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Abstract

In this paper we propose an autoregressive wild bootstrap method to construct confidence
bands around a smooth deterministic trend. The bootstrap method is easy to implement and
does not require any adjustments in the presence of missing data, which makes it particularly
suitable for climatological applications. We establish the asymptotic validity of the bootstrap
method for both pointwise and simultaneous confidence bands under general conditions, allowing
for general patterns of missing data, serial dependence and heteroskedasticity. The finite sample
properties of the method are studied in a simulation study. We use the method to study the
evolution of trends in daily measurements of atmospheric ethane obtained from a weather station
in the Swiss Alps, where the method can easily deal with the many missing observations due to
adverse weather conditions.

JEL classifications: C14, C22.
Keywords: autoregressive wild bootstrap, nonparametric estimation, time series, simultaneous con-
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1 Introduction

The analysis of smoothly evolving trends is of interest in many fields such as economics and cli-
matology. For instance, trend analysis in environmental variables is of major importance, as it can
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often directly be linked to climate change. Given that trends typically do not evolve in a linear
way, fitting linear trends to the data does not uncover actual change accurately. Instead, one would
like to use more flexible trend models that avoid making parametric assumptions on the form of
the trend. A large body of statistical and econometric research therefore focuses on nonparametric
trend modeling and estimation.

In addition, when modeling trends in temperature and emission data, researchers also need to
take into account that serial dependence and heteroskedasticity may be present in the data, see for
example Franses and Vogelsang (2005) and McKitrick and Vogelsang (2014) who study parametric
trend modeling in temperature series in the presence of serial dependence. Bootstrap methods
provide an easy and powerful way to account for heteroskedasticity and autocorrelation. Bühlmann
(1998) shows the validity of the autoregressive sieve bootstrap for nonparametric trend modeling
under general forms of dependence. Neumann (1997) uses a wild bootstrap method to achieve
robustness to heteroskedasticity for a similar model.

The wild bootstrap approach is also suitable for dealing with missing data, as advocated for
example by Shao (2010b). It does not require any resampling and therefore the missing data points
can keep their original date in a bootstrap sample. In particular in climatology, this feature of the
wild bootstrap offers an important benefit over other methods, since there is no need of imputing
missing data points. Missing data are a prominent feature in many climatological datasets due to
instrument failure or adverse weather and measurement conditions; for instance, in our application,
data are missing when cloud cover prevents measurements from being taken. The wild bootstrap,
however, relies on independence of the error terms, which is a situation rarely encountered in
practice. To relax this strong assumption, dependent versions of wild bootstrap methods have been
proposed - see Shao (2010b), Leucht and Neumann (2013) and Smeekes and Urbain (2014) - but not
in the context of nonparametric trend estimation. Moreover, so far no theory exists on the validity
of such wild bootstrap methods in the presence of serial dependence, heteroskedasticty and missing
data. In this paper we address this issue and propose an autoregressive wild bootstrap method that
provides valid inference under general conditions for nonparametric trend modeling.

Next to the basic pointwise confidence intervals, we also study simultaneous confidence bands,
which are often more informative about trend shapes than pointwise confidence intervals. Research
questions, like whether upward trends are present over a certain period of time, should be addressed
with simultaneous confidence bands as they involve multiple points in time at once. Wu and
Zhao (2007) derive such bands for the nonparametric trend model that have asymptotically correct
coverage probabilities, but do not consider bootstrap methods. Bühlmann (1998) proposes sieve
bootstrap-based simultaneous confidence bands that are not only asymptotically valid but also
have good small sample performance. They can, however, not easily be adjusted to be applicable
to time series with missing data, as the autoregressive sieve bootstrap requires imputation of the
missing values through for instance the Kalman filter. While this is certainly possible, it complicates
implmentation. One can also argue about how accurate imputation methods are when a majority
of the data are missing, as we face in our climatological application. Instead, we provide a much
simpler alternative that requires no adjustments at all in the presence of missing data.

To illustrate our methodology, we study a time series of atmospheric ethane emissions for which
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almost 70% of the data points are missing. When weather conditions are unfavorable – in particular
due to cloud cover – measurements cannot be taken. The series has previously been investigated
by Franco et al. (2015). Atmospheric ethane is an indirect greenhouse gas which can be used as an
indicator of atmospheric pollution and transport. It is emitted during shale gas extraction and since
shale gas has become more and more important as a source of natural gas, nonparametric trend
analysis in ethane data provides geophysicists and climatologists with a tool to link trend changes
to shale gas extraction activities, as well as study long-term climatological change.

The paper is organized as follows. In Section 2, our trend model is introduced along with the
missing data generating mechanism. Section 3 describes the estimation procedure and the construc-
tion of bootstrap confidence bands. Subsequently, Section 4 derives the asymptotic properties of
our method. Finite sample performance is analyzed in Section 5 in a simulation study. Trends in
atmospheric ethane are studied in Section 6. Section 7 concludes. All technical details including
proofs are given in Appendix A, while Supplementary Appendices B to D provide further results.

Finally, a word on notation. We denote by d−→ weak convergence and by p−→ convergence in
probability. Whenever a quantity has a subscript ∗, it denotes a bootstrap quantity, conditional on
the original sample. For instance, bootstrap weak convergence in probability is denoted by d∗−→p (cf.
Giné and Zinn, 1990). bxc stands for the largest integer smaller than or equal to x. For any functions
f(x) and g(x), defined on the same domain, f (i)(x) = di

dxi
f(x) and [fg](i) (x) = di

dxi
f(x)g(x).

2 Trend Model with Missing Data

Consider the following data generating process (DGP):

yt = m

(
t

n

)
+ zt t = 1, . . . , n,

where m (·) is a smooth deterministic trend function and zt = σtut is a weakly dependent stochastic
component. σt captures unconditional heteroskedasticity and {ut} is a linear process

ut =
∞∑
j=0

ψjεt−j , ψ0 = 1, (1)

with autocovariance function RU (k) = Eutut+k and long-run variance

ΩU =
∞∑

k=−∞
Eutut+k =

∞∑
k=−∞

RU (k).

Not all observations y1, . . . , yn are observed in practice. For this purpose, define the process
{Dt} as an indicator for whether the observations at each time are observed:

Dt =
{

1 if yt is observed
0 if yt is missing

t = 1, . . . , n,

Assumptions 1 to 4 contain the formal conditions that {yt} and {Dt} satisfy.
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Assumption 1. m : [0, 1] → R is a twice continuously differentiable deterministic function on
(0, 1) with sup0<τ<1

∣∣∣m(i)(τ)
∣∣∣ <∞ for i = 0, 1, 2.

Assumption 2. σ : [0, 1]→ R+ is a Lipschitz continuous deterministic function.

Assumption 3. {ut} is generated by (1), where

(i) {εt} is i.i.d. with E(εt) = 0, E(ε2t ) = σ2
ε =

(∑∞
j=0 ψ

2
j

)−1
, and E(ε4t ) <∞.

(ii)
∑∞
j=0 j|ψj | <∞ and the lag polynomial Ψ(z) =

∑∞
j=0 ψjz

j 6= 0 for all z ∈ C and |z| ≤ 1.

Assumption 4. For all t = 1, . . . , n, Dt satisfies the conditions:

(i) Let Et(·) = E(·|Ft) where Ft = σ(. . . , (yt−1, Dt−1)′, (yt, Dt)′). For all s ≤ t and i ≥ 0,
E[Et−iDsDt − EDsDt]2 ≤ ζ2

i , where
∑∞
i=0 iζi <∞.

(ii) EDt = P(Dt = 1) = p(t/n), where p : [0, 1] → [ε, 1], for some ε > 0, is a twice continuously
differentiable function on (0, 1) with sup0<τ<1

∣∣∣p(i)(τ)
∣∣∣ <∞ for i = 1, 2.

(iii) Cov(Dt, Dt+i) = RD,i
(
t
n ,

t+i
n

)
, where each function RD,i : [0, 1]2 → R, i ≥ 0, is Lipschitz

continuous.

(iv) For all s1, s2 ∈ {1, . . . , n}, E(us1 |Dt) = 0 and E(us1us2 |Dt) = Eus1us2.

Assumption 1 postulates that the trend m(·) is sufficiently smooth, which is the fundamental
assumption for the estimation method to work. While it rules out abrupt structural breaks, this
does not appear to be particularly restrictive for climatological applications, as many climatological
processes tend to be such that change occurs gradually. In particular, as many series are measured
daily or even multiple times a day, only instantaneous breaks, which are extremely unlikely in
atmospheric processes, would not be covered by the smooth trend model.

Assumption 2 allows for a wide array of unconditional heteroskedasticity. While excluding
abrupt breaks, these can be allowed for by generalizing the function σ(·) to be piecewise Lipschitz
as in Smeekes and Urbain (2014). However, given the limited relevance of abrupt breaks for our
climatological focus, we do not pursue this in the current paper.

Assumption 3 is a standard linear process assumption that ensures that sufficient moments of
{ut} exist and {ut} is weakly dependent and strictly stationary. These assumptions are satisfied by
a large class of processes including, but not limited to, all finite order stationary ARMA models.
The assumption also implies that ΩU = σ2

ε

∑∞
i=−∞

∑∞
j=0 ψjψj+|i| <∞ (cf. Lemma A.1). While our

current assumption does not allow for conditional heteroskedasticity, this could be relaxed at the
expense of increasing the complexity of the theoretical arguments, by allowing εt to be a martingale
difference sequence. Similarly, alternative dependence concepts such as mixing, which is considered
in the same bootstrap context by Smeekes and Urbain (2014), could be used as well. However, as
conditional heteroskedasticity is not the focus of our paper, we do not consider these extensions.

Assumption 4 allows the missing data generating mechanism to be weakly dependent and non-
stationary. The mixingale assumption (i) along with the summability condition on ζi assures weak
dependence and summable autocovariances (Lemma A.1). For technical reasons, we need to put the
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mixingale assumption on the product DsDt, but it directly implies that Dt is a mixingale, as well, by
setting s = t. By (ii) and (iii), the first two moments of the missing data process are allowed to vary
smoothly over time, which thereby allows for instance for smooth periodical changing probabilities
(e.g. due to seasonal variation), or long-term changes related to climate change. Smoothness is
required as our estimator performs an implicit nonparametric estimate of the missing probability,
and thus must behave similarly smooth as the trend function. Assumptions (i)-(iii) are met by a
large class of generating processes, including many Markov chains with smoothly varying transition
probabilities.

Assumption (iv) can be interpreted as an exogeneity assumption on the missing data generating
mechanism, which for instance is satisfied if {Dt} is independent of {ut}. While this assumption
could be argued to be restrictive, it does not appear to be problematic for our focus. Though
inconclusive, some recent research has found evidence of a relation between greenhouse gases and
the occurrence of cloud cover through climate change, see e.g. Norris et al. (2016). As cloud cover
may cause missing observations, our assumption might appear restrictive, but this kind of long-run
dependence can be accommodated through the slowly varying trend affecting both {yt} and {Dt}.
As such, the exogeneity assumption mostly rules out short-run effects of ethane on cloud cover and
vice versa, which we argue is reasonable.

3 Inference on Trends

Our goal is to conduct inference on the trend function m(·) defined in Section 2. We first describe
point estimation of m(·), followed by our bootstrap method, and finally treat the construction of
the confidence bands.

3.1 Estimation of the Trend Function

We consider local polynomial estimation which is common in the nonparametric regression litera-
ture. In particular, we focus on the local constant or Nadaraya-Watson estimator (Nadaraya, 1964;
Watson, 1964), defined as

m̂(τ) = arg min
m(τ)

n∑
t=1

K

(
t/n− τ

h

)
Dt {yt −m(τ)}2

=
[
n∑
t=1

K

(
t/n− τ

h

)
Dt

]−1 n∑
t=1

K

(
t/n− τ

h

)
Dtyt, τ ∈ (0, 1) ,

(2)

where K(·) is a kernel function and h > 0 is a bandwidth, which should satisfy Assumptions 5 and
6 given below. Note that by construction of the {Dt} series, the formulation in (2) implies that the
estimator only depends on the actually observed data.

Assumption 5. K(·) is a symmetric, Lipschitz continuous function with compact support, where
we define κk =

∫
RK(ω)k dω, κ(τ) =

∫
RK(ω)K(ω − τ) dω and µk =

∫
R ω

kK(ω) dω.

Assumption 6. The bandwidth h = h(n) satisfies nh7 → 0 and nh2 →∞ as n→∞.
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Assumption 5 is a standard assumption in the nonparametric kernel smoother literature, and is
satisfied by many commonly used kernels. Assumption 6 provides the range in convergence rates
allowed for h to ensure consistency and asymptotic normality of the kernel estimator.

The bandwidth, or smoothing parameter h plays an important role. Large bandwidths produce
a very smooth estimate, while small bandwidth produce a rough, wiggly trend estimate. Although
Assumption 6 gives some guidance, it does not provide us with a practical bandwidth choice.
Data-driven bandwidth selection is therefore important for implementation. Leave-one-out cross-
validation is the most popular data-based method for bandwidth selection, but it is designed for
independent observations and therefore inappropriate for time series data. Chu and Marron (1991)
show that in the presence of positive correlation, this criterion systematically selects very small
bandwidths, producing estimates which are too wiggly. With negative correlation, bandwidths will
be large and the estimate too smooth. Therefore, Chu and Marron (1991) propose to use a time
series version of this criterion, called modified cross-validation (MCV). It is based on minimizing
the criterion function 1

n

∑n
t=1Dt

(
m̂k,h

(
t
n

)
− yt

)2 with respect to h, where

m̂k,h(τ) =
(n− 2k − 1)−1∑

t:|t−τn|>kK
(
t/n−τ
h

)
Dtyt

(n− 2k − 1)−1∑
t:|t−τn|>kK

(
t/n−τ
h

)
Dt

(3)

is a leave-(2k + 1)-out version of the leave-one-out estimator of ordinary cross-validation, which
leaves out the observation receiving the highest weight. Next to formal selection methods, visual
inspection of the estimated trend function for a range of different bandwidths can help determining
an appropriate bandwidth.

Remark 1. The assumption that p(·) is bounded away from zero implies that in every subinterval
of (0, 1), we have enough observed data points as n grows large. This assumption can be relaxed
at the expense of more involved notation by restricting our attention to those compact subsets of
(0, 1), where the probability of observing data is larger than or equal to some ε > 0.

In small samples, we may have points τ around which no data are observed in an h-neighborhood.
As this is merely a small sample issue, for the theoretical analysis we implicitly assume that n is
large enough such that, for every τ ∈ (0, 1),

∑n
t=1K

(
t/n−τ
h

)
Dt ≥ ε∗ for some ε∗ > 0. That is,

sufficient data are available around τ . This is not restrictive, as by Assumption 6, h decreases more
slowly than n increases. In practice, the points around which insufficient data are available simply
have to be excluded from the set of τ values considered for inference.

Remark 2. While the Nadaraya-Watson estimator locally approximates the trend function by a
constant function, the local linear estimator locally fits a linear function to the data around a given
point τ ∈ (0, 1):

(
m̂ll(τ)
m̂

(1)
ll (τ)

)
= arg min

(m(τ),m(1)(τ))

n∑
t=1

K

(
t/n− τ

h

)
Dt

{
yt −m(τ)−m(1)(τ) (t/n− τ))

}2

=
(

n∑
t=1

K

(
t/n− τ

h

)
xt(τ)xt(τ)′Dt

)−1 n∑
t=1

K

(
t/n− τ

h

)
xt(τ)Dtyt

(4)
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where xt(τ) ≡ (1, t/n− τ)′. The local linear estimator is more accurate than the local constant
estimator at points which are close to the boundaries of the sample. At these points, the local
constant estimator suffers from boundary effects which the local linear estimator does not (Cai,
2007; Fan, 1992). Our analysis can be extended to the local linear estimator. However, notation
becomes significantly more cumbersome and therefore proofs more complicated, so we focus on the
local constant estimator in the theoretical part.

Remark 3. An alternative way to specify the estimators in the presence of missing data is to work
with unequally spaced data. Assuming we observe data on times ti for i = 1, . . . , n1, where n1 is
the effective number of observations, the local constant estimator can be written as

m̂(τ) =
[
n1∑
i=1

K

((ti − t1)/(tn1 − t1)− τ
h

)]−1 n1∑
i=1

K

((ti − t1)/(tn1 − t1)− τ
h

)
yti .

This formulation has the advantage that it does not require an underlying regular frequency at which
the data are observed. However, in many applications it is not hard to define such an underlying
frequency (days in our application), and then the two formulations are equivalent.

In the remainder of the paper we will continue to work with the first formulation, which leads
to clearer notation and is easier to handle in the proofs, as the randomness in the missing data is
modeled through the explicit Dt variable rather than being “hidden” in the (now random) ti dates.

3.2 Autoregressive Wild Bootstrap

To construct confidence bands around the trend estimate, we modify the wild bootstrap, originally
designed to handle heteroskedastic data (Davidson and Flachaire, 2008), to account fo serial de-
pendence. The wild bootstrap generates bootstrap errors as z∗t = ξ∗t ẑt, where ẑt are residuals of
the nonparametric trend regression. In the standard wild bootstrap, the random variables {ξ∗t }
are i.i.d. and thus, any dependence present in the data gets removed in the bootstrap errors. To
overcome this drawback, Shao (2010b) proposed the dependent wild bootstrap (DWB) in which {ξ∗t }
are generated as `-dependent random variables with Cov(ξ∗s , ξ∗t ) = KDWB

(
s−t
`

)
, where KDWB(·) is

a kernel function. As the tuning parameter `, it has to be selected by the user.
Building on this idea, Smeekes and Urbain (2014) propose the autoregressive wild bootstrap

(AWB) where {ξ∗t } is generated as an AR(1) process with parameter γ = γ(n). The AWB has as
advantage over the DWB that it is easier to implement and has a more intuitive interpretation.
Moreover, as {ξ∗t } is not `-dependent, the AWB has the potential to capture more serial correlation
and to be less sensitive to the choice of tuning parameter γ. In the context of unit root testing,
Smeekes and Urbain (2014) show that the AWB generally has a superior finite sample performance
compared to the DWB. For these reasons, we mainly focus on the AWB in the following, although
we consider the DWB in our simulation study as well. The AWB algorithm can be described as
follows.

Algorithm 1 (Autoregressive Wild Bootstrap).

1. Let m̃(·) be defined as in (2), but using bandwidth h̃. Obtain residuals ẑt = Dt[yt − m̃(t/n)]
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for t = 1, . . . , n.

2. For 0 < γ < 1, generate ν∗1 , . . . , ν∗n as i.i.d. N (0, 1−γ2) and let ξ∗t = γξ∗t−1 +ν∗t for t = 2, . . . , n.
Take ξ∗1 ∼ N (0, 1) to ensure stationarity of {ξ∗t }.

3. Calculate the bootstrap errors z∗t as z∗t = Dtξ
∗
t ẑt and generate the bootstrap observations by

y∗t = Dt[m̃(t/n) + z∗t ] for t = 1, . . . , n, where m̃(·) is the same estimate as in the first step.

4. Obtain the bootstrap estimator m̂∗(·) as defined in (2) using the bootstrap series {y∗t }, with
the same bandwidth h as used for the original estimate m̂(·).

5. Repeat Steps 2 to 4 B times, and let

q̂α(τ) = inf {u ∈ R : P∗ [m̂∗(τ)− m̃(τ) ≤ u] ≥ α} (5)

denote the α-quantile of the B centered bootstrap statistics m̂∗(τ)− m̃(τ). These bootstrap
quantiles are then used to construct confidence bands as described below.

Note that in Step 3 we only have to draw bootstrap observation for the dates whereDt = 1 and we
observed the realization yt; in the description the missing ones are artificially set to zero, but they are
actually not used anywhere. In Step 2, we generate {ξ∗t } for all t = 1, . . . , n, although subsequently
we only use the subset that corresponds to the actually observed data points. The missing data
structure is preserved in the bootstrap sample, while the correlation between consecutive non-
missing observations is determined only by their distance, which ensures a coherent bootstrap
sample. In this way, the missing data structure is automatically taken into account in the bootstrap
without any need for modifications.

Although we suggest to generate {ν∗t } as a sequence of normally distributed random variables,
inspection of the proofs shows normality is not needed; all one needs is a sequence of i.i.d. random
variables with E∗ ν∗t = 0, E∗ ν∗2t = 1 − γ2 and E∗4 ν∗4t < ∞. Normality is simply a convenient
option that is easy to implement; alternatively one could implement a variant of the Rademacher
distribution (corrected for the right variance), which for the independent wild bootstrap has good
properties (Davidson and Flachaire, 2008).

For the tuning parameter γ, we follow Smeekes and Urbain (2014) and let γ = θ1/` where
` is the “block length” parameter also found in the DWB and 0 < θ < 1 is a fixed parameter.
This specification has the advantage that ` can be interpreted in a similar way as the block length
parameter in a block bootstrap; its choice constitutes a trade-off between capturing more of the
dependence with a large value of the tuning parameter, and allowing for more variation in the
bootstrap samples with a smaller value for `. Additionally, it provides a convenient framework for
studying the theoretical properties of our method. Specifically, we need ` → ∞ as n → ∞, such
that γ → 1. This is analogous to the block (and dependent wild) bootstrap, where the block size
must increase to capture more dependence when the sample size increases. Assumption 7 postulates
the formal conditions that ` needs to satisfy. They imply that γ → 1, but not too fast.

Assumption 7. The bootstrap parameter ` = `(n) satisfies `→∞ and `/
√
nh→ 0 as n→∞.
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Note that we propose to use a different bandwidth h̃ in Step 1 of the algorithm. This is a common
feature in the literature on bootstrap methods for nonparametric regression. By either selecting a
larger (oversmoothing) or smaller bandwidth (undersmoothing) than used for the estimator, one
can account for the asymptotic bias that is present in the local polynomial estimation, see Hall
and Horowitz (2013, Section 1.4) for an extensive literature review. While undersmoothing, such as
used in the related paper by Neumann and Polzehl (1998), aims at making the bias asymptotically
negligible, oversmoothing aims at producing a consistent estimator of the (non-negligible) bias.
Both have advantages and disadvantages, see the extensive discussion in Hall and Horowitz (2013).
We follow Bühlmann (1998) and consider a solution based on oversmoothing, which we find to work
well in practice; also see Härdle and Marron (1991). After presenting our theoretical results in
Section 4, Remark 8 provides an intuition of why oversmoothing allows to consistently estimate the
asymptotic bias.1 We now state the formal conditions that h̃ must satisfy in Assumption 8; one is
that h/h̃→ 0 as n→∞, which ensures the oversmoothing.

Assumption 8. The oversmoothing bandwidth h̃ = h̃(n) satisfies max
{
h̃, h/h̃, nh5h̃4

}
→ 0 and

`max
{
h̃4, 1/nh̃

}
→ 0 as n→∞.

Remark 4. There are a number of ways to choose the AWB parameter γ in practice. Using the
relation γ = θ1/`, one can fix θ and choose ` as a deterministic function of the sample size. Smeekes
and Urbain (2014) found that θ = 0.01 paired with ` = 1.75n1/3 performed well in their simulation
study on AWB unit root testing; for the local polynomial estimation we might adapt this to let `
be a function of nh, see also Remark 5. Alternatively, one may vary γ over a range of reasonable
values, choosing a value in the range where the bands are most stable (as a function of γ), akin to
the minimum volatility method proposed by Politis et al. (1999). Ideally, one would like to have a
data-driven method for choosing an “optimal” γ. However, development of such a method requires
a deeper study of higher-order asymptotic properties, which is outside the scope of the paper.

Remark 5. To give some intuition for the interaction between the three tuning parameters h, h̃
and `, consider taking h = cn−p, for some c > 0 and 1

7 < p < 1
2 . This satisfies Assumption 6.

Now let h̃ = cn−q, where p > q as h/h̃ → 0. Furthermore, to satisfy nh5h̃4 → 0, we need that
5p + 4q > 1. For p ≥ 1

5 this is satisfied for any q; with p approaching 1
7 , q > 1

14 suffices, which is
not very strict.

Finally, take ` = cnr. From Assumption 7 we know that r < 1
2 − p/2, which for p approaching

1
2 means r < 1

4 , while for p approaching 1
7 , it implies that r < 3

7 . To satisfy the restrictions from
Assumption 8, we need that r < 4q and r < 1 − q. As q < p < 1

2 , the second condition is non-
binding. The first condition is only restrictive when q is small, say in the vicinity of 1

14 . Then r < 2
7 ,

which is stricter than the condition implied by Assumption 7. However, for q ≥ 3
28 , this restriction

is not binding.
As an example, consider the “classical” rates p = 1

5 and q = 1
9 , cf. Bühlmann (1998). These are

allowed under our theory, and additionally imply that 0 < r < 2
5 , therefore also allowing for r = 1

3

1Hall and Horowitz (2013) propose an alternative bootstrap approach that requires neither under- nor oversmooth-
ing, however their approach only delivers pointwise intervals, and is therefore not considered in this paper.
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as advocated in Smeekes and Urbain (2014).

Remark 6. Instead of the autoregressive wild bootstrap, one could equally imagine a moving-
average wild bootstrap (MA-WB), where ξ∗t =

∑`
j=0 ψn,jν

∗
t and ν∗t are i.i.d. random variables as

before. By letting ψn,j → 1, if n→∞ and j fixed, and ψn,j → 0, if n is fixed and j →∞, one could
show validity of such an MA-WB as well. For practical purposes, one could take ψn,j = f(j/`), for
instance with f(x) = 1− xr to simplify implementation.

Such a moving-average representation is closely related to the DWB, which can be seen as a
two-sided MA process, with both bootstrap methods delivering `-dependent bootstrap samples. In
his paper, Shao (2010b) shows the asymptotic equivalence of the variance estimator of the DWB
with the tapered block bootstrap (Paparoditis and Politis, 2002). Similalry, one can show that the
MA-WB has a close link to the extended tapered wild bootstrap of Shao (2010a), and depending
on the distribution chosen for {νt}, the smooth extended tapered block bootstrap of Gregory et al.
(2015, 2018). If {νt} is drawn from a continuous distribution like the normal, we have an automatic
smoothing in the wild bootstrap variants. As Gregory et al. (2015, 2018) show that smoothing helps
in the context of the block bootstrap, it may similarly do so for the wild bootstrap and provide a
potential reason to prefer the normal distribution over discrete distributions like the Rademacher
distribution.

3.3 Bootstrap Confidence Bands

Pointwise bootstrap confidence intervals with a confidence level of (1− α) for m(τ), are denoted by
I

(p)
n,α(τ) and constructed with the objective that

lim inf
n→∞

P
[(
m(τ) ∈ I(p)

n,α(τ)
)]
≥ 1− α τ ∈ (0, 1). (6)

Using our bootstrap algorithm, we can construct such pointwise intervals as

I(p)
n,α(τ) =

[
m̂(τ)− q̂1−α/2(τ), m̂(τ)− q̂α/2(τ)

]
.

As these intervals are constructed separately for each τ , links over time cannot be established
with these intervals. Therefore, we next consider how to construct simultaneous confidence bands.
Let IGn,α(τ), for τ ∈ G, denote a confidence band that is simultaneous over the set G. Formally, we
seek to construct IGn,α(τ) such that

lim inf
n→∞

[
P
(
m(τ) ∈ IGn,α(τ) ∀τ ∈ G

)]
≥ 1− α. (7)

Our practical implementation follows the three-step procedure proposed by Bühlmann (1998):

1. For all τ ∈ G, obtain pointwise quantiles q̂αp/2(τ), q̂1−αp/2(τ) for varying αp ∈ [1/B, α].

2. Choose αs = arg minαp∈[1/B,α]

∣∣∣P∗ [q̂αp/2(τ) ≤ m̂∗(τ)− m̃(τ) ≤ q̂1−αp/2(τ) ∀τ ∈ G
]
− (1− α)

∣∣∣.
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3. Construct the simultaneous confidence bands as

IGn,α(τ) =
[
m̂(τ)− q̂1−αs/2(τ), m̂(τ)− q̂αs/2(τ)

]
τ ∈ G.

In the second step, a pointwise error αs is found for which a fraction of approximately (1− α)
of all centered bootstrap estimates falls within the resulting confidence intervals, for all points of
the set G. As such, the confidence intervals with pointwise coverage (1− αs) become simultaneous
confidence bands with coverage (1− α).2

Remark 7. As an alternative to the variable-size bands proposed by Bühlmann (1998), one could
consider Kolmogorov-Smirnov-type simultaneous confidence bands of fixed size. They would be of
the form I∗α(τ) =

[
m̂(τ)− t∗1−α, m̂(τ) + t∗1−α

]
, where the quantile t∗1−α is determined as the (1−α)-

quantile of the distribution of the quantity U∗n = supτ∈G {|m̂∗(τ)− m̃(τ)|}. Neumann and Polzehl
(1998) establish the asymptotic validity of such simultaneous bands under serial independence. We
do not go in this direction, because we believe confidence bands with variable width to be more infor-
mative. They have the feature of becoming wider at points with more variability and more narrow
for periods with less variability. To obtain variable width intervals with the Kolmogorov-Smirnov
approach, one has to estimate the variance of the estimator at each τ and bootstrap a pivotal
quantity, see e.g. Neumann and Polzehl (1998, Section 2.2). This adds additional complications in
order to achieve consistent variance estimation.

4 Asymptotic Theory

We first provide the pointwise limiting normal distribution of the local constant estimator m̂(·).
Although the result is similar to the non-bootstrap part of Theorem 3.1 in Bühlmann (1998),
we extend the asymptotic theory for the local constant estimator to allow for the presence of
nonstationary volatility and missing data. As we feel this is a noteworthy result in its own right,
we present it in Theorem 1.

Theorem 1. Under Assumptions 1-6, for any τ ∈ (0, 1), we have as n→∞:

√
nh
(
m̂(τ)−m(τ)− h2Bas(τ)

)
d−→ N

(
0, σ2

as(τ)
)
,

where

Bas(τ) = µ2p(τ)−1 [mp](2) (τ) and σ2
as(τ) = p(τ)−1σ(τ)2ΩUκ2, (8)

The term Bas(τ) reflects the familiar asymptotic bias generally found in local polynomial esti-
mators, although the exact form is different due the presence of the missing data parameter p(τ).
The asymptotic variance σ2

as(τ) is not only affected by p(τ), but also by the volatility process σ2(τ).
If one were to use these distributions directly for inference, one would need to plug in consistent

2We provide R code to implement the estimator and bootstrap confidence bands on www.stephansmeekes.nl.
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estimators of these nuisance parameters. However, as we show next, in the bootstrap these are
automatically consistently estimated, and we have consistency of the autoregressive wild bootstrap
method for the local constant estimator.

Theorem 2. Under Assumptions 1-8, for any τ ∈ (0, 1), we have as n→∞:

√
nh
(
m̂∗(τ)− m̂(τ)− h2Bas(τ)

)
d∗−→p N

(
0, σ2

as(τ)
)
,

where Bas(τ) and σ2
as(τ) are defined in (8).

The pointwise validity of the bootstrap confidence intervals in the sense of (6) follows directly
from this pointwise convergence result. Note that, as the bias term Bas(τ) is the same in both
theorems, it is consistently estimated by the bootstrap. As such, we do not need the bias to
disappear, which happens when undersmoothing if nh5 → 0, or to be O(1), when nh5 → c. Even
if nh → ∞, and the asymptotic bias dominates the stochastic variation, the bootstrap correctly
mimics this and can be used for asymptotically valid inference. As such, we can relax the assumption
in Bühlmann (1998, p. 55) that h ∼ Cn−1/5 to allow for a wider range of bandwidths. In practice,
this means that the bootstrap provides additional protection against a misspecified bandwidth, by
letting the widths of confidence bands automatically adapt.

Next, to study the validity of simultaneous confidence bands as in (7), we consider h-neighborhoods
around time points τ . We do so because estimates m̂(τ1) and m̂(τ2) are asymptotically indepen-
dent for τ1 6= τ2 being two fixed distinct time points. When the distance between τ1 and τ2 is of
order h, the estimators show a non-zero correlation. Therefore a major benefit of “zooming in” on
local h-neighborhoods is that we can study how the bootstrap mimics the correlation between close
points, a feature which is lost when considering simultaneity globally.

Theorem 3. For any τ0 ∈ (0, 1), let

Zτ0,n(τ) =
√
nh (m̂(τ0 + τh)−m(τ0 + τh)) , Z∗τ0,n(τ) =

√
nh (m̂∗(τ0 + τh)− m̃(τ0 + τh)) .

Then, under Assumptions 1-8, we have for all τ0 ∈ (0, 1)

{Zτ0,n(τ)−Bas(τ0)}τ∈[−1,1] ⇒ {W (τ)}τ∈[−1,1] ,{
Z∗τ0,n(τ)−Bas(τ0)

}
τ∈[−1,1]

⇒p {W (τ)}τ∈[−1,1] ,

where {W (τ)}τ∈[−1,1] is a Gaussian process with EW (τ) = 0 and

Cov(W (τ1),W (τ2)) = σW,τ0(τ1, τ2) = p(τ0)−1σ(τ0)2ΩUκ(τ1 − τ2).

Here, ⇒ denotes weak convergence in the space of continuous real-valued functions on [−1, 1] en-
dowed with the sup-norm.

Theorem 3 establishes the uniform validity of the bootstrap within an h-neighborhood around
any point 0 < τ0 < 1, where, since h = o(1), we assume without loss of generality that m(τ0 + τh)
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is always defined. Note that the interval [−1, 1] is mainly chosen out of convenience, and the results
can trivially be shown to hold over any interval [τ0 − ah, τ0 + bh] with 0 < a, b < ∞. Moreover,
it follows directly from Theorem 3 that the bootstrap will be valid uniformly on sets that contain
a union of any finite number of such h-neighborhoods, see e.g. Bühlmann (1998, Corollary 3.3).
While, in finite samples, one can always take h and the intervals such that the full sample is covered
in G, this kind of “too large” simultaneity should be considered with caution, as this is not what the
asymptotic analysis covers. Although simultaneity over such local sets might appear less attractive
than simultaneity over the whole sample, it can nevertheless be of great interest in applications.
For example, constructing confidence bands with simultaneous coverage over two time periods - one
located early in the sample and the other one at the end - is useful when judging if there was an
upward (or downward) movement of the trend at the end of the time period when compared to the
beginning. This allows the empirical researcher to draw conclusions about developments spanning
time stretches, which is not possible with pointwise confidence intervals.

Remark 8. To provide some intuition for the required oversmoothing with bandwidth h̃ in the
bootstrap, note that from Theorem 1 (or more formally Lemma A.6) we can deduce that the
estimator used in the first step of the bootstrap algorithm satisfies

m̃(τ)−m(τ) = h̃2Bas(τ) + Zn(τ)/
√
nh̃+ op

(
1/
√
nh̃
)
, (9)

where Zn(τ) d−→ N(0, σ2
as(τ). Furthermore, letting wt,n(τ) = K

(
t/n−τ
h

)
Dt/

[∑n
t=1K

(
t/n−τ
h

)
Dt

]
,

and using that y∗t = m̃(t/n) + z∗t , we can write

m̂∗(τ)− m̃(τ) =
[
n∑
t=1

wt,n(τ)m̃(t/n)− m̃(τ)
]

+
n∑
t=1

wt,n(τ)z∗t + op
(
1/
√
nh̃
)
.

While the second term,
∑n
t=1wt,n(τ)z∗t , mimics the stochastic variation in the trend estimation, and

ensures the asymptotic normality of the bootstrap trend estimator, the bias arises from the first
term,

∑n
t=1wt,n(τ)m̃(t/n)− m̃(τ). Using (9), this term can be decomposed as

n∑
t=1

wt,n(τ)m̃(t/n)− m̃(τ) =
[
n∑
t=1

wt,n(τ)m(t/n)−m(τ)
]

+ h̃2
[
n∑
t=1

wt,n(τ)Bas(t/n)−Bas(τ)
]

+
[
n∑
t=1

wt,n(τ)Zn(t/n)− Zn(τ)
]
/
√
nh̃+ op

(
1/
√
nh̃
)
.

The asymptotic bias arises, as for the original estimator, from the first term of the decomposition.
As shown in the proof of Lemma A.7, by the smoothness of Bas(τ), the second term converges to
zero, thus canceling out the bias in m̃(τ). However, to make the third, stochastic, term vanish when
multiplying by

√
nh, it must be that h/h̃ → 0, such that this term is of small enough magnitude.

This is achieved by oversmoothing.

Remark 9. Although it is not visible from the theorems – as we only consider pointwise τ (or τ0

in Theorem 3) – τ needs to be bounded away from the boundaries (0 and 1) to make the results
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hold. As the estimator exhibits edge effects, the quality of m̃(τ) can only be guaranteed for τ away
from 0 or 1. Formally, we need to take a small δ > 0 and then consider τ ∈ [δ, 1− δ]. Consequently,
in the bootstrap we then obtain the limit distribution in a slightly smaller set τ ∈ [δ∗, 1 − δ∗], for
some δ∗ > δ. However, as we can take δ and δ∗ as small as we like, this does not affect the pointwise
statements of the theorems.3

Because of the above reasons, Bühlmann (1998, p. 53) suggests in his bootstrap algorithm to
obtain residuals ẑt = Dt[yt− m̃(t/n)] for t = [nδ] + 1, . . . , [n(1− δ)], as the residuals too close to the
boundary may contaminate the bootstrap sample when they are sampled. This is not a problem for
our method, as the AWB doesn’t involve resampling: boundary residuals remain at the boundary
in the bootstrap sample, and can therefore not affect results away from the boundaries.

5 Simulation Study

For the simulation exercise, we simulate time series with a trending behavior in both mean and
variance, inspired by patterns observed in climatological time series, and allow for similar patterns
of missing data. We will first describe the setting and then present and discuss the results.

5.1 Simulation Setup

We consider the following smooth transition model:

yt = m(t/n) + σtut, m(τ) = β1τ + β2τG(τ, λ, c), (10)

where for λ > 0,

G(τ, λ, c) = (1 + exp {−λ(τ − c)})−1 . (11)

The error term {ut} follows an ARMA(1, 1) model

ut = φut−1 + ψεt−1 + εt εt ∼ N
(

0, (1− φ2)/4
1 + ψ2 − 2φψ

)
, (12)

where we vary the parameters φ and ψ to investigate the impact of serial correlation on our method.
The variance of εt is normalized such that the signal to noise ratio does not depend on the specific
choice of the AR and MA parameter. Furthermore, we introduce heteroskedasticity with the process
{σt}. We consider two scenarios, where σt is constant over time or σt = σ(t/n), with the volatility
process σ(τ) given by

σ(τ) = σ0 + (σ∗ − σ0)(τ) + a cos (2πkτ) . (13)

Equation (10) is a shifting mean model as considered by Gonzalés and Teräsvirta (2008), and can be
seen as a smooth transition version of a broken trend model with one break. The function G(τ, λ, c)

3See Lemmas A.6 and A.7 in Appendix A for statements where these constants do appear.
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as given in (11) is the transition function with time as transition variable. Its inputs apart from time
are the location of the shift – the parameter c – as well as the smoothness of the shift, determined
by λ. For large values of λ the shift happens almost instantaneous, while it is smoother for smaller
values of this parameter. In our simulations, we fix λ = 10. The other parameters of our DGP will
be chosen in such a way that the time series experiences a downward trend during the first three
quarters which turns into a steeper upward trend in the last quarter.
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(a) The trend function m(τ)
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(b) The variance process σ(τ) with k = 4 and a = 0.5

Figure 1: Trends in mean and variance in the simulation DGP

This mimics the general pattern which is expected to occur in atmospheric ethane time series
and therefore fits our application well. More specifically, this means we set the location of the shift
to occur at c = 0.9. The slope of the trend gradually changes from β1 = −1 before the shift to
β2 = 2.5 after the shift. This is illustrated in Figure 1(a). For the variance process, inspired by
the series considered in the empirical application, we consider a cyclical component with trend. We
have to choose four parameters in (13): the start and end point of the trend – σ0 and σ∗ – as well
as the specifics of the cyclical component. The parameter a fixes the amplitude of the cycle, while
k determines how many cycles there are. We set σ0 = 1, σ∗ = 2 and consider different combinations
of values for a and k. We let a = 0.3, 0.5, 0.7 and k = 2, 3, 4. An example of this process is displayed
in Figure 1(b).

We also consider different degrees of dependence by varying the AR and MA parameters. For
the AR parameter we take φ = 0, 0.2, 0.5,−0.5, while the MA parameter varies between ψ = 0,
ψ = 0.2 and ψ = 0.5. We only look at pure AR or MA processes with these coefficient values. The
different specifications will be abbreviated in the tables with self-explanatory names, e.g. we write
AR−0.5 for φ = −0.5, ψ = 0 and use MA0.5 when φ = 0 and ψ = 0.5.

In addition, we consider cases of missing data for which we generate a missing pattern that is
representative for the ethane data. We implement a first-order Markov Chain for Dt with transition
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probabilities

(Dt = 0 Dt = 1
Dt−1 = 0 0.80 0.20
Dt−1 = 1 0.45 0.55

)
, (14)

which are estimated from the ethane time series considered in Section 6. This transition matrix
results in an average fraction of around 70% missing observations.

In the estimation step, we apply the local constant estimator based on the Epanechnikov kernel
which is given by the function K(x) = 3

4(1 − x2)1{|x|≤1}. For the bandwidth parameter h we use
h = 0.02, h = 0.04 and h = 0.06. In the first step of the bootstrap procedure we follow the
recommendation of Bühlmann (1998) to use h̃ = Ch5/9 with C = 2. In the second step of the
bootstrap, we consider different values for the AR parameter γ; next to γ = 0, which reduces the
AWB to a standard wild bootstrap (WB), we also consider γ = 0.2, 0.4, 0.6.

For each specification, we run 5000 Monte Carlo simulations. We report average pointwise as
well as simultaneous coverage for a sample size of n = 200, based on B = 999 bootstrap replications.
For ease of comparison, we choose the sample size in cases with missing data such that we have
approximately 200 data points remaining. Given the large fraction of missings, an expected effective
sample size of 200 translates into a original sample size for our Markov Chain of n = 666.

The nominal coverage in all cases is 95%. We also report the average median length of the
confidence intervals in parenthesis underneath the respective coverage. For simultaneous coverage,
the trend curve has to lie within the confidence bands for all points of the considered set G, for
which we take the two sets Gsub and G considered by Bühlmann (1998), where Gsub = U1(h)∪U4(h)
and G =

⋃4
i=1 Ui(h), with Ui(h) = {(i/5)− h+ j/100; j = 0, ..., [200h]}.

To compare the performance of our AWB method to related bootstrap methods, we also imple-
ment the dependent wild bootstrap (DWB) and the sieve wild bootstrap (SWB), with a standard
normal distribution for generation of the wild bootstrap errors. Since the SWB cannot easily be
adapted to work with missing data, we provide results for this method only for the cases with no
missing data. For the DWB, we convert the γ parameter into the corresponding value for the tuning
parameter `, using the formula γ = θ1/`. Smeekes and Urbain (2014) found in their simulation study
that θ = 0.01 provides a sensible conversion between the AWB and DWB, in the sense of yielding
comparable performance of the two methods, therefore we use θ = 0.01 as well to convert the AWB
parameter into the DWB parameter. This tuning parameter does not exist in the case of the SWB;
instead, the lag length has to be selected, for which we use AIC.

5.2 Simulation Results

First, we report results for equally spaced data with no missing observations and a variance process
with the same specifications (k = 4 and a = 0.5) as displayed in Figure 1(b). The results on pointwise
coverage are given in Table 1, while Tables 2 and 3 show simultaneous coverage probabilities for
the two sets G.sub and G, respectively. The tables consist of three main blocks, one for each
bandwidth. Within each block, the individual rows contain results for different combinations of AR
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and MA parameters. Results for other choices of the variance parameters k and a, including the
homoskedastic case, are available in Supplementary Appendix C. Qualitatively, these settings yield
the same conclusions as the ones considered here.

Table 1 shows that the autoregressive wild bootstrap provides confidence intervals with good
pointwise coverage in the presence of heteroskedasticity and mild autocorrelation. For the indepen-
dent case and the cases with negative or small positive correlation, the coverage probabilities are
close to the nominal level. The only specifications for which the coverage lies below the nominal
level are when φ = 0.5 and ψ = 0.5. In these cases, the data deviate from the trend line in clusters
due to the strong positive correlation. This causes the nonparametric estimate to go through these
clusters and thus, to deviate significantly from the true trend. The confidence bands are in these
situations not wide enough to cover the true trend, resulting in too low coverage. Interestingly, all
methods/tuning parameters are similarly affected.

Concerning the autoregressive parameter of the wild bootstrap, we can observe that whenever
the data are serially correlated, the autoregressive wild bootstrap (γ 6= 0) provides better coverage
than the standard wild bootstrap (γ = 0). In addition, with stronger correlation, a larger value for
γ should be preferred, except that the case γ = 0.6 provides consistently lower coverage, indicating
that simply going for a very large value of γ is not sensible in practice. However, even if we
do see these patterns, in general, the coverage probabilities do not vary substantially with the
autoregressive parameter and therefore, the sensitivity to this parameter appears to be fairly limited.

When we look at the different blocks of Table 1, the bootstrap shows a similar overall perfor-
mance regardless of the value we select for the bandwidth parameter. Since the bandwidth plays
such an important role in nonparametric estimation, yet there are no fully satisfactory ways to select
optimal bandwidth from the data in most applications, robustness to bandwidth “misspecifcation”
is an important finding. This implies that the bootstrap can correct for poorly chosen bandwidths.

We observe similar patterns in Tables 2 and 3, while overall coverage is lower for the set G
than for Gsub. This is not surprising, since the former set covers twice as many points as the
latter. Interestingly, the confidence bands are consistently more narrow with G than they are
with Gsub. This appears counterintuitive at first, as G is twice as large as Gsub. However, while
Gsub is made up entirely of points relatively close to the boundaries, for which estimation is more
variable, G additionally contains “stable” regions closer to the center. It may be that the stability
of these regions has an offsetting effect compared with the boundary regions, reducing the size of
the intervals. As a side effect, overall coverage is also reduced. As such, if one is only interested in
coverage near the beginning and the end of the sample, it may be wiser to only attempt to achieve
uninformity over these regions, rather than over the full sample.

Similar to the pointwise coverage results, the simultaneous coverage is close to the nominal
level for the two cases with negative correlation as well as the independent case. Weak positive
correlation can also be handled decently. The cases φ = 0.5 and ψ = 0.5 are more problematic,
as coverage drops to around 60% for G and 70% for Gsub. In these cases, the smallest bandwidth
h = 0.02 seems to be preferred.

Comparing the AWB to the other two bootstrap methods, we can see that in almost all cases,
AWB and DWB show similar results and they outperform the sieve version. Often, the AWB results
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in slightly higher coverage with shorter intervals. Only when γ = 0.6, the DWB displays better
coverage. Further increases of this parameter did not lead to improvements. An exception is the
DGP with negative correlation, where the DWB displays coverage that is too high, independent of
the choice of γ. In such cases, the AWB is often more accurate for γ = 0.4. In all other cases, we
see that for both methods, the best performance is similar in magnitude but obtained at a different
value of the tuning parameter. Since the tuning parameters do not have exactly the same meaning
in both methods, there is no reason to expect identical variation. We chose θ = 0.01 to link the two
methods; changing this value will likely change the relation between the methods as well.

Next, we consider the setting with missing data. Given the previous findings, we restrict our-
selves to one bandwidth (h = 0.06) but consider all AR and MA models. The results for pointwise
as well as simultaneous coverage probabilities are given in Table 4; further results, with similar
conclusions, are available in Supplementary Appendix C.

The first block presents pointwise coverage, while the second and third blocks show results for
the sets Gsub and G. The AWB performs well even if a significant proportion of the data are missing,
as both pointwise and simultaneous coverage is close to the nominal level for almost all models.
There is a significant increase in pointwise coverage for the cases with strong positive correlation,
which is now close to 90%. The same increase is visible for both Gsub and G. This phenomenon does
not come as a surprise, as the missing data points create space between consecutive observations,
thus effectively reducing the serial dependence between observed points. Comparing the AWB with
the DWB, we can see that the coverage is slightly closer to 95% for the AWB in many cases. As
before, the best performance is obtained at different values of γ for the AWB and the DWB. The
general pattern, however, is as in the previous setting. The DWB outperforms the AWB for higher
values of γ, while the AWB obtains the most accurate coverage for smaller values of this parameter.
A notable exception are again the cases with negative autocorrelation. Results for other bandwidths
are similar, and presented in Supplementary Appendix C.

Overall, this simulation study indicates that the autoregressive wild bootstrap performs well in
most of our considered scenarios. The pointwise confidence intervals show coverage close to the
nominal level in the presence of heteroskedasticity and serial correlation. In addition, the method
still performs well in the presence of missing data. The AWB provides simultaneous confidence
bands with good coverage as long as the correlation does not become too strong. It outperforms
the sieve wild bootstrap whenever we could compare results. In comparison to the dependent wild
bootstrap, we saw that both methods provide very similar coverage probabilities, while the DWB
produces slightly wider intervals.

6 Trends in Atmospheric Ethane

We use our methodology to investigate the trending behavior of a time series of atmospheric ethane
emissions which is derived from observations performed at the Jungfraujoch station in the Swiss
Alps. This station can be found on the saddle between the Jungfrau and the Mönch, located
at 46.55◦ N, 7.98◦ E, 3580 m altitude. Ethane is the most abundant hydrocarbon gas in the
atmosphere after methane and it is used as a measure of atmospheric pollution. It contributes
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γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 −

h DGP WB AWB DWB AWB DWB AWB DWB SWB

0.02

0 0.946 0.952 0.946 0.942 0.945 0.905 0.945 0.925
(0.732) (0.715) (0.733) (0.658) (0.733) (0.555) (0.733) (0.719)

AR0.2 0.902 0.918 0.902 0.912 0.902 0.871 0.902 0.861
(0.710) (0.711) (0.711) (0.672) (0.711) (0.582) (0.711) (0.688)

AR0.5 0.778 0.818 0.776 0.828 0.778 0.791 0.777 0.672
(0.604) (0.630) (0.605) (0.621) (0.604) (0.562) (0.603) (0.536)

AR−0.5 0.989 0.988 0.989 0.982 0.989 0.958 0.989 0.960
(0.623) (0.575) (0.624) (0.499) (0.624) (0.397) (0.624) (0.552)

MA0.2 0.910 0.925 0.911 0.918 0.909 0.879 0.910 0.872
(0.712) (0.712) (0.712) (0.671) (0.712) (0.580) (0.712) (0.690)

MA0.5 0.864 0.891 0.864 0.891 0.864 0.854 0.864 0.773
(0.638) (0.657) (0.639) (0.636) (0.638) (0.564) (0.639) (0.571)

0.04

0 0.950 0.952 0.951 0.940 0.951 0.905 0.951 0.922
(0.567) (0.561) (0.568) (0.527) (0.568) (0.460) (0.568) (0.548)

AR0.2 0.903 0.911 0.901 0.905 0.901 0.872 0.902 0.862
(0.553) (0.563) (0.553) (0.544) (0.553) (0.487) (0.554) (0.525)

AR0.5 0.768 0.803 0.766 0.818 0.767 0.795 0.765 0.667
(0.478) (0.511) (0.479) (0.519) (0.478) (0.489) (0.477) (0.409)

AR−0.5 0.996 0.994 0.996 0.989 0.996 0.969 0.996 0.970
(0.492) (0.457) (0.492) (0.405) (0.492) (0.338) (0.493) (0.423)

MA0.2 0.912 0.922 0.913 0.913 0.912 0.880 0.912 0.873
(0.553) (0.563) (0.554) (0.542) (0.554) (0.485) (0.554) (0.526)

MA0.5 0.867 0.890 0.869 0.890 0.868 0.861 0.867 0.784
(0.501) (0.528) (0.503) (0.522) (0.502) (0.479) (0.503) (0.436)

0.06

0 0.955 0.957 0.956 0.946 0.956 0.917 0.956 0.925
(0.492) (0.492) (0.493) (0.471) (0.493) (0.422) (0.493) (0.465)

AR0.2 0.910 0.917 0.907 0.913 0.907 0.887 0.909 0.865
(0.480) (0.494) (0.481) (0.486) (0.480) (0.447) (0.481) (0.444)

AR0.5 0.781 0.814 0.777 0.831 0.779 0.815 0.776 0.669
(0.420) (0.455) (0.421) (0.468) (0.420) (0.453) (0.420) (0.347)

AR−0.5 0.997 0.996 0.997 0.992 0.997 0.977 0.997 0.979
(0.432) (0.408) (0.432) (0.373) (0.432) (0.325) (0.433) (0.358)

MA0.2 0.918 0.928 0.920 0.921 0.918 0.894 0.918 0.875
(0.480) (0.495) (0.481) (0.485) (0.481) (0.444) (0.481) (0.446)

MA0.5 0.878 0.900 0.879 0.901 0.878 0.878 0.878 0.789
(0.439) (0.467) (0.440) (0.470) (0.440) (0.441) (0.440) (0.370)

Table 1: Pointwise coverage probabilities (average median interval length) for k = 4 and a = 0.5.
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γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 −

h DGP WB AWB DWB AWB DWB AWB DWB SWB

0.02

0 0.941 0.944 0.936 0.934 0.935 0.870 0.937 0.917
(0.672) (0.656) (0.673) (0.604) (0.672) (0.510) (0.673) (0.661)

AR0.2 0.884 0.908 0.883 0.888 0.879 0.822 0.884 0.805
(0.652) (0.653) (0.653) (0.617) (0.653) (0.534) (0.653) (0.632)

AR0.5 0.700 0.759 0.689 0.769 0.700 0.687 0.700 0.427
(0.555) (0.578) (0.556) (0.570) (0.555) (0.515) (0.553) (0.493)

AR−0.5 0.982 0.981 0.983 0.974 0.987 0.920 0.984 0.985
(0.572) (0.528) (0.573) (0.459) (0.573) (0.365) (0.573) (0.507)

MA0.2 0.899 0.913 0.891 0.900 0.888 0.835 0.895 0.820
(0.654) (0.653) (0.654) (0.616) (0.654) (0.533) (0.654) (0.634)

MA0.5 0.830 0.860 0.821 0.853 0.810 0.792 0.821 0.619
(0.586) (0.604) (0.587) (0.584) (0.586) (0.518) (0.587) (0.524)

0.04

0 0.930 0.931 0.929 0.907 0.932 0.818 0.933 0.902
(0.521) (0.516) (0.522) (0.484) (0.522) (0.423) (0.522) (0.504)

AR0.2 0.849 0.858 0.836 0.834 0.835 0.759 0.848 0.774
(0.508) (0.517) (0.508) (0.500) (0.508) (0.448) (0.509) (0.483)

AR0.5 0.592 0.648 0.564 0.685 0.577 0.604 0.573 0.376
(0.439) (0.470) (0.440) (0.476) (0.440) (0.449) (0.439) (0.376)

AR−0.5 0.997 0.991 0.995 0.980 0.994 0.917 0.995 0.993
(0.452) (0.420) (0.453) (0.373) (0.452) (0.310) (0.453) (0.390)

MA0.2 0.859 0.877 0.857 0.860 0.864 0.774 0.863 0.790
(0.508) (0.517) (0.509) (0.498) (0.509) (0.446) (0.510) (0.483)

MA0.5 0.767 0.814 0.770 0.807 0.771 0.733 0.766 0.594
(0.461) (0.485) (0.462) (0.480) (0.461) (0.440) (0.462) (0.401)

0.06

0 0.930 0.929 0.931 0.907 0.939 0.819 0.936 0.906
(0.452) (0.453) (0.453) (0.433) (0.453) (0.388) (0.453) (0.428)

AR0.2 0.852 0.845 0.832 0.835 0.840 0.757 0.851 0.783
(0.441) (0.455) (0.442) (0.447) (0.442) (0.411) (0.442) (0.409)

AR0.5 0.564 0.624 0.554 0.663 0.565 0.594 0.537 0.366
(0.386) (0.418) (0.387) (0.431) (0.387) (0.416) (0.386) (0.319)

AR−0.5 0.998 0.995 0.998 0.987 0.998 0.937 0.998 0.995
(0.397) (0.376) (0.398) (0.343) (0.397) (0.299) (0.398) (0.330)

MA0.2 0.862 0.870 0.857 0.856 0.865 0.771 0.862 0.796
(0.442) (0.455) (0.443) (0.446) (0.443) (0.409) (0.443) (0.410)

MA0.5 0.768 0.801 0.761 0.811 0.773 0.732 0.762 0.611
(0.404) (0.430) (0.405) (0.432) (0.404) (0.405) (0.405) (0.341)

Table 2: Simultaneous coverage probabilities (average median interval length) over Gsub for k = 4
and a = 0.5.
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γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 −

h DGP WB AWB DWB AWB DWB AWB DWB SWB

0.02

0 0.925 0.939 0.925 0.919 0.926 0.845 0.925 0.894
(0.527) (0.515) (0.528) (0.474) (0.528) (0.400) (0.528) (0.518)

AR0.2 0.855 0.887 0.855 0.863 0.853 0.768 0.866 0.738
(0.512) (0.513) (0.512) (0.485) (0.512) (0.420) (0.513) (0.496)

AR0.5 0.608 0.690 0.604 0.691 0.602 0.590 0.606 0.266
(0.435) (0.454) (0.435) (0.449) (0.435) (0.407) (0.434) (0.386)

AR−0.5 0.982 0.979 0.979 0.972 0.986 0.915 0.984 0.984
(0.448) (0.413) (0.449) (0.359) (0.449) (0.285) (0.449) (0.398)

MA0.2 0.874 0.896 0.869 0.876 0.865 0.792 0.870 0.770
(0.513) (0.513) (0.513) (0.484) (0.513) (0.419) (0.513) (0.497)

MA0.5 0.780 0.833 0.779 0.812 0.764 0.728 0.776 0.498
(0.459) (0.474) (0.460) (0.459) (0.460) (0.408) (0.460) (0.411)

0.04

0 0.914 0.915 0.915 0.882 0.917 0.762 0.917 0.875
(0.401) (0.397) (0.402) (0.373) (0.402) (0.326) (0.402) (0.388)

AR0.2 0.812 0.822 0.793 0.798 0.799 0.688 0.806 0.697
(0.391) (0.398) (0.391) (0.385) (0.391) (0.345) (0.392) (0.372)

AR0.5 0.461 0.544 0.439 0.571 0.435 0.480 0.441 0.206
(0.338) (0.362) (0.339) (0.368) (0.338) (0.347) (0.338) (0.289)

AR−0.5 0.996 0.991 0.995 0.981 0.995 0.907 0.995 0.993
(0.348) (0.323) (0.348) (0.287) (0.348) (0.239) (0.349) (0.300)

MA0.2 0.824 0.848 0.824 0.818 0.824 0.705 0.832 0.718
(0.391) (0.398) (0.392) (0.384) (0.392) (0.344) (0.392) (0.372)

MA0.5 0.694 0.755 0.700 0.743 0.692 0.646 0.697 0.464
(0.355) (0.374) (0.356) (0.370) (0.355) (0.339) (0.356) (0.309)

0.06

0 0.913 0.911 0.912 0.881 0.922 0.761 0.922 0.884
(0.345) (0.346) (0.346) (0.331) (0.346) (0.297) (0.346) (0.327)

AR0.2 0.794 0.804 0.781 0.776 0.784 0.663 0.790 0.705
(0.337) (0.348) (0.338) (0.342) (0.338) (0.315) (0.338) (0.313)

AR0.5 0.415 0.497 0.395 0.529 0.396 0.450 0.390 0.196
(0.295) (0.320) (0.296) (0.330) (0.295) (0.319) (0.295) (0.244)

AR−0.5 0.999 0.995 0.997 0.988 0.998 0.932 0.998 0.996
(0.304) (0.287) (0.304) (0.262) (0.304) (0.228) (0.304) (0.252)

MA0.2 0.815 0.835 0.817 0.807 0.827 0.682 0.826 0.740
(0.338) (0.348) (0.339) (0.341) (0.338) (0.313) (0.338) (0.313)

MA0.5 0.680 0.740 0.686 0.729 0.683 0.632 0.683 0.480
(0.308) (0.329) (0.310) (0.331) (0.309) (0.310) (0.309) (0.260)

Table 3: Simultaneous coverage probabilities (average median interval length) over G for k = 4 and
a = 0.5.
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γ = 0 γ = 0.2 γ = 0.4 γ = 0.6

DGP WB AWB DWB AWB DWB AWB DWB

pw

0 0.960 0.959 0.960 0.949 0.960 0.923 0.961
(0.303) (0.303) (0.303) (0.290) (0.303) (0.264) (0.304)

AR0.2 0.939 0.940 0.937 0.933 0.939 0.906 0.938
(0.297) (0.302) (0.297) (0.295) (0.298) (0.272) (0.298)

AR0.5 0.885 0.897 0.884 0.894 0.883 0.874 0.883
(0.267) (0.280) (0.267) (0.280) (0.267) (0.266) (0.268)

AR−0.5 0.989 0.986 0.989 0.978 0.989 0.957 0.989
(0.271) (0.263) (0.272) (0.246) (0.272) (0.221) (0.272)

MA0.2 0.942 0.945 0.942 0.936 0.943 0.911 0.943
(0.298) (0.302) (0.298) (0.294) (0.297) (0.271) (0.298)

MA0.5 0.924 0.931 0.925 0.926 0.924 0.903 0.924
(0.276) (0.285) (0.275) (0.282) (0.275) (0.263) (0.276)

G

0 0.937 0.936 0.941 0.906 0.937 0.844 0.943
(0.237) (0.237) (0.237) (0.227) (0.237) (0.207) (0.238)

AR0.2 0.898 0.899 0.903 0.863 0.885 0.797 0.888
(0.233) (0.236) (0.233) (0.231) (0.233) (0.213) (0.233)

AR0.5 0.769 0.797 0.773 0.782 0.767 0.716 0.766
(0.209) (0.219) (0.209) (0.219) (0.209) (0.208) (0.209)

AR−0.5 0.988 0.981 0.985 0.968 0.987 0.918 0.985
(0.212) (0.206) (0.213) (0.192) (0.213) (0.173) (0.213)

MA0.2 0.900 0.903 0.901 0.875 0.899 0.813 0.911
(0.233) (0.236) (0.233) (0.230) (0.233) (0.212) (0.233)

MA0.5 0.856 0.873 0.862 0.852 0.861 0.793 0.868
(0.216) (0.223) (0.216) (0.221) (0.215) (0.206) (0.216)

Gsub

0 0.945 0.949 0.953 0.923 0.942 0.890 0.951
(0.273) (0.273) (0.273) (0.262) (0.273) (0.238) (0.274)

AR0.2 0.923 0.919 0.917 0.899 0.911 0.858 0.913
(0.268) (0.273) (0.268) (0.266) (0.268) (0.245) (0.269)

AR0.5 0.828 0.855 0.843 0.844 0.835 0.809 0.834
(0.241) (0.252) (0.241) (0.253) (0.241) (0.240) (0.241)

AR−0.5 0.987 0.982 0.985 0.972 0.985 0.946 0.987
(0.245) (0.237) (0.245) (0.222) (0.245) (0.199) (0.245)

MA0.2 0.918 0.928 0.927 0.903 0.918 0.868 0.926
(0.268) (0.272) (0.268) (0.265) (0.268) (0.244) (0.268)

MA0.5 0.891 0.910 0.904 0.890 0.893 0.857 0.902
(0.248) (0.257) (0.248) (0.254) (0.248) (0.237) (0.249)

Table 4: Coverage probabilities (average median interval length) with missing data (h = 0.06).
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to the formation of ground-level ozone and it influences the lifetime of methane which classifies
it as an indirect greenhouse gas. This series, which has been studied by Franco et al. (2015),
is available from the Network for the Detection of Atmospheric Composition Change website at
ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/jungfrau/hdf/ftir/. It is argued in Franco et al. (2015)
that the measurement conditions are very favorable at the Jungfraujoch location due to high dryness
and low local pollution. Further details on the ground-based station and on how the measurements
are obtained can be found in the aforementioned reference. It is a time series consisting of daily
ethane columns (i.e. the number of molecules integrated between the ground and the top of the
atmosphere) recorded under clear-sky conditions between September 1994 and August 2014 with a
total of 2260 data points. Whenever more than one measurement is taken on one day, a daily mean
is considered.

The average number of data points per year is 112.6 - giving an indication of the severity of the
missing data problem present in this series. This shows that, in line with the above discussion, it is
of major importance to use a bootstrap method which can replicate the missing data pattern cor-
rectly. The estimated transition probabilities of a first order Markov Chain reported in (14) already
indicated the presence of (weak) serial dependence in the missing data generating mechanism. As
a further exploration of this mechanism, note that the local constant estimator implicitly provides
an estimator for the smoothly varying proportion of non-missing data p(τ). We can write (2) as

m̂(τ) = p̂(τ)−1 1
nh

n∑
t=1

K

(
t/n− τ

h

)
Dtyt, where p̂(τ) = 1

nh

n∑
t=1

K

(
t/n− τ

h

)
Dt,

and p̂(τ) can be seen as an estimator of p(τ).4 In Figure 2, we plot p̂(·) as a diagnostic tool to
investigate how data availability evolves over time. It fluctuates around the average proportion of
0.3, with a maximum of almost 0.4 and a minimum of 0.2. Although no overall trend appears to be
present, the fluctuations are serious enough to cast doubt on the stationarity of the missing data
generating mechanism; however, our method can handle this without problems.

In addition, the data exhibit strong seasonality, as ethane degrades faster in summer than it does
in winter, causing the series to displays peaks during winter and troughs during summer. Franco et
al. (2015) take care of this seasonality with the help of Fourier terms by fitting the following model
to ethane measurements xt:

xt =
M∑
j=1

aj cos(2jπt) + bj sin(2jπt) + yt. (15)

They continue their analysis with the residuals from this estimation, where M = 3 is selected by
inspecting the residual variance. To investigate the sensitivity of the choice of M , we perform a
frequency domain analysis to give more insight about the form of the periodic pattern present in
our data. Due to the missing data, we use the Lomb-Scargle periodogram, which is suitable in this
situation (see Lomb (1976); Scargle (1982)). Figure 3 plots the periodogram of the Jungfraujoch
series with the frequency, rescaled to years, on the horizontal axis.

4Lemma A.4 establishes the consistency of this estimator.
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Figure 2: Time-varying proportion of non-missing data p̂

(a) Full periodogram (b) Zoomed version

Figure 3: The Lomb-Scargle periodogram of the ethane series

The peaks around zero are the smooth long-run trend we model with our trend estimator.
The present seasonality induces additional peaks at higher frequencies. There is a large peak
at 1, representing an annual periodicity, which is so pronounced that it obscures peaks at other
frequencies. Therefore, the right panel displays the same spectrum as the left panel, but with a
smaller vertical axis such that other peaks are observed more clearly. Moreover, we can observe
that there are peaks at 2 and 3. They are, however, not as clear-cut as the peak at 1 and might
not contribute as much to the seasonality, yet provide further justification for the choice M = 3.
In Supplementary Appendix D, we consider the periodograms of the residuals of the regression on
1 up to 4 Fourier terms. These show that while inclusion of one term is clearly needed, including
more terms does indeed further reduce periodicity, although for increasing M , the effect becomes
less pronounced.

To corroborate our results and to be able to compare our findings to Franco et al. (2015), we
additionally look at the Akaike and Bayesian information criteria as well as the residual variance
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M AIC BIC MSE

1 158447.5 158464.6 2.79909×1030

2 158420.0 158448.6* 2.76038×1030

3 158413.4 158453.5 2.74750×1030

4 158411.3* 158462.8 2.74010×1030

5 158411.3* 158474.3 2.73521×1030

6 158413.7 158488.1 2.73329×1030

7 158416.8 158502.7 2.73219×1030

Table 5: Fourier term investigation

(MSE in Franco et al. (2015)) from the above regression for different values of M . The results
are summarized in Table 5. While the Akaike criterion (AIC) is indifferent between adding 4 or 5
Fourier terms, BIC selects 2. The residual variance (MSE) decreases by only small increments when
more than 3 terms are included. Based on our analysis, it is not clear how many Fourier terms
we should include; any value of M between 1 and 4 seems reasonable. In the following, we report
results for applying the trend estimation on the residuals of the regression with M = 3 Fourier
terms, as in Franco et al. (2015). In Supplementary Appendix D we perform the same analysis with
M varying between 1 and 4, with hardly any difference in the results.

We next investigate bandwidth selection. As suggested in Section 3.1, we determine a possible
bandwidth using modified cross-validation. In line with the discussion in Chu and Marron (1991),
for our series, the ordinary leave-one-out cross-validation criterion selects a bandwidth which is too
small (hcv = 0.0006). This value for the bandwidth parameter gives almost no smoothing of the
data and the resulting trend curve is too wiggly. Leaving out k = 5 observations on each side of
any point, the modified criterion yields a value of hmcv = 0.03. Albeit a still small bandwidth, this
value gives a much more reasonable picture of the trend estimate. The resulting nonparametric
estimate as well as 95% simultaneous confidence bands are depicted in Figure 4. The confidence
bands are simultaneous over the whole sample. Although the validity has not been established,
the algorithm works when we cover the whole sample and the results are easier to interpret. The
bands are obtained using B = 999 replications of the bootstrap procedure and an autoregressive
parameter of γ = 0.5.

As a robustness check, we also applied the trend estimation to the data without explicitly mod-
eling the seasonality using Fourier terms. The nonparametric kernel estimator can be interpreted as
a low pass filter which suppresses high frequency oscillations. A sufficiently large bandwidth should
introduce enough smoothing to provide a trend curve which is not driven by the seasonal compo-
nent. The bandwidth selected by MCV is too small for this effect to appear in our data. When we
increase the bandwidth to h = 0.06, the resulting trend shows the same pattern as the one in Figure
4. This analysis shows that when strong seasonality is present in the data, the nonparametric kernel
estimator can be used to filter out the seasonality if the bandwidth is large enough. In this case,
however, bandwidth selection becomes a critical issue and the proposed MCV criterion should be
applied with care. Further details can be found in Supplementary Appendix D.

We observe a slight downward trend of the ethane time series until around 2009, with local
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Figure 4: Trend estimate with uniform 95% confidence bands for ethane concentration at the
Jungfraujoch (with bandwidth selected by MCV).

peaks in 1998 and 2002-2003, and an upward trend thereafter. This general development of the
trend supports the findings in Franco et al. (2015) who estimate a linear trend model with a break
at the beginning of 2009. They find a negative slope of the trend line before the break and a positive
slope after the break. As mentioned by Franco et al. (2015), the initial downward trend can be
explained by a general emission reduction since the mid 1980’s, of the fossil fuel sources in the
Northern Hemisphere. This has also been reported by Simpson et al. (2012). The upward trend
seems to be a more recent phenomenon. Studies attribute it to the recent growth in the exploitation
of shale gas and tight oil reservoirs, taking place in North America, see e.g. Vinciguerra (2015) and
Franco et al. (2016). Since previous studies have mainly used methods based on linear trends, the
two local peaks have to our knowledge not yet been analyzed. They can potentially be explained
by boreal forest fires which were taking place mainly in Russia during both periods. Geophysical
studies have investigated these events in association with anomalies in carbon monoxide emissions
(Yurganov et al., 2004, 2005). In such fires, carbon monoxide is co-emitted with ethane, such that
these events are likely explanations for the peaks we observe.
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As a final step, we look at the standard deviation of the residuals. When estimating it with a
nonparametric kernel smoother, we see a cyclical pattern with upward trend, similar to the process
we generate in our simulations. We plot the estimated standard deviation in Figure 5. This clearly
shows that the residuals are heteroskedastic which further underlines the importance of a flexible
bootstrap method.
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Figure 5: Estimate of the standard deviation of the residuals, obtained using the local constant
kernel smoother with Epanechnikov kernel and h = 0.04

7 Conclusion

In this paper we have proposed a dependent version of the wild bootstrap, the autoregressive wild
bootstrap, to construct confidence intervals around a nonparametrically estimated trend. Consis-
tency of the bootstrap has been established such that it can be used to construct pointwise and
simultaneous confidence bands. While the pointwise intervals always show good coverage in finite
samples, simulation results for the simultaneous bands indicate that strong positive autocorrela-
tion leads to a drop in coverage whenever simultaneous confidence bands are considered. However,
other bootstrap methods such as the dependent wild bootstrap and the sieve bootstrap are equally
affected, and overall the autoregressive wild bootstrap performs at least on par with these other
methods, and often outperforms them.

One major advantage of the proposed approach is its broad applicability as it can be used under
general forms of serial dependence and heteroskedasticity. Furthermore, it can be applied without
further adjustments when data points are missing. This feature of the autoregressive wild bootstrap
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is particularly relevant in economic and climatological applications where the problem of missing
data is often encountered. In addition to simulation results, we provide a rigorous asymptotic
analysis where asymptotically pervasive missing data are allowed for. While the missing data
generating mechanism affects the asymptotic distribution of the estimator, our bootstrap method
correctly mimics this and is therefore valid in the presence of general forms of missing data patterns.

An application to atmospheric ethane measurements from Switzerland demonstrates our method-
ology. An upward trend in this time series is an indication of increasing atmospheric pollution and
it has been visible in the data for the last quarter. This finding is in line with previous studies in
geophysics and provides further evidence that an increased activity in shale gas extraction might
have caused an increase in the ethane burden measured over the Jungfraujoch. In addition, we
find two local peaks in the ethane series, which can be explained by boreal forest fires. Natural
limitations of linear trend estimation have prevented these peaks from being discovered in previous
research. This underlines the flexibility of our approach compared to parametric methods.

An open end to our analysis is the choice of the autoregressive parameter in the autoregressive
wild bootstrap. Although our simulation results suggest that a range of values for this parameter
perform adequately, its selection in practice remains an open issue. Theoretical results on the choice
of this parameter are not trivial; moreover, such theoretical results do not translate directly into
selection methods with good properties in small samples. This issue therefore merits deeper study
and is left as an exercise for future research.
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Appendix A Technical Results

For the remainder of this appendix, we define some further notation that will help lighten the
notational load. Define kt(τ) = K

(
t/n−τ
h

)
and k̃t(τ) = K

(
t/n−τ
h̃

)
. For any random variable X,

let EDX = E(X|{Dt}nt=1) and VarDX = ED[X − (EDX)2]2. Furthermore, let ‖X‖p = (E |X|p)1/p

denote the Lp-norm of X, where we use ‖X‖ as short-hand notation for ‖X‖2, and define he
bootstrap equivalent as ‖X∗‖∗p = (E∗ |X∗|p)1/p. Finally, C,C1, C2, . . . denote arbitrary fixed positive
constants not depending on n or h, whose value can change each line, while φn denotes a generic
deterministic sequence with the property that limn→∞ φn = 0.

A.1 Auxiliary lemmas

We first establish some auxiliary lemmas with basic results that will be needed in the proofs of our
main results. The proofs of these auxiliary lemmas are relegated to Supplementary Appendix B.

Lemma A.1. Let Assumptions 3-4 hold. Then for all n ≥ 1,

(i)
n−1∑
i=0

i max
1≤t≤n−i

Cov(Dt, Dt+i) ≤ C1;

(ii)
n−1∑
i=0

i max
1≤t≤n−i

Cov(ut, ut+i) ≤ C2;

(iii)
n−1∑
i=0

i max
1≤t≤n−i

Cov(Dtut, Dt+iut+i) ≤ C3.

Proof of Lemma A.1. See Supplementary Appendix B.

Lemma A.2. Under Assumption 5, we have for any δ > 0 that

sup
τ∈[δ,1-δ]

max
0≤i≤n

1
nh

n−i∑
t=1

kt(τ)kt+i(τ) <∞.
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Proof of Lemma A.2. See Supplementary Appendix B.

Lemma A.3. Let fn(·) : [0, 1]→ R satisfy Assumption 1, and let g(·, ·) : [0, 1]2 → R2 be a Lipschitz
continuous function with Lipschitz constant Cg = sup(τ1,τ2)∈[0,1]2 |gn(τ1, τ2)|. Let Assumption 5 be
satisfied. Then, there exists some N > 0, such that for any 0 < δ < 1/2, all n > N and all
i = 0, 1, . . . , n, we have that

(i) sup
τ∈[δ,1-δ]

∣∣∣∣∣ 1
nh

n∑
t=1

f

(
t

n

)
kt(τ)− f(τ)κ1 −

1
2h

2f (2)(τ)µ2

∣∣∣∣∣ ≤ C max
{
h3,

1
nh

}
;

(ii) sup
τ0∈[δ,1-δ]

sup
τ1,τ2∈[-1,1]

∣∣∣∣∣ 1
nh

n−i∑
t=1

g

(
t

n
,
t+ i

n

)
kt(τ0 + τ1h)kt+i(τ0 + τ2h)− g(τ0, τ0)κ(τ1 − τ2)

∣∣∣∣∣
≤ Cg

[
C1i

nh
+ C2 max

{
h,

1
nh2

}
+ Sn(i)

]
,

where, for any sequence {βi}∞i=0 with
∑∞
i=1 |βi| < ∞, we have that

∑∞
i=1 |βi|Sn,i ≤ φn, where

limn→∞ φn = 0.

Proof of Lemma A.3. See Supplementary Appendix B.

Lemma A.4. Let Assumptions 2-5 be satisfied. Define

Zn,D,f,q(τ) = 1√
nh

n∑
t=1

kt(τ)
[
f

(
t

n

)
− qn(τ)

] [
Dt − p

(
t

n

)]
, (A.1)

where f(·) satisfies Assumption 1 and qn(·) : [0, 1]→ R is a sequence of deterministic functions with
supτ∈[0,1] |qn(τ)| <∞ for all n. Then, there exists some N > 0, such that for any 0 < δ < 1/2 and
all n > N the following hold:

(i) EZn,D,f,q(τ) = 0 and

sup
τ∈[δ,1-δ]

∣∣∣EZn,D,f,l(τ)2 − [f(τ)− qn(τ)]2ΩD(τ)κ2
∣∣∣ ≤ C max

{
h,

1
nh2 , φn

}
,

where ΩD(τ) = RD,0(τ, τ) + 2
∑∞
i=1RD,i(τ, τ) and limn→∞ φn = 0.

(ii) For all τ ∈ (0, 1),

1
nh

n∑
t=1

f

(
t

n

)
kt(τ)Dt − p(τ)f(τ)− 1

2h
2[fp](2)(τ)µ2 = Zn,D,f,0(τ)√

nh
+Rn,D(τ),

where Zn,D,f,0(τ) is defined as in (A.1) with qn(·) = 0 and supτ∈[δ,1-δ] |Rn,D(τ)| < C max
{
h3, 1

nh

}
.

(iii) Let g̃i(·, ·) be a Lipschitz continuous function with Lipschitz constant Cg(i) = sup(τ1,τ2)∈[0,1]2 |g̃i(τ1, τ2)|.
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Then for all i = 0, 1, . . . , n− 1,

sup
τ∈[δ,1-δ]

sup
τ1,τ2∈[-1,1]

E
∣∣∣∣∣ 1
nh

n∑
t=1

g̃i

(
t

n
,
t+ i

n

)
kt(τ0 + τ1h)kt+i(τ0 + τ2h)DtDt+i − p(τ0)g̃(τ0, τ0)κ(τ1 − τ2)

∣∣∣∣∣
≤ Cg(i)

[
C1√
nh

+ C2 max
{
h,

1
nh2

}
+ Sn(i)

]
,

where Sn(i) is defined in Lemma A.3.

Proof of Lemma A.4. See Supplementary Appendix B.

Lemma A.5. Let Assumptions 1-6 hold. Then, for all 0 ≤ i ≤ n− 1 and any 0 < δ < 1/2,

sup
τ∈[δ,1-δ]

E
∣∣∣∣∣ 1
nh

n−i∑
t=1

kt(τ)kt+i(τ)σtσt+iDtDt+i [utut+i − Eutut+i]
∣∣∣∣∣ ≤ βiφn + ηn√

nh
,

where
∑∞
i=1 βi <∞, limn→∞ φn = 0 and lim supn→∞ ηn <∞.

Proof of Lemma A.5. See Supplementary Appendix B.

A.2 Pointwise Results

Lemmas A.6 and A.7 decompose the (bootstrap) estimator in the relevant components, establishing
not only consistency but also providing the necessary building blocks towards asymptotic normality.
We therefore present these lemmas and their proofs together with the proofs of Theorems 1 and 2.

Lemma A.6. Let Assumptions 1-6 be satisfied. Then, for some N > 0 and any 0 < δ < 1/2, we
have for all τ ∈ (0, 1) and n > N that

√
nh
[
m̂(τ)−m(τ)− h2Bas(τ)

]
= p(τ)−1Zn,U (τ) +Rn(τ),

where Bas(τ) is defined in (8),

Zn,U (τ) = 1√
nh

n∑
t=1

kt(τ)Dtσtut, (A.2a)

σ2
Z(τ) = plim

n→∞
Var [Zn,U (τ) |{Dt}nt=1 ] = p(τ)σ(τ)2ΩUκ2, (A.2b)

sup
τ∈[δ,1-δ]

‖Rn(τ)‖ ≤ C max
{
h2,
√
nh7,

1√
nh

}
. (A.2c)
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Proof of Lemma A.6. Defining

p̂(τ) = 1
nh

n∑
t=1

kt(τ)Dt, m̆(τ) = 1
nh

n∑
t=1

kt(τ)Dtyt,

mD(τ) = 1
nh

n∑
t=1

kt(τ)Dtm(t/n) mp(τ) = 1
nh

n∑
t=1

kt(τ)p(t/n)m(t/n),

and realizing that Zn,U (τ) =
√
nh [m̆(τ)−mD(τ)], we can write

√
nh
[
m̂(τ)−m(τ)− h2Bas(τ)

]
= p(τ)−1Zn,U (τ) + [p̂(τ)−1 − p(τ)−1]Zn,U (τ)/

√
nh

+
√
nh
{
p̂(τ)−1mD(τ)− p(τ)−1mp(τ)

}
+
√
nh
{
p(τ)−1mp(τ)−m(τ)− h2Bas(τ)

}
= p(τ)−1Zn,U (τ) + In(τ) + IIn(τ) + IIIn(τ).

(A.3)

We first derive σ2
Z(τ). Let ED(·) = E(·|{Dt}nt=1). Then ED Zn,U (τ) = 0 and

ED Zn,U (τ)2 = 1
nh

n∑
s=1

n∑
t=1

ks(τ)kt(τ)DsDtσsσt Eusut

= 1
nh

n−1∑
i=−n+1

RU (i)
n−|i|∑
t=1

kt(τ)kt+|i|(τ)σtσt+|i|DtDt+|i|.

Using Lemma A.4(iii) with g̃i(τ1, τ2) = σ(τ1)σ(τ2), we find that

sup
τ∈[δ,1-δ]

E

∣∣∣∣∣∣
n−1∑

i=−n+1
RU (i) 1

nh

n−|i|∑
t=1

kt(τ)kt+|i|(τ)σtσt+|i|DtDt+|i| − p(τ)σ(τ)2κ2ΩU

∣∣∣∣∣∣
≤ 2

n−1∑
i=0
|RU (i)|

[
C1√
nh

+ C2 max
{
h,

1
nh2

}
+ Sn(i)

]
+ 2

∞∑
i=n
|RU (i)| ,

≤ C3√
nh

+ C4 max
{
h,

1
nh2

}
+ C5φn.

where limn→∞ φn = 0, from which it follows that, for τ ∈ (0, 1), E
∣∣ED Zn,U (τ)2 − σ2

Z(τ)
∣∣ ≤

C max{(nh)−1/2, h, n−1h2, φn} = o(1), where σ2
Z(τ) is defined in (A.2b).

Furthermore, by the arguments used above it follows that supτ∈[δ,1-δ] ‖Zn,U (τ)‖ ≤ C, while by
Lemma A.4(i)

‖p̂(τ)− p(τ)‖ ≤ 1√
nh
‖Zn,D(τ)‖+ C1h

2 + C2 max
{
h3,

1
nh

}
≤ C3 max

{ 1√
nh
, h2

}
.

By combining these results with the fact that ‖p̂(τ)‖−1 ≤ 1/ε∗ by Assumption 6, we find that

sup
τ∈[δ,1-δ]

‖In(τ)‖ ≤ sup
τ∈[δ,1-δ]

‖p̂(τ)− p(τ)‖
∥∥∥p̂(τ)−2

∥∥∥ ∣∣∣p(τ)−2
∣∣∣ ‖Zn,U (τ)‖ ≤ C4 max

{ 1√
nh
, h2

}
.
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For IIn(τ) we note that

p̂(τ)−1 − p(τ)−1 = p(τ)−2 {p(τ)− p̂(τ)}+ p̂(τ)−1p(τ)−2 {p(τ)− p̂(τ)}2 , (A.4)

such that we can rewrite IIn(τ) as

IIn(τ)/
√
nh = p(τ)−1 {mD(τ)−mp(τ)}+

{
p̂(τ)−1 − p(τ)−1

}
mp(τ)

+
{
p̂(τ)−1 − p(τ)−1

}
{mD(τ)−mp(τ)}

= p(τ)−1 {mD(τ)−mp(τ)} − p(τ)−2 {p̂(τ)− p(τ)}mp(τ)

+ p̂(τ)−1p(τ)−2 {p̂(τ)− p(τ)}2mp(τ) +
{
p̂(τ)−1 − p(τ)−1

}
{mD(τ)−mp(τ)}

= [IIn,11(τ)− IIn,12(τ) + IIn,2(τ) + IIn,3(τ)] /
√
nh.

As IIn,11(τ) = p(τ)−1 1√
nh

∑n
t=1 kt(τ)m(t/n) [Dt − p(t/n)] and IIn,12(τ) = p(τ)−2mp(τ) 1√

nh

∑n
t=1 kt(τ)

× [Dt − p(t/n)], we can write

IIn,1(τ) = IIn,11(τ)− IIn,12(τ) = p(τ)−1 1√
nh

n∑
t=1

kt(τ)
[
m(t/n)− p(τ)−1mp(τ)

]
[Dt − p(t/n)]

= p(τ)−1Zn,D(τ),

where Zn,D(τ) is defined as Zn,D,f,q(τ) in Lemma A.4(i) with f(·) = m(·) and qn(·) = p(·)−1mp(·).
Applying this lemma we find that

sup
τ∈[δ,1-δ]

∣∣∣∣EZn,D(τ)2 −
[
m(τ)− p(τ)−1mp(τ)

]2
ΩD(τ)κ2

∣∣∣∣ ≤ C max{h, n−1h2}+ φn.

As
∣∣x2 − y2∣∣ ≤ |x− y| (|x− y|+ 2 |y|), it follows from Lemma A.3(i) that∣∣∣∣[m(τ)− p(τ)−1mp(τ)

]2
− h4Bas(τ)2

∣∣∣∣ ≤ C max{h3, (nh)−1}
[
C max{h3, (nh)−1}+ 2h2Bas(τ)

]
≤ C1 max{h5, n−1h, (nh)−2},

and therefore, with σ2
D(τ) = h4Bas(τ)2ΩD(τ)κ2,

sup
τ∈[δ,1-δ]

∣∣∣EZn,D(τ)2 − σ2
D(τ)

∣∣∣ ≤ C1 max{h5, n−1h, (nh)−2}+ C2φn.

It then follows directly that

sup
τ∈[δ,1-δ]

‖IIn,1(τ)‖ ≤ 1
ε∗

(
sup

τ∈[δ,1-δ]

∣∣∣EZn,D(τ)2 − σ2
D(τ)

∣∣∣1/2
+ sup
τ∈[δ,1-δ]

|σD(τ)|
)
≤ C max

h2,

√
h

n
,

1
nh

 .

As supτ∈[δ,1-δ] ‖p̂(τ)− p(τ)‖ ≤ C max
{
h2, 1√

nh

}
, it follows that supτ∈[δ,1-δ] ‖IIn,2(τ)‖ ≤ C max

{√
nh9, 1√

nh

}
.

Furthermore, by Lemma A.4(i), ‖mD(τ)−mp(τ)‖ ≤ 1√
nh
‖Zn,D,m,0(τ)‖ ≤ C√

nh
, such that it also
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follows that

sup
τ∈[δ,1-δ]

‖IIn,3(τ)‖ ≤ C sup
τ∈[δ,1-δ]

‖p̂(τ)− p(τ)‖
∥∥∥m|D(τ)−mp(τ)

∥∥∥ ≤ C max
{
h2,

1√
nh

}
.

Finally, it follows directly from Lemma A.3(i) that supτ∈[δ,1-δ] |IIIn(τ)| ≤ C max
{√

nh7, 1√
nh

}
.

Collecting all remainder terms in Rn(τ) = In,1(τ) + IIn,2(τ) + IIn,3(τ) + IIIn(τ), we find that
supτ∈[δ,1-δ] ‖Rn(τ)‖ ≤ C max

{
h2,
√
nh7, 1√

nh

}
.

Proof of Theorem 1. Given Lemma A.6, we only have to prove asymptotic normality of Zn,U (τ) =
1√
nh

∑n
t=1 kt(τ)Dtσtut. To simplify the proofs, we first condition on {Dt}nt=1 and thus prove

conditional asymptotic normality of Zn,U (τ) = 1√
nh

∑n
t=1 kt(τ)Dtσtut. As before, let ED(·) =

E(·|{Dt}∞t=1). As the limit results do not depend on {Dt}nt=1, the results then directly hold uncon-
ditionally as well.

Take an M such that M →∞ as n→∞, and truncate the MA(∞) representation of ut at M lags,
say ut,M =

∑M
j=1 ψjεt−j . Then we can write

Zn(τ) = 1√
nh

n∑
t=1

kt(τ)Dtσtut,M + 1√
nh

n∑
t=1

kt(τ)Dtσt

∞∑
j=M+1

ψjεt−j

= Zn,M (τ) +Wn,M (τ).

Let RW (k) = E
(∑∞

j=M+1 ψjεt−j
) (∑∞

j=M+1 ψjεt+k−j
)

= σ2
ε

∑∞
j=M+1 ψjψj+|k|. Then

EDW
2
n,M = (nh)−1

n∑
t=1

n∑
s=1

DtDsσtσskt(τ)ks(τ)RW (t− s)

≤ 2(nh)−1 sup
τ∈[0,1]

σ(τ)2
n∑
i=0

n−i∑
t=1

kt(τ)kt+i(τ) |RW (i)|

≤ 2C sup
τ∈[0,1]

σ(τ)2
∞∑
i=0

∣∣∣∣∣∣
∞∑

j=M+1
ψjψj+i

∣∣∣∣∣∣ ≤ 2C sup
τ∈[0,1]

σ(τ)2

 ∞∑
j=M+1

|ψj |

2

= o(M−2),

which follows as 0 ≤ DtDt+i ≤ 1, by Lemma A.2 and the fact that the summability condition
in Assumption 3 implies that

∑∞
j=M+1 |ψj | = o(M−1). As EDWn,M = 0, the Markov inequality

implies that the truncation is asymptotically negligible.

We next split Zn,M (τ) into two sequences of blocks: one with small, negligible blocks Yn,j(τ) and
one with dominating blocks Xn,j(τ). Define Bj = (j − 1)(a+ b), then

Xn,j(τ) = 1√
nh

Bj+a∑
t=Bj+1

kt(τ)Dtσtut,M , Yn,j(τ) = 1√
nh

Bj+a+b∑
t=Bj+a+1

kt(τ)Dtσtut,M ,

such that Zn,M (τ) =
∑k
j=1Xn,i(τ) +

∑k
i=1 Yn,i(τ), where k = dn/(a + b)e, and the final block is
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truncated to have n observations in total. Now take sequences a = a(n) and b = b(n) → ∞ such
that a/(nh) +M/a→ 0 and b/a+M/b→ 0 as n→∞.

We first show that the small blocks are asymptotically negligible. First note that ED
(∑k

i=1 Yn,i(τ)
)

=
0. Consider n large enough such that a > M and the blocks Yn,i are mutually independent condi-
tionally on {Dt}nt=1. Then, with RM (i) = Eut,Mut+i,M , where

∑∞
i=0 |RM (i)| < ∞ by Assumption

3, we have that

ED

 k∑
j=1

Yn,j(τ)

2

=
k∑
j=1

ED Yn,j(τ)2 = 1
nh

k∑
j=1

Bj+a+b∑
s,t=Bj+a+1

ks(τ)kt(τ)DsDtσsσtRM (s− t)

≤ 2C 1
nh

b−1∑
i=0
|RM (i)|

k∑
j=1

Bj+a+b−i∑
t=Bj+a+1

kt(τ)kt+i(τ) ≤ C1
1
nh

max
0≤i≤b−1

k∑
j=1

Bi+a+b−i∑
t=Bi+a+1

kt(τ)kt+i(τ)

≤ C2
kbh

nh
≤ C3

b

a
= o(1),

where we use that
∑k
j=1

∑Bi+a+b−i
t=Bi+a+1 kt(τ)kt+i(τ) ≤ Ckbh and k ∼ an.

We next employ the Lindeberg central limit theorem (see e.g. Davidson, 2002, Thm 23.6) to show
that

∑k
j=1Xn,j(τ) d−→ N (0, p(τ)2σ2

as(τ)). Consider again n sufficiently large such that such that
b > M and the blocks Xn,i(τ) are conditionally independent. Then ED

∑k
j=1Xn,j(τ) = 0 and

ED

 k∑
j=1

Xn,j(τ)

2

=
k∑
j=1

EDXn,j(τ)2 = 1
nh

k∑
i=1

Bj+a∑
s,t=Bj+1

ks(τ)kt(τ)DsDtσsσtRM (s− t)

= 1
nh

k∑
j=1

a−1∑
i=−a+1

RM (i)
Bj+a−|i|∑
t=Bj+1

kt(τ)kt+|i|(τ)σtσt+|i|DtDt+|i|.

As M → ∞, RM (k) → RU (k). A straightforward extension of Lemma A.4 then shows that
ED

(∑k
j=1Xn,j(τ)

)2 p−→ p(τ)σ(τ)2Ωκ2.

The final step is to verify the Lindeberg condition, that is, we verify that, for every κ > 0,∑k
j=1 ED

[
Xn,j(τ)2

ω2
n

1

(∣∣∣Xn,i(τ)
ωn

∣∣∣ > κ
)]

= op(1), with ω2
n = ED

(∑k
j=1Xn,j(τ)

)2
. Note that

k∑
j=1

ED

[
Xn,j(τ)2

ω2
n

1

(∣∣∣∣Xn,i(τ)
ωn

∣∣∣∣ > κ

)]
≤ 1
κ2ω4

n

k∑
j=1

EDXn,j(τ)4

and define X̃t(τ) = Dtkt(τ)σtut,M , which, due to the M -dependence of ut,M , is an L4-mixingale
with ED X̃4

t ≤ Ckt(τ)4 Eu4
t,M , where it follows from Minkowski’s inequality that

Eu4
t,M ≤

 M∑
j=0

(
E |ψjεt−j |4

)1/4
4

≤ C E ε4
t

 M∑
j=0

ψj

4

<∞, (A.5)

37



by stationarity of {εt} and E ε4
t <∞. Lemma 2 of Hansen (1991) then implies that

EDXn,j(τ)4 = ED

∣∣∣∣∣∣ 1√
nh

Bj+a∑
t=Bj+1

X̃t(τ)

∣∣∣∣∣∣
4

≤ C 1
(nh)2

 Bj+a∑
t=Bj+1

kt(τ)2

2

.

As the blocks are non-overlapping, it follows from the properties of the kernel function and the
cr-inequality that

k∑
j=1

 Bj+a∑
t=Bj+1

kt(τ)2

2

≤ a
k∑
j=1

Bj+a∑
t=Bj+1

kt(τ)4 ≤ Cnha.

Therefore, with ω−2
n = O(1) and a = o(nh),

∑k
i=1 ED

[
Xn,i(τ)2

ω2
n

1

(∣∣∣Xn,i(τ)
ωn

∣∣∣ > κ
)]
≤ Ca

ω4
nnh

= o(1).

Lemma A.7. Let Assumptions 1-8 hold. Then, for any 0 < δ < δ∗ < 1
2 and some N > 0, it holds

for all τ ∈ [δ∗, 1− δ∗] and n > N that

√
nh
[
m̂∗(τ)− m̃(τ)− h2Bas(τ)

]
= p(τ)−1Z∗n,U (τ) +R∗n(τ),

where

Z∗n,U (τ) = 1√
nh

n∑
t=1

kt(τ)Dtztξ
∗
t (A.6a)

plim
n→∞

Var∗ Z∗n,U (τ) = σ2
Z(τ) (A.6b)

sup
τ∈[δ*,1-δ*]

E ‖R∗n(τ)‖∗ ≤ C max

 1√
nh
,
√
nh7,

√
hh̃−1,

√
nh5h̃4, h̃2,

√
`h̃4,

√
`

nh̃

 , (A.6c)

and Bas(τ) and σ2
Z(τ) are defined in (8) and (A.2b) respectively.

Proof of Lemma A.7. Analogously to the proof of Lemma A.6, we define

m̆∗(τ) = 1
nh

n∑
t=1

kt(τ)Dty
∗
t , m∗D(τ) = 1

nh

n∑
t=1

kt(τ)Dtm̃

(
t

n

)

m∗p(τ) = 1
nh

n∑
t=1

p

(
t

n

)
kt(τ)m̃

(
t

n

)
,

such that we can write
√
nh
[
m̂∗(τ)− m̃(τ)− h2Bas(τ)

]
=
√
nhp̂(τ)−1 {m̆∗(τ)−m∗D(τ)}

+
{
p̂(τ)−1m∗D(τ)− p(τ)−1m∗p(τ)

}
+
√
nh
{
p(τ)−1m∗p(τ)− m̃(τ)− h2Bas(τ)

}
= p(τ)−1Z∗n,U (τ) + I∗n(τ) + II∗n(τ) + III∗n(τ)

(A.7)

As a general observation, note that taking the sums in the expressions above from t = 1 to n appears
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to include the boundary points for m̃(·), for which the properties of the estimator are not satisfied.
However, as we consider τ ∈ [δ∗, 1 − δ∗] and m̃

(
t
n

)
is always multiplied by kt(τ), kt(τ) = 0 at all

points t
n < δ and t

n > 1− δ for large enough n, and therefore

1
nh

n∑
t=1

kt(τ)m̃
(
t

n

)
= 1
nh

[n(1−δ)]∑
t=[nδ]+1

kt(τ)m̃
(
t

n

)
,

and analogously for all related sums. Hence, in the following we simply take sums from t = 1 to n,
under the implicit assumption that n is large enough to do so.

We now first derive (A.6b). With E∗ Z∗n,U (τ)2 = 1
nh

∑n−1
i=−n+1

∑n−|i|
t=1 kt(τ)kt+|i|(τ)DtDt+|i|ztzt+|i|γ

|i|,
it follows from Lemma A.5 and the fact that

∑∞
i=0 γ

i = 1
1−θ1/` = −`/ ln θ + o(`),

E
∣∣∣E∗ Z∗n,U (τ)2 − ED E∗ Z∗n,U (τ)2

∣∣∣ ≤ φn ∞∑
i=0

γiβi + ηn√
nh

∞∑
i=0

γi ≤ C`√
nh

= o(1).

Furthermore

ED E∗ Z∗n,U (τ)2 = 1
nh

n−1∑
i=−n+1

RU (i)
n−|i|∑
t=1

kt(τ)kt+|i|(τ)DtDt+|i|σtσt+|i|γ
|i|

= ED Z2
n,U + 1

nh

n−1∑
i=−n+1

RU (i)
n−|i|∑
t=1

kt(τ)kt+|i|(τ)σtσt+|i|DtDt+|i|(γ|i| − 1)

where Zn,U is defined in Lemma A.6. For the second term, take M = M(n) such that 1/M+M2/`→
0 as n→∞, then we have that

sup
τ∈[δ*,1-δ*]

∣∣∣∣∣∣ 1
nh

n−1∑
i=−n+1

RU (i)(γ|i| − 1)
n−|i|∑
t=1

kt(τ)kt+|i|(τ)σtσt+|i|DtDt+|i|

∣∣∣∣∣∣
≤ C

M∑
i=1

RU (i)
∣∣∣θi/` − 1

∣∣∣+ C
n−1∑

i=M+1
RU (i)

∣∣∣θi/` − 1
∣∣∣

≤ C1

M∑
i=1

(1− θi/`) + C2

∞∑
i=M+1

RU (i) = o(1),

as
∑M
i=1(1 − θi/`) ≤ C

∑M
i=1(− ln θ)i/` ≤ C1M

2/` = o(1) and
∑∞
i=M+1RU (i) = o(M−1). It then

follows directly from the proof of Lemma A.6 that plimn→∞Var∗ Z∗n,U (τ) = σ2
Z(τ) for all τ ∈

[δ∗, 1− δ∗].

Now consider I∗n(τ), which we write as

I∗n(τ) =
[
p̂(τ)−1 − p(τ)−1

]
Z∗n,U (τ) + 1√

nh

n∑
t=1

kt(τ)
[
m

(
t

n

)
− m̃

(
t

n

)]
Dtξ

∗
t

= I∗n,1(τ) + I∗n,2(τ).
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It follows directly as in the proof of Lemma A.6 and using Jensen’s inequality that supτ∈[δ*,1-δ*] E
∥∥∥I∗n,1(τ)

∥∥∥∗ ≤
C max

{
h2, 1√

nh

}
. Furthermore, as

E∗ I∗n,2(τ)2 = 1
(nh)2

n∑
s=1

n∑
t=1

ks(τ)kt(τ)
[
m̃

(
s

n

)
−m

(
t

n

)] [
m̃

(
t

n

)
−m

(
t

n

)]
γ|s−t|DsDt,

it follows from Jensen’s and the Cauchy-Schwartz inequality that

E
∥∥∥I∗n,2(τ)

∥∥∥∗ ≤ [ 2
nh

n−1∑
i=0

γi
n−i∑
t=1

kt(τ)kt+i(τ)
∥∥∥∥m̃( tn

)
−m

(
t

n

)∥∥∥∥ ∥∥∥∥m̃( t+ i

n

)
−m

(
t+ i

n

)∥∥∥∥
]1/2

≤ C
[

sup
supτ∈[δ,1-δ]

‖m̃(τ)−m(τ)‖2
∞∑
i=0

γi
]1/2

≤ C1
√
`max

{
h̃2,

1√
nh̃

}
,

as, using Lemma A.6,

sup
τ∈[δ,1-δ]

‖m̃(τ)−m(τ)‖ ≤ h̃2 sup
τ∈[δ,1-δ]

|Bas(τ)|+ 1√
nh̃

sup
τ∈[δ,1-δ]

‖Zn,U (τ)‖

+ 1√
nh̃

sup
τ∈[δ,1-δ]

‖Rn(τ)‖ ≤ C max
{
h̃2,

1√
nh̃

}
.

(A.8)

As in the proof of Lemma A.6, write II∗n(τ) as

II∗n(τ) = p(τ)−1
{
m∗D(τ)− p(τ)−1p̂(τ)m∗p(τ)

}
+ p̂(τ)−1p(τ)−2 {p̂(τ)− p(τ)}2m∗p(τ)

+
{
p̂(τ)−1 − p(τ)−1

}{
m∗D(τ)−m∗p(τ)

}
= II∗n,1(τ) + II∗n,2(τ) + II∗n,3(τ),

where II∗n,1(τ) = p(τ)−1Z∗n,D(τ) and Z∗n,D(τ) = 1√
nh

∑n
t=1 kt(τ)

[
m̃
(
t
n

)
− p(τ)−1m∗p(τ)

] [
Dt − p

(
t
n

)]
.

Define Zn,D(τ) = 1√
nh

∑n
t=1 kt(τ)

[
m
(
t
n

)
− p(τ)−1mp(τ)

] [
Dt − p

(
t
n

)]
. Then

Z∗n,D(τ)− Zn,D(τ) = 1√
nh

n∑
t=1

kt(τ)
[
m̃

(
t

n

)
−m

(
t

n

)] [
Dt − p

(
t

n

)]

+ 1√
nh
p(τ)−1

[
m∗p(τ)−mp(τ)

] n∑
t=1

kt(τ)
[
Dt − p

(
t

n

)]
= II∗n,11(τ) + II∗n,12(τ).

(A.9)

It follows directly by (A.8) that

∥∥∥II∗n,11(τ)
∥∥∥ ≤

 sup
τ∈[δ*,1-δ*]

‖m̃(τ)−m(τ)‖2
n−1∑

i=−n+1

1
nh

n−|i|∑
t=1

kt(τ)kt+|i|(τ)
∣∣∣Cov(Dt, Dt+|i|)

∣∣∣
1/2

≤ C max
{
h̃2,

1√
nh̃

}
.
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Furthermore, as

sup
τ∈[δ*,1-δ*]

∥∥∥m∗p(τ)−mp(τ)
∥∥∥ ≤ sup

τ∈[δ*,1-δ*]
‖m̃n(τ)−m(τ)‖ sup

τ∈[δ*,1-δ*]

1
nh

n∑
t=1

p

(
t

n

)
kt(τ)

≤ C max
{
h̃2,

1√
nh̃

}

and 1√
nh

∥∥∑n
t=1 kt(τ)

[
Dt − p

(
t
n

)]∥∥ ≤ C1 by Lemma A.4(i), it follows that supτ∈[δ*,1-δ*]

∥∥∥II∗n,12(τ)
∥∥∥ ≤

C max
{
h̃2, 1√

nh̃

}
as well. As it was shown in Lemma A.6 that ‖Zn,D(τ)‖ ≤ Ch2, it follows that∥∥∥II∗n,1(τ)

∥∥∥ ≤ C max
{
h̃2, 1√

nh̃

}
.

As supτ∈[δ,1-δ]

∥∥∥m∗p(τ)−mp(τ)
∥∥∥ ≤ C max

{
h̃2, 1√

nh̃

}
, it follows as in the proof of IIn,2(τ) in Lemma

A.6 that supτ∈[δ*,1-δ*]

∥∥∥II∗n,2(τ)
∥∥∥ ≤ C max

{√
nh9, 1√

nh

}
, while m∗D(τ)−m∗p(τ) = mD(τ)−mp(τ) +

II∗n,11(τ), and II∗n,11(τ) is defined in (A.9). Therefore it follows directly as in the proof of IIn,3(τ)
in Lemma A.6 that supτ∈[δ,1-δ]

∥∥∥II∗n,3(τ)
∥∥∥ ≤ C max

{
h̃2, 1√

nh

}
.

It follows from Lemma A.6 that m̃(τ) = m(τ) + h̃2Bas + R̃n(τ), where supτ∈[δ,1-δ]

∥∥∥R̃n(τ)
∥∥∥ ≤ C√

nh̃
.

Substituting this into III∗n(τ) we find that

III∗n(τ) =
[
p(τ)−1 1√

nh

n∑
t=1

p

(
t

n

)
kt(τ)m

(
t

n

)
−m(τ)− h2Bas(τ)

]

+ h̃2
[
p(τ)−1 1√

nh

n∑
t=1

p

(
t

n

)
kt(τ)Bas

(
t

n

)
−Bas(τ)

]

+
[
p(τ)−1 1√

nh

n∑
t=1

p

(
t

n

)
kt(τ)R̃n

(
t

n

)
− R̃n(τ)

]
= III∗n,1(τ) + III∗n,2(τ) + III∗n,3(τ).

Note that III∗n,1(τ) is equal to IIIn(τ) defined in Lemma A.6, such that supτ∈[δ*,1-δ*]

∣∣∣III∗n,1(τ)
∣∣∣ ≤

C max
{√

nh7, 1√
nh

}
. Furthermore, using the definition of Bas(τ) in (8), we can write

1√
nh

n∑
t=1

p

(
t

n

)
kt(τ)Bas

(
t

n

)
= 1

2µ2
1√
nh

n∑
t=1

kt(τ)f
(
t

n

)
,

where f(τ) = p(τ)−1 [mp](2) (τ) is Lipschitz continuous. Then, by Lemma A.3(i) it follows that

∣∣∣III∗n,2(τ)
∣∣∣ ≤ C√nhh̃2

∣∣∣∣∣ 1
nh

n∑
t=1

kt(τ)f
(
t

n

)
− f(τ)

∣∣∣∣∣ ≤ C1 max
{

h̃2
√
nh
,
√
nh5h̃4

}
.
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Finally, for III∗n,3(τ) we have

‖III∗n(τ)‖ ≤ C
√
nh sup

τ∈[δ,1-δ]

∥∥∥R̃n(τ)
∥∥∥ 1
nh

n∑
t=1

k2
t (τ) +

∥∥∥R̃n(τ)
∥∥∥ ≤ C1

√
h

h̃
+ C2√

nh̃
.

Collecting all remainder terms, it then follows that

sup
τ∈[δ*,1-δ*]

E ‖R∗n(τ)‖∗ ≤ C max

 1√
nh
,
√
nh7,

√
h

h̃
,
√
nh5h̃4, h̃2,

√
`h̃4,

√
`

nh̃

 .
Proof of Theorem 2. Given Lemma A.7, we only have to prove asymptotic normality of Z∗n,U (τ).
As in the proof of Theorem 1, we establish asymptotic normality of the bootstrap process using a
blocking technique. By the stationarity of ξ∗t , we can write ξ∗t =

∑∞
j=0 γ

jν∗t−j with ν∗t for t ≤ 1
defined analogously as for t > 1. Take an M such that M/` → ∞ as n → ∞, and truncate the
MA(∞) representation of ξ∗t at M lags to define ξ∗t,M =

∑M
j=0 γ

jν∗t−j . Then we write

Z∗n,U (τ) = 1√
nh

n∑
t=1

kt(τ)Dtztξ
∗
t,M + 1√

nh

n∑
t=1

kt(τ)Dtzt

 ∞∑
j=M+1

γjν∗t−j


= Z

∗
n,M (τ) +W

∗
n,M (τ).

Applying Markov’s inequality twice, we have that

EE∗W ∗n,M (τ)2 ≤ 2
nh

(1− γ2)
n−1∑
i=0
|RU (i)|

n−i∑
t=1

kt(τ)kt+i(τ)

 ∞∑
j=M+1

γ2j+i


≤ Cγ2M

∞∑
i=0

γi |RU (i)| = Cθ2M/`
∞∑
i=0

θi/` |RU (i)| ≤ C1θ
2M/` = o(1),

as M/`→∞. It then follows that W ∗n,M (τ) = o∗p(1) for all τ ∈ [δ∗, 1− δ∗].

Now let Zt,M (τ) =
∑k
j=1X

∗
n,j(τ) +

∑k
j=1 Yn,j(τ), where

X∗n,j(τ) = 1√
nh

Bj+a∑
t=Bj+1

kt(τ)Dtztξ
∗
t,M , Yn,j(τ) = 1√

nh

Bj+a+b∑
t=Bj+a+1

kt(τ)Dtztξ
∗
t,M ,

with Bj = (j − 1)(a + b) and k = dn/(a + b)e. Take sequences a = a(n) and b = b(n) such that
a/(nh) +M/a→ 0 and b/a+M/b→ 0 as n→∞.

We first show that
∑k
j=1 Y

∗
n,i(τ) = o∗p(1). Consider n large enough such that a(n) > M and the

blocks Yn,i are mutually independent conditionally on the original data. Then, with

R∗M (i) = E∗ ξ∗t ξ∗t+|i| = (1− γ2)
M∑
j=0

γjγj+|i| = θ|i|/`(1− θ2(M+1)/`) ≤ θ|i|/`
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for |i| ≤M − 1, we have that

EE∗
 k∑
j=1

Y ∗n,j(τ)

2

=
k∑
j=1

E∗ Yn,j(τ)2 ≤ 1
nh

b−1∑
i=−b+1

θi/`RU (i)
k∑
j=1

Bj+a+b−|i|∑
t=Bj+a+1

kt(τ)kt+|i|(τ)

≤ C1
b

a
= o(1).

As in the proof of Theorem 1, we employ the Lindeberg CLT to establish asymptotic normality of∑k
j=1X

∗
n,j(τ), as for n sufficiently large, b > M and the blocks X∗n,j(τ) are independent. First we

show that the asymptotic variance is equal to p(τ)2σ2
as(τ). Note that E∗

∑k
j=1X

∗
n,j(τ) = 0 and

E∗
 k∑
j=1

X∗n,j(τ)

2

= 1
nh

a−1∑
i=−a+1

R∗M (i)RU (i)
k∑
j=1

Bj+a−|i|∑
t=Bj+1

kt(τ)kt+|i|(τ)DtDt+|i|σtσt+|i|

+ 1
nh

a−1∑
i=−a+1

k∑
j=1

Bj+a−|i|∑
t=Bj+1

kt(τ)kt+|i|(τ)DtDt+|i|σtσt+|i|R
∗
M (i)

[
utut+|i| −RU (i)

]
= A∗X,n(τ) +B∗X,n(τ).

By adapting Lemma A.5, we find that

E
∣∣∣B∗X,n(τ)

∣∣∣ ≤ 2
a−1∑
i=0

E

∣∣∣∣∣∣
k∑
j=1

Bj+a−|i|∑
t=Bj+1

kt(τ)kt+|i|(τ)DtDt+|i|σtσt+|i|
[
utut+|i| −RU (i)

]∣∣∣∣∣∣
≤ φn

a−1∑
i=0

βi + ηn√
nh

= o(1).

Furthermore, the arguments used to prove (A.6b) in Lemma A.7 show that A∗X,n(τ) p−→ p(τ)2σ2
as(τ).

The final step is to verify that, for every κ > 0,
∑k
j=1 E∗

[
X∗n,j(τ)2

ω∗2n
1

(∣∣∣∣X∗n,j(τ)2

ω∗2n

∣∣∣∣ > κ

)]
= op(1),

where ω∗2n = E∗
(∑k

j=1X
∗
n,j(τ)

)2
. Similarly as in the proof of Theorem 1, we define X̃∗t (τ) =

Dtkt(τ)σtutξ∗t,M , as an L4-mixingale conditionally on the original data, with
∥∥∥X̃t

∥∥∥∗
4
≤ C |ut| kt(τ),

such that Lemma 2 of Hansen (1991) then implies that E∗Xn,i(τ)4 ≤ C
(nh)2

(∑Bj+a
t=Bj+1 kt(τ)2u2

t

)2
,

and therefore

k∑
j=1

E∗
[
X∗n,j(τ)2

ω∗2n
1

(∣∣∣∣∣X
∗
n,j(τ)2

ω∗2n

∣∣∣∣∣ > κ

)]
≤ C

(nh)2ω∗4

k∑
j=1

 Bj+a∑
t=Bj+1

kt(τ)2u2
t ,

2

,

where ω∗−4
n = Op(1). By Minkowski’s inequality, stationarity of ut, and Eu4

t <∞ – let M →∞ in
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(A.5) – we have that

1
(nh)2

k∑
j=1

E

 Bj+a∑
t=Bj+1

kt(τ)2u2
t

2

≤ 1
(nh)2 (Eu4

t )
k∑
i=1

 Bj+a∑
t=Bj+1

kt(τ)2

2

≤ C1a

nh
= o(1).

A.3 Uniform Results

Before deriving Theorem 3, we propose a few auxiliary lemmas aimed at establishing stochastic
equicontinuity, which will be needed to extend the pointwise results to uniformity.

Lemma A.8. Let {Xt}nt=1 be a stochastic process with lim supn→∞
∑n−1
i=1 max1≤t≤n−i |EXtXt+i| <

∞. Then, for any τ0 ∈ (0, 1) and τ1, τ2 ∈ [−1, 1], there exists an N > 0 such that for all n > N∣∣∣∣∣ 1√
nh

n∑
t=1

[kt(τ0 + τ1h)− kt(τ0 + τ2h)]Xt

∣∣∣∣∣ ≤ Bn |τ1 − τ2| ,

where Bn is a random variable such that supn>N,τ1,τ2∈[−1,1] EB2
n <∞.

Proof of Lemma A.8. See Supplementary Appendix B.

Lemma A.9. Let {X∗t }nt=1 be a bootstrap process defined conditionally on a process {Xt}nt=1 with
lim supn→∞

∑n−1
i=1 sup1≤t≤n−i

∣∣EE∗X∗tX∗t+i
∣∣ < ∞. Then, for any τ0 ∈ (0, 1) and τ1, τ2 ∈ [−1, 1],

there exists an N > 0 such that for all n > N∣∣∣∣∣ 1√
nh

n∑
t=1

[kt(τ0 + τ1h)− kt(τ0 + τ2h)]X∗t

∣∣∣∣∣ ≤ B∗n |τ1 − τ2| ,

where B∗n is a random variable such that supn>N,τ1,τ2∈[−1,1] EE∗B∗2n <∞.

Proof of Lemma A.9. See Supplementary Appendix B.

Lemma A.10. Let Rn(τ) and R∗n(τ) be defined as in Lemmas A.6 and A.7 respectively. Then we
have, for all τ0 ∈ (0, 1), that supτ∈[-1,1] |Rn(τ0 + τ1h)| = op(1) and supτ∈[-1,1] |R∗n(τ0 + τ1h)| = o∗p(1).

Proof of Lemma A.10. See Supplementary Appendix B.

Proof of Theorem 3. It follows directly from Lemma A.10 that

sup
τ∈[-1,1]

∣∣∣Zτ0,n(τ)− p(τ0 + τh)−1Zn,U (τ0 + τh)−Bas(τ0)
∣∣∣ ≤ sup

τ∈[-1,1]
|Rn(τ0 + τh| = op(1),

sup
τ∈[-1,1]

∣∣∣Z∗τ0,n(τ)− p(τ0 + τh)−1Z∗n,U (τ0 + τh)−Bas(τ0)
∣∣∣ ≤ sup

τ∈[-1,1]
|R∗n(τ0 + τh| = o∗p(1),
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such that we only have to consider p(τ0 + τh)−1Zn,U (τ) and p(τ0 + τh)−1Z∗n,U (τ) in the following.

We next establish the asymptotic covariances. With

ED Zn,U (τ0 + τ1h)Zn,U (τ0 + τ2h) = 1
nh

n−1∑
i=−n+1

RU (i)
n−|i|∑
t=1

kt(τ0 + τ1h)kt+|i|(τ0 + τ2h)σtσt+|i|DtDt+|i|,

we apply Lemma A.4(iii) with g̃i(τ1, τ2) = σ(τ1)σ(τ2) to find that

sup
τ0∈[δ,1-δ]

sup
τ1,τ2∈[-1,1]

∥∥∥ED Zn,U (τ0 + τ1h)Zn,U (τ0 + τ2h)− p(τ0)σ2(τ0)κ(τ1 − τ2)ΩU

∥∥∥
≤

n−1∑
i=−n+1

|RU (i)|
[
C1√
nh

+ C2√
nh

max
{
h,

1
nh2

}
+ Sn(i)

]
+

∞∑
i=−∞

1(|i| ≥ n) |RU (i)| ,

≤ C3√
nh

+ C3√
nh

max
{
h,

1
nh2

}
+ φn,

from which it follows by the law of iterated expectations that

sup
τ∈[δ,1-δ]

sup
τ1,τ2∈[-1,1]

|EZn,U (τ0 + τ1h)Zn,U (τ0 + τ2h)− p(τ0)σW,τ0(τ1, τ2)| = o(1).

It then follows that

sup
τ∈[δ,1-δ]

sup
τ1,τ2∈[-1,1]

|EZτ0,n(τ1)Zτ0,n(τ2)− σW,τ0(τ1, τ2)|

≤ sup
τ∈[δ,1-δ]

sup
τ1,τ2∈[-1,1]

∣∣∣EZτ0,n(τ1)Zτ0,n(τ2)− p(τ0 + τh)−1p(τ0 + τ2h)−1p(τ0)2σW,τ0(τ1, τ2)
∣∣∣

+ sup
τ∈[δ,1-δ]

sup
τ1,τ2∈[-1,1]

∣∣∣p(τ0 + τ1h)−1p(τ0 + τ2h)−1p(τ0)2 − 1
∣∣∣σW,τ0(τ1, τ2) ≤ o(1) + o(h) = o(1).

We follow the same steps as in the proof of the asymptotic bootstrap variance in Lemma A.7 for
the bootstrap covariances. Note that

E∗ Z∗n,U (τ0 + τ1h)Z∗n,U (τ0 + τ2h) = 1
nh

n−1∑
i=1−n

n−|i|∑
t=1

kt(τ0 + τ1h)kt+i(τ0 + τ2h)DtDt+iztzt+iγ
i,

where it follows from a straightforward adaptation of Lemma A.5 allowing for different τ ’s that

E
∣∣∣E∗ Z∗n,U (τ0 + τ1h)Z∗n,U (τ0 + τ2h)− ED E∗ Z∗n,U (τ0 + τ1h)Z∗n,U (τ0 + τ2h)

∣∣∣ = o(1).

To conclude this part, we can show as in Lemma A.7 that

sup
τ0∈[δ*,1-δ*]

sup
τ1,τ2∈[-1,1]

∣∣∣ED E∗ Z∗n,U (τ0 + τ1h)Z∗n,U (τ0 + τ2h)− ED Zn,U (τ0 + τ1h)Zn,U (τ0 + τ2h)
∣∣∣ = op(1).

Finite-dimensional convergence of the vectors (Zτ0,n(τ1), . . . , Zτ0,n(τm))′ and
(
Z∗τ0,n(τ1), . . . , Z∗τ0,n(τm)

)′
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for (τ1, . . . , τm)′ ∈ [−1, 1]m follows from Theorems 1 and 2 and the Cramér-Wold device; it remains
to show tightness. By applying Lemma A.8 with Xt = Dtzt and Lemma A.9 with X∗t = Dtztξ

∗
t , it

follows directly that

E (Zτ0,n(τ1)− Zτ0,n(τ2))2 ≤ EB2
n |τ1 − τ2|2 and EE∗ (Zτ0,n(τ1)− Zτ0,n(τ2))2 ≤ EE∗B∗2n (τ1−τ2)2,

where EB2
n ≤ C and EE∗B∗2n ≤ C and tightness follows by Theorem 12.3 of Billingsley (1968).
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