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Abstract
With the Paris Agreement’s ambition of limiting climate change to well below 2 ◦C, negative emission
technologies (NETs) have moved into the limelight of discussions in climate science and policy.
Despite several assessments, the current knowledge on NETs is still diffuse and incomplete, but also
growing fast. Here, we synthesize a comprehensive body of NETs literature, using scientometric tools
and performing an in-depth assessment of the quantitative and qualitative evidence therein. We
clarify the role of NETs in climate change mitigation scenarios, their ethical implications, as well as
the challenges involved in bringing the various NETs to the market and scaling them up in time.
There are six major findings arising from our assessment: first, keeping warming below 1.5 ◦C
requires the large-scale deployment of NETs, but this dependency can still be kept to a minimum for
the 2 ◦C warming limit. Second, accounting for economic and biophysical limits, we identify relevant
potentials for all NETs except ocean fertilization. Third, any single NET is unlikely to sustainably
achieve the large NETs deployment observed in many 1.5 ◦C and 2 ◦C mitigation scenarios. Yet,
portfolios of multiple NETs, each deployed at modest scales, could be invaluable for reaching the
climate goals. Fourth, a substantial gap exists between the upscaling and rapid diffusion of NETs
implied in scenarios and progress in actual innovation and deployment. If NETs are required at the
scales currently discussed, the resulting urgency of implementation is currently neither reflected in
science nor policy. Fifth, NETs face severe barriers to implementation and are only weakly incentivized
so far. Finally, we identify distinct ethical discourses relevant for NETs, but highlight the need to root
them firmly in the available evidence in order to render such discussions relevant in practice.
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Introduction

Due to the limited remaining global carbon bud-
get and heightened ambitions for stabilizing global
temperatures, negative emissions technologies (NETs)
that remove carbon dioxide from the atmosphere
have become an almost indispensable component of
strategies to meet the international climate goals estab-
lished by the Paris Agreement—particularly the 1.5 ◦C
goal (Peters 2016, Rogelj et al 2018, 2015, Luderer
et al 2013, 2016, Minx et al 2017b). Despite recent
dispute over the exact size of the carbon budget (Mil-
lar et al 2017), the available scenario evidence so
far suggests a remaining carbon budget between 0–
200 Gt CO2 for the 1.5 ◦C target, i.e. there may be
only five years’ worth of CO2 emissions left at cur-
rent rates before every additional tonne of CO2 would
need to be compensated for again by means of neg-
ative emissions (Minx et al 2017b). Across the 21st
century, this amounts to a total of between 400 and
1000 Gt of CO2 emissions in most scenarios that are
removed and safely stored away (Rogelj et al 2018,
2015)—about 10 to 25 years’ worth of today’s global
emissions. In the absence of substantial and sustained
reductions of global GHG emissions (Le Quere et al
2016), the dependence on negative emissions for reach-
ing the climate goals continues to grow (Minx et al
2017b).

Despite various assessments of NETs and more
emphasis on NETs in the most recent report of the
Intergovernmental Panel on Climate Change (IPCC)
(Ciais et al 2013, Clarke et al 2014, Shindell et al 2013),
the current knowledge on NETs is still diffuse and
incomplete (Fuss et al 2016, Smith et al 2016), but
also fast growing (Minx et al 2017c). For the United
Nations Framework Convention on Climate Change
(UNFCCC) facilitative dialogue in 2018 and upcoming
climate change assessments such as the IPCC special
report on 1.5 ◦C of global warming or the Sixth Assess-
ment Report (AR6), a more systematic assessment of
what we do and do not know about NETs is urgently
required.

This is the first of three reviews—the other two
are Fuss et al (2018) and Nemet et al (2018)—that
jointly aim to provide a comprehensive and systematic
assessment of the academic literature on NETs. Our
emphasis is on determining the potential role of NETs
for reaching the international climate goals,with a focus
on co-benefits and risks, technology costs, required
innovation and diffusion dynamics as well as opportu-
nities and barriers of NET deployment at the required
scales. Our systematic review also covers evidence
from the social sciences and ethics that have not—
thus far—been widely recognized in available NETs
assessments.

We begin this review with a definition of terms.
We then outline the methodology used to analyze the
landscape of NETs literature and subsequently present
the results. The next sections of the paper are devoted

to taking stock and synthesizing the outcomes of Fuss
et al (2018) and Nemet et al (2018), thus providing a
synthetic assessment of the role of negative emissions
in climate change mitigation. We then review the eth-
ical discourses on NETs and end by discussing urgent
research gaps.

Assessing negative emissions

A short history of negative emissions14

Human interventions into the Earth’s climate, includ-
ing the direct removal of CO2 from the atmosphere,
have been a subject of research for more than a century.
In fact, the link between atmospheric CO2 reduc-
tions and global temperature change is as old as the
discussion around climate change itself (Arrhenius
1896). Initial discussions concerned the benefits of
human-induced warming on agricultural productivity
and forestalling a future ice age by adding CO2 to the
atmosphere (Ekholm 1901, Fleming 2000, Keith 2000,
National Research Council 2015, Arrhenius 1896). The
idea that humans could remove CO2 from the atmo-
sphere at large-scale to counter global warming was
part of early suggestions on how to solve the problem
of climate change (Callendar 1938, National Research
Council 2015). During the second half of the 20th cen-
tury more concrete proposals were made on how to
remove CO2 from the atmosphere by planting trees
among others (Baes et al 1980, 1977, Dyson 1977,
Marchetti 1977, 1979).

With the start of international climate diplomacy
in the late 1980s and the establishment of the UNFCCC
and the IPCC, interest in human response strate-
gies started growing. Yet NETs as such only received
attention peripherally in the early assessments (Keith
2000). The mainstreaming of the discussion on NETs
has occurred recently and is closely related to the
emergence of a new suite of climate change miti-
gation scenarios from integrated assessment models
(IAMs) that feature BECCS (Bioenergy with Carbon
Capture and Storage) as an explicit carbon dioxide
removal option in the technology portfolio. Scenar-
ios with (large) NETs deployments and net negative
emissions during the second half of the century were
first summarized in the IPCC’s Fourth Assessment
Report (AR4) (IPCC 2007b). This assessment was
based on a small set of publications covering a lim-
ited number of models that appeared just before AR4’s
finalization (Azar et al 2006, Rao and Riahi 2006,
Riahi et al 2007, van Vuuren et al 2007). The report
concluded from the analysis of these initial scenar-
ios that negative emissions might be essential for
achieving stringent climate targets—particularly those

14 This section heavily draws on the National Research Council
(2015). For more details, readers are referred to this study and its
underlying sources.
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achieving climate stabilization at atmospheric concen-
trations below 490 ppm CO2eq

15.
In the aftermath of AR4 there was growing inter-

est in the international climate policy debate to explore
mitigation pathways that keep warming below 2 ◦C.
Thus, the BECCS option was added to all major
IAMs (Blanford et al 2014) and negative emissions
became a feature of most IAM scenarios subsequently
collected for the IPCC’s Fifth Assessment Report
(AR5) (Fuss et al 2014). In the AR5 period, the
major modelling inter-comparison exercises focused
on understanding the technological and economic
requirements of meeting stringent long-term climate
goals (Kriegler et al 2014, 2013b, 2015, Riahi et al
2015, Clarke et al 2009). Two major innovations con-
tributed to a broader understanding of alternative
long-term mitigation pathways: (1) the exploration of
the impact of excluding individual technologiesor tech-
nology clusters (Krey et al 2014, Kriegler et al 2016,
Rose et al 2014, Kriegler et al 2014), and (2) the explo-
ration of the impact of less optimal policy trajectories
(delayed action; fragmented action) for meeting a par-
ticular climate goal (Eom et al 2015, Schaeffer et al
2015, Blanford et al 2014). In both cases, the avail-
ability of NETs played an important role in keeping
stringent climate goals within reach (Luderer et al 2013,
Riahi et al 2015). AR5 therefore highlighted the impor-
tance of NETs in 2 ◦C and other stringent mitigation
scenarios, but pointed to the uncertainties about the
availability, scale and side-effects of BECCS and other
NETs (Clarke et al 2014).

The prevalence of large-scale NETs deployment
in many 2 ◦C scenarios was controversially received
after AR5 (Anderson 2015, Anderson and Peters 2016,
Williamson 2016, Geden 2015, Fuss et al 2014). Yet, as
the ambition to pursue further efforts to limit further
warming to below 1.5 ◦C was added to the Paris Agree-
ment (UNFCCC 2015), NETs have secured a place
directly in the spotlight of many climate change mit-
igation discussions ever since (Hallegatte et al 2016,
Hulme 2016, Schleussner et al 2016, Luderer et al 2013,
Peters 2016, Rogelj et al 2015, 2018). A series of high
level commentaries picked up on the issue (Field and
Mach 2017, Gasser et al 2015, Lomax et al 2015a, Par-
son 2017, Peters and Geden 2017, Obersteiner et al
2018, Vuuren et al 2017, Anderson 2015, Anderson
and Peters 2016, Geden 2015, Williamson 2016, Fuss
et al 2014). Scenario evidence has been center-stage to
this discussion. Authors have highlighted the impor-
tance of NETs for achieving the climate targets (Gasser
et al 2015, Fuss et al 2014), stressed the limits to global
carbon sequestration potentials (Smith et al 2016, Field
and Mach 2017), questioned the feasibility of NETs
in climate change mitigation (Anderson 2015, Geden
2015), and pointed out the bias in the exploration of

15 These scenarios have a greater than 50% probability to keep mean
temperature rise below 2 ◦C throughout the 21st century.

alternative NETs futures (Obersteiner et al 2018). At
the same time, modelling teams have started with the
implementation of larger portfolios of NET options
beyond BECCS (e.g. Chen and Tavoni 2013, Mar-
cucci et al 2017, Streffler et al 2018). This could lead
to even larger cumulative carbon dioxide removal in
upcoming mitigation scenarios, as suggested by these
initial studies. Hence, the discussion on NETs is set
to continue. Doing so based on a comprehensive and
sound understanding of the scientific literature is a
pre-condition for accelerated learning.

Defining negative emissions
CO2 emissions from human activities currently exceed
40 GtCO2yr−1, but less than half of these emissions are
currently accumulating in the atmosphere—i.e. adding
to the growth in atmospheric CO2 concentrations (Le
Quéré et al 2016). The remainder are being absorbed
by ‘natural’ carbon removal processes that counter-
act the human perturbation of the carbon cycle, i.e.
emissions are taken-up by the terrestrial and ocean
sinks (National Research Council 2015). It is impor-
tant to note that discussions of negative emissions are
not about natural processes of carbon dioxide removal.
We define negative emissions as intentional human
efforts to remove CO2 emissions from the atmosphere.
We apply this simple definition throughout our entire
review (Fuss et al 2018, Nemet et al 2018).

Despite this simplicity, there has been consider-
able discussion and confusion around definitions of
negative emissions and how they relate to other key
concepts of climate policy (table 1)—most importantly
mitigation, adaptation and geoengineering (Boucher
et al 2014, Shepherd 2012, Shepherd et al 2009,
Vaughan and Lenton 2011, IPCC 2014b, Keith 2000).
Mitigation has been traditionally defined within the
IPCC as ‘a human intervention to reduce the sources or
enhance the sinks of greenhouse gas emissions’ (IPCC
2014c, 2013, 2014a, 2014b). This definition subsumes
all those NETs that focus on natural sink enhancement
suchasafforestationandreforestation(AR), soil carbon
sequestration (SCS), ocean fertilization (OF), biochar
(BC) or enhanced weathering (EW) as an integral part
of mitigation, while other NETs that geologically store
the sequestered CO2 such as BECCS or direct air cap-
ture with carbon capture and storage (DACCS) do not
qualify. All NETs are further, in principle, covered by
the definition of carbon dioxide removal technologies
as one distinct technology cluster under geoengineer-
ingor climate engineering (subject to the interpretation
of scale in that definition), resulting in blurry bound-
aries amongkey concepts in climate policy (IPCC 2013,
2014b, 2014c, 2014a).

To establish clear boundaries between the major
human response options, it is instructive to consider
the causal chain underlying the climate problem as
shown in figure 1. In contrast to the current IPCC
definition (see table 1), we limit mitigation to all mea-
sures that target CO2 emissions prior to their release
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Table 1. Key concepts around human response options to climate change and their definition in IPCC assessments.

Subject Definition Reference

Carbon sink Any process, activity or mechanism which removes a greenhouse gas, an aerosol or a

precursor of a greenhouse gas or aerosol from the atmosphere.

IPCC, AR3; WG1,

WG2, WG3; AR4:

WG1, WG2, WG3;

AR5: WG1, WG2,

WG3

Mitigation A human intervention to reduce the sources or enhance the sinks of greenhouse gases.[...] IPCC, AR3: WG1,

WG2, WG3; AR4:

WG1; AR5: WG1,

WG2, WG3

Adaptation The process of adjustment to actual or expected climate and its effects. In human systems,

adaptation seeks to moderate or avoid harm or exploit beneficial opportunities. In some

natural systems, human intervention may facilitate adjustment to expected climate and its

effects.

AR3: WG3; AR4:

WG2; AR5: WG2,

WG3

Geoengineering (Technological) Efforts to stabilize the climate system by directly managing the energy

balance of the earth, thereby overcoming the enhanced greenhouse effect.

AR4: WG3

Geoengineering refers to a broad set of methods and technologies that aim to deliberately

alter the climate system in order to alleviate the impacts of climate change. Most, but not all,

methods seek to either (1) reduce the amount of absorbed solar energy in the climate system

(solar radiation management) or (2) increase net carbon sinks from the atmosphere at a

scale sufficiently large to alter climate (carbon dioxide removal). Scale and intent are of

central importance.

AR5: WG1,3

Carbon dioxide
removal

Carbon dioxide removal methods refer to a set of techniques that aim to remove CO2
directly from the atmosphere by either (1) increasing natural sinks for carbon or (2) using

chemical engineering to remove the CO2, with the intent of reducing the atmospheric CO2
concentration. CDR methods involve the ocean, land and technical systems, including such

methods as iron fertilization, large-scale afforestation and direct capture of CO2 from the

atmosphere using engineered chemical means. Some CDR methods fall under the category

of geoengineering, though this may not be the case for others, with the distinction being

based on the magnitude, scale, and impact of the particular CDR activities. The boundary

between CDR and mitigation is not clear and here could be some overlap between the two

given current definitions.

AR5: WG1,3

References: AR3- WG1 (IPCC 2001c); WG2 (IPCC 2001a); WG3 (IPCC 2001b); AR4- WG1(IPCC 2007c);WG2 (IPCC 2007a); WG3

(IPCC 2007b); AR5- WG1 (IPCC 2013); WG2 (IPCC 2014a); WG3 (IPCC 2014b)

Fossil energy
system

Release of
CO2  emissions

Impact of climate
on human & 

natural systems

Climate system

Response
options

Climate change
causal chain

Decarbonise &
reduce energy

demand

Industrial CO2
management

(CCS)

CO2  removal Solar radiation
management

Mitigation
[Address causes]

Prevent & minimize
climate damages

CO2  
Heat trapping
greenhouse

gases

Earth system
reflectivity

Adaptation
[Address impacts]

Figure 1. Human response options to the climate problem. Horizontal arrows in the top row show the causal chain of the climate
change problem. Vertical arrows and bottom row define locus and modes of intervention for climate policy. Graph further developed
from Keith (2000).

to the active biosphere. These include (a) all efforts
to avoid and reduce CO2 emissions through energy
demand reductions, switching to low or no carbon
fuels or lifestyle changes; and, (b) industrial carbon

management that captures and stores CO2 emissions
from fossil fuel power plants. NETs only remove CO2
again after release to the atmosphere. By doing so,
they still directly address the causes of global warm-
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ing: the heat-trapping effect on out-going long-waved
radiation. In this sense, NETs are still conceptually
very similar to mitigation measures. In contrast, solar
radiation management (SRM) approaches - the other
technology cluster covered by the geoengineering con-
cept - attempt to modify and enhance the reflectivity of
the Earth system (albedo), thereby reducing incoming
short-wavelength solar radiation. Hence, SRM meth-
ods temporarily compensate positive forcing from CO2
with negative forcing from other agents. They focus
purely on the management of climate impacts and
are therefore conceptually much closer to adaptation
measures, which attempt to deal with the impacts of
(unavoidable) climate change on human and natural
systems.

It is because intervention points of both SRM and
NETs are after CO2 emissions are released to the active
biosphere that many scholars and assessments have
discussed both jointly under the notion of geoengi-
neering (Bellamy et al 2012, IPCC 2011, Johannessen
and Macdonald 2016, Maas et al 2012, Williamson
et al nd, IPCC 2014b, Vaughan and Lenton 2011,
Marchetti 1977, Shepherd 2012, Shepherd et al 2009).
It is therefore reasonable to summarize NETs and
SRM as geo-engineering options, because they inter-
vene into the climate system directly (Keith 2000).
Moreover, authors argue that SRM and NETs are both
subject to potentially severe moral hazard (Preston
2013). More recently, there has been growing skep-
ticism with such an approach due to the danger of
subsuming twoverydifferent technology clustersunder
one heading (Lomax et al 2015b, Boucher et al 2014,
IPCC 2011, National Research Council 2015). Above
all, while NETs address the high atmospheric carbon
concentrations that cause the climate problem, SRM
schemes do not. But there are many other important
differences such as the novel global risks introduced
by SRM schemes, the fundamentally different time
scales at which SRM and NETs work or the very differ-
ent governance challenges (National Research Council
2015). Acknowledging the presence of other positions
in this debate, we argue that geoengineering is not
a useful term for informing discussions on human
responses (as well as their trade-offs and side-effects)
to climate change. Therefore, we treat SRM and NETs
in addition to mitigation and adaptation as distinct
human response options rather than categorizing them
together under geoengineering.

A taxonomy for negative emissions technologies
A variety of NETs that remove carbon dioxide from
the atmosphere have been proposed. We define
‘technology’ in broad terms as a means to an end.
This includes both devices or hardware but also prac-
tices and behavior (Arthur 2007, Nemet et al 2018).
Some technologies—afforestation and reforestation, or
soil carbon sequestration—are very well-known and
have been researched with other mitigation technolo-
gies from very early on in the debate (Kupfer and

Karimanzira 1991, Jepma et al 1995, Hourcade et al
1996, Kauppi et al 2001, Nabuurs et al 2007, Smith
et al 2007). Others, like DACCS and BECCS, have
been subject to a structured scientific discourse only
rather recently. Our focus is on CO2 removal only,
but we note the existence of technologies that remove
other non-CO2 greenhouse gases from the atmosphere
(de Richter et al 2016, Ming et al 2016, Stolaroff
et al 2012, Lomax et al 2015b, Boucher et al 2014).

Figure 2 provides a taxonomy for NETs. We dis-
tinguish NETs across a variety of dimensions: (1)
capture process; (2) technology clusters and their var-
ious implementation options; (3) earth system; as well
as, (4) storage medium. Five out of the seven technol-
ogy clusters considered (AR, SCS, BECCS, OF, BC)
use photosynthesis for capturing the CO2. Only EW
(incl. ocean alkalinization) and DACCS bind the CO2
throughchemical processes. For almost all technologies
there are distinct implementation schemes available
that can differ in their effectiveness of sequestering
and storing the CO2 away (Fuss et al 2018). Note that
agro-forestry is an implementation option that cuts
across the AR and SCS cluster. Further, we understand
biochar conceptually as an implementation option of
SCS, but will later treat it individually as it has attracted
a large amount of attention—particularly during
the last 15 years (Minx et al 2017c).

A central distinction is whether the technology is
land or ocean-based, as the latter can involve trans-
boundary pollution issues and will require higher levels
of international coordination—particularly if larger
scale applications are intended. In fact, Boucher et al
(2014) usefully divide NETs up into domestic and
trans-boundary removal methods—a distinction that
runs along this dimension. In this sense, OF and at
least some forms of blue carbon (Johannessen and
Macdonald 2016) and EW (land- and ocean-based
approaches) are potentially constrained by this. Finally,
the storage medium is of great interest as there can be
a significant variation in the reliability, permanence
and overall quantity of available CO2 storage. In prin-
ciple, the literature highlights that land management
approaches such as AR and SCS provide more vulner-
able (and less verifiable) storage options, where stored
CO2 can be released again within short time frames.
Geological reservoirs, on the other end of the spec-
trum, for CO2 from BECCS and DACCS are thought
to provide a larger and less vulnerable storage option.

Assessments of negative emissions
Climate change assessments by the IPCC (1996b,
1996c, 1996a, 2014b, 2001c, 2001a, 2001b, 2007c,
2007a) and others (Keith 2000) do not have a tradition
of systematically reviewing NETs despite some early
exceptions (National Research Council 1983, National
Academy of Sciences et al 1992). Usually, some NETs
options related to sink enhancement were considered
to varying degrees, but no comprehensive portfolios of
NETs options were considered (Keith 2000). Only the
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Figure 2. A taxonomy of negative emissions technologies (NETs). NETs are distinguished by approach to carbon capture, earth system
and storage medium. Major implementation options are distinguished for each NET.

most recent fifth assessment report provided dedicated
sections in the Working Group I (Ciais et al 2013) and
III (Clarke et al 2014) reports, and a box in the synthe-
sis report (IPCC 2014d) as well as dedicated findings
in some of the summary documents (Edenhofer et al
2014, IPCC 2014d).

The time period after AR4 has seen NETs as a
topic mushrooming in climate change assessments.
Today, the literature already provides a number of
reviews that consider a wide spectrum of options (table
2). Standing out among these reviews are two for-
mal scientific assessments conducted by the National
Academy of Sciences and the Royal Society (National
Research Council 2015, Shepherd et al 2009), but
there are other assessments available, both in- and out-
side the peer-reviewed literature (Friends of the Earth
2011, McLaren 2012, Caldecott et al 2015, Vaughan
and Lenton 2011, Smith et al 2016, Fuss et al 2016).
This flurry of assessments and increasing engagement
among scientific organizations, as well as governmental
funding bodies reflects a perceived need for author-
itative reviews, both due to the rising prominence
of NETs in mitigation scenarios, and the ensuing
controversies.

Nonetheless, few of the existing reviews cover both
a breadth of technologies and consider their broader
ethical, socio-economic, and innovation challenges
(table 2). Many reviews focus only on biophysi-
cal limits and potentials (Lenton 2010, 2014, Smith
et al 2016) (IPCC AR5). Where ethical and legal
considerations are raised, they predominantly focus
on ocean fertilisation (National Research Council
2015), do not distinguish between NETs and SRM
methods (Kolstad et al 2014, IPCC 2014b, Shep-
herd et al 2009), or focus only on SRM. Innovation,
upscaling and socio-political challenges have a simi-
larly superficial treatment in assessments, with a few
giving consideration to ‘technology readiness’, and
only the Royal Society report extending a discus-

sion to the socio-political challenges of upscaling
(Shepherd et al 2009).

Considering the costs and potentials reported in
these reviews, we observe differing levels of agreement
by technology. For example, there is significant dis-
agreement on the cumulative sequestration potentials
for biochar (ranging from 143 GtCO2 by 2100 inCalde-
cott et al (2015) to 477 GtCO2 in IPCC (2013)) and
BECCS (with estimates below 500 GtCO2 by 2100 in
in Caldecott et al (2015) and IPCC (2013), but exceed-
ing 1000 GtCO2 in the Royal Society (Shepherd et al
2009) and National Academy of Sciences (National
Research Council 2015)). There is also a clear need
for clarity on the costs of direct air capture and storage,
enhanced weathering, and ocean fertilisation, which
range across an order of magnitude in each case. The
cost and sequestration potentials for afforestation are,
however, relatively consistent across reviews, proba-
bly because tree planting is a long established practice
for which costs are readily available. This divergence
is rooted not only in the consideration of different
technologies (e.g.BECCSfromfuelproductionorcom-
bustion for electricity) and their progress, but also in
the application of different feasibility criteria.

Methodology

Literature review methods are rarely discussed in the
field of climate change research, despite their central
importance to knowledge synthesis and policy-relevant
assessments (Minx et al 2017a, Ringquist 2013, Petti-
crew and Roberts 2008, Petticrew and McCartney 2017,
Higgins and Green 2008). Typical reviews take on a
narrative form and aim to survey the literature around
one or more key themes, to the best of the author’s
knowledge. A systematic review proceeds on a more
formal basis, and usually includes the following steps:
(1) a research question is defined; (2) the literature is
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Table 2. Overview of results from existing assessments of NETs.

Potential (flux) Potential (cumulative) Costs Notes Source

GtCO2/yr GtCO2 $/tCO2
2050 2100 2050 2100

Afforestation (AR)

147–260 IPCC 2013
80–100 $20–100 Caldecott et al 2015

2–5 100 $1–100 NRC 2015
1.5–3 $20–100 Friends of the Earth

2011, McLaren 2012
4–12.1 $18–30 Smith et al 2016

0.73–5.5 1.1–12.1 Lenton 2010, 2014
4.03–12.1 Fuss et al 2016

671 Estimate for 2060 Vaughan and Lenton

2011

Biochar (BC)

477 IPCC 2013
78–390 Includes biomass Royal Society 2009

1 $30–40 Potential and cost

estimates for 2030

Friends of the Earth

2011
0.9–3 $8–300 McLaren 2012

1.47–2.57 Fuss et al 2016
143 $0–135 Caldecott et al 2015

2.75–4.95 4.04–4.95 Lenton 2014
0.9–1.3 20–35 Lenton 2010

20–35 1468 Potential achieved

over long term (year

3000)

Vaughan and Lenton

2011

$135 costs for a 0.1 ppm

deployment target

McGlashan et al 2012

Bioenergy carbon capture and storage (BECCS)

459 IPCC 2013
390–1170 Royal Society 2009

15–18 100–1000 ∼$100 NAS 2015
2.4–10 $70–150 Friends of the Earth

2011
2.4–10 $70–250 McLaren 2012

12.1 Smith et al 2016, Fuss

et al 2016 l
178–453 $45–250 Caldecott et al 2015

5.5–11 19.81–69.73 Lenton 2014
6.4 11–38.5 Lenton 2010

1094 Estimate for 2060 Vaughan and Lenton

2011
$59–111 costs for a 0.1 ppm

deployment target

McGlashan et al 2012

Direct air capture (DAC)

No obvious limit IPCC 2013
10 1000 $400–1000 Estimates for the US

only

NAS 2015

multiple Gt CO2 >$250 Friends of the Earth

2011
10 $40–600 Over two technologies

(supported amines

and wet calcination)

McLaren 2012

12.1 $436–567 No date for cost Smith et al 2016l
3.67–12.1 Fuss et al 2016l

108->260 $40–600 Caldecott et al 2015
0–11.01 36.7 Lenton 2014

$95–155 McGlashan et al 2012

Enhanced weathering (EW)

367 IPCC 2013
2 ∼100 $20–1000 Estimates for the US

only

NAS 2015

0.01–5 $20–40 Lower bound cost

estimates

Friends of the Earth

2011
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Table 2. Continued.

Potential (flux) Potential (cumulative) Costs Notes Source

1 $20–40 McLaren 2012
0.7–3.67 $33–578 No date for cost Smith et al 2016l
0.73–3.67 Fuss et al 2016l

2.5–11 Estimate covers land

and ocean

Lenton 2014

Ocean fertilization (OF)

55–1027 IPCC 2013
78–234 Iron fertilization only Royal Society 2009

1–4 90–300 $500 Iron fertilization only NAS 2015
2 ∼$50 Friends of the Earth

2011
0.2–1 na Over two technologies

(Iron and

macronutrients)

McLaren 2012

Ocean liming (OL)

IPCC 2013
1 ∼100 $50–100 NAS 2015

multiple Gt CO2 $30–60 Friends of the Earth

2011
1 multiple Gt CO2 $51–180 Over two technologies McLaren 2012

84->260 $72–159 Caldecott et al 2015
0.99 Lenton 2014

1 Vaughan and Lenton

2011

Soil carbon sequestration (SCS)

2.3 $20 Friends of the Earth

2011
1.47–2.57 Fuss et al 2016

104–130 $<0–100 Caldecott et al 2015
∼605 Assumes a reversal of

cumulative land-use

changes

Vaughan and Lenton

2011

identified using a transparent search query in litera-
ture databases; (3) documents are manually checked
for relevance, according to pre-defined criteria; (4) evi-
dence is extracted and synthesized for review. Such a
methodology has the advantage of greater transparency
and reproducibility, but suffers from the obvious
problem of increased time commitment. Nonethe-
less, formalizing reviews in this manner is arguably
a necessary step to rigorously examining contentious
science-policy issues (Minx et al 2017a), of which
NETs are a signal example.

In this project we aim to assess the global CO2
removal potential, costs and relevant side effects of
major groups of NETs. We cover afforestation and
reforestation (AR), biochar (BC), soil carbon seques-
tration (SCS), enhanced weathering on land and in
oceans (EW), ocean fertilization (OF), bioenergy com-
bined with carbon capture and storage (BECCS), and
direct air captureandstorage(DACCS).Thereareother
CO2 removal technologies such as blue carbon (Johan-
nessen and Macdonald 2016) as well as a wider set of
non-CO2 greenhouse gas removal technologies that are
not considered here in any depth (de Richter et al 2017,
Richter et al 2013, Lomax et al 2015b, Stolaroff et al
2012, Ming et al 2016). For selected technologies we
perform a scoping review, a type of rapid systematic
review that aims to provide a comprehensive overview

of developments within a field, but does not try to
quantitatively assess the drivers of observed variation
in available estimates. Instead, we only qualitatively dis-
cuss possible sources of variation. Prior to embarking
on the review, we gathered teams of experts for each
technology, then developed a project protocol to guide
the review procedure (figure 3).

The first step of the protocol is to define and iterate
a set of search queries for the Web of Science and Sco-
pus. Prior work had already outlined a set of NETs
queries (Minx et al 2017c), which were then further
refined with each technology team. At a minimum,
these search queries aim to capture a set of documents
that: (1) refer to at least one technology in question;
and (2) refer to the removal of CO2 in some regard.
For example, a study on afforestation would only be
captured by the search query if it also contained some
reference to carbon sequestration. This strategy focuses
the core of our review on mitigation-related stud-
ies, although it undoubtedly misses work that could
be relevant for a more specific NETs assessment (e.g.
publications on afforestation and biodiversity).

Having compiled a set of broadly relevant doc-
uments, the second stage of the scoping review is
to manually exclude irrelevant articles (2.1). The
exclusion criteria were broadly as follows: if a
paper did not report global sequestration potentials,
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Figure 3. Search and scoping strategy applied in this systematic review.

sequestration costs, or discuss the side-effects of
deployment, it was excluded. Deviations from this
general rule by technology were necessary, these were
therefore discussed and agreed upon in each team (e.g.
species-specific sequestration potentials are very com-
mon in the land-use NETs, but have to be excluded as
they cannot be meaningfully aggregated in our study).
Similarly, ‘side-effects’ is open to broad interpretation,
but typically involves such issues as competition for
land and food production (BECCS), albedo change
(afforestation and reforestation), or ecosystem impacts
(ocean fertilization). The exclusion criteria are dis-
cussed in more detail in the Supporting Information
of Fuss et al (2018). In order to ensure consistency
in applying the criteria, random samples of papers
were screened and cross-checked within the tech-
nology teams until a good level of agreement was
reached among the experts (90%). The full screening
of abstracts could then proceed (note: after the sam-
ple screening, abstracts were divided among members
of each technology team, hence each abstract was read
once). If, during this process (and in later stages of the
review), additional relevant articles were discovered,
these were added manually.

The initial search query yielded 6284 papers in
Web of Science and Scopus (once duplicates were
removed). The preliminary scoping review in stage 2
reduced this set to 1984 NETs documents that focus
on costs, potentials and side-effects. We retrieved con-
tact information for all corresponding authors from
these documents. To each author, we sent an email
with a list of her references in our database asking
for a complete list of her publications on NETs. In
case of gaps, additional documents could be forwarded
via email or uploaded to our project website. Over-
all, we sent emails to 1256 authors during November

and December 2017. 564 of the links in these emails
were clicked on, and 419 documents were added. 270
of these documents were not already in our database,
and these documents underwent the same preliminary
scoping review (stage 2), adding another 147 rele-
vant documents. Overall, stage 2 yielded a total of
2093 core documents on NETs, which we use in sec-
tion 4 of this paper to describe the relevant research
landscape.

For reviews #2 (Fuss et al 2018) and #3 (Nemet
et al 2018), the core set of NETs documents was
refined further. In the first case (Fuss et al 2018) this
was via a more comprehensive screening of documents
looking at full texts to examine and extract data. In
the latter case (Nemet et al 2018) each document was
codedby the innovation stagesdiscussed in the abstract.
These procedures are described in the respective
manuscripts.

The landscape of negative emissions research

The upper panel of figure 4 shows that the body
of publications dedicated to NETs is fast growing,
but remains still at a reasonable size with a total
number of about 2000 studies (see SI available at
stacks.iop.org/ERL/13/063001/mmedia for a list). This
number differs from results presented in (Minx et al
2017c): we not only include publications dedicated to
NETs in a hand-selection process, but search a wider
range of results by including also the Scopus database
and publications we manually added ourselves. We
further note that there is a considerably wider litera-
ture on individual NETs, but we restricted our original
search to documents that deal with atmospheric car-
bon removal in order to keep the study focused

9
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Figure 4. Total number of studies on NETs by year and IPCC assessment period. Bars on the top panel show the total number of
papers mentioning each technology (note that some papers may reference more than one technology period). The bottom bars show
the share of the literature in each assessment period that mentions each technology. ‘NETs—General’ denotes studies that mention
negative emissions, but not a specific technology.

and the task at hand manageable and reproducible.
Growth has been larger than for the scientific enter-
prise as a whole as well as for the entire climate change
literature (Minx et al 2017c). This matches our expec-
tations as NETs form a more recent discourse within
climate change mitigation.

Considering the timeline of NETs publications,
studies falling between the first two IPCC assess-
ments (AR1 and AR2) mainly focused on afforestation
and reforestation with some discussions around OF
in AR216. This is a good reflection of the very
limited available literature at the time. The third IPCC
assessment cycle witnessed the phase-in of scientific
publications on SCS, alongside a broader discussion
of biological sink enhancement in AR3 (Kauppi et al
2001). By AR4, the first studies on all major NETs
had emerged, but with no attempts towards a system-
atic discussion—probably due to the immaturity of
the field. Yet, negative emissions as a key issue for
achieving very stringent mitigation goals were high-
lighted in AR4 (Barker et al 2007) paving the way for
a more comprehensive treatment in AR5 (Clarke et al

16 ‘Biofuels’—i.e. the BE part of BECCS was discussed as a potential
mitigation measure (for fossil fuel offsets) in all ARs.

2014). For AR6 there are already about 680 additional
publications available during the first three years of
the cycle, with a substantial number of studies for
most technologies.

In terms of the individual NETs discourses, fig-
ure 4 shows that some discussions on NETs are
long-standing, while others are rather recent. Early
discussions in the field started with AR and OF, fol-
lowed by SCS in the late 1990s. Most other NETs
enter the debate firmly after 2005. A more general dis-
course on negative emissions only emerged after the
publication of IPCC-AR4 in 2007. Moreover, NETs
discourses show a steady increase across all technolo-
gies, with the exception of OF, which peaked between
2005 and 2010 and declined thereafter over concerns
on adverse side-effect, effectiveness and legal issues
(Rayfuse et al 2008, Lukacs 2012, Güssow et al 2010).
Recent growth (2011–2016) in publications has been
strongest for BC (33%) followed by the general dis-
cussion of NETs (21%), SCS (15%) and DAC (12%).
Finally, the largest number of studies has been accu-
mulated for SCS (550) and AR (490). There are more
than 200 publications for most other options except
(EW and BC).

Figure 5 shows a bibliographic coupling network
of our corpus of relevant negative emissions literature
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a. 1990 - 2005 b. 1990 - 2017

Afforestation/reforestation

Direct air capture

Bioenergy carbon capture & storage

Ocean fertilisation/
enhanced weathering

Biochar

Soil carbon sequestration

Figure 5. Bibliographic coupling network of negative emissions publications. The nodes in (a) and (b) represent articles, scaled by
citations (normalized across years and scientific fields). Proximity between nodes indicates strong bibliographic coupling—a shared
set of cited references—with the layout determined by the force-directed algorithm ForceAtlas2. Clusters were identified using a
community detection algorithm, separately in each time period. Individual papers were already marked up by technology in the
scoping review, clusters are therefore labelled by the technology types that exceed a proportion of 10% in each grouping (where a
paper had two technologies, each had a weighting of one). On manual inspection, some clusters in figures (a) and (b) approximately
match, and are colored accordingly. The network centrality scores for (a) and (b) are x and y, respectively, indicating a denser network
of citations as the last decade of publications are added. Note that enhanced weathering of the ocean and ocean fertilization have been
grouped together by the algorithm. Yet, they mark distinct options with very different characteristics and side-effects.

for the time periods 1990–2005 (small panel) and
1990−2017, generated in VOSviewer (van Eck and
Waltman 2010). In each plot, the proximity of pub-
lications is based on their number of shared references.
Publications are clustered into distinct technology
communities identified by colors. Figure 5 shows
that between 1990 and 2005, two distinct discourses
dominated—one focused mainly on OF and a much
larger one essentially about the various options for
enhancing natural carbon sinks (AR, SCS) except BC.
For each of these NETs already distinct bodies of
research have emerged and, in fact, most of the seminal
work have already been published. For other NETs,
though some literature has begun to be published,
distinct communities are yet to emerge.

By 2017 the breadth of the discussion has fully
unfolded and all major NETs have developed into
distinct research fields including BECCS, BC and
DACCS. BECCS studies, which figure 5 shows begin
to emerge from 2005, form a central part of the com-
plete network. The pink cluster in figure 6 is composed
mainly of BECCS studies, along with broader dis-
cussions on NETs (which we describe as ‘NETs -
general’ in our database). This cluster reflects both
the scenario literature where BECCS studies initially
gained prominence, as well more general discussions
of negative emissions where scenarios are often used
as a starting point (Smith et al 2016, Anderson 2015,

Anderson and Peters 2016, Fuss et al 2014, 2016,
Gasser et al 2015, Geden 2015). This materializes in
the network: of all the clusters, the BECCS cluster
displays the highest average betweenness centrality—
meaning that BECCS papers occur most frequently
on the shortest paths between other papers (Freeman
1978).

At thenetwork level, betweenness centrality is lower
in the 1990−2017 network. This shows the increasing
distance between more distinctive research fields. For
example, the two clusters between which average short-
est path lengths are the greatest are SCS and OF. These
clusters share few common references, and are only
indirectly linked through papers in more central clus-
ters, like that on BECCS. This decentralizing trend lies
in contrast to an increase in degree centrality, which
measures the number of connections each paper has
(normalized according to the number of papers in the
graph). In the full network, papers are more densely
connected, reflecting the growing body of shared ref-
erences in each subfield. This is exemplified in the
AR cluster, which, as the most mature technology
field, displays the greatest average degree centrality.
In short, the research landscape is diversifying and
developing into epistemicniches, but against a counter-
trend of increasing connectivity, suggesting a growing
awareness of other efforts in the field and emerging
common discourses.
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Figure 6. Synthesis of NETs costs, potentials and key side-effects. Central panel gives an expert judgment for 2050 potentials and
costs. All ranges result from assessments of these individual technologies and are not additive as technologies compete for limited
geological storage, land and biomass feedstocks. The full ranges found in the literature are shown in table 3 and discussed in Part 2
of this review in depth (Fuss et al 2018). As annual deployments of soil carbon sequestration and afforestation cannot be sustained as
long as other technologies (due to rapid sink saturation) we represent these technologies as dashed boxes in the central figure with
an asterix∗ . Side panels A−G show expected future trends in costs and potentials after 2050 as judged by the author team based on
the respective assessment of the individual technologies (Fuss et al 2018). Key side effects are indicated by icons underneath. Note
that risks of negative side effects are often contingent on implementation, e.g. large-scale afforestation with mono-cultures versus
agroforestry projects, or biochar from dedicated crops versus residues. A more comprehensive list is side effects provided in table 3.
A comprehensive discussion of costs, potentials and side-effects can be found in Fuss et al (2018). An assessment of the literature on
innovation and upscaling is provided in Nemet et al (2018).

Synthesis—what we know about negative
emissions

This section integrates and condenses the findings from
all three parts of this review to summarize the current

status of knowledge on negative emissions. In par-
ticular, table 3 brings together some crucial insights.
This section stays at a high level to focus on what we
consider to be the key points, while more details includ-
ing a wealth of additional references can be found
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in the respective sections of the three publications
(Fuss et al 2018, Nemet et al 2018).

Given important differences between NETs and
SRM approaches, we argue in this review that nei-
ther should be lumped together under climate- or
geo-engineering. SRM and NETs both describe human
interventions that take place after the release of CO2
to the active biosphere. Yet, by reducing atmospheric
CO2 concentrations NETs still address the root cause
of climate change, as with mitigation options. SRM
approaches seek to temporarily limit some of the worst
impacts of climate change. Other important differences
refer to the novel global risks imposed by SRM, the dif-
ferent time scales at which these interventions work,
or distinct governance challenges (National Research
Council 2015). We do not advocate presenting
NETs as another mitigation option, but argue that it
should not be lumped together with SRM. We therefore
support a four-fold classification of human response
options to climate change that consists of mitigation,
adaptation, NETs and SRM—with the last two strictly
distinguished from each other.

Over the past decade, NETs have moved from the
periphery towards the core in climate policy discussions.
This change is in part due to the growing cogni-
tive dissonance between increasing long-term ambition
in international climate policy—most recently mani-
fested in the Paris Agreement—and the very limited
success in achieving short-term emission reductions
across the globe. In fact, global GHG emissions
will continue to grow until 2030 unless short-term
ambition is ratcheted up by many countries (Rogelj
et al 2016a, Meinshausen et al 2015, Schleussner
et al 2016).

The introduction of NETs in cost-optimizing mitiga-
tion scenarios reduces the costs of long-term mitigation
but impedes early emissions reductions (see also fig-
ure 8). The resulting budget overshoot is ‘paid back’
towards theendof thecenturyduringasustainedperiod
of net negative emissions, i.e. a global net removal of
carbon dioxide from the atmosphere. However, gross
negative emissions in scenarios that offset residual CO2
emissions which are difficult to mitigate tend to be
much larger, pointing towards the economic attrac-
tiveness of NETs in many scenarios.

Scenario evidence suggests the need for large-scale
NETs deployment in 1.5 ◦C scenarios. We define 1.5 ◦C
scenarios as those with a greater than 50% probabil-
ity to keep global mean temperature increase below
1.5 ◦C in 2100 and an at least 66% probability of keep-
ing warming below 2 ◦C throughout the 21st century.
The dependence on negative emissions is due to the
very limited carbon budget—the remaining net cumu-
lative anthropogenic CO2 emissions of 0–200 GtCO2
that can still be emitted throughout the 21st century
in order to keep the climate goals (Rogelj et al 2016b,
2018, 2015)17. These scenarios are typically character-
izedby large amountsof grossnegative emissions across
the 21st century (150−1180 GtCO2) initiated by rapid

patterns of upscaling NETs (0.06–0.8 GtCO2 per year
between 2030 and 2050 to 1−16 GtCO2yr−1 by 2050).

The dependence on NETs can be limited to a
large degree for 2 ◦C scenarios—defined as scenarios
with a larger than 66% (likely 2 ◦C scenarios) and
50% (medium 2 ◦C scenarios) probability of keep-
ing temperature rise below 2 ◦C throughout the 21st
century. 2 ◦C scenarios without any additional con-
straints on the technology portfolio or policy timing
deploy negative emissions at similar scales to 1.5 ◦C
scenarios (320−840 GtCO2), but scale-up is slower
(0.03−0.4 GtCO2 per year between 2030 and 2050)
and 2050 deployment levels are lower (1−11 GtCO2)
for most scenarios. Therefore, many commentators
implicitly or explicitly suggest a large-scale dependence
on negative emissions for 2 ◦C scenarios (Lackner
et al 2016, Williamson 2016, Gasser et al 2015, Ander-
son and Peters 2016, Peters and Geden 2017). Yet,
among the 2 ◦C pathways there are scenarios without
any substantial NETs deployment. This implies that the
large NETs deployment observed in many 2 ◦C scenar-
ios assuming immediate andcomprehensivemitigation
action is mainly rooted in their competitiveness (eco-
nomic attractiveness) and could be largely avoided.
In fact, 2 ◦C scenarios do not yet fundamentally
depend on negative emissions at large scale.

If near-term emission reductions follow the path-
ways suggested by current NDCs there will be a
fundamental dependence on negative emissions by 2030
in 2 ◦C scenarios. 2 ◦C scenarios that delay adequate
mitigation action in the short-term along the current
NDC trajectory show similar features to 1.5 ◦C scenar-
ios today: no available scenarios without NETs, large
scale deployment of NETs throughout the 21st cen-
tury (250−920 GtCO2) and rapid upscaling of NETs
between 2030 and 2050 (0.2−0.7 GtCO2 per year) to
3−14 GtCO2. Following low energy demand trajecto-
ries throughout the 21st century increases the flexibility
in NETs deployments across all scenarios.

The introduction of multiple (more than one) NETs
leads to an increased total deployment of NETs, but
for each NET at decreasing scales relative to the single
NETs case. The level of substitutive effects depends on
the composition of the NETs portfolio. Initial evidence
suggests that they are stronger for NETs competing
for land (e.g. AR and BECCS) (Humpenöder et al
2014) and less strong for NETs competing for stor-
age (BECCS and DACCS) (Marcucci et al 2017, Chen
and Tavoni 2013). The increases in total NETs deploy-
ments are accompaniedby furtherobstructions to short
term emissions reductions as well as further reduced
long-term policy costs.

Most recent evidence suggests that future socio-
economic conditions are decisive for the level of future

17 Estimation of carbon budget depends on temperature data used,
and various methodological assumptions. A recent estimate sug-
gests a more generous CO2 budget for the 1.5 ◦C limit (Millar et al
2017).
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Table 3. Summary of insights on costs, potentials, side-effects, upscaling and innovation as assessed based on Fuss et al (2018) and Nemet et al (2018). All ranges result from assessments of these individual technologies and are not additive
as technologies compete for limited geological storage, land and biomass feedstocks. Annual deployments of soil carbon sequestration and afforestation cannot be sustained as long as other technologies due to rapid sink saturation.

Group Option NETs deployment levels in IAMs (in

GtCO2yr−1 in 2050 [2100], full range)

Potential

(in

GtCO2yr−1)

Costs (in

$/tCO2)

Side effects Permanence and

saturation

Development status of

technology

Remaining barriers to

development,

deployment and

upscaling

1.5 ◦C 2 ◦C 2 ◦C delay 3 ◦C Author

judgment

[full range]

Author

judgment

[full range]

positive negative

Geological
storage

DACCS 0 [40] 0 [11–40] n/a n/a 0.5–5

[limited by

upscaling

and costs]

100–300

[25–1000]

Business

opportunities; specific

applications could

improve indoor air

quality

CO2 penalty if high

(thermal) energy

demand satisfied by

fossil fuels; currently

high front - up capital

costs; mostly

insufficiently studied;

material/waste

implications not

known but cannot be

excluded; some spatial

requirements

High permanency for

adequate geological

storage; possible

storage limitations but

flexible co-location

with storage possible

Deployed in small

niche markets; costs

unknown

Costs; mass

production; leakage

concerns; ensure

governance that

renders DACCS a CO2
sequestration rather

CO2 utilization

technology

BECCS 1–16

[3–29]

0–14

[0–24]

3–14

[5–17]

0–7 [0–22] 0.5–5

[1–85]

100–200

[15–400]

Market opportunities;

economic

diversification; energy

independence;

technology

development and

transfer; GHG

emissions substitution

Direct and indirect

LUC; food security;

biodiversity losses;

deforestation and

forest degradation;

health impacts;

impacts on soil and

water; albedo change;

CO2 leakage

High permanency for

adequate geological

storage; possible

storage limitations;

limits on rates of

bioenergy production

and carbon

sequestration

∼1 full scale

demonstration plant

worldwide.

Costs; land use

competition; leakage

concerns

Ocean
storage

Ocean

fertilization

n/a n/a n/a n/a Extremely

limited

[0.5–44]

No expert

judgement

due to

limited

potential

[0–460]

Potential increase in

fish catches; enhanced

biological production

Unknown impacts on

marine biology and

food web structure;

changes to nutrient

balance; anoxia in

surface ocean;

probable enhanced

production of N2O

and CH4

Fragile saturation of

oceans; permanence

from millennia to

months/days

∼10s of small scale

demonstrations

Efficiency of method;

scale up; incentives for

adoption; impacts on

ocean and marine life
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Table 3. Continued.

Group Option NETs deployment levels in IAMs (in

GtCO2yr−1 in 2050 [2100], full range)

Potential

(in

GtCO2yr−1)

Costs (in

$/tCO2)

Side effects Permanence and

saturation

Development status of

technology

Remaining barriers to

development,

deployment and

upscaling

1.5 ◦C 2 ◦C 2 ◦C delay 3 ◦C Author

judgment

[full range]

Author

judgment

[full range]

positive negative

Storage in
terre - strial
bio-sphere

AR n/a 0–3 [1–4] n/a 0–2 [0–5] 0.5–3.6

[0.5–7]

5–50

[0–240]

Implementation

dependent benefits for

soil carbon, soil

quality, biodiversity,

livelihoods, water

retention,

employment

Direct and indirect

LUC; net-positive

warming in high

latitudes due to albedo

effect; risks for

biodiversity and food

security.

Saturation within a

period of decades to

centuries; vulnerable

to natural and human

- induced

disturbances; requires

on-going management

to maintain sinks

Available at large scale Lack of incentives for

widespread adoption;

competing land uses;

concerns about

offsetting temperature

effect from albedo

changes

SCS n/a n/a n/a n/a 2–5

[0.5–11]

0–100

[−45–100]

Improved soil

resilience and

improved agricultural

production; negative

cost options; reduced

pollution and

improved soil quality;

positive impacts on

soil, water and air

quality

Possible increase in

N2O emissions and N

and P; need for

addition of N and P to

maintain

stoichiometry of soil

organic matter

Soil sinks saturate and

are reversible when the

management practice

promoting SCS ceases

Available at large scale Incentives for

widespread adoption;

concerns about

permanence

Biochar n/a n/a n/a n/a 0.5–2

[1–35]

30–120

[10–345]

Increased crop yields

and reduced drought;

reduced CH4 and

N2O emissions from

soils; improved soil

carbon, nutrient and

water cycling impacts

Competition for

biomass resources;

direct and indirect

LUC; potential

increase plant

vulnerability against

insects, pathogens, and

drought; albedo

change partly

offsetting mitigation

effect

Residence times of

biochars range

between decades to

centuries depending

on soil type,

management, and

environmental

conditions

Pyrolysis capacity

limited at present

Incentives for

widespread adoption;

costs of pyrolysis
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Table 3. Continued.

Group Option NETs deployment levels in IAMs (in

GtCO2yr−1 in 2050 [2100], full range)

Potential

(in

GtCO2yr−1)

Costs (in

$/tCO2)

Side effects Permanence and

saturation

Development status of

technology

Remaining barriers to

development,

deployment and

upscaling

1.5 ◦C 2 ◦C 2 ◦C delay 3 ◦C Author

judgment

[full range]

Author

judgment

[full range]

positive negative

EW n/a [3] n/a n/a 2–4

[0–100]

50–200

[5–3460]

Increase in crop yields;

improved plant

nutrition; improved

soil fertility, nutrient

and moisture; increase

in soil pH; increasing

cation exchange

capacity in depleted

soils

Human health risks

associated to fine

grained material;

ecological impacts of

mineral extraction and

transport; potential

heavy metal release;

changes in soil

hydraulic properties

Saturation of soil;

residence time from

months to geological

time scale

Tailored mineral

production limited at

present due to

unknown optimal

parameterization of

products.

Incentives for

widespread adoption;

costs of mineral

production and

distribution
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dependence on NETs in both 1.5 ◦C and 2 ◦C scenar-
ios. While the scenario evidence for AR5 lacked larger
variations of socio-economic baseline conditions, this
evidence has become available in the meantime (Popp
et al 2017, Bauer et al 2017, van Vuuren et al 2017,
Riahi et al 2017, Rogelj et al 2018). As expected,
the ranges observed in NETs deployment both for
1.5 ◦C and 2 ◦C scenarios expand at both ends once
more or less favorable socio-economic conditions are
assumed. For example, NETs deployments are much
lower in a world that unfolds along a sustainability
narrative with higher levels of education and urban-
ization, lower population levels and less inequality
within and between countries compared to a world
that is fundamentally characterized by fossil-fuel reliant
development (see O’Neill et al (2017) for a detailed
outline of five alternative socio-economic narratives).
Hence, the socio-economic futures assumed in mod-
els themselves substantially impact the economically
optimal deployment of NETs and the dependence
of individual scenarios on them (Riahi et al 2017,
Rogelj et al 2018). It is therefore crucially impor-
tant not only to think about how climate policies
can reduce GHG emissions given a set of base-
line conditions, but also how non-climate policies
could help to transition between alternative future
worlds.

There are bio-physical and socio-economic limits
for all individual NETs, but we identify relevant deploy-
ment potentials that could be realized in the mid-term
(2050) for all NETs except ocean fertilization. In other
words, NETs are, in principle, feasible at variable costs
and with at least partially proven technology but not
at unlimited scale, and often with high uncertainties
on impact. Yet the potentials for different NETs iden-
tified in this review (see table 3) are not additive as
different technologies compete, for example, for land,
biomass resources and safe geological storage. More-
over, lifting any of these potentials will require reliable
institutions that incentivize good governance and prac-
tice across theglobe.Particularly for land-basedoptions
such as AR, BECCS or SCS reaching the higher end of
the deployment ranges could be challenging due to
the large number of actors involved. Moreover, those
technologies which are still at relatively early stages of
development such as BECCS or DACCS would require
stable and structured incentives across the innovation
cycle.

It will be difficult to achieve NETs deployment
ranges as currently suggested by mitigation scenarios
with a single NET. Available scenarios achieve large-
scale removal of carbon dioxide from the atmosphere
almost exclusively with BECCS. There is great skepti-
cism in the technology literature that modelled annual
deployment levels of 10–20 GtCO2 towards the end of
the 21st century can actually be achieved by BECCS
alone, or by any other individual NET (Anderson and
Peters 2016, Anderson 2015, Geden 2015)18. There are
two important implications: first, rather than betting

on the large-scale availability of a single NET in the
future, it seems crucial in the light of the prevail-
ing uncertainties surrounding all NETs to keep the
dependence on NETs for achieving the climate tar-
gets as small as possible. Second, it appears prudent
to plan for the deployment of a wider set of NETs
than BECCS. Such a discussion of NET portfolios,
with a variety of technologies contributing poten-
tially at more modest scales is important, but often
absent from the NETs discussion. Importantly, this
allows some hedging of risks associated with deploying
individual NETs at large-scales.

There is an asymmetry across NETs in terms of
immediate availability, safe storage and effectiveness,
as well as costs and potentials. Some of the land-based
NETs—in particular, SCS and AR—are readily avail-
able today for widespread implementation. In fact,
they also tend to be among the cheapest available
options—in the case of SCS there is a limited potential
available at negativeprivate costs andwitha stringof co-
benefits (table 3). Yet, the cheapest options and largest
potentials are often available in regions with weak insti-
tutions. Furthermore, biophysical impacts can partially
offset temperature reductions. For example, AR mea-
sures in the North are often not very effective due to
changes in the albedo (Wang et al 2014, Anderson
et al 2011). Moreover, there are large uncertainties
involved with regard to the confidence we can have
that a certain NET has actually permanently removed a
ton of carbon (effectiveness). Equally, storage is subject
to saturation, is highly reversible (especially under cli-
mate change), depends heavily on future management
decisions and is therefore highly dependent on future
institutional and political conditions. BECCS and
DACCS tend to have larger overall potentials and pro-
vide much more reliable long-term storage, but show
substantially higher costs and are still further down
in the innovation chain. Nevertheless, this might sug-
gest a natural deployment succession that starts with
land-based NETs in the near future and moves towards
geological storage options when larger deployment
scales need to be reached.

Despite the focus of the NETs discussion on the very
long-run, there is an immediate urgency to upscaling
NETs that is largely under-appreciated both in science
and policy. While NETs play a key role in the second
half of the 21st-century for 1.5 ◦C and 2 ◦C scenar-
ios, the major period for introducing and upscaling
NETs is between 2030 and 2050. For example, scaling-
up NETs to the extent described in many 1.5 ◦C and
2 ◦C scenarios requires adding several hundred BECCS
or DACCS plants every year during that period. The
urgency mainly derives from the generally long time
periods required for the development, scaling-up and

18 Note that bioenergy is a very versatile technology that has multiple,
importantuses in climatechangemitigation scenarios.Even ifBECCS
remains unavailable, demand for bioenergy remains almost as high
as additional bioenergy is used by other sectors (Rose et al 2014).
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Figure 7. Bioenergy deployment in likely and medium 2 ◦C scenarios unfolds at similar levels over the 21st century regardless of
the availability of BECCS. Bioenergy deployment corresponds here to the total amount of primary energy biomass consumption in
exajoules per year (EJ yr−1). It is provided for three scenario types: business-as-usual scenarios (grey) and likely 2 ◦C scenarios with
(blue) and without BECCS. Data sources: LIMITS (Kriegler et al 2013c), RoSE (Kriegler et al 2013b), AMPERE (Riahi et al 2015).

diffusion of technologies to attain widespread adop-
tion. This challenge is exacerbated by the thousands
to millions of actors that potentially need to adopt
these technologies for them to achieve the required
planetary scale. If NETs are to be required at the scales
currently discussed, the resultingurgencyof implemen-
tation is neither reflected in the scientific literature, nor
in contemporary policy discussions, nor in policy itself.

Our analysis of the innovation literature on NETs
suggests that, overall, the discussion is still at an
early stage. Almost 60% of the literature still deals
with ‘research and development’ (R&D)—the ear-
liest stages of the innovation process. More than
80% of the literature deals with supply side issues of
the innovation process (R&D, demonstrations, scale-
up), while crucial demand-side issues (demand pull,
niche markets, public acceptance) are still substantially
under-developed.

Ethical aspects

Despite their increasing prominence in mitigation
scenarios, ethical analysis of NETs remains compar-
atively rare. This is in sharp contrast to the ethics
of SRM, about which three volumes of essays (Pre-
ston 2012, Burns and Strauss 2013, Clingerman and
O’Brien 2016) and numerous articles have already been
produced. While the relative neglect of NETs among
ethicists appears to be changing (Shue 2017, Morrow
and Svoboda 2016, Preston 2016), it remains con-
ventional to view NETs as less ethically problematic
than SRM. In their influential report, the Royal Society
claimed that NETs were ethically preferable to SRM
since they could contribute to long-term decarboni-
sation, with ‘fewer uncertainties and risks’ (Shepherd
et al 2009)19. Whether this assessment is correct will

depend on which techniques are adopted, and how
these are implemented. Given the differences between
SRM and NETs, framing both under the umbrella term
‘geoengineering’ could be problematic for develop-
ing distinctive ethical arguments. We therefore prefer
typologies which clearly distinguish SRM from NETs,
and both from conventional mitigation and adapta-
tion (Heyward 2013). In his review, Preston (2013)
identified thirteen ethical issues raised by SRM and
NETs, encompassing research, implementation, and
finally cessation. However, many of these concerns are
SRM-specific, and the extent to which they apply to
NETs is unclear. Ethical analyses are required which
adequately reflect the differences between SRM and
NETs, and between particular techniques (Baatz et al
2016, Preston 2013).

Distributive justice and ethical permissibility
Within the normative literature on global justice and
climate change, harms to basic life conditions of
the kind that would undermine human rights or
basic capabilities are of particular importance (Gar-
diner et al 2010). Assessing potential benefits and
burdens of climate policy requires an integrated per-
spective on climate justice, sustainable development
and global justice (Caney 2012). For instance, a global
implementation of BECCS raises questions concerning
differentiated national responsibilities, along with chal-
lenges of ensuring institutional arrangements across
a global supply chain that credibly incentivise and
monitor biomass production, energy generation, and
carbon storage (Peters and Geden 2017). Shue (2017)
has argued that relying on large-scale BECCS would

19 While seeming to share the Royal Society’s verdict, Gardiner
argued that this was not adequately justified by the report itself
(Gardiner 2011).
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be seriously unjust because this could undermine
food security, disproportionately harming the poorest.
However, the variation among implementation effects
(see table 3, figure 6) shows that NETs can be a very
mixed ethical proposition. Thus, Shue may be cor-
rect under some implementation assumptions, but not
under others.

In fact, food security concerns are not spe-
cific to BECCS, but are related to bioenergy
more generally. Concerns have been expressed
about the sustainability and justice implications of
large-scale bioenergy production (Gamborg et al
2012). Shrader-Frechette (2015) has argued that it
would be impermissible to view biofuels as substitutes
for fossil fuels, objecting to claims that they are safe, sus-
tainable, and low-carbon, while (Gomiero et al 2010)
have claimed that large-scale biofuel reliance would
be unacceptable in light of existing appropriation of
ecosystem services. The increasing land competition
on global scale would likely be exacerbated by NETs.
As such, Creutzig (2017) points to the need for global
coordination and governance of land as a precondition
for large-scale bioenergy uses. But it is equally impor-
tant tonote thedifferencesbetweenbiofuels in assessing
these implications.

Hence, for any targeted ethical inquiry related to
BECCS, it is fundamental to ask whether the risks of
large-scale bioenergy production are related to BECCS
deployment or not. This requires the comparison of
bioenergy uptake in scenarios that allow for BECCS
with the uptake in scenarios without this option. Doing
so highlights that in ambitious mitigation scenarios
where the BECCS option is not allowed for, the uptake
of bioenergy is not reduced at all. In fact, in many
scenarios more bioenergy is used in those cases. The
reason is that bioenergy is a versatile feedstock that
has applications in many sectors that are particularly
hard to decarbonize (e.g. like air but also passen-
ger transport). In the absence of BECCS, bioenergy
is applied in those sectors to cut fossil fuel related
emissions further down towards zero with tight limits
imposed on the ability for compensation via negative
emissions. This essentially means that the ethical and
policy discourses should primarily target bioenergy. If
there are (ethical) concerns arising from large-scale
bioenergy deployment, the discussion must be about
limitingbioenergyuse regardless of theparticular appli-
cation. In fact, the literature shows that temperature
rise can be held below 2 ◦C even if bioenergy deploy-
ment is limited to no more than 100 EJ yr−1 (Kriegler
et al 2013c, 2014, Krey et al 2014, Riahi et al 2015,
Clarke et al 2014). Imposing such a restriction on
bioenergy will automatically restrict the potential for
BECCS deployment as well, but not necessarily of
other NETs, like DACCS.

For techniques beyond BECCS, Hale and Dilling
(2011) argue that ocean fertilization appears to be
ethically impermissible because it involves addition-
ally polluting the oceans in order to remediate the

pollution of the atmosphere, thereby also shifting the
planet to a new and unknown state. Concerns about
public consultation and consent are especially daunt-
ing for techniques such as ocean fertilization, which
affect global commons beyond the atmosphere. But
techniques that involve large infrastructures for pro-
duction, transportation and sequestration (e.g. BECCS
and DAC) would also face procedural challenges. Adel-
man (2017) claims that the unforeseen, unintended
and uncontrollable consequences of both SRM and
NETs make them unacceptably risky to use, and impos-
sible to gain consent for. However, this argument
fails to even consider the potential benefits associated
with achieving more stringent warming targets such
as 1.5 ◦C, which may require large-scale NETs. Hale
(2012a) argues DAC appears to be more permissible
since its effects would be localised, and hence achiev-
ing consent would be feasible. A similar claim may
be made for other forms of terrestrial NETs, partic-
ularly more benign or locally beneficial options such
as soil carbon sequestration, biochar, or reforestation.
Alternately, Preston (2016) argues that the desirabil-
ity of a ‘cessation requirement’ may generally support
NETs. Morrow and Svoboda (2016) have argued that
any negative emissions technique could be morally
permissible, provided that any wrongs are propor-
tionately small in comparison to the gains of justice
that would result, and that it compares favourably
with any politically feasible alternatives. Of course, this
comparison is likely to be fiercely contested.

The potential consequences of NETs implemen-
tation do not encompass all distributive concerns.
This is especially clear in relation to intergenerational
justice, a key theme of climate ethics. There is a
danger that claims of historical responsibility will be
‘framed out’ via scenario design itself (McLaren 2016).
There is also a danger of reproducing expert visions
of technological futures, and thereby reducing ques-
tions of value to questions of quantified distribution or
technological feasibility (Flegal and Gupta 2017).

Moral hazard, betting, and hubris
In our view, three issues in particular stand out in
need of future ethical analysis (Lenzi 2018). These are
first, that NETs might create a moral hazard against
mitigation; second (and relatedly), that an implicit
policy bet on NETs that are unproven at scale may
lock in worse climate-related harms if they failed to
deliver; and third, that the sheer scale of NETs deploy-
ment observed in mitigation scenarios is staggeringly
hubristic.

The availability of NETs may create or exacer-
bate a mitigation moral hazard20. Moral hazard takes

20 The label ‘moral hazard’ may be misleading, since there would
not be a moral problem unless the behaviour incentivised is itself
morally bad (Hale 2012b). The basic concern seems better expressed
as mitigation obstruction (Betz and Cacean 2012, Morrow 2014),
since it is precisely this which is ethically problematic.
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Figure 8. Moral hazard and negative emissions. Two REMIND scenarios are depicted, each with a greater 50% probability of keeping
mean temperature rise below 2 ◦C throughout the 21st century. When negative emissions are constrained by not allowing for CCS,
near-term CO2 reductions are typically far steeper—in this example reaching a 9.1 GtCO2 gap by 2030. Data source: AMPERE (Riahi
et al 2015).
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Figure 9. Betting on negative emissions. Gross negative emissions deployment ranges are depicted for an ensemble scenarios all with
an at least 50% probability of keeping mean temperature rise below 2 ◦C throughout the 21st century. From a baseline of 0 in 2020,
median annual growth rates of 6% would need to be sustained to meet ambitious median deployment levels by the mid-century. At
the same time options are also available with significantly lower levels of gross negative emissions. Data sources: AMPERE (Riahi et al
2015), LIMITS (Kriegler et al 2013c), Rogelj et al 2015.

place when the assumed availability of large-scale NETs
disincentivizes emissions reductions in the present.
In fact, there are two distinct senses in which NETs
might create a moral hazard. First, the availability of
NETs within climate models displaces some mitiga-
tion. This effect is widely recognised (Calvin et al
2009, Kriegler et al 2013a, Azar et al 2006, Rao and
Riahi 2006, Clarke et al 2009). The extent of mit-
igation obstructed by scenario design is potentially
very large. In one comparison, near-term mitigation
is greater by 9.1 GtCO2yr−1 by 2030 when NETs are
excluded (Riahi et al 2015)21. The inclusion of NETs

within scenarios thus raises ethical questions about
appropriate research design. Research on NETs, like
research on SRM, may create path-dependencies, lock-
ing in a requirement for NETs to meet climate goals
(Jamieson 1996).

The second aspect is the extent to which NETs
actually displace mitigation in practice. There is
dispute about whether this has already occurred

21 In this comparison, CCS is constrained, which limits both CCS-
dependent BECCS and DACCS.
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in 2100. Data and figure design of historic emissions (left panel) is from the Global Carbon Project (Le Quéré et al 2016). Scenario
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(Anderson and Peters 2016, Lackner et al 2016)22. But
in any case, as Gardiner (2010) argues, current cli-
mate policy inertia coupled with incentives to ‘pass the
buck’ continue to justify concerns with the deferral
of mitigation in general. NETs may further disincen-
tivise near-term mitigation by providing policy-makers
with a convenient excuse for mitigating less now (Shue
2017). Nonetheless, this concern cuts both ways. The
more stringent 1.5 ◦C target requires greater use of
NETs, likely being unachievable via conventional mit-
igation alone. As such, NETs might result in less
severe primary climate impacts, which would seem
to be a gain of justice. Ignoring or side-lining NETs
as a mitigation option would hinder future research
on what may prove to be a vital means to achieve
lower temperature targets, thus potentially decreas-
ing climate risks. A policy of ‘wise overshooting’ is
at least conceivable, in which short-term emissions
primarily benefit developing countries by eliminating
extreme poverty (Morrow and Svoboda 2016).

Relatedly, the deferral of mitigationmay be encour-
aged by an implicit policy bet on the feasibility of NETs
even though these technologies are largely unproven at
large scale (Clarke et al 2014, IPCC 2014b). Creating
a dependence on future large-scale NETs risks worse
climate-related harms if they fail to deliver. Commen-
tators have drawn attention to the risks inherent in
this dynamic using the language of gambling (Ander-
son and Peters 2016). Although NETs are unproven
at large-scales, recent modelling features them at very

22 Hamilton (2013) argues that CCS has already displaced mitigation
over the past decade.

large, sometimes staggering scales. In the second half
of the century, NETs (again typically BECCS) are often
envisaged to remove between 10–20 GtCO2yr−1. There
is considerable skepticism that such upscaling is possi-
ble (Anderson and Peters 2016, Anderson 2015, Geden
2015). Consider that there are already many renew-
ables in operation, but there is at present only one
functioning large-scale BECCS facility, and two com-
mercial DAC plants. Similarly, the promise of other
technologies such as EW techniques remains to be
demonstrated at scale. From an ethical perspective, the
key to any bet on NETs lies in determining whose inter-
ests are acting as collateral in the wager. As Shue (2017)
points out, it is ethically significant that the potential
losers of a failed gamble upon NETs are future gen-
erations, and especially the poorest among them, who
would be most vulnerable if it failed, and who could
not possibly consent.

Finally, planned large-scale NETs deployment as
envisioned in many scenarios may greatly overestimate
our collective ability to manage carbon cycle flows,
thereby riskingdoingmoreharmthangood.Thehubris
implied in such plans runs up against our ignorance of
complex natural systems (Jamieson 1996). Hubris may
also be accompanied by technological optimism, i.e.
misplaced confidence in the efficacy of technological
solutions to socially created problems (Preston 2013).
There are historical precedents for both in attempts
to manipulate weather (Fleming 2010). For NETs,
hubris may be evident in overly neat assumptions of
the reversibility of warming, reflecting a paradigm of
carbon accounting that is not supported by our cur-
rently poor understanding of carbon cycle feedbacks
and related earth system dynamics. Hubris concerns
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create at most a ‘presumptive argument’ against great
intervention in nature, rather than a strict impermis-
sibility requirement (Preston 2011). Assessing hubris
in relation to NETs also requires assessing the poten-
tial scale of implementation. According to scenario
data, annual NETs deployment in the order of up to
20 GtCO2yr−1 (see figure 10)—and in extreme case
around or even beyond 40 GtCO2yr−1 (Marcucci
et al 2017, Chen and Tavoni 2013)—have been con-
sidered at the end of the 21st century, a figure that
approximately doubles todays natural global land-
emissions-sink. This implies a major perturbation of
land-use and biogeochemical flows (Smith et al 2016)
and does indeed appear hubristic in both senses of
this term. Our review of the NETs ‘side-effects’ (Fuss
et al 2018) highlights the manifold problems that
would be expected with such large-scale deployments,
from the albedo-dampening effects of temperate and
boreal afforestation, to the changes in biodiversity
resulting from land-use shifts and bioenergy produc-
tion, and the mineral and fertiliser requirements of
sustaining a high level of net primary production.

Of course, humans have already caused enormous
changes to the Earth-system (Krausmann et al 2013).
This raises additional questions about the ethics of
large-scale NETs in the Anthropocene. While we may
have unwittingly stumbled into this situation as a
species, we now face the prospect of intentional inter-
vention and management of the planet’s carbon sinks.

Discussion and future research: what we need
to know about negative emissions

With continued delays in achieving substantial and
sustained CO2 emissions reductions in the short-term,
alongside increasingly ambitious long-term climate
policy targets, negative emissions have rapidly moved
into the spotlight of international climate policy dis-
cussions (Mach and Field 2017, Anderson and Peters
2016, Fuss et al 2014, Williamson 2016, Gasser et al
2015, Anderson 2015, Peters 2016, Lackner et al
2016). The topic is fundamental for the upcoming
IPCC Special Report on 1.5 ◦C of global warming,
because negative emissions have become a bio-physical
requirement for limiting warming to below that
level. Despite various assessments (Smith et al 2016,
McLaren 2012, Fuss et al 2014, 2016, McGlashan et al
2012, Vaughan and Lenton 2011, Lenton 2014,
National Research Council 2015, Friends of the Earth
2011, Lenton 2010, Shepherd 2012, Shepherd et al
2009, Caldecott et al 2015) and more emphasis in the
most recent IPCC report (Clarke et al 2014, Ciais et al
2013), the current knowledge on NETs is still diffuse
and incomplete. We argue that for making progress
in our understanding of negative emissions, more
systematic attempts are required to assess and aggre-
gate currently available knowledge. Assessment bodies
like the IPCC can only be effective if such synthetic

evidence is provided by the research community (Minx
et al 2017c, 2017a).

In this three part review, we assess the literature
on negative emissions. Our focus is on mitigation and
we therefore do not include most of the geophysi-
cal literature. Yet, within this scope, our assessment
goes beyond the available literature by integrating the
widely discussed issues of costs, potentials and side-
effects of NETs (Fuss et al 2018) with a review of ethical
issues involved (previous section) as well as an in-depth
review of the literature on upscaling and innovation
(Nemet et al 2018), which may well turn out the be the
major bottleneck over the coming decades.

We designed our assessment to be systematic, com-
prehensive, transparent and reproducible (Petticrew
and Roberts 2008, Ringquist 2013). Our motivation
is to avoid bias in the selection of literature and uncon-
sciously constraining the assessment qualitatively and
quantitatively—a growing problem in times of expo-
nential publication growth (Minx et al 2017c, 2017a).
We search Web of Science and Scopus based on a trans-
parent and reproducible searchquery.Weacknowledge
that these two databases do not cover the entire
spectrum of relevant publications and include addi-
tional references known within the author team and
from requested suggestions made by corresponding
authors of all relevant NETs articles at our disposal.
We screen the abstracts of almost 6000 resulting publi-
cations and hand-select about 2000 dedicated NETs
publications based on a documented set of exclu-
sions criteria. In order to achieve a high level of
reproducibility, we always worked in teams in order
to ensure high-levels of agreement across individ-
ual team members. Yet, despite our best efforts, we
acknowledge potential limits in our documentation.

A way of assessing our success in covering the
literature is to compare our results with existing assess-
ments of NETs as undertaken by intergovernmental
and international organizations such as the IPCC
(Clarke et al 2014, Ciais et al 2013, IPCC 2011),
by scientific academies (National Research Council
2015, Shepherd et al 2009), NGOs (Friends of the
Earth 2011), government funded projects (Rickels
et al 2011) as well as individual or groups of schol-
ars (Fuss et al 2016, Smith et al 2016, Vaughan and
Lenton 2011, McLaren 2012, McGlashan et al 2012,
Lenton 2010, 2014, Caldecott et al 2015). We show
that these assessments differ considerably in their
coverage of the literature and also in their assess-
ments of costs, potential and side-effects of individual
NETs. Our results cover the entire range of esti-
mates across all of these assessments (tables 2 and
3). We argue that expert judgements are a crucial
component of assessment processes, but highlight
the importance of transparently locating those within
the wider literature and an assessment of uncer-
tainty, wherever possible (Kowarsch et al 2017, 2016,
Mach and Field 2017). As it is impossible to distin-
guish between publication bias and expert judgement
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retrospectively, we highlight the importance of estab-
lishing systematic review practices and the provision
of transparent expert judgement during the assessment
process.

Our assessment is systematic in search and selec-
tion of the literature as well as recording of the available
quantitative evidence of global costs and potentials of
individual NETs. We show the resulting ranges in a
sequence of figures (Fuss et al 2018), but our assess-
ment of the sources of variation remains qualitative, as
in traditional literature reviews without a more formal
methodological framework. In fact, it would be very
interesting to formally analyze thevariationacross stud-
ies inmeta-statistical models. This would be required to
turn our analysis into a full-fledged systematic review
(Higgins and Green 2008, Ringquist 2013, Petticrew
and Roberts 2008).

There are multiple reasons why we did not attempt
this here: first, this would have only been possible for
individual NETs as only a few global estimates are avail-
able for several NETs under consideration. Second, the
necessary data for a meaningful analysis of the drivers
behind variation is often not provided in manuscripts
as many variables of interest would directly relate to
specific design aspects and parametrizations of mod-
els, which are usually not reported. Third, due to the
resource intensity of the project, it would have been
beyond the capacity of the team here to provide any
further analysis. In fact, in the case of IAMs, NET
deployment levels are determined by the emerging
dynamics of the entire system, and therefore dedicated
multi-year model comparison projects are required to
disentangle variations. We therefore leave a formal sys-
tematic review to future research. Yet, the resources
created by this research project provide an adequate
starting point.

Our assessment points towards a series of knowl-
edge gaps and future research avenues. The main ones
are summarized in table 4. Here we only highlight a
few. First, there is an urgent need to understand how
cost developments and system understanding leads to
different conclusions on required future NET deploy-
ment, which is crucial for informing policy debates.
Initial work by Blanford (2013), for example, suggests
that a disregard of near-term impacts in pure cost-
effectiveness models leads to typical (Hotelling) carbon
price trajectories that favor the omission of near-
term emission reductions at the expense of large-scale
deployment of NETs in the long-term. In a cost-benefit
setting a more linear and flatter trajectory emerges
(Golosov et al 2014) that suggest an optimal mitigation
pathway with substantially less NETs deployment.

Second, our analysis highlights that even moder-
ate NET targets in 2050 require immediate action.
However, there is hardly any literature on short-term
policies to foster NETs. There is obviously an important
research and development component. In addition,
research should attempt the identification of strategic
niche markets, e.g. in collaboration with management

schools. At the same time deployment pathways should
be designed such that harmful path dependencies
remain precluded.

Third, there is a lack of discussion on what might
be termed the ‘political economy and public finance’
of negative emissions. On the one hand, for almost
all NETs there is a requirement to better understand
the barriers to implementation. Some of them might
be institutional in nature and others may be related
to distributional aspects associated with NETs deploy-
ment. Understanding who wins and who loses from
large-scale deployments of NETs is key for designing
policies that are more likely to succeed. On the other
hand, both 1.5 ◦C and many 2 ◦C scenarios show sus-
tained levels of global net negative emissions during
the second half of the 21st century with very high
annual deployments at the end when the tempera-
ture limit is met. There is no sound understanding
of the challenges of financing such a net removal and
what policy instruments would be most suitable for
this purpose. Moreover, most of the available path-
ways may not be optimal as they could generate large
stranded assets, as most of the NETs fleet would need
to be decommissioned once no further removal is
desired by society.

Fourth, since any upscaling of NETs implies great
social changes, along with changes to the global econ-
omy, further research is always required to explore the
broader ethical implications of NETs in the context
of global justice and sustainable development. While
there is currently very little ethical analysis of NETs,
there is scope for future work to reflect on the climate
futures produced by recent modelling, which imply
very different ethical costs, risks and benefits.

Yet, one of the major findings of our assessment is
that the major bottleneck for standing any chance of
realizing even comparatively modest NETs trajectories
is through upscaling and technology diffusion, not only
by mid-century, but in the short- and mid-term. Due
to the time lags involved in such processes there is a
disconnect between requirements identified in the sce-
nario literature and the state of development in the real
world. This gives rise to a real urgency for NETs devel-
opment that is largely under-appreciated in science and
policy.

The deep uncertainties and scale-dependent risks
associated with NETs cannot be easily resolved and
exploratory scenarios are a necessary, but insufficient
basis to design policy and deployment strategies. Many
known unknowns remain, including risks, but possi-
bly also opportunities. Climate policy needs to focus
on limiting the dependence on NETs through aggres-
sive mitigation. Yet, to the extent that reaching the
international climate goals increasingly depends on the
deployment of these potentially risky and uncertain
technologies, policymakers need to change course and
flank climate policies with adaptive and evolutionary
strategies in research, development and deployment of
NETs that focus on rapid learning.
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Table 4. Overview of key research avenues for NETs from the entire assessment.

Option Research avenue

Assessment ∙ Formal meta-analysis of costs and potentials from individual NETs and use of robust quantifications for

parametrization of IAMs

∙ Aggregation of local into global estimates for many land-based NETs

∙ Assessing relevant trade-offs between NETs in an interactive stakeholder-based process

∙ Further clarification of the major geophysical research gaps and integration with research on human response

options

∙ Systematic review on the prospects of carbon capture and utilization technologies

Cross-sectoral
discussions

∙ Political economy, public finance and policy instrument choice of NETs

∙ Governance of vulnerable and potentially impermanent carbon sinks

Mitigation
scenarios

∙ Drivers of NETs deployments in IAMs: model design and parametrization

∙ Need for integrated portfolios of NETs in IAMs; evaluation of interactions with other mitigation options;

∙ Better understanding of geophysical constraints of negative emissions and implementation in IAMs

∙ Analysis of NETs deployment dynamics in a risk management framework (decision under uncertainty)

∙ Adverse side-effects of NETs for non-climate sustainable development goals.

∙ The importance of socio-economic context for NETs dependence and deployment, and therefore also the role of

non-climate policies for transitioning between future socioeconomic contexts

Ethics ∙ Co-design and evaluation of scenario evidence on NETs

∙ Critical reflection upon ethical and political aspects of climate futures involving NETs

∙ Clarify whether and how ethical arguments apply to specific NETs and how they compare to those raised in

discussions on SRM

∙ Better grounding ethical arguments in available quantitative evidence

Innovation and
upscaling

∙ Shift frame of research agenda from ‘deployment’ to ‘adoption’

∙ Understand incentives potential adopters face

∙ Funding mechanisms for high impact demonstration projects for each NET

∙ Identify niche markets to enable early adoption

∙ Reconcile need for long term adoption goals with urgency of near-term progress in innovation and upscaling

Afforestation and
reforestation

∙ Understand balance of biophysical effects of different species composition for impacts of afforestation (e.g. albedo

change, respiration)

∙ Comprehensive assessment of impacts and reforestation on biodiversity

∙ Systematic review of regional costs and potentials, accounting for climate feedbacks and positive side-effects

∙ Review of institutional mechanisms to foster AR projects, in terms of effectiveness, permanence, and

reproducibility

Enhanced
weathering

∙ Field experiments that evaluate the full impact on biogeochemical cycles, and biomass and carbon stocks in soils

and plants.

∙ Quantification of the geogenic nutrient release effect on biomass increase under limitation conditions and the

change in soil properties like hydrology, cation exchange capacity, or plant root-mineral surface interactions due to

the fresh rock products to enable case management plans for optimizing CO2 sequestration.

∙ Databases for possible application scenarios for combinations of rock products, soil conditions, climate and

targeted plant systems.

Soil carbon
sequestration

∙ Economic costs (and benefits) of real world deployment of SCS

∙ Quantification of environmental, economic and social externalities associated with deployment of SCS

∙ Better quantifying saturation timescales and reversibility risks

∙ Understanding the barriers to implementation of SCS and how these can be overcome

BECCS ∙ Improved mapping of available land, especially marginal and degraded land (need for harmonized definitions).

∙ Geographically explicit regional studies on potentials (and matching these bottom-up potentials with the global,

top-down ones)

DAC ∙ Fine-grained, transparent, and complete (involving the complete DAC processing and storage) costing studies

∙ Comprehensive estimation of environmental side effects (e.g. due to chemical usage at large scales), e.g. with

life-cycle analysis methods

∙ Innovation pathways via niche markets

Biochar ∙ Economic costs (and benefits) of real world deployment of biochar

∙ Quantification of environmental, economic and social externalities associated with deployment of biochar,

including land to provide feedstock

∙ Better quantifying saturation timescales and reversibility risks

∙ Understanding the barriers to implementation of biochar and how these can be overcome
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To accelerate learning, the various NET options
could be subjected to a portfolio approach. The
approach is especially attractive as the current explo-
ration of NET options suggests that each occupies
different corners in the cost-risk-potential space. For
example, BECCS has relatively high potential and
medium costs, but is associated with high land use
demand, water requirements and ensuing biophysi-
cal risks. DAC is deemed to be much more expensive
but is less constrained by land use related risks. NETs
may also change their cost-risk profile with scale of
deployment and location. For example, afforestation
in some locations might be a low cost, low risk option,
but at higher scales could require high fertilizer and
water input while competing with other land uses.
Much of the literature also points to a lower effec-
tiveness of afforestation in the North due to offsetting
temperature effects from a changed albedo. Poten-
tials, costs and risks of individual NET options may
also be cross-fertilized by learning in related areas as
time goes by. Institutional innovations and capacity
building in regions with major gaps between biophysi-
cally feasible and realized yields such as in Sub-Saharan
Africa, Ukraine or South-West Russia may contribute
to closing the existing yield gap and by this take
away pressure from land and enhance the prospects
for land-intensive NET options such as BECCS or
afforestation.

Dealing with uncertain and potentially risky NETs
has important consequences for climate policy: from a
risk management perspective there is a clear imperative
to minimize the dependence on NETs and therefore
to raise the level of short-term ambition as much as
possible. A risk management perspective highlights the
need for rapid learning in NETs and the importance
of finding reasonable short-term entry points to
ambitious climate policy at the same time. Limiting
dependence on NETs and expanding knowledge and
capabilities around them cannot be a contradiction in
the real world.

Acknowledgments

JM and JHi conducted the work for this article in the
frame of the project under the project ‘Pathways and
Entry Points to limit global warming to 1.5 ◦C’ funded
by theGermanFederalMinistryofResearchandEduca-
tion (Grant reference: 01LS1610B). SF has conducted
the work for this article in the frame of the project
‘Comparative assessment and region-specific optimi-
sation of GGR’ under grant reference NE/P019900/1
funded by the Natural Environment Research Coun-
cil of the UK and led by Imperial College. This work
furthermore has benefitted from her activities in the
Global Carbon Project (Managing Global Negative
EmissionTechnologies). The input of PS contributes to
the UKERC-funded Assess-BECCS (UKERC/FFR2/3)
project and the NERC-funded Soils-R-GGREAT

(NE/P019455/1) project. TA, JHa, and WOG were
funded by the German Research Foundation’s priority
program DFG SPP 1689 on ‘Climate Engineering—
Risks, Challenges and Opportunities?’ and specifically
the CEMICS2 project as well as Cluster of Excel-
lence CLISAP2 (DFG EXEC 177). GL and JLVV
have contributed to this manuscript under the Project
‘Strategic Scenario Analysis’ funded by the Ger-
man Ministry of Research and Education (Grant
reference: 03EK3046B).JR acknowledges the support
of the Oxford Martin School Visiting Fellowship
Programme.

ORCID iDs

Jan C Minx https://orcid.org/0000-0002-2862-
0178
William F Lamb https://orcid.org/0000-0003-3273-
7878
Sabine Fuss https://orcid.org/0000-0002-8681-9839
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