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1 Additional figures

Figure S1: Sensitivities for variations of the deforestation cost cD.
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Figure S2: Sensitivities for variations of the intensification cost cI .
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Figure S3: Sensitivities for variations of the limit for intensification credit kmin.
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Figure S4: Sensitivities for variations of the teleconnection share α.
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Figure S5: Average deforestation per year and property in dependence on price
elasticity and imitation rate without the possibility for agents to access credit
for intensification. Parameters as in Table 1.

Figure S6: Average deforestation per year and property in dependence on the
relative area that can be deforested in one year (D/X) and imitation rate λ.
Parameters as in Table 1 with ε = 100.
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2 Model description according to the ODD+D
protocol

In the following, we provide a description of the model according to the ODD+D
protocol described in Müller et al. (2013).5

I Overview

I.i Purpose

The model is designed to investigate the interrelation between intensification of
cattle ranching and deforestation in an Amazon frontier region. Furthermore,
it demonstrates how social learning dynamics can be combined with heuristic10

land-management strategies and market dynamics to integrate social, economic
and ecological dynamics. The model is designed for researchers interested in
tropical deforestation, land modeling and complex social systems.

I.ii Entities, state variables and scales

The model comprises a large number of ranchers (or ranching households) with15

their respective land properties in a region of the Amazon. The ranches are
described by the areas in three different land-cover categories (forest, pasture,
secondary vegetation), the pasture productivity, and the soil quality of areas
with secondary vegetation. The households are characterizes by their savings
and their land-management strategy. Key parameters of the model describe the20

cattle market demand and time scale of social learning. Space is included only
implicitly as a network of neighboring ranches. The spatial scale spans from
single ranches to the extent of the region (several hundred kilometers) while the
temporal resolution of the model is one year.

I.iii Process overview and scheduling25

The modeling procedure for each time step representing one year is as follows:
First, the decision model determines the decisions of all ranchers on their land-
use change activities, pasture management and investments. Second, the envi-
ronmental dynamics determine the new environmental state of each ranch. In
a third step all ranchers receive a revenue for the cattle they produced which30

is determined by the total production and the demand curve of the cattle mar-
ket. Finally, ranchers imitate their neighbors land-management strategies with
a certain probability.

II Design Concepts

II.i Theoretical and Empirical Background35

The model was designed to investigate whether intensification of cattle ranching
is able to reduce deforestation – and if so under which circumstances. The hy-
pothesis that land-use intensification can spare land from deforestation is also
known as the Borlaug hypothesis and the model is therefore used to test the
special case of the Borlaug hypothesis for cattle ranching in tropical forest re-40

gions. Furthermore, the model wants to shed light on the interaction of social,
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environmental and economic processes: How do social learning of management
strategies interact with dynamics such as pasture degradation and price forma-
tion? The decision model describing the agents is based on bounded rationality
theory, particularly heuristic decision making. This particular decision model45

was chosen because ranchers in the Amazon are observed to follow traditionally
learned land-management practices and the literature suggests that the inten-
sification and adoption of new agricultural technology is a socially mediated
process and agents often do not engage in economically optimal behavior. The
choice for the functional forms of the submodels were based on three different50

sources: 1) The existing literature on land-use change, 2) on data about de-
forestation in the the region, 3) on qualitative evidence from field surveys in
Amazon frontier regions. The property and deforestation data used to initial-
ize the model was available for single properties, while data to estimate model
parameters was often only available for the aggregate level.55

II.ii Individual Decision-Making

The subjects of the decisions in the model are ranchers (or ranching house-
holds) that use a specific land property. They decide on the land conversion
between different land-cover types, the number of cattle on their pasture and
thus influence the environmental states of their property. The agents are mod-60

eled individually. Agents have the goal to generate income from cattle ranching
and use this for consumption and reinvestment into their productive capaci-
ties. The specific decisions are modeled as heuristic threshold functions. The
agents adapt their behavior to the environmental state of their properties and
the situation on the cattle market from which their generate their revenues. For65

example, they only invest in deforestation for new pastures if this generates suf-
ficient revenues. This is also where temporal aspects play a role in the decision
process: Agents only invest if they can regain the investment within a certain
time period. However, the agents do not use dynamic optimization to make
their decisions. Spatial aspects only play an indirect role in the decision process70

through the social learning from neighboring ranches. This is also where uncer-
tainty plays a role in the decision model: the imitation of land-use strategies is
a realization of a stochastic process in which the imitation probabilities depend
on the difference of the consumption between ranchers.

II.iii Learning75

While individual learning is not modeled explicitly, the imitation process is a
social learning mechanisms that favors land-management strategies with higher
revenues.

II.iv Individual Sensing

The agents in the model are assumed to know the environmental state of their80

property, their savings as well as the price of cattle from the previous year. Fur-
thermore, agents can observe the land-management strategy and consumption
of their interaction partners on the neighborhood network. The mechanisms
why which agents obtain this information and the spatial aspects of informa-
tion retrieval are not explicitly modeled. Furthermore, there are no explicit85

costs assumed for gathering information.
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II.v Individual Prediction

Ranchers are assumed to make predictions about the future development of
their environment and the economic situation based on past experience. They
do not use explicit internal models to predict and can therefore be wrong about90

the future if there are deviations from the past.

II.vi Interaction

There are two types of interactions in the model: The first is through the
cattle market, in which interactions are indirect through the price formation
mechanism. It depends on the parameters of the demand curve and the total95

production of cattle by all agents. The second type of interaction is the imita-
tion process, which is direct and depends most crucially on the imitation rate
and the difference in the consumption between interacting ranchers. These in-
teractions can only happen on an imposed network of neighborhood relations.
The implementation of these processes is stylized and does not include explicit100

representations of communication.

II.vii Collectives

There are no explicit aggregations of single agents and therefore no distinction
between collectives.

II.viii Heterogeneity105

The ranchers are heterogeneous regarding different properties. First, the prop-
erty size of the ranches differs considerably. The sizes are taken from data of
registered properties in a frontier region. Second, the initial conditions for initial
pasture on the properties and the savings are heterogeneous. And lastly, the
decision-making is heterogeneous because agents can make decisions according110

to one of two possible land-management strategies (extensive or semi-intensive).
These two different strategies differ in the average stocking rate on pasture and
the use of land and other inputs.

II.ix Stochasticity

The imitation process is modeled as a stochastic process. Furthermore, the ini-115

tial conditions for savings and initial pasture productivity are drawn randomly
from log-normal and uniform distributions, respectively.

II.x Observation

We recorded the trajectories for individual ranches, statistics of the distribu-
tions of state variables over the ranches (mean, median, standard deviation,120

gini coefficient) as well as temporally average measures for example for average
deforestation. One of the main findings of the analysis was that intensification
can only lower deforestation in situations in which the cattle market saturates
fast enough. Otherwise it may even increase deforestation.
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III Details125

III.i Implementation Details

The model was implemented using the multi-purpose python programming lan-
guage, making use of a variety of packages for including networks and plotting
results. The model code is available at www.github.com/fmhanse/abacra.

III.ii Initialisation130

The model uses the following initial conditions, which can be described in three
different categories:

1. Individually set parameters: The property sizes are set individually us-
ing data from CAR (2018). Initial pasture extent was estimated using
PRODES (2018) deforestation data from the year 2000 by default and135

from 2016 for comparison.

2. Uniform initial values: Using estimates from aggregate data (see Table 1),
the initial values of some state variables are set uniformly. For example,
secondary vegetation was set to zero initially for all properties.

3. Randomized initial values: Randomization is used to generate and reflect140

heterogeneity in important variable for which no individual data is avail-
able. For example, we allocate initial savings to the ranchers drawn from
a log-normal distribution with mean 200 and standard deviation 100 BRL
per ha of property area. The initial values for the soil productivity q is
drawn from a random distribution of values between 0 and 1.145

III.iii Input Data

The model does not use additional data from other models.

III.iv Submodels

Ecological dynamics

Each agent i has a ranch with a constant area X that is covered by forest Ft,150

pasture Pt, and secondary vegetation St. Thus, Ft + Pt + St = X, where we
dropped the index i indicating the rancher. This implies that there are two
degrees of freedom in dynamic variables describing the different areas. The
model is discrete in time t and each time step represents one year, thereby
abstracting from seasonal variations. Land-cover changes such as deforestation155

and land abandonment are traced by simple land-cover succession equations
(cp., e. g., Satake and Rudel, 2007). At each time step, pasture land can be
created through deforestation dt or reuse of land previously covered by secondary
vegetation rt. Pasture with area at can also be abandoned, leading to secondary
vegetation regrowth. The change in pasture land is given by160

Pt+1 = Pt + dt + rt − at, (1)
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where dt, rt, and at are rates per year in units of area. The dynamics of forest
and secondary vegetation are given by

Ft+1 = Ft + rnvtSt − dt and (2)

St+1 = X − Pt+1 − Ft+1

= St − rnvtSt + at − rt, (3)

where rn is a parameter that describes the natural recovery from secondary vege-
tation to mature forest proportional to the productivity of secondary vegetation
vt, the dynamic of which is explained below. The deforestation dt, abandonment
at, and reuse rt are control variables chosen by the rancher and are determined
as part of the decision process.165

The pasture land is furthermore characterized by an average productivity qt.
The agent can decide how much cattle to place on the pasture. Pasture produc-
tivity is decreasing if the stocking rate lt = Lt/Pt is high, i. e., there is a high
number of cattle Lt per area on the pasture. The model formulation implic-
itly assumes here that the herd size of ranchers is variable through acquisition170

and sale of calves and the ranchers adjust it to their requirements (cp. Quaas
et al., 2007). The decay of pasture productivity nevertheless can be reduced
by a management effort mt, which subsumes various processes like fertilization,
adoption of new grass species, fencing, and maintenance work.

For describing the dynamics of the pasture productivity, we chose the sim-
plest decreasing dynamics with a lower zero bound, i. e., an exponential decay.
This dynamics ensures that the averaging over different land areas with differ-
ent initial productivities is valid.1 Deforestation and reuse add land area to the
pasture with productivities qd and vt, respectively. Furthermore, abandonment
lets the pasture area shrink. Averaging over all these changes and weighting
with the respective areas gives the following dynamics for pasture productivity:

qt+1 =
(1− β(lt −mt))qt(Pt − at) + qddt + vtrt

Pt + dt + rt − at
, (5)

where β is the rate of degradation, lt is the stocking rate of the pasture, and mt175

is a management effort that can counteract pasture degradation.
To complete the ecological dynamics, the variable vt tracks the productivity

and regrowth on land areas with secondary vegetation. It follows a similar
dynamics as the pasture productivity, but with an exponential approach to the
natural relative productivity v∗ = 1 with rate rS . The other terms stem from
weighting and averaging for additional and outgoing areas, similar to Eq. 5.

vt+1 =
(vt + rS(1− vt))(St − rt) + atqt

St − rt + at
. (6)

In summary, the ecological state of each ranch has four degrees of freedom
(Pt, Ft, qt, and vt).

1Assume that each ranch consists of separate land patches indexed by j with pasture
productivity qjt . Only this type of dynamics makes the averaging before applying the dynamic
equivalent to averaging after applying the dynamic:〈

qjt+1

〉
=

〈
(1 − βlt)q

j
t

〉
= (1 − βlt)

〈
qjt

〉
. (4)

qt describes this average and thus can account for different initial productivities of the under-
lying land patches.
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Economic dynamics

dt, rt, at, lt and mt constitute the control variables of the ecological dynamics,180

representing the possible decisions for the rancher. The management mt, defor-
estation dt and reuse rt are associated with a cost per area. The income of the
agent is realized from selling cattle yt = ltPtqt/Tp at a price of pc (per head),
where Tp is the average time that cattle have to spend on the pasture until they
can be slaughtered. Thus the income of the agent is given by:185

It = pcltPtqt/Tp − cDdt − cRrt − cmmtPt, (7)

where cD and cR are the cost of deforestation and reuse (per area) and cm the
cost of management (per area and effort).

This income can either be consumed or saved by the ranch, resulting in the
following dynamics for the accumulated savings:

kt+1 = (1 + δ)kt + It − Ct, (8)

with an interest rate δ. The income spent for consumption Ct also comprises190

a control in the model. Note that the savings can also be negative, such that
they effectively represent the debt of the rancher. For reasons of simplicity, we
assume here a fixed saving rate s, such that Ct = (1− s)It.

Decision making of agents and land-management strategies

The decision-making functions of agents are the centerpiece of the abacra model.195

They determine the control variables in every time step. Because the decision
to deforest may depend on many factors such as location, available resources,
weather, beliefs about future prices and policies, and the choices of other agents,
it is especially challenging to capture them appropriately in a stylized model.

Here, we use a heuristic decision approach for modeling the decisions of the200

ranchers. Heuristics are rules of thumb, often formalized as decision trees, that
help agents to evaluate available information and choose actions that lead to
more desirable outcome over less desirable ones (for a recent review, see Gigeren-
zer and Gaissmaier, 2011). Heuristics are related to bounded rationality theory,
which deals with constraints of cognitive capabilities of decision makers and205

decisions under incomplete information (Simon, 1956; Tversky and Kahneman,
1974). Many heuristics are satisficing strategies: An agent makes a decision as
soon as a specific criterion is satisfied rather than optimizing over all possible
actions. Heuristics have been used to model land-use decision, for example in
the models by Deadman et al. (2004) and Salvini et al. (2016).210

Because of limited empirical data on actual decision processes in the system
under consideration, we made simplifying assumptions for the decision functions
of agents, which we will discuss in the following. As evidence from surveys sug-
gests, land use decisions are not only based on monetary incentives but strongly
influenced by social preferences (Garrett et al., 2017). We capture this in our215

model by the land-management strategy that an agent adopts, which determines
the specific decision process of an agent. We identified two idealized strategies,
an extensive and a semi-intensive land management strategy, which correspond
to typical individual land-use trajectories in the Amazon. The decisions to de-
forest, manage the pasture, or abandon parts of it as well as to decide for a220

stocking rate depend on the management strategy that the agent has adopted.
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Extensive strategy

The extensive strategy represents traditional approaches to cattle ranching with
fallow periods and slash-and-burn fertilization and is characterized by low stock-
ing densities. The pasture productivity decreases over time and has to be re-
newed by fallow periods and slash-and-burn practices. The choice of control
variables in the abacra model follows simple threshold heuristics that can be
written using the Heaviside function

θ(x) =

{
0 if x < 0

1 if x ≥ 0
(9)

as a compact notation.
The decisions to deforest or reuse (i. e., slash-and-burn) an area D or R are

determined as follows. First, the respective savings for covering the conversion
costs cD or cR have to be available. The conversion can only take place, if there
is enough forest Ft or secondary vegetation St, respectively. For the extensive
strategy, the managed pasture cannot exceed a fixed fraction pmax. Finally, the
expected additional income Idexp = pcltDqd/Tp (or Irexp = pcltRvt/Tp for reuse)
from the additional pasture is compared to the cost. If the investment is paying
back within a time period Trec, the investment is made. If both deforestation
and reuse are paying back, then the option with the higher expected additional
income is taken. This is determined by the expected amount of cattle that can
be produced on the new pasture, which depends on the pasture productivity qd
after deforestation compared to after reuse vt as well as the difference in the
cost for deforestation and reuse. With the notation of Heaviside functions, the
decision procedure can be written as

dt =D θ(kt − cDD) θ(Ft −D) θ(pmaxX − Pt)
× θ(IdexpTrec − cDD) θ(Idexp − Irexp), (10)

rt =R θ(kt − cRR) θ(St −R) θ(pmaxX − Pt)
× θ(IrexpTrec − cRR) θ(Irexp − Idexp). (11)

An area A of land is abandoned if pasture productivity falls below a certain
threshold qθa and this land was used as pasture before:

at = A θ(qt − qθa) θ(Pt −A). (12)

The extensive strategy does not use the pasture management option (mt = 0)
and the stocking rate is fixed at a low level lt = lext.225

Semi-intensive strategy

The semi-intensive strategy, corresponding to cattle ranching with various indus-
trial inputs and pasture improvement techniques, has higher stocking densities
but also higher costs for inputs. Agents invest in inputs for pasture maintenance
such as fertilizers and fencing for pasture rotation, but also in measures such as230

better adapted grass and cattle species, improved pasture seeding with legumes,
or additional concentrated feed to improve pasture and livestock productivity.

The semi-intensive strategy is implemented in the following way: Defor-
estation D occurs if there is enough primary forest on the property left and
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the agent has sufficient savings to cover the deforestation cost. Furthermore,
the agent decides whether the investment to be made can be regained within
a certain time period Trec, assuming that the economic circumstances remain
constant. For this, the expected income Idexp = pcltDqd/Tp−cmmtD from using
a newly deforested area is compared to the deforestation cost. In the case of
the semi-intensive strategy, the calculation of income takes the costs for pasture
management into account. The decision for reusing an area R is made similarly.
As for the extensive strategy, the decision between deforestation or reuse to get
new pasture results from a comparison of the expected income increases of both
options.

dt =D θ(kt − (cD + cI)D) θ(Ft −D)

× θ(IdexpTrec − (cD + cI)D) θ(Idexp − Irexp), (13)

rt =R θ(kt − (cR + cI)R) θ(St −R)

× θ(IrexpTrec − (cR + cI)R) θ(Irexp − Idexp). (14)

Note that here the deforestation costs for the semi-intensive strategy are higher
by the intensification cost cI . This also has to be considered in Eq. 7 by sub-
tracting the intensification cost cI(dt + rt) for converted areas. Similarly, when235

adopting this strategy, the cost for converting existing pasture cIPt has to be
subtracted from the savings stock, Eq. 8.

An area A of pasture is abandoned if the ranching activity is not profitable
anymore,

at = A θ(−Iexp) θ(Pt −A), (15)

with Iexp = pcltPtqt/Tp−cmmtPt. The semi-intensive strategy uses the pasture
management option mt = M , where M is a constant. The stocking rate is
higher than in the extensive case lt = lint > lext.240

Evidence for the proposed kind of heuristic behavior was obtained in personal
interviews by one of the co-authors (E. D.-N., unpublished fieldwork carried
out in 2016 in the states of Pará and Mato Grosso along the highway BR-
163). Ranchers tend to invest in new pasture if they can recover their initial
investment in a time period below a threshold of about 5-8 years. Furthermore,245

the valuation of land is an important factor for decision making of ranchers.
Because our model does not contain a description of the land market, we do not
consider this in our analysis.

Local interaction: strategy imitation between agents

The decision to adopt a certain land-management strategy could in principle250

take into account the amount of available land and savings, possibilities to
move to other areas, and the available information about technologies and en-
vironmental factors. In the abacra model, we reduce this potentially complex
decision to a social imitation process on a geographic network and assume that
the adoption of a certain management strategy only depends on the agent’s255

own success and its comparison with the neighbors (cp. Traulsen et al., 2010;
Wiedermann et al., 2015).

We model the choice of management strategy as a social updating process:
Strategies are transmitted via a network of neighbors and acquaintances. The
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agents are modeled on a network, which represents neighbor relations. This260

simplifying assumption is motivated by evidence from the literature that neigh-
bor interactions play an important role in deforestation decisions (Robalino and
Pfaff, 2012) and the role of networked social interactions in various environmen-
tal contexts (Currarini et al., 2016). Furthermore, word-of-mouth recommen-
dation has been identified as one of the most important determinants for the265

participation in sustainable ranching programs (Ermgassen et al., 2018).
We implement the neighbor interactions as follows: The simplest assumption

for the timing of interaction events is that they are equally probable for every
point in time. Such a stochastic process is called Poisson process and is described
by a rate λ (Van Kampen, 2007). The number of interaction events K in one270

time step of the model (one year) is then given by a random number drawn
from the Poisson distribution

P (K) = e−λ
λK

K!
. (16)

We draw a random number from this distribution for each time step in the
model to determine the number of interaction events. For each interaction
event, a random node i of the network and a random neighbor j of this node275

are chosen. Then, i imitates the strategy of j with a probability given by

Pij = g(xi, xj), (17)

where x is a property of the agents that is compared between them and g: R2 →
[0, 1]. For the model implementation presented here, we choose the consumption
of agents Ct as the property for comparison and a hyperbolic tangent function
to compute the probability (cp. Wiedermann et al., 2015):280

Pij =
1

2
(tanh(σ(Cj − Ci)) + 1) . (18)

However, the imitation of the intensive strategy is only possible if an intensifi-
cation cost per area cI can be covered. This cost can also be payed by a credit
(modeled as negative savings) up to a certain limit kmin. This strategy imi-
tation with the imitation rate λ results in the spread of production strategies
biased towards the more income generating strategy.285

Interaction between all agents: the cattle market

Additionally to the local imitation, the model captures how ranchers interact on
a cattle market, which determines the price that ranchers can realize when sell-
ing their cattle. We model the price as given by a demand curve that represents
the local market for cattle. The price response to changes in cattle quantity290

Y =
∑
i qiPili is modeled by a constant elasticity function

pc = apY
−1/ε, (19)

with price elasticity of demand ε.
The exact curve is difficult to estimate from data, which is why we analyze

the model for different settings of the price elasticity of demand and base prices
(as given by the parameter ap). However, we can reasonably assume that the295
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price elasticity is lower and thus prices are more sensitive to changes in quantity
in regions with a market that is not well integrated into national or international
markets. If markets are well connected to bigger markets, the prices will not be
affected much by changes in locally produced quantities but rather by external
price fluctuations. The special case of fixed prices (ranchers being price takers)300

is effectively equivalent to very high price elasticities: in this case, the exponent
in Eq. 19 gets close to zero such that the dependence on Y becomes negligible.
This is why we studied also very high values for this parameter.
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