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Abstract 20 

Crop models require information on both weather and agronomic decisions to simulate crop productivity 21 

and to design adaptation strategies. Due to the lack of observational data, previous studies used 22 

different approaches to determine sowing dates and cultivar parameters. However, the timing of harvest 23 

has not yet been sufficiently analyzed. 24 

Here we propose an algorithm to determine location-specific maturity (or harvest) dates for applications 25 

in global modelling studies. Given a sowing date and the climatic conditions, the algorithm returns a 26 

suitable maturity date, based on crop physiological parameters and agronomic principles. 27 

We test the method on a global land area with a spatial resolution of 0.5° against global reported 28 

datasets for major grain crops: winter-wheat, spring-wheat, rice, maize, sorghum and soybean. A single 29 

set of rules is able to largely reproduce the observed harvest dates of the six grain crops globally, with a 30 

mean absolute error of 19 (maize) to 45 (rice) days. In temperate regions, the temperature seasonality is 31 

the major driver of cropping calendars. In sub-tropical regions, crops are grown to match water 32 

availability. In the case of limiting growing seasons, the crop cycle is shortened or extended to avoid 33 

stressful periods. In the case of long-lasting favorable conditions the crop cycle is shorter than what the 34 

growing season would allow. 35 

We find that cropping periods can be largely defined by climate and crop physiological traits. The timing 36 

of the reproductive phase is shown to be a general criterion for selecting grain crops cultivars. This work 37 

will allow for dynamically representing adaptation to climate change by adjusting cultivars and 38 

represents a first step towards improved crop phenology simulations by global-scale crop models. 39 

Keywords 40 

cropping calendar; maturity date; growing period; cultivar; phenology; temperature threshold; 41 

agricultural management; modelling. 42 
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1. Introduction 44 

According to the fifth IPCC Assessment Report (IPCC, 2013) over the 21st century global mean 45 

temperatures will continue to rise, with stronger trends over land, and future precipitation changes will 46 

result in exacerbated patterns of wet and dry regions. Changes in climatic factors affect crop growth and 47 

therefore the productivity of agricultural systems, posing challenges to the sustenance of human 48 

societies (Asseng et al., 2015). Realistic representation of agricultural systems is a major concern in the 49 

context of global change studies (Makowsky et al., 2014). Agronomic practices, including crop 50 

management, characterize agroecosystems and are crucial in defining adaptation strategies (Ainsworth 51 

& Ort, 2010; Tomic et al., 2011; Porter et al., 2014). The choice of crop cultivar is the foremost 52 

management option to optimize crop productivity, and to adapt to climate change (e.g. Singh et al., 53 

2013; Macholdt & Honermeier, 2016; Challinor et al., 2016). Crop cultivars are bred for different traits, 54 

such as phenology, habit, productivity, vigor, resistance to pathogens, seed quality, etc. Out of these, 55 

phenological traits are prioritized in most cases, because of the importance in matching the plant cycle 56 

to growing season conditions, such as temperature or water supply (Sedgley, 1991; Craufurd & Wheeler, 57 

2009). 58 

Crop phenological development constitutes a relevant source of crop model uncertainties (Koehler et al., 59 

2013; Jägermeyr & Frieler, 2018). Models typically simulate the crop phenology based on the thermal 60 

time concept (Ritchie & NeSmith, 1991; Wang et al., 2017). Starting from the sowing (or planting) date 61 

growing-degree-days are accumulated until thermal unit requirements are met, corresponding to crop 62 

maturity (or harvest) date (e.g. Kucharik & Brye, 2003). Reduction factors can be included to eventually 63 

simulate the sensitivity to photoperiod and vernalization of some crops. Thermal unit requirements are 64 

therefore key parameters of the majority of crop models, that are used to represent the cultivar diversity 65 

and that are typically the first to be calibrated for matching the crop cycle duration (Archontoulis et al., 66 

2014). 67 
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Due to a lack of information, different approaches have been developed to represent cultivar diversity 68 

distribution in global-scale models. Before the first global datasets on sowing and harvest dates were 69 

published (Portmann et al., 2010; Sacks et al., 2010), Bondeau et al. (2007) modelled crop-specific 70 

sowing dates as a function of climate and the thermal unit requirements as directly dependent on the 71 

sowing date, so that e.g. crops sown in warmer climates would require more growing-degree-days to 72 

complete their cycle. Similarly, Lindeskog et al. (2013) used a 10-years running mean of thermal unit 73 

requirements between default sowing and harvest date limits. 74 

Global datasets can be used to prescribe sowing dates and to directly calibrate crop models in order to 75 

match observed harvest dates (Deryng et al., 2011; Drewniak et al., 2013; Elliott et al., 2015). Such 76 

approach is possible if observations are available, which limits it applicability to only those areas where 77 

the crop is currently grown and observational data sets are of sufficiently good quality. Moreover, if 78 

applied under e.g. future climate scenarios, it does not allow for accounting for eventual adjustments in 79 

cultivars selection so that assessments of climate change impacts on agricultural productivity often 80 

assume static cultivar selection (Rosenzweig et al. 2014). 81 

To overcome this, van Bussel et al. (2015) derived algorithms to compute location-specific phenological 82 

parameters (thermal unit requirements and photoperiod factors) from climatic variables. The algorithm, 83 

tested on wheat and maize only, can be applied also outside the current cropland as well as under 84 

climate change. One limitation is that it requires a model that uses the specific response functions to 85 

temperature and photoperiod applied by the authors. However, crop models can be very diverse in the 86 

mathematical functions they use, which themselves constitute a large source of model diversity and of 87 

uncertainty (Wang et al., 2017). 88 

Another approach is to estimate sowing and harvest dates, and to use these for model phenology 89 

parametrization, similarly to prescribing observed datasets (Mathison et al., 2018). Sacks et al. (2010) 90 

found that sowing dates of wheat and maize are dependent on temperature, and can be predicted by 91 

fixed temperature thresholds, especially in temperate regions. Waha et al. (2012) simulated sowing 92 
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dates of several crops at the global scale, taking into account both temperature and precipitation. Other 93 

approaches were proposed for regional applications, to estimate sowing dates based on soil 94 

temperature and soil moisture (Dobor et al., 2016) or both sowing and harvest dates based on the 95 

monsoon onset and retreat; (Mathison et al., 2018). 96 

In this paper we develop an algorithm to determine location-specific cropping periods for applications in 97 

global modelling studies so that adaptation in growing periods under climate change can be explicitly 98 

addressed. The approach can be used in combination with either prescribed or computed sowing dates. 99 

Given a sowing date, the algorithm returns a suitable maturity (or harvest) date, based on a) crop 100 

physiological parameters; b) climatic conditions; c) agronomic principles for maximizing crop 101 

productivity. We test the method on a global land area with a spatial resolution of 0.5° against global 102 

reported datasets.  103 

2. Methods 104 

2.1. Overview 105 

The purpose of the model is to estimate location-specific average maturity dates of grain crops. The 106 

model has been designed particularly for applications in global scale studies, to allow for calibrating long-107 

term average phenology (e.g. thermal unit requirements) in crop models, in order to represent 108 

geographical patterns of crop cultivar diversity and their adaptation. 109 

Only major grain crops were included in this study, in particular winter-wheat (Triticum sp. L.), spring-110 

wheat (Triticum sp. L.), rice (Oryza sativa L.), maize (Zea mays L.), sorghum (Sorghum bicolor L. Moench), 111 

and soybean (Glycine max L. Merr.). These crops have dry seeds (grains) as the harvestable product. 112 

Moreover, only rainfed cultivation systems were considered. 113 
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The model unit consists of two entities: a human-agent (individual farmer) and a grain crop species, and 114 

two location-specific exogenous drivers: the climate and the average crop sowing date. Farmers are 115 

characterized by their location (grid cell) and their knowledge about the best growing conditions for each 116 

crop. Crops are characterized by a set of parameters, which are the agronomic potential duration of their 117 

crop cycle (sowing to maturity) and the repartition of this cycle into a vegetative and a reproductive 118 

phase. The latter phase is, in turn, characterized by thresholds of base and optimum temperatures and 119 

of two different soil moisture indicators. The model is run on a global-land grid at 0.5° x 0.5° spatial 120 

resolution and returns for each grid cell a long-term average daily maturity date (state variable). 121 

In a given year, the farmer grows a given crop in a given location and makes a decision on the best 122 

sowing date and on which cultivar to grow. The model we present here focuses on the cultivar choice. 123 

Models for computing both average and yearly sowing dates are already available, therefore we use 124 

sowing dates as exogenous variables. Each farmer considers the experienced climate and seasonality of 125 

the previous 20 years, as well as crop-specific environmental limits to identify the most suitable growing 126 

period (sowing-to-maturity time) for the considered grain crop. 127 

The modelling workflow (Figure 1a) includes 1) the review of literature on crop physiological parameters, 128 

from which we derived crop temperature parameters; 2) the analysis of climate data and of observed 129 

crop calendars, from which we estimated the water availability parameters; 3) the development and 130 

parametrization of the rules to estimate the maturity date; 4) the evaluation of the rule against observed 131 

crop calendars; 5) the re-calibration of the parameters within the predefined range. Figure 1b shows the 132 

decision tree for the agronomic rules to compute maturity dates (grey box in Figure 1a). 133 
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 134 

Figure 1. Representation of the modelling workflow (a) and details of the agronomic rules to compute the maturity dates (b). 135 
In (a) the parallelograms represent inputs or outputs, circles represent parameters, rectangles represent processes. In the 136 
decision tree (b) diamonds represent decision and rectangles depict the maturity date rules. 137 

2.2. Model design concepts 138 

Phenological development largely determines the suitability of a crop for a certain range of 139 

environmental conditions (Slafer et al., 2015). We distinguish between “growing seasons” and “growing 140 

periods”. The growing season is the period of time in the year during which environmental conditions are 141 

suitable for a given crop to growth, while the crop growing period is the period of time from sowing to 142 

maturity (Waha et al., 2013). Therefore, the growing season might be longer than the growing period, as 143 

in some cases there is no advantage of growing a crop longer than needed for maximizing yield. 144 

We review agronomical principles for adapting crop phenology to local climate. We formalize these 145 

principles by 1) choosing a representation of the phenological cycle common to all grain crops; 2) 146 

deriving crop-specific environmental limits from literature; 3) defining a classification of agro-climatic 147 

zones; 4) defining rules to identify the most suitable cropping period for the considered grain crops in 148 

each location (grid cell). A cropping period is identified as “most suitable” when the reproductive growth 149 

phase is maximized while the risk of encountering stressful environmental conditions is minimized. 150 
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2.2.1. Agronomic principles for identifying the most suitable cropping period 151 

To be suitable, a grain crop must flower sufficiently early for seeds to mature while favorable conditions 152 

persist. However, if flowering is too precocious, plant growth may be insufficient to sustain seed yield 153 

(Lawn et al., 1995). The crop biomass production is indeed a cumulative process that requires time to 154 

first capture solar radiation to convert its energy into photosynthetic assimilates, and then to build the 155 

reproductive and the storage organs from these. The total biomass can be maximized by letting the crop 156 

use as much solar radiation as possible, by matching the length of the phenological development to the 157 

length of the growing season (Egli, 2011). In the case of short growing seasons, this way also highest 158 

grain yields are gained as often occurs at high latitudes (Peltonen-Sainio et al., 2015) or altitudes, or in 159 

very dry environments (Bodner et al., 2015). On the contrary, in the case of long and favorable seasons, a 160 

crop cycle shorter than the growing season may be sufficient to obtain the maximum grain yield. In 161 

particular, this is valid when the total growth length exceeds the duration where reproductive growth, 162 

and therefore yield, stops increasing (Egli, 2011). However, long growing seasons might also include or 163 

terminate with stressful periods. Under these conditions, the use of late- or early-maturing cultivars may 164 

be strategic for shifting the reproductive growth to a more favorable period, to avoid stresses and yield 165 

losses (Craufurd & Qi, 2001; Clerget et al., 2008; Egli, 2011). 166 

For an effective crop establishment, sowing should be carried out when soil temperature allows for rapid 167 

seed germination and seedlings emergence (Waha et al., 2012). Grain yield can be maximized when the 168 

crop is exposed to an optimum range of air temperature, and it progressively declines as temperature 169 

increases above this range (Hatfield et al., 2011). Grain crops are generally more sensitive to high 170 

temperatures during the reproductive than the vegetative development stages (Farooq et al., 2011; 171 

Singh et al., 2013). 172 

To enable yield formation, soil water content must be sufficient to sustain crop growth throughout the 173 

entire growing period. Ensuring an adequate water supply during grain filling is particularly critical for 174 



9 
 

grain yield in annual crops (Asseng et al., 2015). Therefore, in regions strongly characterized by 175 

precipitation seasonality, the growing season is dependent on the onset and cessation of the rain (Araya 176 

et al., 2010; Bodner et al., 2015; Mathison et al., 2018). 177 

2.2.2. Definition of the crop phenological cycle and environmental limits 178 

The duration of the total growing period (GP) can vary widely among locations, crops and cultivars. We 179 

set lower (GPmin) and upper (GPmax) limits as indications of the biological (or agronomical) potential of 180 

the crops. We consider the vegetative phase (GPV) to have a flexible duration, while we assume the 181 

reproductive phase (GPR) to have a constant length equivalent to its maximum if the growing period is 182 

long enough to support this (Table 1). The time allocated to vegetative and reproductive growth follows 183 

a similar pattern in all grain crops. According to Egli (2011), the actual yield formation period 184 

(reproductive phase) becomes nearly constant after approaching a maximum (horizontal asymptote). 185 

Conversely, the vegetative phase increases steadily with the total growth length. All crop species share 186 

the same relationship, except maize, which allocates a longer time to the reproductive phase. We call 187 

GPmaxrp the minimum growing period for attaining the longest reproductive phase. For all growing 188 

periods that are shorter than GPmaxrp, the GPR is shorter than the parameter specified in Table 1. 189 

However, as the model does not simulate anthesis dates, the length of the actual GPR is not explicitly 190 

computed. 191 

In this work we represent the crop cycle by just two main phases, namely the vegetative and the 192 

reproductive phase. There are a number of metrics to describe the phenological development of the 193 

grain crops (e.g. BBCH (Meier, 1997), Vn-Rn stages, etc.). In several crops, these two periods overlap, so 194 

that they can be arbitrarily defined depending on the scope of the work. Here we call vegetative (GPV) 195 

the phase from sowing, or more precisely from germination (BBCH 09), to the end of flowering (BBCH 196 

69), while we call reproductive (GPR) the phase lasting from the beginning of the grain development 197 

(BBCH 70) to the grain physiological maturity (BBCH 89). Additionally, we take into account the 198 
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senescence phase (MatHar) from physiological maturity to the stage of harvestable grain (BBCH 99) 199 

(Table 1). 200 

We use cardinal base temperatures for reproductive development (TbaseRD) and optimum temperatures for 201 

reproductive production (ToptRP) (Hatfield et al., 2011), as thresholds to identify the best time for the crop 202 

reproductive phase, and consequently for the end of the growing period of a crop in a given location 203 

(Table 2). Together with temperature, the crop cycle is largely influenced by water availability. We use 204 

water availability thresholds of PPETratio and PPETratioDIFF (Table 2) to identify the last convenient period 205 

for crop growth. 206 

2.2.3. Rule-based decision making 207 

We assume one farmer agent for each grid cell, and that all farmers have the same knowledge and crop 208 

cultivar availability. The decision making on the most suitable average maturity date for a certain crop 209 

and location is modelled by a set of rules (see below for the details). In a given year, the farmer takes 210 

into account the long-term average temperature and precipitation seasonality of the previous 20 years in 211 

that location and the environmental limits to the crop reproductive growth to define the growing period 212 

that maximizes the reproductive growth duration, while minimizing the risk of encountering stressful 213 

environmental conditions. We assume that the farmer does not rely on any information about pre-214 

season weather forecasts, but that he/she expects the weather of the year-of-simulation to be close to 215 

the previous 20 years average.  216 

  217 
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Table 1: Crop-specific parameters (growth phase lengths) of the maturity date function. Phases are defined by the BBCH scale 218 

(Meier, 1997). The total growing period (GP) is defined as the sum of vegetative (GPV) and reproductive (GPR) growing 219 

periods. GPmin and GPmax are the minimum and the maximum allowed GP, respectively. GPmaxrp is the minimum growing 220 

period for attaining the longest reproductive phase. The parameter GPR denotes the maximum length of the reproductive 221 

growing period for growing periods longer than GPmaxrp. 222 

growth phase vegetative reproductive limits of GP maturity to harvest 

BBCH (00-69) (70-89) (00-89) (89-99) 

parameter GPV GPR GPmin GPmax GPmaxrp  MatHar 

unit (days) (days) (days) (days) (days) (days) 

winter-wheat internal
(1)

 40
(2)

 60
(2)

 330
(3)

 120
(2)

 7
(4)

 

spring-wheat internal(1) 40(2) 60(2) 180(2) 120(2) 7(4) 

rice internal(1) 40(2) 60(2) 180(2) 120(2) 7(4) 

maize internal(1) 60(2) 60(2) 180(2) 120(2) 21(4) 

sorghum internal(1) 40(2) 60(2) 180(2) 120(2) 0(4) 

soybean internal(1) 40(2) 60(2) 180(2) 120(2) 21(4) 

(1) internally computed in the model 223 

(2) Egli (2011) 224 

(3) Rukhovich et al. (2007) 225 

(4) Elliott et al. (2015) 226 

  227 
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Table 2: Crop-specific parameters (temperature (°C) and water thresholds (dimensionless)) used in the maturity date function 228 

and their reference values from literature. TbaseRD is the base temperature for reproductive development, ToptRP is the 229 

optimum temperature for reproductive production (grain-filling), PPETratio is the ratio between precipitation and 230 

evapotranspiration in a month, PPETratioDIFF is the monthly trend in moisture conditions. Mean and ranges of parameter 231 

values found in literature are from five review studies (Porter & Gawith, 1999; Hatfield et al., 2011; Farooq et al., 2011; Singh 232 

et al., 2013; Sánchez et al., 2014). Temperature thresholds for sowing can be found in Waha et al. (2012). 233 

Parameter TbaseRD ToptRP PPETratio PPETratioDIFF 

Unit (°C) (°C) (-) (-) 

  values found in literature values used in 
this study

(1)
 

values found in literature values used in 
this study

(2)
 

values used in 
this study

(3)
 

values used in 
this study

(3)
 Crop mean range ref. mean range ref. 

winter-wheat 9.5 (9 - 12) a 1 20.7 (15 - 25) a 21 (12 - 25) NA NA 

 

1 
 

b 

 

15 (15 - 25) b 

 

    

          21.3 (12 - 22) c       

spring-wheat 9.5 (9 - 12) a 1 20.7 (15 - 25) a 25 (12 - 25) 0.5 (0 - 1) 0.5 (0.1-0.5) 

 

1 
 

b 

 

15 (15 - 25) b 

 

    

          21.3 (12 - 22) c       

rice 8   b 8 25 (23 - 26) b 24 (20 - 31) 1.0 (0 - 1) 0.5 (0.1-0.5) 

  20.7 (12 - 14) d   24.2 (20 - 31) d       

maize 8   b 7 24 (18 - 30) b 30 (18 - 30) 0.5 (0 - 1) 0.5 (0.1-0.5) 

 

8 (7 - 16) d 

 

< 30 
 

e 

 

    

          26.4 (25 - 30) d       

sorghum 8   b 8 25 (25 - 28) b 25 (25 - 28) 0.5 (0 - 1) 0.5 (0.1-0.5) 

soybean 6   b 6 23 (22 - 24) b 23 (22 - 27) 0.5 (0 - 1) 0.5 (0.1-0.5) 

          23 (23 - 27) e       

(1) values of TbaseRD used in this study were selected as the minimum of the overall range reported in 234 
the references.  235 
(2) values of ToptRP used in this study based on the sensitivity analysis. In brackets the overall range 236 
reported in the references. The selected value was chosen as the one that can best reproduce the 237 
observed cropping calendars (minimum MAE).  238 
(3) values of PPETratio and PPETratioDIFF used in this study based on the sensitivity analysis. In brackets 239 
the tested range. The selected value was chosen as the one that can best reproduce the observed 240 
cropping calendars (minimum MAE).  241 
(a) Porter & Gawith, 1999 242 
(b) Hatfield et al., 2011 243 
(c) Farooq et al., 2011 244 
(d) Sánchez et al., 2014 245 
(e) Singh et al., 2013 246 
  247 
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 248 

2.3. Model details 249 

2.3.1. Climate data and statistics 250 

In this model application, we simulate maturity dates for the year 2000. As we assume farmers to make 251 

decisions on the preceding 20 years, we computed monthly statistics for the period 1980-1999. Data of 252 

the following climatic variables were derived from the AgMERRA global climate forcing dataset with daily 253 

time steps (Ruane et al., 2015), that we use at 0.5° x 0.5° spatial resolution (Elliott et al., 2015). We 254 

computed the monthly mean temperature (T, °C) as the average of the daily mean temperature of all 255 

days of each month: the monthly cumulated precipitation (P, mm month-1) as the sum of the daily 256 

precipitation in that month; the monthly cumulated potential evapotranspiration (PET, mm month-1) as 257 

the sum of the daily PET rate in that month, estimated with the Priestley-Taylor equation (Priestley & 258 

Taylor, 1972), with a Priestley-Taylor coefficient of 1.391 (Gerten et al., 2004). Additionally we computed 259 

two monthly dryness indices based on P and PET. The simple P to PET ratio (PPETratio, dimensionless, Eq. 260 

1) indicates the water surplus or deficit with respect to the plants water demand (Thornthwaite, 1948; 261 

Sacks et al., 2010; van Wart et al., 2013), and the PPETratio difference of two consecutive months 262 

(PPETratioDIFF, dimensionless, Eq. 2) indicates the monthly trend in moisture conditions. If PPETratioDIFFm>0, 263 

the trend is declining, indicating that the following month (m+1) is dryer than month m. 264 

𝑃𝑃𝐸𝑇𝑟𝑎𝑡𝑖𝑜𝑚 = 𝑃𝑚 𝑃𝐸𝑇𝑚⁄           (Eq. 1) 265 

𝑃𝑃𝐸𝑇𝑟𝑎𝑡𝑖𝑜𝐷𝐼𝐹𝐹𝑚
= 𝑃𝑃𝐸𝑇𝑟𝑎𝑡𝑖𝑜𝑚 − 𝑃𝑃𝐸𝑇𝑟𝑎𝑡𝑖𝑜𝑚+1       (Eq. 2) 266 

Long-term daily averages are obtained by linear interpolation of the monthly statistics, to cope with 267 

fluctuations of daily values, and to allow for the consideration of monthly input data. 268 
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2.3.2. Agro-climatic zones classification 269 

Agro-climatic zones can be defined based on homogeneity in the weather variables that have greatest 270 

influence on crop growth and yield (van Wart et al., 2013), such as temperature and water availability. 271 

According to Waha et al. (2012) we define three climate zones (seasonality types) by the intra-annual 272 

variability (coefficient of variation, CV) of T (CVtemp) and P (CVprec). These are computed on monthly 273 

climate data:  274 

1) no temperature and no precipitation seasonality (NO SEAS.: CVprec ≤0.4 AND CVtemp ≤0.01);  275 

2) precipitation seasonality (PREC. SEAS.: CVprec >0.4 AND CVtemp ≤0.01);  276 

3) mixed seasonality (MIXED SEAS.: CVtemp >0.01 AND (CVprec ≤0.4 OR CVprec >0.4)). 277 

In addition to that, we consider the temperature of the warmest month (max(T)) and compare it to the 278 

crop-specific thresholds for reproductive growth (TbaseRD, ToptRP). Within each seasonality type, three 279 

possible temperature configurations can occur:  280 

(a) temperatures never reach the base temperature (max(T)<TbaseRD), so that the crop cannot complete 281 

its reproductive cycle, and therefore cannot productively be grown;  282 

(b) temperatures exceed TbaseRD, while never exceeding the optimum temperature ToptRP, so that at least 283 

part of the year is available for the crop to go through its reproductive cycle;  284 

(c) temperatures exceed ToptRP, so that at least part of the year is characterized by supra-optimal 285 

temperatures for yield production (see Appendix A). 286 

2.3.3. Function to compute the maturity date 287 

The set of rules for estimating the end of the growing period (date of physiological maturity) is 288 

graphically described in Figure 1b and in Appendix A and all parameters are listed in Table 1 and Table 2. 289 

The seasonality type determines which climatic factor (temperature or precipitation, or their 290 
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combination), is the most limiting for the total crop cycle. Differences between the monthly mean 291 

temperature (T) level and TbaseRD and ToptRP define the existence of a suitable period for the reproductive 292 

growth. In the following formulas, rule numbers 1, 2, 3 refer to the seasonality types NO SEAS., PREC. 293 

SEAS, MIXED SEAS., and letters a, b, c, refer to the temperature levels LOW T., MID T., HIGH T. 294 

respectively. Moreover, Sowing day is the day of the year on which the growing period starts and it can 295 

be either prescribed or simulated by any algorithm (e.g. Waha et al., 2012), Tmax day is the day on which 296 

the warmest temperature is reached (here assumed to be the midday of the warmest month); Topt day1 297 

is the first day on which T > ToptRP, Topt day2 is the last day of T > ToptRP. PPETratio day is the first day on 298 

which the PPETratio or PPETratioDIFF falls below the defined threshold (Table 2). The rule for simulating the 299 

maturity date is defined as follows (see also Appendix A): 300 

In regions characterized by very low temperatures, always below the base temperature for reproductive 301 

development (max(T) < TbaseRD), the shortest maturing cultivar is chosen, regardless of the seasonality 302 

type. The growing period is set to GPmin (agro-climatic zones 1.a, 2.a, 3.a; Eq. 3). This is a rule to ensure 303 

functionality at the global scale, and to allow the simulation in those environments where crops in fact 304 

cannot be grown. 305 

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑦 = 𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑖𝑛         (Eq. 3) 306 

In warmer regions (max(T) > TbaseRD) without temperature seasonality, the crop can complete the 307 

reproductive cycle. We do not account for possible limitations due to too high temperature (failure 308 

temperature). If there is also no precipitation seasonality (NO SEAS. in Appendix A), the growing period is 309 

set equal to GPmaxrp (agro-climatic zones 1.b, 1.c; Eq. 4). 310 

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑦 = 𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑎𝑥𝑟𝑝        (Eq. 4) 311 

Otherwise, under precipitation seasonality (PREC. SEAS. in Appendix A), the maturity date might be 312 

anticipated to escape drought. The reproductive phase (GPR) is set to start towards the end of the wet-313 
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season (PPETratio day), to guarantee soil water availability until maturity (agro-climatic zones 2.b, 2.c; Eq. 314 

5). 315 

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑦 = min {
𝑃𝑃𝐸𝑇𝑟𝑎𝑡𝑖𝑜𝑑𝑎𝑦 + 𝐺𝑃𝑅

𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑎𝑥𝑟𝑝
       (Eq. 5) 316 

In regions with temperature and eventually precipitation seasonality (MIXED SEAS. in Appendix A), the 317 

maturity date is determined by setting the reproductive phase in the most suitable period of the year, to 318 

minimize stresses, and to leave sufficient time to develop photosynthetic organs. The most limiting 319 

factor is the one that occurs first. The growing period cannot be shorter or longer than GPmin or GPmax 320 

respectively. 321 

Under mid temperature conditions (ToptRP > max(T) > TbaseRD), the reproductive phase starts at the 322 

warmest day of the year (Tmax day) (agro-climatic zone 3.b; Eq. 6). 323 

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑦 = min {

max(𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑖𝑛; 𝑇𝑚𝑎𝑥𝑑𝑎𝑦 + 𝐺𝑃𝑅)

max(𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑖𝑛; 𝑃𝑃𝐸𝑇𝑟𝑎𝑡𝑖𝑜𝑑𝑎𝑦 + 𝐺𝑃𝑅)

𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑎𝑥

    (Eq. 6) 324 

Under high temperature conditions (max(T) > ToptRP) (agro-climatic zone 3.c) we distinguish between 325 

winter and spring crop types: 326 

Winter crops have a long time available for their vegetative growth that they can exploit during both 327 

autumn and spring. Maturity occurs as soon as the temperature exceeds the optimum temperature (Topt 328 

day1), so that the crop can escape high temperature stress by maturing beforehand. We assume no 329 

water limitations (Eq. 7). 330 

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑦 = min {
max(𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑖𝑛; 𝑇𝑜𝑝𝑡𝑑𝑎𝑦1)

𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑎𝑥

     (Eq. 7) 331 
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Spring crops need to use the first part of the season for developing photosynthetic organs, so that the 332 

earliest period of the season with optimal conditions for reproductive growth is in fact used for the 333 

vegetative phase. The start of the reproductive cycle is set when the mean temperature falls below the 334 

optimum temperature (Topt day2), to avoid the risks of high-temperature stress in the middle of the 335 

growing period, and to ensure the best conditions for the reproductive phase (Eq. 8). 336 

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑦 = min {
max(𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑖𝑛;  𝑇𝑜𝑝𝑡 𝑑𝑎𝑦2)

max(𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑖𝑛; 𝑃𝑃𝐸𝑇𝑟𝑎𝑡𝑖𝑜𝑑𝑎𝑦)

𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑦 + 𝐺𝑃𝑚𝑎𝑥

     (Eq. 8) 337 

For comparison with observational datasets, which report harvest dates rather than maturity dates, we 338 

estimate harvest dates by adding a crop-specific maturity to harvest (MatHar) time (Table 1) to the 339 

computed maturity dates (Eq. 9). 340 

𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑑𝑎𝑦 = 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑑𝑎𝑦 + 𝑀𝑎𝑡𝐻𝑎𝑟        (Eq. 9) 341 

In summary, the end of the cropping period can be triggered by one of the following reasons: the choice 342 

of the earliest-maturing cultivar (GPmin); the cultivar with the longest grain-filling phase (GPmaxrp); the 343 

latest-maturing cultivar (GPmax); or the occurrence of water limitations (w. lim.); mid-temperature 344 

limitations (mid. t.); high-temperature limitations (high t.). 345 

2.3.4. Model setup 346 

We used R (R Core Team, 2015) for the model implementation, the data preparation, and the overall 347 

analysis. In order to examine its performance and sensitivity, we run the model with different 348 

parametrization settings and input data (Table 3). 349 

  350 
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Table 3: Summary table of model runs 351 

Run setup ID Number of runs per crop Parametrization Sowing date 

1 315 sensitivity MIRCA2000 

2 1 calibrated MIRCA2000 

3 1 calibrated SAGE 

4 1 calibrated Simulated (Waha et al., 2012) 

2.3.5. Parametrization 352 

For simplicity, we assume unique values of the model parameters to be valid globally. We derived 353 

parameters related to the growth phase lengths (GPR, GPmin, GPmaxrp, GPmax, MatHar) (Table 1) and to 354 

temperature thresholds (TbaseRD, ToptRP) from literature (Table 2). We were not able to find reference 355 

values of PPETratio and PPETratioDIFF thresholds or any other moisture-related thresholds for any specific 356 

growth phase. We therefore explored the patterns of the two variables throughout the observed 357 

growing periods (MIRCA2000). We find that except for winter- and spring-wheat, for all other crops 358 

PPETratio starts declining from about two months before harvest, with the stronger negative trend 359 

(PPETratioDIFF) about one month before harvest (Appendix C). 360 

2.3.6. Sensitivity analysis and calibration 361 

We perform a sensitivity analysis of the maturity date function to ToptRP, PPETratio and PPETratioDIFF 362 

thresholds. For this we used MIRCA2000 sowing dates as the model input data. As the 363 

representativeness of the reported ToptRP range is not clear for each grain crop considered here, we also 364 

test whether the model behavior is substantially different outside the reported temperature range. 365 

Therefore, we run the model with different temperature thresholds ranging from 2°C below the lowest 366 

reported temperature threshold to 2°C above the reported temperature threshold in increments of one 367 

degree. For the moisture related thresholds we used ranges of representative values (0, 0.5, 1 for 368 

PPETratio and 0.1, 0.2, 0.3, 0.4, 0.5 for PPETratioDIFF). Subsequently, we calibrate the function to MIRCA2000 369 
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by testing which thresholds can best reproduce the reported cropping calendars. We select the 370 

parameter set for each crop that leads to the lowest global area-weighted Mean Absolute Error (MAE) 371 

(see 2.4). 372 

2.3.7. Model response to input data 373 

We also compute cropping calendars by combining the calibrated maturity date function presented 374 

above with three different sowing date inputs: MIRCA2000, SAGE and simulated with sowing date 375 

function proposed by Waha et al. (2012). 376 

2.4. Model evaluation 377 

To evaluate the model’s skill in estimating maturity dates, we compare global-scale simulations for the 378 

six crops for the year 2000 to the two most applied global cropping calendar datasets (MIRCA2000, 379 

Portmann et al. 2010, and SAGE, Sacks et al. 2010) in the modelling community. In order to exclude the 380 

uncertainty due to the sowing date, we prescribe the sowing date from the observation-based dataset. 381 

The MIRCA2000 (v1.1) dataset (Portmann et al., 2010) provides monthly cropping periods of 26 crop 382 

types, as well as the associated growing areas, available at 0.5° grid cell resolution, representative for the 383 

time period 1998 to 2002. For our analysis, we refer to the rainfed sub-crops with the largest reported 384 

area for rice, maize, sorghum, soybeans. For wheat, we merged sub-crops 1 and 2 and distinguished 385 

between winter- and spring-wheat as follows (map shown in Appendix B). We assume that the growing 386 

season refers to winter-crop if (i) the cropping period includes the coldest month of the year, and (ii) the 387 

mean temperature of the coldest month is lower than 10°C.  388 

The SAGE dataset (Sacks et al., 2010) provides typical planting and harvesting dates for 19 crops, 389 

available at 0.5° resolution, representative for the time for the 1990s or early 2000s. In comparison with 390 

MIRCA2000 this dataset (i) has a daily resolution; (ii) distinguishes between winter- and spring-wheat; 391 
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(iii) does not distinguish irrigated and rainfed crops; (iv) does not include data on crop area; (v) is often 392 

uniform in large administrative units such as countries. 393 

For the evaluation of the goodness-of-fit of the model to the observed datasets, we employ the Mean 394 

Absolute Error (MAE) index (Jachner et al., 2007), area-weighted as in Waha et al. (2012). 395 

𝑀𝐴𝐸 =
∑ |𝑆𝑖−𝑂𝑖|×𝐴𝑖

𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

          (Eq. 10) 396 

Where n is the number of observations (grid-cells with a reported harvest date), i is the index of the grid 397 

cell, S and O are respectively the simulated and observed date (months) of grid-cell i, A is the cropped 398 

area (ha) of grid-cell i. For weights, we use the crop area of MIRCA2000, which we also employ for 399 

masking uncropped areas in maps when displaying results. 400 

3. Results 401 

3.1. Model sensitivity and parametrization 402 

The results of the model calibration reveal (Appendix D) that, with the exception of sorghum, 403 

temperature thresholds outside the reported ranges (Table 2) would not lead to better model 404 

performances. For sorghum, the minimum MAE is obtained with a ToptRP value of 1°C lower than the 405 

reported temperature range, but it is only marginally better than the lowest reported threshold 406 

temperature. Rice, soybean and winter-wheat show a U-shaped curve, with a minimum MAE in the 407 

middle of the tested temperature range, whereas maize and spring-wheat show best performances at 408 

the upper limit of the reported temperature range, but with stable MAE values above this. 409 

The sensitivity to PPETratio and PPETratioDIFF indicate that most crops, except rice, perform best (minimum 410 

MAE) when both parameters are set to 0.5. This indicates that last phases of the crop growth cycles are 411 

shorter if there is either a period characterized by low P and/or high PET, or by a drastic change in the 412 
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precipitation regime from wet to dry. The performance of the model for winter-wheat is completely 413 

insensitive to PPETratio and PPETratioDIFF, as we assume no water limitation in the maturity date rule of this 414 

crop (Table 2). 415 

3.2. Computed maturity dates 416 

3.2.1. Aggregated model performances 417 

At the global aggregation level, the calibrated model can largely reproduce the observed harvest months 418 

from both MIRCA2000 (calibration dataset) and SAGE (independent dataset), with an absolute error 419 

lower than 30 days for all crops except for rice (Figure 2). Specifically, for winter-wheat, spring-wheat, 420 

rice, maize, sorghum, and soybean, 82, 78, 61, 93, 82, 91% of the total area respectively, show an error 421 

within +/-1 month. The comparison against SAGE results in similar MAE values (Appendix E) and 90, 77, 422 

54, 79, 58, 92% with an error within +/-1 month. The different criteria for determining the end of the 423 

cropping period are distributed across different error classes, so that no systematic error can be 424 

detected in any of the rules (Figure 2). High temperature limitations typically do not constrain growing 425 

periods of spring-wheat and maize. All crops are mostly grown for periods longer than their lower 426 

potential limit (GPmin), and shorter than their upper-potential (GPmax). 427 

  428 
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 429 

Figure 2: Aggregated performances of the model. Frequency distribution of the difference between simulated and observed 430 

(MIRCA2000) harvest dates. Frequency is measured in terms of harvested area (Mha). The colors indicate the reason that 431 

triggers the harvest. GPmin is earliest-maturing cultivar; GPmaxrp is longest grain-fill cultivar; GPmax is latest-maturing cultivar; 432 

w.lim is water limitations; mid. t. is mid-temperature limitations; hight t. is high-temperature limitations. 433 

  434 
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3.2.2. Global patterns 435 

In this and the following sections of the main text we show results for maize only (Figure 3), as this crop 436 

has the largest cultivated area (Figure 2) and diversity of climates (Figure 3(a)). Results of all simulated 437 

crops are presented in Appendix F, but also discussed in the main text. We concentrate in the main text 438 

on the results of the simulation with prescribed sowing dates from MIRCA2000 (Figure 3) and provide a 439 

comparison of results with computed sowing dates (Waha et al., 2012) in Appendix G. 440 

Maize is cultivated in nearly all considered climatic zones (Figure 3(a)) and therefore rules (Appendix A) 441 

for computing the maturity date are very diverse. Maize growing seasons encounter mean temperatures 442 

above the optimum (29°C) in sub-Saharan Africa and in India. The remaining maize cultivated area is 443 

characterized by average monthly temperature between TbaseRD and ToptRP for at least part of the year 444 

(Appendix E and F). 445 

Various factors cause the end of maize growing period across regions (Figure 3(b)). In temperate regions 446 

the maize cycle follows the seasonal evolution of temperature (purple color, Figure 3(b)), resulting in 447 

fairly long (up to 7 months) total GPs (Figure 3(d)). In some areas, such as around the Mediterranean 448 

Sea, sub-Saharan and East Africa, South-East Asia (orange color, Figure 3(b)), the maturity date is 449 

triggered by the occurrence of a dry period (3 to 4 months GP). In parts of India and Mexico, either 450 

temperature or water limitation occur soon after sowing, determining a very short total GP (2 months). 451 

Within the tropics large areas show no constraints for maize to grow for up to 5 months. 452 

Spatial patterns of maize harvest date are rather well reproduced by the model (Figure 3(c, e, f)). 453 

According to both observations and simulations, large regions of North America, Eastern Europe, and 454 

Russia show similar values (no differences in Fig.2(f)), indicating convergence of maize harvest dates in 455 

mid-temperature areas. In these areas the gradients in GPs are therefore a result of gradients sowing 456 
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dates. Similarly, good agreement with the observation is found in South America, with homogeneous 457 

harvest time and GP found over large parts of the continent. 458 

The model systematically overestimates the end of the growing period in Central Africa and Eastern 459 

China. Differences between the computed and observed harvest date are found e.g. in Mexico, around 460 

the Mediterranean Sea, and in South-Eastern China. In these areas, MIRCA2000 reports homogeneous 461 

values, while the model simulates gradients. From Figure 3(f) it can be seen that there is a shift from -1 462 

to +1 months difference across these gradients. For example, harvest in Spain goes from August-463 

September to October progressing from south to north. In these areas, the observations report harvest 464 

homogeneously for September. 465 

  466 
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 467 

Figure 3: Maize, (a) agro-climatic zones of cultivation and corresponding rule applied for computing the maturity date; (b) 468 

maturity date reason, or the factor causing the end of the growing period; (c); computed harvest month; (d) length (days) of 469 

the computed total growing period (GP); (e) observed harvest month from MIRCA2000; (f) difference between computed and 470 

observed harvest month. White color indicates pixels with less than 0.001\% maize cultivated area. 1.a-3.c indicate the 471 
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different agro-climatic zones and the corresponding harvest date rule. GPmin is earliest-maturing cultivar; GPmaxrp is longest 472 

grain-fill cultivar; GPmax is latest-maturing cultivar; w.lim is water limitations; mid. t. is mid-temperature limitations; hight t. 473 

is high-temperature limitations. 474 

  475 
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Compared to maize, the other five crops have growing seasons more likely affected by non-optimal 476 

temperatures. In particular, the high temperature rules (1.c, 2.c, 3.c) apply to the largest fraction of the 477 

current cultivated area of rice, sorghum and soybean (Figure E1, E3 in appendix), which require cultivars 478 

with a longer growing period to avoid the high-temperature during the reproductive phase. 479 

Patterns of soybean GP are relatively similar to those of maize, while generally spring-wheat and 480 

sorghum show shorter GPs. For winter-wheat GPs are mostly calculated as very long (7 to 11 month), 481 

with increasing lengths in colder regions (central-Europe and Russia). Sub-Tropical regions show quite 482 

uniform GP durations and similar among different crops (e.g. maize, sorghum, rice in Sub-Saharan 483 

Africa). Though in India, GP differs between crops because the maturity date is triggered by different 484 

reasons. Similarly to maize the spatial patterns of harvest dates are well reproduced by the model for all 485 

crops. Winter-wheat and soybean show gradients of harvest dates, due to gradients in the driving 486 

climatic factors (e.g. temperature patterns in the United States), leading to differences to the 487 

observations, which report uniform values within geographical units. 488 

3.3. Full simulation of the cropping periods 489 

Results for both simulated sowing and harvest and their difference to MIRCA2000 are shown in Appendix 490 

G. Simulated cropping periods are displayed for the entire global land, therefore also in regions where 491 

crops are not currently grown. Simulations and observations show similar degrees of agreement for both 492 

sowing and harvest dates, with coinciding spots of largest differences e.g. south-eastern China, southern 493 

Brazil, Tanzania for maize (Appendix G). The duration of the total GP shows good agreement with the 494 

observed one, even in the areas where sowing and/or harvest dates deviate from observations. Indeed, 495 

the sign of the simulated to observed difference is in most cases the same although there are some 496 

exceptions. Winter-wheat in the USA shows at the same time delayed sowing and anticipated harvest, 497 

resulting in an overall shorter GP with respect to MIRCA2000. Soybean in south-eastern China results in 498 

longer GP, due to an earlier sowing and a delayed harvest. 499 
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4. Discussion 500 

We show that average maturity (and harvest) dates can be estimated from crop-specific plant 501 

physiological parameters and climatic conditions for the majority of currently cropped areas . For the 502 

largest part of the global cultivated land the model results are in agreement with both MIRCA2000 503 

(dataset used for model calibration) and SAGE (independent dataset). The mean absolute error (MAE) is 504 

close to or lower than about 1 month for all the considered crops. On a local scale or within a single year, 505 

a difference of a month in the maturity date of a crop could make a substantial difference e.g. for the 506 

crop productivity. However, such an error value is not large when considering the global scale of this 507 

study. Similar errors were obtained for sowing dates (Waha et al., 2012) and growing periods (van Bussel 508 

et al., 2015; Mathison et al., 2018). Differences can be explained partly by limitations in the modelling 509 

approach, and partly by shortcomings in the datasets used for comparison. MIRCA2000 reports dates 510 

with a monthly resolution. This means that when using this observation-based dataset as input to 511 

models with a daily time step assumptions must be made for converting months to days. This necessarily 512 

introduces an uncertainty of about a month in the observations themselves. On the other hand, SAGE 513 

has a daily resolution. Despites, its use is also subject to uncertainty due to low resolved spatial patterns 514 

(e.g. uniform country values) and to the large reported ranges around sowing and harvest dates. These 515 

shortcomings do not leave much room for improving the accuracy in our model evaluation. In addition, 516 

the authors of the MIRCA2000 dataset recommend caution in using such cropping dates “in areas where 517 

local biophysical constraints differ considerably from average constrains within the calendar unit” 518 

(Portmann et al., 2010). We find that where the data are homogeneous over large areas, the model can 519 

simulate spatial gradients distributed around the average maturity date. In such cases, the simulated 520 

maturity dates seem to be more realistic than the observed ones. 521 

The two previously proposed approaches for the estimation of crop maturity or harvest dates that we 522 

could find in the literature are more empirically based, as they directly derive rules by crop calendar 523 
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observations and climate data. The method from van Bussel et al. (2015), computes location-specific 524 

cultivar parameters (thermal units requirements, vernalization and photoperiod) with linear-regression 525 

models, and from these derives harvest dates. Mathison et al. (2018) models the rice–wheat rotation 526 

calendar in South Asia based on the Asian Summer Monsoon. They derive the sowing and harvest date 527 

rules by simply computing the difference between onset/cessation of the monsoon and the observed 528 

sowing/harvest dates, and determining the weighted area averages from these to derive the rule. With a 529 

similar performance in terms of estimation error, our approach has the advantage of being more 530 

process-based which allows for better understanding of underlying mechanisms of cropping periods 531 

selection and for more explicit assumptions on future crop varieties’ choice scenarios (e.g. different crop 532 

sensitivities to temperature, or crop phenological phase durations). 533 

The results show that a single set of rules (with crop-specific parameters) is valid for simulating the 534 

average current growing periods of any of the grain crops. Even though the model represents a very 535 

complex decision making process in a simplified way, its ability to reproduce global cropping calendar 536 

variability and patterns suggests that a few climatic variables and crop physiological limits can explain a 537 

large portion of the recent cropping period patterns. This endorses the idea that agricultural practices 538 

have been adapting to the climatic conditions experienced by farmers (Olesen et al., 2012). Specifically, it 539 

shows that farmers tend to grow the crops under the best available conditions for maximizing crop 540 

productivity. In particular, the timing of the reproductive phase seems to be a general criterion for 541 

selecting grain crops cultivars. In environments characterized by temperature seasonality, where the first 542 

phases of the crop cycles are subject to cooler temperatures (e.g. winter-wheat), it seems a common 543 

practice to extend the growing period, and therefore prolong the vegetative development (Appendix F, 544 

panels d), to let the reproductive phase occurring within the warmest season. However, stressful 545 

temperatures or water-scarce seasons can require the use of shorter or longer maturing cultivars. In line 546 

with previous findings (Egli, 2011; Hay & Porter, 2006; Parent et al., 2018), we assume a much larger 547 
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flexibility of the vegetative phase length, as compared to a more stable reproductive phase. However, it 548 

has been shown that crop breeding has in some cases targeted earlier flowering and extended the 549 

reproductive phases (Glotter & Elliott, 2016). As we explicitly parametrize this in our model, it is possible 550 

to account for such genetic improvement in future studies. 551 

On farms, when selecting for cultivars and cropping periods, farmers may take into account several 552 

factors (e.g. soil conditions, yield potentials, pests and diseases, consumer preferences) that are not 553 

explicitly considered in our model. In consequence, as for the simulation of sowing dates (Waha et al., 554 

2012), the model performs very well in regions with clearly climate-defined growing periods, as 555 

temperate zones, or sub-tropical regions with strong precipitation seasonality. It results in larger 556 

deviations in regions with long suitable growing seasons that allow for more flexibility in timing of 557 

agricultural operations. Moreover, the model does not consider multiple cropping systems or crop 558 

rotations, but addresses single-crop systems only. The cultivation of different crops in a sequence can 559 

nevertheless constrain the growing periods of each single crop. In temperate and continental regions, 560 

the rotations typically include both winter and summer crop types (Kollas et al. 2015). In such cases 561 

harvest and sowing of two consecutive crops are in rapid succession, leading to e.g. delayed sowing of 562 

the winter crop. However, it has been shown that there is convergence of anthesis and maturity dates of 563 

winter crops, that results in similar harvest times for crops sown several weeks apart (Hay & Porter, 564 

2006). In sub-tropical regions, long and favorable growing seasons often allow for sequential cropping 565 

systems, where two crops are grown in sequence within a single growing season. These systems can be 566 

more productive than the cultivation of the longest-growing cultivar of a single crop (Waha et al., 2013). 567 

In the model, we account for a maximum growing period length, beyond which there is no further yield 568 

benefit (GPmaxrp). For future model applications, this feature could allow for using the remaining 569 

suitable growing period for a second crop cycle in the same year. We apply a crop-specific 570 

parametrization, even though differences exist not only among species, but also among cultivars or sub-571 
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species, such as Indica or Japonica rice (Sánchez et al., 2014). Knowledge on cultivar-specific 572 

characteristics would improve the model applicability, although to evaluate the performances of such 573 

parametrization, one would require spatially explicit datasets on cultivars, as well as on their cropping 574 

periods, which may be difficult to retrieve even at a regional scale. 575 

The model does not account either for soil water holding capacity or any water-harvesting, or soil 576 

moisture conservation practices (Jägermeyr et al., 2016), which exist even in rainfed systems. These 577 

could be the reason for the underestimated GPs (harvest dates are simulated earlier than observations), 578 

e.g. maize in India and Mexico. Similarly, the large fraction of underestimated rice harvest dates (e.g. -3 579 

months difference for rice panel Figure 2, Southeast-Asia and Colombia, Appendix F) may derive from 580 

different assumptions on water management in the model and MIRCA2000. This dataset assigns 581 

standard GP lengths to three classes of rainfed rice cultivation systems (7 to 8 months to upland-; 7 582 

months to deep-water-; 4 months to paddy-rice systems). This suggests that the maximum GP that we 583 

assume in these areas is not parameterized well for rice and that a higher threshold (GPmaxrp) could lead 584 

to a substantial model improvement in these areas. Although such extended observed GPs might 585 

coincide with deep-water rice (flooded) (Khush, 1984), this practice is not considered in the model. 586 

Moreover, upland rice can have shorter GP (Khush, 1984) than those assumed by MIRCA2000. In the 587 

same areas, both MIRCA2000 and SAGE report secondary growing periods of rice with much shorter (3 588 

to 4 months) durations (not shown here), which are closer to our results. To include explicit simulation of 589 

the soil water content into our modelling approach would drastically increase its complexity, and the 590 

number of simulated processes and assumptions. This would in fact require the use of a global crop-591 

hydrological model (e.g. Schaphoff et al., 2017) with dynamic simulation of soil-plant hydrological 592 

processes and with additional input datasets on soil types, weather variables, and water management. 593 

We have shown that the end of the reported growing periods coincides respectively with a declining or 594 
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peaking trends of the two simple indicators based on the P to PET ratio, that we therefore consider good 595 

indicators of dryness that can be used for large parts of the simulated land area. 596 

Our findings show that it is generally possible to compute growing periods, defined by sowing dates 597 

(Waha et al., 2012) and maturity dates (this study) from climatic parameters. To our knowledge, this is 598 

the first study that presents a methodology to directly estimate maturity dates at the global scale, 599 

without relying on GDD computation. Note that the model should not be used for directly estimating 600 

interannual variability in crop phenology. This method provides a dataset that can be used to 601 

parametrize crop phenology without relying on any particular phenological model. It can be used to fill 602 

data gaps or to estimate cropping periods outside the current cropland as done by Elliott et al. (2015) for 603 

the sowing dates. The combination of sowing and harvest date function also allows for embedding 604 

agricultural management decisions on the cropping periods within global crop modelling approaches, 605 

where the assumption is often that farmers do not adjust to changes in growing seasons (Rosenzweig et 606 

al., 2014). Uncertainty about future climate can be accounted for by running our algorithm with different 607 

climate datasets. Under extreme scenarios it is likely that the model would not find suitable growing 608 

periods for the crops. In such case, as for the currently unsuitable regions, the algorithm would choose 609 

the shortest maturing cultivar. Moreover, the model allows for studying changes in crop sensitivity to 610 

temperature or precipitation due to breeding or to technological change, as the crop physiological limits 611 

are explicitly represented. This enables to account for autonomous adaptation in crop model 612 

simulations, but comes at the price that cultivation systems in some regions (e.g. tropics) can only be 613 

presented less well for current conditions than if sowing dates were prescribed (Elliott et al., 2015; 614 

Müller et al., 2017). The implications of this need to be tested with the model-specific parameterization 615 

of crop species and will have to be considered in the interpretation of results. 616 



33 
 

5. Acknowledgments 617 

This work is part of the MACMIT project (01LN1317A), funded by the German Ministry for Education and 618 

Research (BMBF). The authors gratefully thank Frank Wechsung, as well as the members of the LandUse 619 

and LPJmL groups at PIK for their support and helpful comments; the GGCMI project for providing access 620 

to the AgMERRA dataset; the European Regional Development Fund (ERDF), the BMBF, and the Land 621 

Brandenburg for providing resources on the high performance computer system at PIK. 622 

6. Appendices 623 

A. Illustration of the maturity date rule 624 

B. Observed growing periods 625 

C. P to PET ratio analysis 626 

D. Sensitivity analysis 627 

E. Aggregated model performances 628 

F. Global maps of computed harvest dates for all crops 629 

G. Global maps of computed sowing, harvest, total growing period for all crops 630 

H. Algorithm (R code) to determine location-specific maturity (or harvest) dates 631 

7. Data availability 632 

Ncdf4 data files of computed sowing and harvest dates, corresponding to figures in Appendix G are 633 

associated to this article. All other data (model input and output), as well as the R scripts used for 634 

generating the results of this study are available from the author upon request at: sara.minoli@pik-635 

potsdam.de. 636 

mailto:sara.minoli@pik-potsdam.de
mailto:sara.minoli@pik-potsdam.de


34 
 

8. References 637 

Ainsworth, E.A. & Ort, D.R. (2010) How do we improve crop production in a warming world? Plant Physiol, 154, 526-30. 638 

Araya, A., Keesstra, S.D. & Stroosnijder, L. (2010) A new agro-climatic classification for crop suitability zoning in 639 

northern semi-arid Ethiopia. Agricultural and Forest Meteorology, 150, 1057-1064. 640 

Archontoulis, S. V., Miguez, F. E., & Moore, K. J. (2014). A methodology and an optimization tool to calibrate 641 

phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environmental 642 

Modelling and Software, 62, 465–477. http://doi.org/10.1016/j.envsoft.2014.04.009 643 

Asseng, S., Zhu, Y., Wang, E. & Zhang, W. (2015) Crop modeling for climate change impact and adaptation. 505-546. 644 

Bodner, G., Nakhforoosh, A. & Kaul, H.-P. (2015) Management of crop water under drought: a review. Agronomy for 645 

Sustainable Development, 35, 401-442. 646 

Bondeau, A., Smith, P.C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., MÜLler, C., 647 

Reichstein, M. & Smith, B. (2007) Modelling the role of agriculture for the 20th century global terrestrial 648 

carbon balance. Global Change Biology, 13, 679-706. 649 

Challinor, A.J., Koehler, A.K., Ramirez-Villegas, J., Whitfield, S. & Das, B. (2016) Current warming will reduce yields 650 

unless maize breeding and seed systems adapt immediately. Nature Climate Change, 6, 954-958. 651 

Clerget, B., Dingkuhn, M., Goze, E., Rattunde, H.F. & Ney, B. (2008) Variability of phyllochron, plastochron and rate of 652 

increase in height in photoperiod-sensitive sorghum varieties. Ann Bot, 101, 579-94. 653 

Craufurd, P. & Qi, A. (2001) Photothermal adaptation of sorghum (Sorghum bicolour) in Nigeria. Agricultural and 654 

Forest Meteorology, 108, 199-211. 655 

Craufurd, P.Q. & Wheeler, T.R. (2009) Climate change and the flowering time of annual crops. J Exp Bot, 60, 2529-39. 656 

Deryng, D., Sacks, W.J., Barford, C.C. & Ramankutty, N. (2011) Simulating the effects of climate and agricultural 657 

management practices on global crop yield. Global Biogeochemical Cycles, 25, n/a-n/a. 658 

Dobor, L., Barcza, Z., Hlásny, T., Árendás, T., Spitkó, T. & Fodor, N. (2016) Crop planting date matters: Estimation 659 

methods and effect on future yields. Agricultural and Forest Meteorology, 223, 103-115. 660 

Drewniak, B., Song, J., Prell, J., Kotamarthi, V.R. & Jacob, R. (2013) Modeling agriculture in the Community Land Model. 661 

Geoscientific Model Development, 6, 495-515. 662 

Egli, D.B. (2011) Time and the productivity of agronomic crops and cropping systems. Agronomy journal, 103, 743-750. 663 



35 
 

Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K.J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, 664 

T., Izaurralde, R.C., Mueller, N.D., Ray, D.K., Rosenzweig, C., Ruane, A.C. & Sheffield, J. (2015) The Global 665 

Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geoscientific Model 666 

Development, 8, 261-277. 667 

Farooq, M., Bramley, H., Palta, J.A. & Siddique, K.H.M. (2011) Heat Stress in Wheat during Reproductive and Grain-668 

Filling Phases. Critical Reviews in Plant Sciences, 30, 491-507. 669 

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. (2004) Terrestrial vegetation and water balance—670 

hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286, 249-270. 671 

Glotter, M., & Elliott, J. (2016). Simulating US agriculture in a modern Dust Bowl drought. Nature plants, 3, 16193. 672 

Hay, R. K., & Porter, J. R. (2006). The physiology of crop yield. Blackwell Publishing.Hatfield, J.L., Boote, K. J., Kimball, B. 673 

A., Ziska, L. H., Izaurralde, R. C., Ort, D., ... & Wolfe, D. (2011) Climate Impacts on Agriculture: Implications for 674 

Crop Production. Agronomy journal, 103, 351-370. 675 

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment 676 

Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. 677 

Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, 678 

United Kingdom and New York, NY, USA, 1535 pp 679 

Jachner, S., Van den Boogaart, G. & Petzoldt, T. (2007) Statistical methods for the qualitative assessment of dynamic 680 

models with time delay (R Package qualV). Journal of Statistical Software, 22, 1-30. 681 

Jägermeyr, J., & Frieler, K. (2018). Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in 682 

maize and wheat yields. Science advances, 4, eaat4517. 683 

Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W. & Rockström, J. (2016) Integrated crop water management 684 

might sustainably halve the global food gap. Environmental Research Letters, 11, 025002. 685 

Khush, G. (1984) Terminology for rice growing environments. Terminology for rice growing environments, 5-10. 686 

Koehler, A.-K., Challinor, A.J., Hawkins, E. & Asseng, S. (2013) Influences of increasing temperature on Indian wheat: 687 

quantifying limits to predictability. Environmental Research Letters, 8, 034016. 688 

Kollas, C., Kersebaum, K. C., Nendel, C., Manevski, K., Müller, C., Palosuo, T., ... & Conradt, T. (2015). Crop rotation 689 

modelling—A European model intercomparison. European Journal of Agronomy, 70, 98-111. 690 

Kucharik, C.J. & Brye, K.R. (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin 691 



36 
 

maize receiving varied amounts of nitrogen fertilizer. Journal of environmental quality, 32, 247-268. 692 

Lawn, R., Summerfield, R., Ellis, R., Qi, A., Roberts, E., Chay, P., Brouwer, J., Rose, J. & Yeates, S. (1995) Towards the 693 

reliable prediction of time to flowering in six annual crops. VI. Applications in crop improvement. 694 

Experimental Agriculture, 31, 89-108. 695 

Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S. & Smith, B. (2013) Implications of accounting for 696 

land use in simulations of ecosystem carbon cycling in Africa. Earth System Dynamics, 4, 385-407. 697 

Macholdt, J. & Honermeier, B. (2016) Impact of Climate Change on Cultivar Choice: Adaptation Strategies of Farmers 698 

and Advisors in German Cereal Production. Agronomy, 6, 40. 699 

Makowski, D., Nesme, T., Papy, F. & Doré, T. (2014) Global agronomy, a new field of research. A review. Agronomy for 700 

Sustainable Development, 34, 293-307. 701 

Mathison, C., Deva, C., Falloon, P., & Challinor, A. J. (2018). Estimating sowing and harvest dates based on the Asian 702 

summer monsoon. Earth System Dynamics, 9(2), 563–592.Meier, U. (1997) Growth stages of mono-and 703 

dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin, Wien. 704 

Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, 705 

S., Iizumi, T., Izaurralde, R.C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T.A.M., Ray, D.K., 706 

Reddy, A., Rosenzweig, C., Ruane, A.C., Sakurai, G., Schmid, E., Skalsky, R., Song, C.X., Wang, X., de Wit, A. & 707 

Yang, H. (2017) Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. 708 

Geoscientific Model Development, 10, 1403-1422. 709 

Olesen, J.E., Borgesen, C.D., Elsgaard, L., Palosuo, T., Rotter, R.P., Skjelvag, A.O., Peltonen-Sainio, P., Borjesson, T., Trnka, 710 

M., Ewert, F., Siebert, S., Brisson, N., Eitzinger, J., van Asselt, E.D., Oberforster, M. & van der Fels-Klerx, H.J. 711 

(2012) Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food 712 

Addit Contam Part A Chem Anal Control Expo Risk Assess, 29, 1527-42. 713 

Parent, B., Leclere, M., Lacube, S., Semenov, M. A., Welcker, C., Martre, P., & Tardieu, F. (2018). Maize yields over Europe 714 

may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. 715 

Proceedings of the National Academy of Sciences, 115(42), 10642-10647. 716 

Parent, B. & Tardieu, F. (2012) Temperature responses of developmental processes have not been affected by breeding 717 

in different ecological areas for 17 crop species. New Phytol, 194, 760-74. 718 

Peltonen-Sainio, P., Rajala, A., Känkänen, H. & Hakala, K. (2015) Chapter 4 - Improving farming systems in northern 719 



37 
 

Europe A2 - Sadras, Victor O. Crop Physiology (Second Edition) (ed. by D.F. Calderini), pp. 65-91. Academic 720 

Press, San Diego. 721 

Porter, J.R., & Gawith, M. (1999) Temperatures and the growth and development of wheat: a review. European Journal 722 

of Agronomy, 10, 23-36. 723 

Porter, J.R. & Semenov, M.A. (2005) Crop responses to climatic variation. Philosophical Transactions of the Royal Society 724 

B: Biological Sciences, 360, 2021-2035. 725 

Porter, J.R., Xie, L., Challinor, A.J., Cochrane, K., Howden, S.M., Iqbal, M.M., Lobell, D.B. & Travasso, M.I. (2014) Chapter 726 

7: Food security and food production systems. In. Cambridge University Press 727 

Portmann, F.T., Siebert, S. & Döll, P. (2010) MIRCA2000-Global monthly irrigated and rainfed crop areas around the 728 

year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical 729 

Cycles, 24, n/a-n/a. 730 

Priestley, C.H.B., & Taylor, R. J. (1972) On the assessment of surface heat flux and evaporation using large-scale 731 

parameters. Monthly weather review, 100, 81-92. 732 

Ritchie, J.T. & Nesmith, D.S. (1991) Temperature and Crop Development. Modeling Plant and Soil Systems, pp. 5-29. 733 

American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, 734 

WI. 735 

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., ... & Neumann, K. (2014) Assessing agricultural 736 

risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of 737 

the National Academy of Sciences, 111, 3268-3273. 738 

Ruane, A.C., Goldberg, R. & Chryssanthacopoulos, J. (2015) Climate forcing datasets for agricultural modeling: Merged 739 

products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233-740 

248. 741 

Rukhovich, D.I., Koroleva, P.V., Vilchevskaya, E.V., Romanenkov, V.A. & Kolesnikova, L.G. (2007) Constructing a spatially-742 

resolved database for modelling soil organic carbon stocks of croplands in European Russia. Regional 743 

Environmental Change, 7, 51-61. 744 

Sacks, W.J., Deryng, D., Foley, J.A. & Ramankutty, N. (2010) Crop planting dates: an analysis of global patterns. Global 745 

Ecology and Biogeography, no-no. 746 

Sánchez, B., Rasmussen, A. & Porter, J.R. (2014) Temperatures and the growth and development of maize and rice: a 747 



38 
 

review. Glob Chang Biol, 20, 408-17. 748 

Schaphoff, S., Von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., ... & Langerwisch, F. (2018). LPJmL4–a 749 

dynamic global vegetation model with managed land–Part 1: Model description. Geoscientific Model 750 

Development, 11, 1343-1375. 751 

Sedgley, R.H. (1991) An appraisal of the Donald ideotype after 21 years. . Field Crops Research, 26, 93-112. 752 

Singh, R.P., Prasad, P. V., & Reddy, K. R. (2013) Impacts of changing climate and climate variability on seed production 753 

and seed industry. Advances in Agronomy, 118, 49-110. 754 

Slafer, G.A., Kantolic, A., Appendino, M., Tranquilli, G., Savin, R., Miralles, D., Sadras, V. & Calderini, D. (2015) Genetic 755 

and environmental effects on crop development determining adaptation and yield. Crop Physiology: 756 

Applications for Genetic Improvement and Agronomy, pp. 285-319. Academic Press San Diego. 757 

Team, R.C. (2015) R: A language and environment for statistical computing. 758 

Thornthwaite, C.W. (1948) An Approach toward a Rational Classification of Climate. Geographical Review, 38, 55-94. 759 

Tomich, T. P., Brodt, S., Ferris, H., Galt, R., Horwath, W. R., Kebreab, E., … Yang, L. (2011). Agroecology: A Review from a 760 

Global-Change Perspective. Annual Review of Environment and Resources, 36(1), 193–222. 761 

http://doi.org/10.1146/annurev-environ-012110-121302 762 

van Bussel, L.G.J., Stehfest, E., Siebert, S., Müller, C. & Ewert, F. (2015) Simulation of the phenological development of 763 

wheat and maize at the global scale. Global Ecology and Biogeography, 24, 1018-1029. 764 

van Wart, J., van Bussel, L.G.J., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H., Gerber, J., Mueller, N.D., 765 

Claessens, L., van Ittersum, M.K. & Cassman, K.G. (2013) Use of agro-climatic zones to upscale simulated crop 766 

yield potential. Field Crops Research, 143, 44-55. 767 

Waha, K., van Bussel, L.G.J., Müller, C. & Bondeau, A. (2012) Climate-driven simulation of global crop sowing dates. 768 

Global Ecology and Biogeography, 21, 247-259. 769 

Waha, K., Müller, C., Bondeau, A., Dietrich, J.P., Kurukulasuriya, P., Heinke, J. & Lotze-Campen, H. (2013) Adaptation to 770 

climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global 771 

Environmental Change, 23, 130-143. 772 

Wang, E., Martre, P., Zhao, Z., Ewert, F., Maiorano, A., Rötter, R. P., … Asseng, S. (2017). The uncertainty of crop yield 773 

projections is reduced by improved temperature response functions. Nature Plants, 3(July), 1–11. 774 

http://doi.org/10.1038/nplants.2017.102 775 



39 
 

Wassmann, R., Jagadish, S.V.K., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R.K., Howell, G., Pathak, H. & Sumfleth, 776 

K. (2009) Chapter 2 Climate Change Affecting Rice Production.  101, 59-122. 777 


