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Phase coherence between precipitation in South
America and Rossby waves
Maximilian Gelbrecht1,2*, Niklas Boers1,3, Jürgen Kurths1,2,4

The dominant mode of intraseasonal precipitation variability during the South American monsoon is the so-called
precipitation dipole between the South Atlantic convergence zone (SACZ) and southeastern South America (SESA). It
affects highly populated areas that are of substantial importance for the regional food supplies. Previous studies
using principal components analysis or complex networks were able to describe and characterize this variability
pattern, but crucial questions regarding the responsible physical mechanism remain open. Here, we use phase syn-
chronization techniques to study the relation between precipitation in the SACZ and SESA on the one hand and
southern hemisphere Rossby wave trains on the other hand. In combination with a conceptual model, this approach
demonstrates that the dipolar precipitation pattern is caused by the southern hemisphere Rossby waves. Our results
thus show that Rossby waves are the main driver of the monsoon season variability in South America, a finding that
has important implications for synoptic-scale weather forecasts.
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INTRODUCTION
The South American monsoon system (SAMS) during the austral
summer season is established by a pronounced low-level moisture
inflow from the tropical Atlantic Ocean toward the South American
tropics. After crossing the Amazon basin, this easterly flow is blocked
by the Andes mountain range and subsequently channeled southward,
providing the moisture for monsoonal precipitation in the subtropics
(1–3). There exists considerable variability in the direction of this sub-
sequent moisture flow to the subtropics, and related to this, precipita-
tion in South America during the monsoon season exhibits substantial
intraseasonal variability. The most pronounced variability mode is
typically described as a precipitation dipole (3–6), with the strongest
amplitudes of this alternating pattern found between Southeastern
Brazil (SEBRA) and southeastern South America (SESA) (see Fig. 1).
These two regions are also the northernmost and southernmost exit re-
gions of the low-level flow, respectively. SEBRA is usually part of the
climatological position of the South Atlantic convergence zone (SACZ)
(6–8), one of the key characteristics of the SAMS. These two regions that
are most affected by this variability pattern are among the most densely
populated and agriculturally important areas in South America.

Previous research suggested that this mode of precipitation variabil-
ity is related to the Madden-Julian Oscillation (MJO) and the Bolivian
high (1, 3, 6, 9). In addition, evidence has also been reported that the
dipole is related to Rossby wave trains emanating from the southern
Pacific region and their relative phasing with the MJO (6, 10, 11). Here,
we focus on this relation to the Rossby wave trains, which we represent
by the geopotential height (GPH) at 250 hPa in southern South America.

The aim of this study is to have a detailed analysis of the rela-
tionship between the eastward propagating Rossby waves and the
dominant modes of precipitation variability in South America during
the monsoon season. Previous studies mainly used principal compo-
nents analysis (PCA) and composite analyses to analyze the character-
istics of the precipitation variability in South America (4, 5, 10). More
recently, complex network approaches were able to complement these
approaches (12). However, aside from studying composite anomalies
during or before precipitation events or the network topology induced
by the synchronization of these events, these methods are not suitable
to further investigate the detailed atmospheric mechanisms behind the
dipolar precipitation variability and its relationship to the Rossby wave
trains. In particular, a direct statistical test of this relationship based on
suitably identified time series has, to our knowledge, not been per-
formed so far.

The influence of Rossby wave trains on extreme events in other re-
gions has been studiedwithmethod such as thewave activity flux before
[e.g., (13, 14)], but here, we intend to shed further light on the mecha-
nism behind the dipole pattern by directly investigating its dynamical
properties in terms of its statistical relationship with the relevant atmo-
spheric dynamics. This will be done, on the one hand, by using a
conceptual model that explains the observed structure of empirical
orthogonal functions (EOFs) and, on the other hand, by showing that
the reconstructed phases of the relevant observables—i.e., precipitation
in the dipole regions and upper-level GPH in southern South America
representing the Rossby wave train—are coherent with each other. The
latter approach relies on concepts that have first been explored to study
dependencies of chaotic oscillators in nonlinear dynamical systems
theory: If two such systems are brought into contact by aweak coupling,
then first, the phases of their respective variables adjust and synchronize
(15). This frameworkhas been applied successfully to climate time series
before, investigating the coherence between El Niño–Southern Oscilla-
tion (ENSO) and the Indian monsoon (16). Using the methodological
concept of phase coherence will allow us, particularly, to establish sta-
tistical significance of the relationship between the dipolar precipitation
pattern and the Rossby wave train.

Since we investigate an intraseasonal phenomenon with these
methods,we first remove the annual cycle andunwantedhigh-frequency
oscillations and noise by preprocessing the data using singular spectrum
analysis (SSA) (17, 18). Alternative methods to accomplish the spectral
decomposition and filtering are also discussed. All methods used to de-
rive the results presented in the next section are explained in detail in
Materials and Methods further below.
RESULTS
Conceptual model
Typically, dominant modes of variability are identified and visualized
on the basis of EOFs, which are obtained from a PCA of the covariance
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matrix (19). This approach, based on outgoing long-wave radiation
data, also led to the first description of the SouthAmerican precipitation
dipole (4). The dipole pattern is recognizable in the two leading EOFs of
the precipitation anomalies (top row of Fig. 2), which emphasizes the
importance of this variability mode for South American climate.

It is possible to reproduce the spatial patterns of leading EOFs of
the precipitation data in South America with a simple conceptual
model, which corroborates the hypothesis that the precipitation dipole
is caused by a propagating wave: The model accomplishes to explain
the structure of the two leading EOFs of the precipitation anomalies
by conceptually representing the Rossby wave train as a traveling wave
of pressure anomalies h. In the conceptual model, this wave triggers
precipitation p at the position where the wave’s gradient attains its
maximum, in accordance with the basic mechanism of frontal systems

□hðx; tÞ ¼ 0 ð1Þ

with the one-dimensional d’Alembertian □ ¼ 1
c
∂2
∂t2 � ∂2

∂x2 and p as its
spatial derivative

pðx; tÞ ¼ ∂
∂x

hðx; tÞ ð2Þ
Gelbrecht et al., Sci. Adv. 2018;4 : eaau3191 19 December 2018
which solves to a traveling wave along a propagation direction that is
defined by an angle parameter q. In addition, a Gaussian damping
along and perpendicular to the propagation is added to localize the
wave and roughly account for the orography. The parameters of the
model equation (see Materials and Methods and the Supplementary
Materials below for full details) are fitted via least squares to minimize
the differences between the observation- and model-derived EOFs.
Figure 2 shows the two leading EOFs of the observed precipitation
anomaly data and the conceptual model. The qualitative structure
of the EOFs is reproduced well by the conceptual model. The fitted
value for the wavelength of the model wave is roughly 4000 km, while
the alternating Rossby wave train pattern in Fig. 1 also exhibits a
wavelength of about 4000 to 6000 km, measured as the distance be-
tween subsequent maxima. While small deviations from the EOFs of
the precipitation data that could be caused by the orography or other
external effects are to be expected with such a simple conceptual
model, it can be inferred that the type of alternating EOF pattern that
is present for the South American precipitation dipole can be caused
by a propagating wave, such as a Rossby wave train, and the resulting
pressure anomalies.

This relationship becomes even clearer when, additionally, a
complex EOF (CEOF) analysis is performed. CEOF analysis (see
Materials and Methods for details) relies on performing a PCA on
the time series augmented by its Hilbert transform as the imaginary
Fig. 1. Precipitation regimes in austral summer in South America. Geopotential height (GPH) at 250 hPa and precipitation anomalies [with respect to the NDJF
(November to February) climatology] for times when (A) and (C) precipitation in SESA is above its 90% percentile and (B) and (D) when precipitation in SEBRA is above
its 90% percentile. For the calculation of the percentiles, only time steps with precipitation larger than 0.01 mm/day are considered. The reference regions SESA and
SEBRA serve as a proxy for the South American precipitation dipole in this study, and the GPH in southern South America serves as a proxy for Rossby wave activity. The
size and position of the GPH reference region are chosen, such that it roughly covers one-half of the spatial wavelength.
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part of the therefore complex time series, referred to as the analytical
signal. The Hilbert transform is given by the convolution of the time
series with 1/(pt) and induces a 90° phase shift of every Fourier
component of the time series. This approach allows us to identify
and analyze oscillatory behavior, as it adds information about a “future”
state of the oscillation to the time series. Therefore, CEOFs allow us to
assess oscillatory patterns and particularly patterns due to propagating
waves, better than standard EOFs [e.g., (20, 21)]. Figure 3 shows the
spatial phase q0(l, ϕ) and amplitude S0(l, ϕ) of the first CEOF—i.e.,
the dominant oscillatory pattern—in the top panel. For a propagating
wave, one would expect a monotonously, constantly growing spatial
phase along the propagation direction and constant values on lines
perpendicular to this direction. This is exactly what the conceptual
model exhibits (see fig. S2), and the data closely resample these as well.
The spatial phase shows the propagation of a wave along the eastern
coast of South America in a clear pattern extending from Argentina to
the eastern tip of Brazil, with its spatial amplitude maxima on the con-
tinent close to the SESA and SEBRA reference regions. The temporal
phase (Fig. 3C) exhibits a distinct oscillatory pattern as well: a seesaw
pattern with roughly similar periods indicating the temporal dynamics
of the dominant oscillation pattern. The CEOF thus also shows a
southwest to northeast propagating oscillation pattern with its maxi-
Gelbrecht et al., Sci. Adv. 2018;4 : eaau3191 19 December 2018
ma close to SESA and SEBRA and temporal periods similar to those of
Rossby wave trains.

Phase coherence
Singular spectrum analysis
Complementarily to the conceptual approach, we perform a data-driven
analysis of the dynamical properties of the precipitation dipole by
investigating the phases of the three observables and their dependen-
cies. We use SSA to remove the annual cycle and high-frequency
noise from the time series (17, 18). SSA can be briefly summarized
as performing a PCA on the time-delay embedded time series.
More details can be found in Materials and Methods. We note that
Paegle et al. (5) had also used SSA to study specific frequency bands
of variability related to the dipole pattern under study. According to the
intraseasonal frequency range that we are interested in, the SSA is
carried out with a delay t = 60 days. The eigenspectrum of all investi-
gated time series is shown in fig. S3. The SSAdecomposes the signal into
60·4 components ordered by the magnitude of their eigenvalues, as
there are four data points per day in the dataset. We consider three
different approaches to identify the right components for our analysis
and ultimately combined our knowledge from all three of them.

First of all, generating surrogates can provide us with significance
thresholds for the eigenvalues; this is referred to as Monte Carlo SSA
(MCSSA) (22). Here, we use 1000 shuffle surrogates. The eigenvalues
of the first 25 components, and those of the corresponding surrogates,
are shown in fig. S3. If the eigenvalue of the kth component is lower
than that of the kth shuffle MCSSA surrogate, then the corresponding
reconstructed components are regarded as noise. This yields similar
results to the visual check of the cumulative eigenvalue series ap-
proaching a horizontal line (23). In our case, the cumulative explained
variance of the eigenvalues, which is directly proportional to the
cumulative eigenvalue series itself, is larger than 95% for all three ob-
servables at this point. As the eigenvalue spectrum differs for each of
the observables, the MCSSA significance test does so as well. The
break point is at k = 19 for SESA, k = 16 for SEBRA, and k = 25
for GPH.

Another way of approaching the problem to select the right com-
ponents is to directly choose those component ranges that induce the
smallest phase differences (the phase reconstruction is described in the
next section). As we have three sets of components to choose from,
this is a highly nontrivial optimization problem. We used a genetic
algorithm (24) whose individuals are lists of the starts and ends of
the component ranges of the three time series. The fitness used in this
algorithm is the phase difference at the end of the series, modified with
extra penalties to favor larger component ranges. This results in the
ranges 4 to 15 for SEBRA, 3 to 13 for SESA, and 2 to 14 for GPH.

Last, it should be assured that the components that we choose
actually exhibit oscillations within the intraseasonal frequency band
that we are interested in. For this purpose, we calculate the dominant
frequencies of all components. The first two reconstructed compo-
nents of all three observables contain the annual cycle, and the third
components exhibit dominant frequencies between 1/(40 days) and
1/(50 days). SESA’s and GPH’s fourth components are within this
range as well. Reconstructed components with k > 12 exhibit frequen-
cies fdom > 1/(10 days), and components with k > 15 exhibit frequen-
cies fdom > 1/(8 days). Thus, the ranges suggested by the optimization
routine described in the previous paragraph include only significant
reconstructed components, and all reconstructed components with
intraseasonal dominant frequencies except for those with frequencies
Fig. 2. Data and model EOF analysis. (A and B) First and second EOFs of the
precipitation data. NDJF precipitation anomalies were used to calculate these EOFs,
which account for 9% of the total precipitation variability. A plot of the eigenvalue
spectrumcanbe found in fig. S1. (C andD) First and second EOFs of the data generated
by the conceptual model introduced in this article.
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around 1/(40 days). The latter frequency range is not typically asso-
ciated with Rossby wave trains. However, we also tested to include
these components and found qualitatively similar results, indicating
that this approach is robust.

All further investigations are carried out with time series attained
by summing the components found by the optimization. Since the
data are linearly detrended before the SSA, and the annual cycle
was removed via SSA, the time series oscillate around zero. To validate
that the SSA-filtered time series still reflect the precipitation dipole, we
check whether the extreme events in the two dipole reference regions
(defined as the time points with precipitation above the 90th
percentile of the unprocessed data) still exhibit positive values in the
processed time series. This is the case for 95% of the SEBRA events
and 97% of the SESA events. Since an extreme event-based definition
was able to capture the characteristics of the precipitation dipole in a
previous study (12), we are convinced that the SSA-filtered time series,
which preserve these events and consist of most of the reconstructed
components with dominant frequencies in the intraseasonal range,
still represent the precipitation dipole.

The results on the coherence of phases presented below are
robust for different approaches to preprocess the data: Alternatively
to SSA, it would also be possible to process the data with a regular
bandpass filter. However, one needs to carefully select a filter with
constant phase response in the frequency range we are interested
Gelbrecht et al., Sci. Adv. 2018;4 : eaau3191 19 December 2018
in, and one also needs a priori knowledge about the cutoff frequencies.
We used a Lanczos 10- to 50-day bandpass filter with a high number
of weights (25) and found qualitatively similar results: Phase differ-
ences at the end of the time series are slightly larger than for the op-
timization approach described above but still significantly smaller than
those of the surrogates. Corresponding results can be found in figs. S5
to S8. The phase difference histograms shown below retain their form
very closely. We additionally tested ensemble empirical mode de-
composition (EEMD) (26) as an alternative, and similar results can
be obtained; however, identifying the right intrinsic mode functions
of the EEMD is more challenging.
Phase reconstruction
From the nonlinear dynamical systems theory, we know that the
phases of two coupled oscillatory systems will adjust and synchronize
[e.g., (15)]. In the following, we show that the precipitation dipole and
the Rossby wave train exhibit a significant phase coherence. The
phases of the SSA-processed time series are reconstructed by embed-
ding them with a Hilbert transform (see Materials and Methods). The
seasonality of the data was taken into account by performing an end
point matching between subsequent seasons. Figure 4 shows an exam-
ple of the embedding, and that almost all oscillations revolve around
the origin. This demonstrates that the phase can be defined meaning-
fully even across seasons, and the relation of the phase time series of
the two precipitation proxies and the Rossby wave train proxy can be
compared to each other.
Phase relation
One way to study the phase relation of the precipitation dipole to
the Rossby waves is to directly investigate the temporal evolution of
the phase differences

DfðtÞ ¼ fiðtÞ � fjðtÞ ð3Þ

with the indices i and j representing either of SEBRA, SESA, and
GPH. If i oscillates faster (slower) than j, then the phase differences
are positive (negative). To test the statistical significance of these phase
differences, we calculated 250 autoregressive surrogates of order 2
(AR2) for each of the time series. AR2 surrogates are chosen because
they can oscillate with a preferred frequency [e.g., (27)]. The surro-
gates were generated on the basis of the Yule-Walker estimates of
the AR2 coefficients of the unprocessed data and then processed in
the same way as the actual data, including the SSA filtering. The
kth surrogate difference is calculated as

DfðsÞkk ðtÞ ¼ 1
2

fiðtÞ � fðsÞkj ðtÞ
� �

þ fðsÞki ðtÞ � fjðtÞ
� �� �

ð4Þ

where the superscript (s) denotes a phase generated from the surro-
gates. Hence, we test whether the phase differences induced by the two
observables are small against the difference induced by one of the ob-
servables and a surrogate of the other one. Similar schemes have been
used to test for the statistical significance of phase coherences in pre-
vious studies [e.g., (28)]. The top panel of Fig. 5 shows the 5 and 95%
percentiles of the 250 surrogate phase differences. Similar results can
be obtained with AR1 surrogates as well (fig. S4).

By examining Fig. 5, we see that the phase differences of the
data are well below the surrogates and very close to zero: The phase
differences remain below 9 full periods, which is remarkable since
the potential maximum of Df is 350 periods, given by the number
Fig. 3. First CEOF of the NDJF precipitation anomalies. (A) Spatial phase q0(l, ϕ)
and (B) spatial amplitude S0(l, ϕ) of the first CEOF component. (C and D) Temporal
phase and temporal amplitude of the 2008/2009 season. Only one season is shown
to representatively show thequalitative behavior of thesemeasures. The other seasons
exhibit a similar behavior. (See Materials and Methods for a detailed account of CEOF
analysis.)
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of periods the time series goes through for the complete duration of
the studied interval. While it could be expected that the SEBRA-to-
SESA phase difference stays close to zero, the SESA-to-GPH and
SEBRA-to-GPH phases do not exhibit larger differences over the course
of the dataset. More pronounced (negative) excursions of the phase dif-
Gelbrecht et al., Sci. Adv. 2018;4 : eaau3191 19 December 2018
ferences are seen between 1985 and 1988 for SEBRA-to-GPH and
SESA-to-GPH differences, indicating that GPH oscillates faster than
the precipitation proxies during this time. The maximum absolute
phase difference between the start and the end of a season is about
3.5, occurring during this time interval, while the mean value over
all seasons is about 1.0. In addition, larger phase differences can be
observed between 2005 and 2007 for the SESA-to-SEBRA and SESA-
to-GPH differences, indicating a faster oscillation of the average pre-
cipitation in SESA. On average, however, the SESA-to-GPH and
SEBRA-to-GPH phase differences are typically negative, indicating
that the oscillations of the atmospheric waves are slightly faster
than those of the precipitation dipole.

The surrogates exhibit a spectrum similar to those of the most
climatic time series. However, by construction, their spectra still
slightly differ from those of the investigated time series themselves,
and one can see that these rather small differences lead to phase
differences that are far larger than those of the three proxy time
series in question to each other.

Another possibility to study the phase relation is to directly exam-
ine the distribution of the phase differences. For this purpose, phase
differences are mapped back into the interval [0,2p], and histograms
H(i, j) of all observable pairs i and j are computed (Fig. 6). Surrogates
with randomized phases [so-called iterative amplitude adjusted Fourier
transform (iAAFT) surrogates (29); see Materials and Materials for
more details], which preserve the spectrum of the original data, pro-
vide a comparison and significance test. If the phases of the observable
have no relation to each other, then the histograms show a uniform
distribution. A Kolmogorov-Smirnov (KS) test of the phase difference
distributions against those of the iAAFT shows that the observed dis-
tributions differ from the surrogate distributions at a significance level
of a < 0.0001 for all three observable pairs. While H(SESA, SEBRA)
and H(SESA, GPH) exhibit phase differences in the complete interval,
they both have a broad peak around p. H(SEBRA, GPH) displays less
pronounced, but still visible peaks around 0 and 2p, respectively.

As a measure of the spread of the distribution and thus of how
coherent the phases of the observables are, we perform a maximum
likelihood estimation (MLE) of a von Mises distribution to the data
(30). The von Mises distribution is an approximation to the circular
Fig. 4. Phase embedding. (A) Example of a processed observable (SEBRA), its derivative, and the Hilbert transform of the derivative for the 2002/2003 NDJF season.
(B) Example of the embedding of a processed observable (SEBRA) via Hilbert transform, for three consecutive seasons 2002/2003, 2003/2004, and 2004/2005.
Fig. 5. Phase difference time series. (A) The gray shaded area marks the 5 and
95% percentiles of phase difference time series from the 250 AR2 surrogates of
the time series computed with maximum likelihood estimates of the AR2 para-
meters. (B) Zoomed in view of (A).
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wrapped normal function that exhibits an easiermathematical form than
the latter. Its probability density function is fvm (x) = exp (kcos (x −
m))/(2pI0(k)) with the dispersion k and location m. I0 (k) denotes the
modified Bessel function of order zero. If the dispersion parameter k
of the von Mises distribution is zero, then the distribution is uniform,
and thus, the observables are incoherent. If k is large, the distribution
resembles a normal distribution with k−1 as its SD und m as its mean.
Thus, a k significantly different from 0 and those of the iAAFT surro-
gates hints a phase coherence between the observables: the larger k, the
clearer.We can fit the data for each season separately and investigate the
temporal evolution of the phase coherence with these time series ki,j(t)
(see Fig. 6D). While the more recent years since 2009 exhibit a strong
phase coherence for all observable pairs (large k), there are, especially
for kSEBRA,GPH, some seasons where the phase difference ismore spread
out. This occurred particularly in 1994/1995 and 1995/1996 and 2005/
2006, and 2006/2007. Except for these seasons,kSEBRA,GPHboasts higher
values. kSESA,GPH and kSESA,SEBRA exhibit a very similar behavior, apart
from some dips for kSESA,GPH in 2003/2004 and 2008/2009.
DISCUSSION
We have presented two complementary approaches to show how pre-
cipitation in South America, and particularly its dominant, dipolar var-
Gelbrecht et al., Sci. Adv. 2018;4 : eaau3191 19 December 2018
iability mode during the monsoon season, is coupled to the southern
hemisphere Rossby wave trains. This dipole is characterized by
alternating wet and dry conditions between SEBRA and SESA, two of
the most densely populated areas of South America.

We first showed that the spatial patterns of the two leading EOFs
of the precipitation anomalies in South America can be well repro-
duced by a conceptual model of a traveling atmospheric pressure
wave. In this conceptual model, precipitation is proportional to the
spatial derivative of the wave and is hence highest at the boundary
from high- to subsequent low-pressure cells in analogy with frontal
systems. Composites of GPH data for times of strong precipitation
in SESA and SEBRA, respectively, show concise atmospheric waves
originating from the southern Pacific Ocean, which exhibit opposite
phases for the two modes of the dipole. The CEOF analysis complements
this approach, and the propagation of a wave along the eastern South
American coast can be identified in its leading eigenmode. Together
with the successful reproduction of the spatial EOF patterns, this pro-
vides strong evidence that the leading variability mode is determined
by the Rossby wave activity.

To further corroborate this statement and, in particular, to quantify
the dependencies caused by the corresponding mechanism, we ana-
lyzed the phase coherence between three distinct time series: two rep-
resenting average precipitation in the two reference regions in SESA
Fig. 6. Phase difference histograms. (A to C) Histograms H(x, y) of phase difference of all reference time series. The empirical distributions of the observables are
significantly different from iAAFT surrogates at a significance level a < 0.0001 due to a KS test. (D) Temporal evolution of the dispersion parameter k of a MLE fitted von
Mises distribution to the phase differences for each season.
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and SEBRA, respectively, and one representing the upper-level GPH,
and hence Rossby wave activity, over southern South America. Specif-
ically, we embedded the SSA-processed observables with a Hilbert
transform and calculated the corresponding phase time series for each
of them.

The observed phase differences are small for the entire time period.
Given that a phenomenon at intraseasonal time scales is studied and
that each observable completes roughly 350 periods in the course of
the studied time span, this is a remarkable coherence. Of course, the
three investigated observables cannot be expected to be in perfect
phase synchronization for the entire span of the studied interval, given
that many different factors, such as orographic barriers and nonlinear
effects related to convection, potentially play a role.

The dominant moisture source of precipitation in subtropical
South America is the southward flow from the tropics related to the
South American low-level jet (3, 6, 31). The flow direction at the outlet
of this jet is determined by the pressure configuration between SESA
and SEBRA and, hence, by the alternation of low- and high-pressure
cells caused by the Rossby waves. If a low-pressure cell is located just
south of SESA, then this flow transports moisture along the isobars
toward SESA and correspondingly for SEBRA. The fact that the
GPH-derived Rossby wave time series tend to oscillate slightly faster
than the precipitation in SESA and SEBRA can be explained along
these lines: If the northward propagating pressure waves occasionally
fail to pick up the moisture flow from the tropics along the isobars,
then one would effectively obtain slightly faster oscillations in the driv-
ing pressure waves than in the responding precipitation waves.

In addition, positive feedbacks between moisture flow and convec-
tion related to the release of latent heat may lead to slight deviations
from a perfect phase coherence. Notably, the atmospheric waves pro-
pagating northward across the South American subtropics occasional-
ly become stationary, establishing prolonged episodes of an active
SACZ of the order of 5 days (6, 7, 32).

The histograms of the phase differences exhibit visible peaks that
are significantly different from those of phase-randomized surrogates.
To make a justified assertion about the phase coherence of the precip-
itation dipole and Rossby wave, we need both the fact that their phase
differences stay close to zero for the whole duration of the study pe-
riod and that their distributions exhibit distinguished peaks.

Since we included most of the intraseasonal SSA components in
our analysis, our results show that the interaction of the precipita-
tion dipole with the Rossby waves is one of the dominant factors of
intraseasonal precipitation variability in South America: Our results
indicate that the dipole-like pattern is not present because of some
direct interaction between the climatic subsystems in SESA and
SEBRA but is rather caused by the propagation of Rossby wave
trains from the southern Pacific Ocean, along the southern tip of
the South American continent, and then northward toward the sub-
tropical Atlantic Ocean. The identification of this causal mechanism,
which explains the dominant variability mode of monsoonal precip-
itation in South America, should help to improve the synoptic-scale
predictability of precipitation particularly in SESA and SEBRA,
which are the two regions that are most affected by this mode.
The presented framework also enables us to investigate the temporal
evolution of phase coherence at longer time scales and, hence, the
interannual variability of the South American precipitation dipole.
Seasons with larger phase difference should be investigated for de-
pendencies with other variabilities such as the ENSO or the MJO in
future work.
Gelbrecht et al., Sci. Adv. 2018;4 : eaau3191 19 December 2018
MATERIALS AND METHODS
Data
For this study, precipitation and GPH data at 250 hPa from NASA’s
Modern-Era Retrospective Analysis for Research and Applications,
version 2 (MERRA2) were used (33). The dataset covers the period
from 1980 to 2016 and consists of 6-hourly data on a 1/3° × 2/3° rec-
tangular grid. The precipitation data were smoothed using a moving
average with a window size of 4 days. The two reference regions for
the precipitation dipole were chosen in accordance with previous re-
search (12), and the mean of all grid cells within these boxes was used
as an index for the precipitation in SEBRA and SESA, respectively.
The reference region for inferring Rossby wave activity was chosen
over southern South America (see Fig. 1). The results we report below
are very robust to changes in position and size of this box; it is im-
portant, however, that the reference region is not much larger than
half of a typical wavelength of the wave train to still properly capture
its oscillating behavior. The mean of the GPH at 250 hPa of all grid
nodes within this reference thus serves as an index for the Rossby
wave train. Figure 1 (A and B) shows the reference regions and the
typical opposing configuration of the Rossby wave trains in the GPH
anomaly fields during extreme precipitation (above the 90th per-
centile) in SEBRA and SESA. The precipitation itself is shown in
Fig. 1 (C and D). The South American precipitation dipole is a phe-
nomenon restricted to the austral summer from NDJF. Because some
of the methods used here are easier to handle with data that have a
regular time axis without jumps, all-year data were used at first. The
crucial parts of the analysis are, however, limited to the NDJF data.

Conceptual model
A key hypothesis we intend to test in this study is that the varia-
bility mode corresponding to the South American precipitation di-
pole could be explained by northward propagating waves triggered
by the southern hemisphere Rossby wave train. For this purpose,
we first introduced the following conceptual model: Denoting the
dimensionless GPH along an arbitrary direction x as h and the pre-
cipitation along the direction as p, we chose to model h with a wave
equation

□hðx; tÞ ¼ 0 ð5Þ

with the one-dimensional d’Alembertian □ ¼ 1
c
∂2
∂t2 � ∂2

∂x2 and p as its
spatial derivative

pðx; tÞ ¼ ∂
∂x

hðx; tÞ ð6Þ

since precipitation, on a large scale, typically occurs at the fronts be-
tween highs and subsequent lows. This equation solves to a traveling
wave for p(x, t). By embedding this traveling wave in the same grid as
the data and adding Gaussian damping along and perpendicular to
the propagation direction, we generated the model data PM(l, ϕ, t).
Its parameters are the mean values of the Gaussian damping l0, ϕ0,
their SDs sl, sϕ, the wavelength L, and the direction q of the wave (see
the Supplementary Materials for the full equations). The model data
PM(l, ϕ, t) could be used to calculate the first two EOFs of the con-
ceptual model. These EOFs were then fitted, by optimizing the model
parameters via least squares, to the EOFs of the precipitation data (see
Fig. 2). While the parameters referring to the Gaussian damping and
the direction q roughly account for the location and orography, the
7 of 9
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wavelength or wave number is an important parameter of the
modeled wave.

The CEOF analysis extends the standard EOF analysis by applying
the PCA to the complexified time series, i.e., the analytical signal [e.g.,
(21)]. The analytical signal ~xðtÞ is usually computed by augmenting
the time series with its Hilbert transform as its imaginary part, so that
~xðtÞ ¼ xðtÞ þ iHðxðtÞÞ. The Hilbert transformHð f ðxÞÞ is defined as

Hð f ðxÞÞ ¼ 1
p
P:V:∫þ∞

�∞
f ðtÞ
x � t

dt ð7Þ

with P.V. denoting the Cauchy principal value of the integral. It in-
duces a 90° phase shift to every frequency component of the time se-
ries. Figure 4 shows an example of a Hilbert transform and the signal
it was calculated from. This two-dimensional embedding of the time
series enabled us to analyze oscillations in time series withmethods that
rely on phase information, as we have used here throughout the article.
Hence, the CEOF method is especially well suited for identifying oscil-
latory patterns and propagating waves (20). We followed here the no-
tation of Barnett (20): The eigenvectors Bn(x) of the covariance matrix
of the spatiotemporal complexified data ~Xðx; tÞ and its principal com-
ponentsAnðtÞ ¼ ∑x ~Xðx; tÞB*

nðxÞ are all complex valued and can there-
fore not be analyzed directly, as it is the case for the standard EOF
analysis. Thus, we investigated the following three measures, which
separate the temporal and spatial domain, as well as the phase and am-
plitude information:

1) Spatial phase function qnðxÞ ¼ arctan ℑfBnðxÞg
ℜfBnðxÞg

� �

2) Spatial amplitude function SnðxÞ ¼ ðBnðxÞB*
nðxÞÞ1=2

3) Temporal phase function fnðtÞ ¼ arctan ℑfAnðtÞg
ℜfAnðtÞg

� �

More details on CEOF analysis are given in (20).

Singular spectrum analysis
The precipitation dipole is an intraseasonal phenomenon. To remove
the annual cycle as well as high-frequency oscillations and noise, we ap-
plied SSA (17, 18). SSA has been successfully applied to investigate in-
traseasonal climate phenomena before [e.g., (34). Similar to PCA, but
focusing on the temporal rather than the spatial domain, SSA solves an
eigenvalue problem and decomposes a single time series into several
components that can be ordered by the amount of variance of the time
series they account for. To accomplish this, first, the time series x(t),
which here denotes either of the three observables, was delay embedded
into a t ×NmatrixXwith the kth row given by x(t + k), the time series
delayed by k. Thereafter, the eigenvalue problem of the covariance
matrix of X was solved. It can be shown that the magnitude of the
eigenvalues is directly proportional to the amount of variance that is
accounted for by the respective eigenvectors. With these eigenvectors,
we could also reconstruct different parts of the original time series,
corresponding to the eigenvalues one is interested in. This allows, e.g., to
filter out certain variabilitymodes or frequency bands from a given time
series. Subsequently, we investigated these reconstructed SSA com-
ponents for each of the three time series under study. The reconstructed
components have been shown to capture the phase of the time series
well (35), which is a necessary condition for our investigations. This left
us with the task of selecting the right components for our investigation.

Phase reconstruction
Similar to two chaotic oscillators that begin to synchronize once
brought into contact with each other [e.g., (15)], we also expected oscil-
Gelbrecht et al., Sci. Adv. 2018;4 : eaau3191 19 December 2018
latory climatic subsystems that are coupled to each other to exhibit this
behavior. To infer the phase coherence between two observables, we
first needed a two-dimensional embedding of each time series. A com-
mon approach for this purpose is to calculate the analytic signal of the
time series via a Hilbert transform (15), which is defined in Eq. 7. To
define a meaningful phase of the time series, this signal needs to exhibit
a well-centered oscillation around a common reference point. Instead of
the time series itself, Osipov et al. (36) argue that it is also possible to
define a meaningful phase by using the derivative and its Hilbert
transform. This results in a more concise definition of the phase, since
the derivative is better centered than the time series itself, and slow
variations are eliminated (16). The derivatives were calculated with
the standard fourth-order finite differences formulas. Thus, denoting
x(t) as any of the three time series, we defined its phase as

fðtÞ ¼ arctan
Hf _xgðtÞ

_xðtÞ ð8Þ

Figure 4 shows an example of a time series and its embedding. We
saw that the definition of the phase in the above described way is justi-
fied, since most oscillations revolve around the origin. After each full
period, 2p was added to unwrap the phase. As we were investigating
a seasonal phenomenon, we were interested only in phase coherence
during the NDJF season. Thus, we only considered NDJF data and per-
formed an end point matching to concatenate the data of different
seasons. The end point matching minimizes the Euclidean distance
between the joint vector of all three time series, their derivatives and
Hilbert transforms, as well as an additional penalty that is linear in
time, and favors end points late in the season and start points early in
the season.

Aside from investigating and comparing the phase difference time
series, we also investigated the histogram of the phases of all observa-
bles (see Fig. 6). To assess the significance of these phase histograms,
we used iAAFT surrogates. These surrogates are refined Fourier
transform surrogates. Fourier transform surrogates were computed
by multiplying the Fourier-transformed time series with a random
phase vector and transforming it back into the original space. There-
fore, the surrogates exhibit the same spectrum as the original time se-
ries but have randomized phases. For a detailed account of these
surrogates, see (29).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/12/eaau3191/DC1
Fig. S1. Eigenvalue spectrum of the PCA performed with precipitation anomalies from MERRA2
shown in Fig. 2.
Fig. S2. Spatial phase of the first CEOF of the conceptual model.
Fig. S3. SSA of all three investigated observables.
Fig. S4. Phase difference time series results analogous to Fig. 5.
Fig. S5. Phase difference time series results analogous to Fig. 5.
Fig. S6. Phase difference histogram results analogous to Fig. 6.
Fig. S7. Phase difference time series results analogous to Fig. 5.
Fig. S8. Phase difference histogram results analogous to Fig. 6.
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