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Appendix 

A.1 Derivations 

In this section we present the detailed derivation of the analytical results and the damage expressions in 

Section 2. Note again that all shocks assumed here are one-time shocks.  

A.1.1 Growth rate after shock 

We assume a Ramsey model with labor-augmenting technological progress 𝑌𝑌(𝑡𝑡) = 𝐹𝐹[𝐾𝐾(𝑡𝑡), 𝜒𝜒(𝑡𝑡)𝐿𝐿(𝑡𝑡)], 

which can be expressed in units of effective labor as 𝑦𝑦� = 𝑓𝑓(𝑘𝑘�). The time paths of effective consumption 

𝑐𝑐̅ and effective capital 𝑘𝑘�  are determined by1  

 𝑘𝑘�̇ = 𝑓𝑓�𝑘𝑘�� − 𝑐𝑐̅ − (𝑥𝑥 + 𝑛𝑛 + 𝛿𝛿) 𝑘𝑘�  (A 1) 

and 

 𝑐𝑐̅̇
𝑐𝑐̅

=
𝑐̇𝑐
𝑐𝑐
− 𝑥𝑥 =

1
𝜃𝜃

[𝑓𝑓′�𝑘𝑘�� − 𝛿𝛿 − 𝜀𝜀 − 𝜃𝜃𝜃𝜃] 
(A 2) 

Here, x is the growth rate of labor productivity, n is the population growth rate, δ is the capital 

depreciation rate, ε is the rate of time preference and Θ is the negative elasticity of marginal utility. 

In order to provide a quantitative assessment of the speed of convergence, we use a log-linearized 

version of these equations, as provided by Barro & Sala-i-Martin (2004, p.111) 

 ln[𝑦𝑦�(𝑡𝑡)] = 𝑒𝑒−𝛽𝛽𝛽𝛽 ln[𝑦𝑦�(0)] + �1 − 𝑒𝑒−𝛽𝛽𝛽𝛽�ln (𝑦𝑦�∗) (A 3) 

where β>0 is the convergence coefficient and the * marks the steady-state value.  

                                                             
1 See Barro & Sala-i-Martin (2004) p. 97. 



We assume that the shock occurs at t=0. The growth rate of effective output after the shock is then given 

by 

 𝑑𝑑 ln 𝑦𝑦�(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑒𝑒−𝛽𝛽𝛽𝛽 ln �
𝑦𝑦�∗

𝑦𝑦�(0)� =𝑡𝑡=0  𝛽𝛽 ln �
𝑦𝑦�∗

𝑦𝑦��
� 

(A 4) 

Here, 𝑦𝑦�� indicates the value of effective output after the shock. Per capita GDP is 𝑦𝑦 = 𝑌𝑌
𝐿𝐿

= 𝜒𝜒𝜒𝜒
𝜒𝜒𝜒𝜒

= 𝜒𝜒𝑦𝑦� and 

labor productivity is assumed to grow exponentially with a constant growth rate x, described by 

𝜒𝜒(𝑡𝑡) = 𝜒𝜒(0)𝑒𝑒𝑥𝑥𝑥𝑥. It follows for the growth rate of per capita output after the shock 

 
𝑔𝑔 =

𝑑𝑑 ln 𝑦𝑦
𝑑𝑑𝑑𝑑

=
𝑑𝑑 ln 𝜒𝜒
𝑑𝑑𝑑𝑑

+
𝑑𝑑 ln 𝑦𝑦�
𝑑𝑑𝑑𝑑

= 𝑥𝑥 + 𝛽𝛽 ln �
𝑦𝑦�∗

𝑦𝑦��
� 

(A 5) 

while without a shock in the steady state g=x. 

A.1.2 Shock on output 

A direct, un-anticipated, one-time shock on output Ω changes GDP to an after-shock level of 𝑌𝑌� =

(1 − Ω)𝑌𝑌∗. In the long run, however, the economy will again converge to the (before shock) steady state 

intensive-form GDP level 𝑦𝑦�∗ = 𝑌𝑌∗

𝜒𝜒𝜒𝜒
 and the differences in the GDP levels between the original and the 

disturbed economy diminishes, because total factor productivity is not lowered permanently. A lower 

GDP will also lower the capital stock after the shock. Therefore, the economy will experience additional 

growth in order to converge back to the steady-state level. Inserting the after-shock GDP level into eq. (A 

5), we get for the after-shock growth rate in the case of an output shock 

 𝑔𝑔𝑌𝑌 = 𝑥𝑥 − 𝛽𝛽 ln(1 − Ω). (A 6) 

Note that −𝛽𝛽 ln(1 − Ω) > 0 as 0 < Ω < 1. The GDP per capita growth after the shock will therefore be 

higher than without the shock. This increase in economic growth after a shock does not imply a higher 

social welfare as the GDP level remains below the counterfactual GDP of the economy without the 

shock. 



A.1.2 Shock on capital stock 

An immediate, un-anticipated marginal change in the capital stock 𝑑𝑑𝑑𝑑
𝐾𝐾

 changes GDP by 𝑑𝑑 ln 𝑌𝑌
𝑑𝑑 ln𝐾𝐾

𝑑𝑑𝑑𝑑
𝐾𝐾

=

𝑑𝑑 𝑌𝑌
𝑑𝑑 𝐾𝐾

𝐾𝐾
𝑌𝑌
𝑑𝑑𝑑𝑑
𝐾𝐾

= Γ𝐾𝐾
𝑑𝑑𝑑𝑑
𝐾𝐾

 where Γ𝐾𝐾 is the capital income share of the economy. Hence, for a marginal fall of the 

capital stock by Ω𝐾𝐾, the new immediate after-shock GDP  𝑌𝑌�  will be 

 𝑌𝑌� = (1 − Γ𝐾𝐾Ω𝐾𝐾)𝑌𝑌∗. (A 7) 

Like for a shock on output, in the long run, the shock effects will diminish over time and the GDP will 

return to the pre-shock level. Capital is now affected directly, leading also to additional convergence 

growth after the shock. Inserting eq. (A 7) into eq. (A 5) we get for the per capita GDP growth rate after a 

shock on capital 

 𝑔𝑔𝐾𝐾 = 𝑥𝑥 − 𝛽𝛽 ln(1 − Γ𝐾𝐾Ω𝐾𝐾). (A 8) 

The GDP per capita growth after the shock will be higher than without the shock as 0 < Γ𝐾𝐾Ω𝐾𝐾 < 1.  

A.1.3 Shock on labor productivity 

Again, consider the case of a steady state of the economy, i.e. effective capital 𝑘𝑘�∗ = 𝐾𝐾∗

𝜒𝜒𝜒𝜒
 is constant while 

labor productivity 𝜒𝜒 grows at constant rate x. An un-anticipated marginal relative reduction in labor 

productivity by Ω𝜒𝜒 reduces labor productivity to 𝜒̂𝜒 = (1 − Ω𝜒𝜒)𝜒𝜒.  

A marginal relative change of effective labor 𝑑𝑑 ln𝜒𝜒𝜒𝜒 leads to a marginal relative change in GDP by 

𝑑𝑑 ln 𝑌𝑌
𝑑𝑑 ln 𝜒𝜒𝜒𝜒

= 𝑑𝑑 𝑌𝑌
𝑑𝑑 𝜒𝜒𝜒𝜒

𝜒𝜒𝜒𝜒
𝑌𝑌

= 𝑌𝑌𝜒𝜒𝜒𝜒
𝜒𝜒𝜒𝜒
𝑌𝑌

= Γ𝜒𝜒  (labor income share). Hence, a marginal relative reduction of effective 

labor by Ω𝜒𝜒 implies an approximate immediate GDP response of Ω𝜒𝜒Γ𝜒𝜒 and the after-shock GDP will be 

 𝑌𝑌� = �1 − Γ𝜒𝜒Ω𝜒𝜒�𝑌𝑌∗ (A 9) 

In the steady state, consumption per effective worker is constant. Using the equation for the time path 

of effective consumption in a Ramsey model given by eq. (A 2), constant consumption implies 

𝑓𝑓′�𝑘𝑘�∗� = 𝛿𝛿 + 𝜌𝜌 + 𝜃𝜃𝜃𝜃. Thus, the capital per effective worker in the steady state cannot change when the 

labor productivity is lower which implies that the new (long-run) steady state capital stock after the 



shock equals the original one,  𝑘𝑘��∗ = 𝑘𝑘�∗ , or, equivalently, total capital stock 𝐾𝐾�∗ = (1 − Ω𝜒𝜒) 𝐾𝐾∗. GDP in 

the new steady state, 𝑌𝑌�∗, will at every point of time be permanently lower than the original GDP 𝑌𝑌∗: 

 𝑌𝑌�∗ = 𝐹𝐹�(1 − Ω𝜒𝜒) 𝐾𝐾∗, (1 − Ω𝜒𝜒) 𝜒𝜒𝐿𝐿∗� = (1 − Ω𝜒𝜒) 𝐹𝐹(𝐾𝐾∗, 𝜒𝜒𝐿𝐿∗) = (1 − Ω𝜒𝜒) 𝑌𝑌∗. (A 10) 

Directly after the shock, the effective capital stock exceeds the steady state capital stock, 𝑘𝑘�′ = 𝑘𝑘� ∗

(1−Ω𝜒𝜒) 
>

𝑘𝑘�∗. Therefore the economy will experience negative convergence growth to the new steady state capital 

stock. Using equations (A 9) and (A 10), we get for the effective long-term GDP 𝑦𝑦��∗ = 𝑌𝑌�∗

(1−Ω𝜒𝜒) 𝜒𝜒𝜒𝜒
= 𝑌𝑌∗

𝜒𝜒𝜒𝜒
 and 

for the effective GDP right after the shock  𝑦𝑦�� = 𝑌𝑌�
(1−Ω𝜒𝜒)𝜒𝜒𝜒𝜒

=
�1−Γ𝜒𝜒Ω𝜒𝜒�

(1−Ω𝜒𝜒)
𝑌𝑌∗

𝜒𝜒𝜒𝜒
. The GDP per capita growth rate 

after shock follows from inserting these expressions into eq. (A 5), resulting in  

 
𝑔𝑔𝐴𝐴 = 𝑥𝑥 + 𝛽𝛽 ln �

1 − Ω𝜒𝜒
1 − Γ𝜒𝜒Ω𝜒𝜒

� 
(A 11) 

Note that 𝛽𝛽 ln �
1−Ω𝜒𝜒
1−Γ𝜒𝜒Ω𝜒𝜒

� < 0 as 0 < Γ𝜒𝜒 < 1 and 0 < Ω𝜒𝜒 < 1. Contrary to the destruction of capital, GDP 

per capita growth after the shock will be lower than without the shock. 

A.2 Derivation of damage factors in the comparability approach 

The comparability approach yields the channel-specific damage factors according to 𝛺𝛺𝑡𝑡𝑌𝑌 = 𝑌𝑌𝑡𝑡
𝑁𝑁,𝑌𝑌

𝑌𝑌𝑡𝑡
𝐺𝐺 =

𝑌𝑌𝑡𝑡
𝑁𝑁,𝜒𝜒_𝐿𝐿

𝑌𝑌𝑡𝑡
𝐺𝐺 = 𝑌𝑌𝑡𝑡

𝑁𝑁,𝐾𝐾

𝑌𝑌𝑡𝑡
𝐺𝐺 = 𝑌𝑌𝑡𝑡

𝑁𝑁,𝐿𝐿

𝑌𝑌𝑡𝑡
𝐺𝐺 .  

A.2.1 Capital channel 

 
𝛺𝛺𝑡𝑡𝑌𝑌 =

𝑌𝑌𝑡𝑡
𝑁𝑁,𝐾𝐾

𝑌𝑌𝑡𝑡𝐺𝐺
=
𝑎𝑎0[𝛼𝛼𝐾𝐾𝑡𝑡∗

𝜎𝜎 + 𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎]1 𝜎𝜎�

𝑎𝑎0[𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎 + 𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎]1 𝜎𝜎�
 

(A 12) 

Using 𝐾𝐾𝑡𝑡∗ = Ω𝑡𝑡𝐾𝐾𝐾𝐾𝑡𝑡  and 𝛺𝛺𝑡𝑡𝑌𝑌 = 1 − Ω𝑡𝑡 , we solve for Ω𝑡𝑡𝐾𝐾  as 

 
Ω𝑡𝑡𝐾𝐾 = ���

Ω𝑡𝑡𝑌𝑌𝑌𝑌𝑡𝑡𝐺𝐺

𝑎𝑎0
�
𝜎𝜎

− 𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎�
1
𝛼𝛼
�

1 𝜎𝜎� 1
𝐾𝐾𝑡𝑡

 
(A 13) 



= ��
Ω𝑡𝑡𝑌𝑌𝑎𝑎0(𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎 + 𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎)1 𝜎𝜎�

𝑎𝑎0𝛼𝛼
1 𝜎𝜎� 𝐾𝐾𝑡𝑡

�
𝜎𝜎

−
𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎

𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎
�

1 𝜎𝜎�

 

= �Ω𝑡𝑡𝑌𝑌
𝜎𝜎 �1 +

𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎

𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎
� −

𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎

𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎
�
1 𝜎𝜎�

 

= �Ω𝑡𝑡𝑌𝑌
𝜎𝜎 + �Ω𝑡𝑡𝑌𝑌

𝜎𝜎 − 1�
𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎

𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎
�
1 𝜎𝜎�

 

= �(1 − Ω𝑡𝑡)𝜎𝜎 − (1 − (1 − Ω𝑡𝑡)𝜎𝜎) 𝛽𝛽�𝜒𝜒𝑡𝑡
𝐿𝐿𝐿𝐿𝑡𝑡�

𝜎𝜎

𝛼𝛼𝐾𝐾𝑡𝑡
𝜎𝜎 �

1 𝜎𝜎�

. 

A.2.2 Labor and labor productivity channel 

The other channels are derived similarly. Due to the labor-augmenting technical progress it does not 

matter if the damage affects labor or labor productivity in the derivation of the damage factor, however 

the effects are different due to the different growth of the two factors. We show the derivation here for 

labor. 

 
𝛺𝛺𝑡𝑡𝑌𝑌 =

𝑌𝑌𝑡𝑡
𝑁𝑁,𝐿𝐿

𝑌𝑌𝑡𝑡𝐺𝐺
=
𝑎𝑎0[𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎 + 𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡∗)𝜎𝜎]1 𝜎𝜎�

𝑎𝑎0[𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎 + 𝛽𝛽(𝜒𝜒𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡)𝜎𝜎]1 𝜎𝜎�
 

(A 14) 

Using 𝐿𝐿𝑡𝑡∗ = Ω𝑡𝑡𝐿𝐿𝐿𝐿𝑡𝑡  and 𝛺𝛺𝑡𝑡𝑌𝑌 = 1 − Ω𝑡𝑡, we solve for Ω𝑡𝑡𝐿𝐿 as 
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�
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�
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(A 15) 



= �(1 − Ω𝑡𝑡)𝜎𝜎 − (1 − (1 − Ω𝑡𝑡)𝜎𝜎) 𝛼𝛼𝐾𝐾𝑡𝑡𝜎𝜎
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. 

 

A.3 Additional illustrations and discussions 

A.3.1 Labor and productivity growth rates after a factor-specific shock 

 

Figure S 1: Evolution of the labor force in the baseline (solid line) and in case of a shock in 2050 (dashed line). Due to the 

formulation of labor growth, the asymptotical growth towards the final number of 10.5 billion people increases after the 

shock. In the baseline population is equal to labor force. In case of the shock, the labor force affected by the shock enters the 

production function, but the baseline population remains unchanged, entering the utility function. 



A one-time, temporary shock Ω𝜒𝜒 at ts affects labor productivity as 𝜒𝜒𝑡𝑡𝑠𝑠
∗ = Ω𝜒𝜒𝜒𝜒𝑡𝑡𝑠𝑠. In the following we 

derive the growth rates at the time of the shock, expressed as 𝑔𝑔𝑡𝑡𝑆𝑆
∗ = �

𝜒𝜒𝑡𝑡𝑆𝑆+1
∗

𝜒𝜒𝑡𝑡𝑆𝑆
∗ �

1/Δ𝑡𝑡
− 1, using both the 

permanent and the dissipative productivity formulation given by equations ( 2 )and ( 4 ), respectively.  

For the permanent case, the productivity after the shock is given by 𝜒𝜒𝑡𝑡𝑆𝑆+1
∗ =

𝜒𝜒𝑡𝑡𝑆𝑆
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1−𝑔𝑔𝑡𝑡𝑆𝑆
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1−𝑔𝑔𝑡𝑡𝑆𝑆

𝐿𝐿 = Ω𝜒𝜒𝜒𝜒𝑡𝑡𝑆𝑆+1. 

For the growth rate it follows that 𝑔𝑔𝑡𝑡𝑆𝑆
∗ = �

𝜒𝜒𝑡𝑡𝑆𝑆+1
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− 1 = �

Ω𝜒𝜒𝜒𝜒𝑡𝑡𝑆𝑆+1
Ω𝜒𝜒𝜒𝜒𝑡𝑡𝑠𝑠
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the growth rate stays the same and the shock remains permanent. 
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− 1. In this case, the growth 

rate is influenced by the shock and as Ω𝜒𝜒 < 1, it follows that 𝑔𝑔𝑡𝑡𝑆𝑆
∗ > 𝑔𝑔𝑡𝑡𝑆𝑆. Therefore the shock will 

dissipate over time. Both cases are shown, together with the corresponding productivity pathways, are 

shown in Figure S2.  

 

Figure S 2: Growth dynamics for the two different labor productivity formulations. Panel a shows productivity χt, panel b the 

corresponding growth rate. In black is the baseline case, in orange and purple the two with a 15% GDP shock in 2050. Orange 



is the case with a permanent effect, using the original DICE productivity equation (𝝌𝝌𝒕𝒕+𝟏𝟏
𝑳𝑳,𝒑𝒑 = 𝝌𝝌𝒕𝒕

𝑳𝑳,𝒑𝒑 (𝟏𝟏 − 𝒈𝒈𝒕𝒕𝑳𝑳)� ), in purple the 

formulation with a dissipating effect based on the endogenous growth formulation but using an exogenous investment path 

as driver ( 𝝌𝝌𝒕𝒕+𝟏𝟏
𝑳𝑳,𝒅𝒅 = (𝟏𝟏 − 𝜹𝜹𝝌𝝌)𝚫𝚫𝒕𝒕𝝌𝝌𝒕𝒕

𝑳𝑳,𝒅𝒅 +𝑷𝑷𝒕𝒕
𝝌𝝌

). In the dissipating case, the productivity growth rate after the shock is increased, 

while in the permanent case the growth rate is unchanged from the baseline growth rate (i.e. the orange line lies on top of 

the black line in the right-hand panel). 

A.3.2 Further sensitivity cases: anticipated shocks, shock magnitude, capital adjustment costs 

In our standard setting, the shock is not anticipated. In fact, the savings rate is fixed until the time of the 

shock itself (2050), which means that any adaptive reaction to the shock can only happen in the time 

step following the shock. The technical reason for this is to ensure the comparability of the shock when it 

hits. It can be interpreted as the dynamics under uncertainty in the presence of low probability high 

impact shocks. When the system can react immediately at the time of the shock (i.e. the savings rate is 

endogenous in 2050), the reactions in terms of savings rate adjustments are stronger than with the delay 

in both directions (increased savings for the capital channel, decreased savings for the others, Figure S 3 

panel b). If the savings rate is completely endogenous, i.e. the shock is anticipated from the start, for all 

channels there is an increase in savings before the shock (Figure S 3 panel d). Table S1 shows results in 

terms of the change in BGE. With exogenous growth those changes are all welfare increasing, i.e. the 

change in BGE decreases. With endogenous growth, the BGE changes are larger and the welfare effect 

depends on the savings reaction at the time of the shock. If that is positive, as in the capital channel, 

again immediate adaptation and even more so anticipation increase welfare. If savings are reduced at 

the time of the shock due to an overcapitalization (all other channels), this affects also productivity 

through the investment spillover, leading to a reduction in welfare compared to the standard case and 

therefore an increase in ΔBGE (bottom part of Table S1). This can be remedied to some degree by full 

anticipation and related adaptation, but only for the output channel is that adaptation strong enough to 

result in a smaller change in BGE than for the standard case. With both exogenous and endogenous 



growth the capital channel benefits most from the adaptation option through anticipation or immediate 

reaction at the time of shock. 

Table S1: Change in balanced growth equivalent (ΔBGE) in % in the different channels and with the different savings rate 

settings for exogenous growth (top 3 rows) and endogenous growth (bottom rows).  

 Y damage K damage L damage χ, perm. 
damage χ, diss. damage 

Standard (free S 
after 2050) 0.95 1.67 4.17 9.22 4.52 

Free S from 2050 
onward 0.93 1.64 4.16 9.22 4.51 

Free S (anticipation 
case) 0.93 1.6 4.16 9.21 4.51 

EG (free S after 
2050) 1.23 1.91 5.97 - 6.71 

EG (free S from 2050 
onward) 1.45 1.59 6.15 - 6.92 

EG (free S, 
anticipation case) 1.09 0.77 6.04 - 6.82 

 



 

 

Figure S 3: GDP change and savings rate for the different impact channels (colors). Panels a and b compare the standard case 

with an endogenous savings rate after the shock to a case where the savings rate only fixed until the shock (solid vs. dashed 

lines). Panels A and B compare the case with full anticipation (completely endogenous savings rate, dashed lines) to the case 

where the savings rate is endogenous from the shock onward (solid lines – equal to the dashed line case in the top panels). 

Figure S 4 and Figure S 5 show the effects of different shock magnitudes on the results. The principle 

long-term shock dynamics are not affected by the size of the shock, but the half-life times change in 

different directions depending on the impact channel. For the output, capital, labor and permanent 

productivity damage channels, half-life times increase somewhat with the shock magnitude, driven by 

the indirect capital effect (Figure S 5, panel a). However, for the dissipative productivity damage half-life 

times decrease. This is a savings rate effect. While the labor formulation is designed to asymptotically 

reach a long-term level of 10.5 billion people despite the shocks, the productivity, despite the in-build 

increase in the growth rate in response to the shock, will stay increasingly below the original level with 



higher shocks, having larger and larger long-term effects. This triggers a change in the savings rate 

response with higher damages – the decrease after the shock is lower and the following increase 

higher, leading to a quicker dissipation (Figure S 5, panel b). 

 

Figure S 4: Long-term GDP effect in the different impact channels (colors) after 4 different shocks between 5% (panel a) and 

75% (panel d). 



 

Figure S 5: Panel a - half-life times for the dissipation of the shocks in the different channels for the different shock 

magnitudes. Panel b – change in the savings rate in response to the shock for the labor (green) and dissipating productivity 

channel (purple), for the different shock magnitudes. 

 

Finally, we also looked at the influence of capital adjustment costs on the damages. Capital adjustment 

costs are affecting economic decisions on investments but are often not included in growth models, 

including DICE. As they constitute a cost markup for changing investments, i.e. making replacement of 

destroyed capital more expensive, they may increase overall long-term damages. We tested this, 

implementing them, following the literature (e.g. Ortigueira and Santos 1997), as part of the budget 

equation as Ct = YtN − It (1 + b It/Kt) (where C is consumption). The constant b was set to 0.2 which 

fits with the literature for aggregated economies (Shapiro 1986; Bond et al. 2011). However, as this 

parameterization results in a very small markup only, the adjustment costs turn out to be a (fairly small, 

on the order of 0.2%) baseline effect with no influence on the magnitude of the damages. 



A.3.3 Dynamics of the system with recurring cumulative shocks 

 

Figure S 6: Panels a and b: GDP loss in the case of recurring cumulative shocks, comparing the standard setup with an 

endogenous savings rate to the sensitivity case with a fixed exogenous savings rate (solid vs. dashed lines) for the different 

impact channels (colors). Panel c: Direct comparison of GDP loss for the cases of exogenous (solid lines) and endogenous 

(dashed lines) growth (endogenous savings). Panel d: Comparison of the GDP loss for the standard case with a CES production 

function (solid lines) and the variation with a Cobb-Douglas specification (dashed lines). 



 

Figure S 7: GDP loss (panel a), change in investment (panel b) and productivity (panel c) in the case of recurring cumulative 

shocks, for the standard setup (solid lines), with endogenous growth (dashed lines) and with endogenous growth and fixed 

savings rate (dotted lines). A productivity effect is only visible for the endogenous growth cases (dashed and dotted lines) and 

for the two productivity channels with exogenous growth (purple and orange solid line). 



 

Figure S8: The effect of a lower discount rate in the case of recurring cumulative shocks with exogenous (panels a,c) and 

endogenous (panels b,d) growth, on GPD loss (top panels) and savings dynamics (bottom panels) in comparison to the 

standard case (dashed vs solid lines) for the different impact channels colors). The lower discount rate is implemented 

following the Stern settings as described in Nordhaus (2014), with an initial rate of social time preference per year of 0.1% 

and an elasticity of marginal utility of consumption of 1.01, lowering the discount rate from 3.6 to 1.5% in 2100. 
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