals rk1(t) and the decrypted signals Rk1(t) of three fields,
respectively.
Remark 5: Compared with literature [5], we utilize

the memristive MAMNNs model to encrypt the signals,
which makes the chaotic characteristics of signals more
complicated. Since three fields and one neuron in each
field are considered, we can transmit three signals at
the same time, which improves the utilization of the
networks.
Remark 6: Compared with traditional methods of secure

communication [1]–[4], we use memristors instead of resis-
tances in artificial neural networks, which makes the system
have the nonlinear and "memory" characteristics of mem-
ristors. At the same time, due to the complex structural
characteristics of MAMNNs, we use memristive MAMNNs
to realize secure communication, which will improve the
security of information transmission.
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FIGURE 14. The implementation of secure communication. (a) Plaintext
signals rk1(t), decrypted signals Rk1(t) and encrypted transmission
signals sk1(t). (b) Plaintext signal r (t), decrypted signal R(t) and
encrypted transmission signal s(t) of each field. (c) Error.

VI. CONCLUSION
Traditional biological neural networks can not reflect the
variable synaptic weights when simulating associative mem-
ory. In this paper, we propose a novel memristive MAMNNs

model, which considers time-varying delays, distributed time
delays and stochastic perturbations. Then the synchronization
of our proposed model are analyzed by creating appropri-
ate controllers. In the proposed approach, we obtain some
less conservative results by removing certain strict condi-
tions. By constructing a suitable Lyapunov function, using
the stochastic differential inclusions and some inequality
techniques, some sufficient criteria for guaranteeing the syn-
chronization of drive-response system are obtained. Based
on the synchronization criteria and memristive MAMNNs,
we design a secure communication scheme. Furthermore,
some numerical simulations are given to demonstrate the
effectiveness of our main results.

APPENDIX A
PROOF OF THEOREM 1
If the Eq.(8) in Theorem 1 holds, there exists a small enough
constant λ > 0 such that

hki ≤ min
{
d́ki −

1
2
λ−

1
2

m∑
p=1,
p 6=k

np∑
j=1

[
á2pjkiL

2
pj + b́

2
pjkiL

2
pj

+ ρ1ć2pjkiL
2
pj + 1+

eλτ1

1− τ2
+ ρ1eλρ1

]
,

× d̀ki −
1
2
λ−

1
2

m∑
p=1,
p 6=k

np∑
j=1

[
à2pjkiL

2
pj + b̀

2
pjkiL

2
pj

+ ρ1c̀2pjkiL
2
pj + 1+

eλτ1

1− τ2
+ ρ1eλρ1

]}
. (21)

Then we consider the following Lyapunov function:

V
(
e(t), t

)
= eλte2ki(t)

+
1

1− τ2

m∑
p=1,
p 6=k

np∑
j=1

∫ t

t−τpjki(t)
e2pj(s)e

λ(s+τ1)ds

+

m∑
p=1,
p 6=k

np∑
j=1

∫ 0

−ρ1

∫ t

t+s
e2pj(z)e

λ(z+ρ1)dzds. (22)

Due to the features of memristor, Theorem 1will be proved
in nine cases.

¬ |xki(t)| < 0ki, |yki(t)| < 0ki.
The drive system (2) can be written as follows:

dxki(t)
dt
= Iki − d́kixki(t)+

m∑
p=1,
p 6=k

np∑
j=1

ápjkifpj(xpj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

b́pjkifpj(xpj(t − τpjki(t)))

+

m∑
p=1,
p 6=k

np∑
j=1

ćpjki

∫ t

t−ρ(t)
fpj(xpj(s))ds. (23)
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The response system (4) can be written as follows:

dyki(t)
dt
= Iki − d́kiyki(t)+

m∑
p=1,
p6=k

np∑
j=1

ápjkifpj(ypj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

b́pjkifpj(ypj(t − τpjki(t)))

+

m∑
p=1,
p 6=k

np∑
j=1

ćpjki

∫ t

t−ρ(t)
fpj(ypj(s))ds+µki(t). (24)

In the following, we will get the error system such that

deki(t)
dt
= µki(t)− d́kieki(t)+

m∑
p=1,
p 6=k

np∑
j=1

ápjki f̃pj(epj(t))

+

m∑
p=1,
p6=k

np∑
j=1

b́pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

ćpjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds, (25)

where f̃pj(epj(t)) = fpj(ypj(t)) − fpj(xpj(t)),f̃pj(epj(t −
τpjki(t))) = fpj(ypj(t − τpjki(t))) − fpj(xpj(t − τpjki(t))),

∫ t
t−ρ(t)

f̃pj(epj(s))ds =
∫ t
t−ρ(t) fpj(ypj(s))ds−

∫ t
t−ρ(t) fpj(xpj(s))ds.

According to It ô’s differential formula and Assumption 1,
along the trajectory of system (25), we get

L V
(
e(t), t

)
≤ eλt

{
(λ− 2d́ki + 2hki)e2ki(t)− 2ηki|eki(t)|

+ 2|eki(t)|
m∑

p=1,
p 6=k

np∑
j=1

ápjkiLpj|epj(t)|

+ 2|eki(t)|
m∑

p=1,
p 6=k

np∑
j=1

b́pjkiLpj|epj(t − τpjki(t))|

+, 2|eki(t)|
m∑

p=1,
p6=k

np∑
j=1

ćpjkiLpj

∫ t

t−ρ(t)
|epj(s)|ds

+
eλτ1

1− τ2

m∑
p=1,
p 6=k

np∑
j=1

e2pj(t)+
m∑

p=1,
p 6=k

np∑
j=1

e2pj(t)

× ρ1eλρ1 −
m∑

p=1,
p6=k

np∑
j=1

e2pj(t − τpjki(t))

−

m∑
p=1,
p6=k

np∑
j=1

∫ t

t−ρ(t)
e2pj(s)ds

}
. (26)

By using the mean-value inequality, then we have

2|eki(t)|ápjkiLpj|epj(t)|

≤ á2pjkiL
2
pje

2
ki(t)+ e

2
pj(t), 2|eki(t)|b́pjkiLpj|epj(t − τpjki(t))|

≤ b́2pjkiL
2
pje

2
ki(t)+ e

2
pj(t − τpjki(t)), 2|eki(t)|ćpjkiLpj

×

∫ t

t−ρ(t)
|epj(s)|ds ≤ ρ1ć2pjkiL

2
pje

2
ki(t)+

∫ t

t−ρ(t)
e2pj(s)ds.

Then we get

L V
(
e(t), t

)
≤ eλt

{[
λ− 2d́ki + 2hki +

m∑
p=1,
p 6=k

np∑
j=1

(á2pjkiL
2
pj

+ b́2pjkiL
2
pj + ρ1ć

2
pjkiL

2
pj)
]
e2ki(t)+

[
1+

eλτ1

1− τ2

+ ρ1eλρ1
] m∑
p=1,
p 6=k

np∑
j=1

e2pj(t)
}

= eλt
{[
λ− 2d́ki + 2hki +

m∑
p=1,
p 6=k

np∑
j=1

(á2pjkiL
2
pj

+ b́2pjkiL
2
pj + ρ1ć

2
pjkiL

2
pj + 1+

eλτ1

1− τ2

+ ρ1eλρ1 )
]
e2ki(t)

}
. (27)

According to Eq.(21), we obtain L V
(
e(t), t

)
≤ 0. Fur-

thermore, we have

E
(
V (e(t), t)

)
− E

(
V (0, 0)

)
≤ E

∫ t

0
L V

(
e(t), t

)
dt ≤ 0.

(28)

Owing to

E
(
V (e(0), 0)

)
≤ max

1≤p≤m,p 6=k
max
1≤j≤np

{
1+

τ1eλτ1

1− τ2

+ ρ21e
λρ1
}

sup
−τ<s<0

E|eki(s)|2

= M sup
−τ<s<0

E|eki(s)|2. (29)

On the basis of Eq.(28), we get

E
(
V (e(0), 0)

)
≥ E

(
V (e(t), t)

)
≥ eλtE|eki(t)|2.

Therefore, we gain

E|eki(t)|2 ≤ Me−λt sup
−τ<s<0

E|eki(s)|2,

this implies drive system (2) and response system (4) are
mean squre exponential synchronization.

­ |xki(t)| > 0ki, |yki(t)| > 0ki.
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The drive system (2) can be written as follows:

dxki(t)
dt
= Iki − d̀kixki(t)+

m∑
p=1,
p 6=k

np∑
j=1

àpjkifpj(xpj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

b̀pjkifpj(xpj(t − τpjki(t)))

+

m∑
p=1,
p 6=k

np∑
j=1

c̀ pjki
∫ t

t−ρ(t)
fpj(xpj(s))ds. (30)

The response system (4) can be written as follows:

dyki(t)
dt
= µki(t)− d̀kiyki(t)+

m∑
p=1,
p 6=k

np∑
j=1

àpjkifpj(ypj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

b̀pjkifpj(ypj(t − τpjki(t)))

+

m∑
p=1,
p 6=k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
fpj(ypj(s))ds+ Iki. (31)

In the following, we will get the error system such that

deki(t)
dt
= µki(t)− d̀kieki(t)+

m∑
p=1,
p 6=k

np∑
j=1

àpjki f̃pj(epj(t))

+

m∑
p=1,
p6=k

np∑
j=1

b̀pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds. (32)

Then we get

L V
(
e(t), t

)
≤ eλt

{[
λ− 2d̀ki + 2hki +

m∑
p=1,
p 6=k

np∑
j=1

(à2pjkiL
2
pj

+ b̀2pjkiL
2
pj + ρ1c̀

2
pjkiL

2
pj + 1+

eλτ1

1− τ2

+ ρ1eλρ1 )
]
e2ki(t)

}
. (33)

According to Eq.(21) and Eq.(28), we know that drive sys-
tem (2) and response system (4) are mean squre exponential
synchronization.

® |xki(t)| < 0ki, |yki(t)| > 0ki.
The drive system (2) can be written as

system (23), the response system (4) can be written as
system (31). In the following, we will get the error system

such that

deki(t)
dt
= µki(t)− d̀kieki(t)+

m∑
p=1,
p 6=k

np∑
j=1

àpjki f̃pj(epj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

b̀pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p=1,
p 6=k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds+ (d́ki

− d̀ki)xki(t)+
m∑

p=1,
p 6=k

np∑
j=1

(àpjki − ápjki)fpj(xpj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

(b̀pjki − b́pjki)fpj(xpj(t − τpjki(t)))

+

m∑
p=1,
p 6=k

np∑
j=1

(c̀pjki − ćpjki)
∫ t

t−ρ(t)
fpj(xpj(s))ds. (34)

Then, according to Itô’s differential formula and
Assumption 1, along the trajectory of system (34),
we get

L V
(
e(t), t

)
≤ eλt

{[
λ− 2d̀ki + 2hki +

m∑
p=1,
p6=k

np∑
j=1

(à2pjkiL
2
pj

+ b̀2pjkiL
2
pj + ρ1c̀

2
pjkiL

2
pj + 1+

eλτ1

1− τ2

+ ρ1eλρ1 )
]
e2ki(t)+ 2

[
(d́ki − d̀ki)0ki

+

m∑
p=1,
p 6=k

np∑
j=1

(àpjki − ápjki)Lpj0pj

+

m∑
p=1,
p 6=k

np∑
j=1

[(b̀pjki − b́pjki)F

+ (c̀pjki − ćpjki)ρ1F]− ηki
]
|eki(t)|

}
. (35)

According to Eq.(9) and Eq.(21), we obtain
L V

(
e(t), t

)
≤ 0. On the basis of Eq.(28) and Eq.(29),

we know that drive system (2) and response system (4) are
mean squre exponential synchronization.

¯ |xki(t)| > 0ki, |yki(t)| < 0ki.
The drive system (2) can be written as system (24),

the response system (4) can be written as system (30).
In the following, we will get the error system
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such that

deki(t)
dt
= µki(t)− d̀kieki(t)+

m∑
p=1,
p6=k

np∑
j=1

àpjki f̃pj(epj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

b̀pjki f̃pj(epj(t − τpjki(t)))

+

m∑
p=1,
p 6=k

np∑
j=1

c̀pjki

∫ t

t−ρ(t)
f̃pj(epj(s))ds+ (d̀ki

− d́ki)yki(t)+
m∑

p=1,
p 6=k

np∑
j=1

(ápjki − àpjki)fpj(ypj(t))

+

m∑
p=1,
p 6=k

np∑
j=1

(b́pjki − b̀pjki)fpj(ypj(t − τpjki(t)))

+

m∑
p=1,
p6=k

np∑
j=1

(ćpjki − c̀pjki)
∫ t

t−ρ(t)
fpj(ypj(s))ds. (36)

According to Itô’s differential formula and Assumption 1,
we have

L V
(
e(t), t

)
≤ eλt

{[
λ− 2d̀ki + 2hki +

m∑
p=1,
p6=k

np∑
j=1

(à2pjkiL
2
pj

+ b̀2pjkiL
2
pj + ρ1c̀

2
pjkiL

2
pj + 1+

eλτ1

1− τ2
+ ρ1eλρ1 )

]
e2ki(t)+ 2

[
(d̀ki − d́ki)0ki

+

m∑
p=1,
p 6=k

np∑
j=1

(ápjki − àpjki)Lpj0pj

+

m∑
p=1,
p 6=k

np∑
j=1

[
(b́pjki − b̀pjki)F

+ (ćpjki − c̀pjki)ρ1F]− ηki
]
|eki(t)|

}
. (37)

According to Eq.(9) and Eq.(21), we obtain
L V

(
e(t), t

)
≤ 0. On the basis of Eq.(28) and Eq.(29),

we know that drive system (2) and response system (4) are
mean squre exponential synchronization.

° |xki(t)| < 0ki, |yki(t)| = 0ki.
± |xki(t)| = 0ki, |yki(t)| < 0ki.
² |xki(t)| = 0ki, |yki(t)| = 0ki.
³ |xki(t)| = 0ki, |yki(t)| > 0ki.
´ |xki(t)| > 0ki, |yki(t)| = 0ki.
The rest of five cases are similar to cases ® and ¯, and

the process of proof is omitted here. To sum up, Theorem 1
is proved.

APPENDIX B
PROOF OF THEOREM 2
If the Eq.13 in Theorem 2 holds, there exists a small enough
constant λ > 0 such that

hki ≤ min
{
d́ki −

1
2
λ−

1
2

m∑
p=1,
p6=k

np∑
j=1

[
á2pjkiL

2
pj + b́

2
pjkiL

2
pj

+ ρ1ć2pjkiL
2
pj + 1+ α + eλτ1

1+ β
1− τ2

+ ρ1eλρ1
]
,

× d̀ki −
1
2
λ−

1
2

m∑
p=1,
p 6=k

np∑
j=1

[
à2pjkiL

2
pj + b̀

2
pjkiL

2
pj

+ ρ1c̀2pjkiL
2
pj + 1+ α + eλτ1

1+ β
1− τ2

+ ρ1eλρ1
]}
,

(38)

Then we consider the following Lyapunov function:

V
(
e(t), t

)
= eλte2ki(t)

+
1+ β
1− τ2

m∑
p=1,
p 6=k

np∑
j=1

∫ t

t−τpjki(t)
e2pj(s)e

λ(s+τ1)ds

+

m∑
p=1,
p 6=k

np∑
j=1

∫ 0

−ρ1

∫ t

t+s
e2pj(z)e

λ(z+ρ1)dzds.

(39)

Due to the characteristics of memristor, the theorem will
be proved in nine cases. The process of proof are similar to
Theorem 1, so it is omitted here. To sum up, Theorem 2 is
proved.
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