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Abstract
In two-dimensional reaction-diffusion systems, local curvature perturbations on travelingwaves are
typically damped out and vanish.However, if the inhibitor diffusesmuch faster than the activator,
transversal instabilities can arise, leading from flat to folded, spatio-temporallymodulatedwaves and
to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a
spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh–Nagumomodel,
transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in
the presence of control, thereby stabilizing planewave propagation. Conversely, in numerical
simulations with themodifiedOregonatormodel for the photosensitive Belousov–Zhabotinsky
reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of
inducing transversal instabilities and study the emergingwave patterns in awell-controlledmanner.

1. Introduction

A large variety of pattern forming processes can be understood in terms of the advancement of an interface
between two ormore spatial domains. An interface that becomes unstable to diffusionmay cause intricate
spatio-temporal dynamics.Well-known examples include theMullins–Sekerka instability during crystal growth
and formation of snowflakes [1–3], and the Saffman–Taylor instability leading to viscous fingering in
multiphaseflow and porousmedia [4–6]. Other phenomena affected by interfacial instabilities areflame fronts
[7, 8],Marangoni convection [9], and growing cellmonolayers [10].

Traveling planewaves in excitablemedia exhibit interfacial instabilities as well. Here, an effective interface
separates the excited state from the excitable rest state. A straight iso-concentration line of a two-dimensional
flat wave can suffer an instability leading to stationary or time dependentmodulations orthogonal to the
propagation direction. Further away from the instability threshold, rotatingwave segments and spreading spiral
turbulence are observed [11, 12]. For standard activator-inhibitor kinetics, these so-called transversal or lateral
wave instabilities typically occur if the inhibitor diffusesmuch faster than the activator. This result was
analytically predicted first byKuramoto for piecewise-linear reaction kinetics [13, 14]. Later, it was confirmed
numerically byHorváth et al for autocatalytic reaction-diffusion fronts with cubic reaction kinetics [15] aswell
as in experiments with the iodate-arsenous acid reaction [16] and the acid-catalyzed chlorite-tetrathionate
reaction [17].

Awell-established system for studying chemical pattern formation, the Belousov–Zhabotinsky (BZ) reaction
[18], does typically not display transversal wave instabilities. Dispersing the reagents of the BZ reaction in
nanodroplets of awater-in-oil emulsion allows one to increase the inhibitor diffusivity considerably and leads,
for example, to turing patterns as reported byVanag and Epstein [19]. Even in the presence of an electrical field
that enhances transversal instabilities in cubic autocatalytic reaction-diffusion fronts, the inhibitor diffusion
coefficient is always required to be larger than that of the activator [20–22].
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The photosensitive BZ reaction (PBZR) is well-suited for experiments, due to the possibility of applying
spatio-temporal external forcing or feedback-mediated control by exploiting the dependence of the local
excitation threshold on the intensity of applied illumination [23]. Planar wave deformations due tomodulated
substrate height weremitigated by stationary localized light application [24]. Feedback loopswere used to
stabilize unstable wave segments and to guide their propagation along pre-determined trajectories [25, 26]. Also,
spiral wave drift in response to resonant external forcing and various feedback-mediated control loops have
been extensively studied experimentally in PBZR systems, compare for example [27–31].

In this paper, we design a curvature-dependent spatio-temporal feedback loop in order to control
transversal instabilities. First, we investigate the piecewise linear FitzHugh–Nagumo (FHN)model under
conditionswhere planar wave propagation fails due to transversal instabilities.We suppress the ongoing break-
up and segmentation of waves using the feedbackmechanism, thereby stabilizing unstable propagating planar
waves. Second, as amodel for the experimentally relevant PBZR,we analyze themodifiedOregonatormodel
which does not exhibit transversal instabilities in the parameter regime relevant for experiments.We destabilize
a stable propagating planar reaction-diffusionwave by inducing transversal instabilities via feedback, and study
thewave patterns emerging beyond the instability threshold. In additionwe demonstrate the capability to
actively select wave patterns bymodifying feedback parameters accessible in a chemical experiment.

2. Supression of transversal instabilities

2.1. The piecewise-linear FHNmodel
The piecewise-linear caricature of the FHNmodel [12, 32] received some attention in the context of transversal
instabilities [12]. It is a two componentmodel of standard activator-inhibitor type,
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with u being the activator and v the inhibitor. The reaction kinetics are a piecewise-linear caricature of the FHN
model
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The parameters k1 and k2 are chosen such that f u( ) is continuous at u=δ and u=1−δ, which leads to
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The remaining parameters for the function f are chosen in such away that f resembles the cubic shape of the FHN
activator nullcline. All parameter values used in numerical simulations are listed in table A1 in appendix A. The
parameter a is ameasure for the excitation threshold and used as the feedback parameter.

For numerical simulations, we assume an elongated two-dimensional channel of width L in the y-direction
withwaves propagating in the x-direction. The boundary conditions in the x-direction are periodicwhile we
assumeNeumann boundary conditions in the y-direction.We use an arc-like initial condition of width b for the
vector of components u,

x y t x y t bu u u u, , , , 70 Box 0 max 0 0f= Q - - +( ) (( ( )) )( ) ( )

whereumax is the initial height of the pulse andu0 is the stationary point of the reaction kinetics. The box
function is defined as
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The initial shape of thewave is given by
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whereA denotes the amplitude of deviation of the shape from a planewave and d is an offset. For numerical
simulations in two spatial dimensions, we use a forward Euler scheme for the time evolution and a five point
stencil for the Laplacian [33].

A phase diagram for the occurrence of transversal instabilities in the ò-σ-parameter plane of the piecewise-
linear FHNmodel was presented by Zykov et al in [12]. Increasing the inhibitor diffusion coefficientσ crosses
the threshold for transversal instabilities. Shortly beyond the onset of transversal instabilities, a planewave
develops a dipwhich is stationary in a co-moving frame of reference, see figure 1 for a time sequence of
snapshots and the supplementalmaterial for amovie (SI video 1 is available online at stacks.iop.org/NJP/20/
053034/mmedia). Further away from the instability threshold, a planewave breaks into segments, which
undergo self-sustained rotationalmotion accompanied by permanentmerging and annihilation of segments.
This regime is also known as spreading spiral turbulence [12], seefigure 2 for a time sequence of snapshots and
the supplementalmaterial for amovie (SI video 2).

2.2. The eikonal equation
Theoretically the onset of transversal instabilities can be understoodwith the linear eikonal equation

c s t c s t, , , 10n nk= -( ) ( ) ( )

an evolution equation for a two-dimensional curve s t s t s t, , , ,x y
Tg g g=( ) ( ( ) ( )) representing an iso-

concentration line parametrized by the curve arclength s. The linear eikonal equation relates the normal velocity
cn along g ,

Figure 1. Slightly beyond the onset of transversal instabilities, an initially planewave in the piecewise linear Fitzhugh–Nagumomodel
develops a stationary dip. Time sequence of snapshots from a video included in the supplementalmaterial (SI video 1) for (a) t=100,
(b) t=320, (c) t=370, (d) t=420, (e)t=470, and (f)t=570.

Figure 2. Segmentation of slightly bent waves and spreading spiral turbulence occurs well within the domain of transversal instabilities
for the piecewise linear FitzHugh–Nagumomodel. Parameter values as in figure 1 except ò=0.1575. The segments undergo self-
sustained rotationalmotion and nucleate newwaves. Snapshots of a video (SI video 2) for (a) t=5, (b) t=301, (c) t=500,
(d)t=672, (e) t=700, and (f) t=891. The grid size is 160×90.

3

New J. Phys. 20 (2018) 053034 STotz et al

http://stacks.iop.org/NJP/20/053034/mmedia
http://stacks.iop.org/NJP/20/053034/mmedia


nc s t s t s t, , , , 11n tg= ¶( ) ( ) · ( ) ( )

linearly to its curvature,

s t
s t s t s t s t

s t s t
,

, , , ,

, ,
, 12

s x s y s y s x

s x s y

2 2

2 2 3 2
k

g g g g
g g

=
¶ ¶ - ¶ ¶

¶ + ¶
( )

( ) ( ) ( ) ( )
(( ( )) ( ( )) )

( )

where n is the normal vector ofg . The curvature is conventionally assumed to be positive for convex iso-
concentration lines, i.e., an iso-concentration line with a bulge in the propagation direction. The constant c
corresponds to the pulse velocity of a one-dimensional solitarywave and ν is the curvature coefficient. A rigorous
derivation of the eikonal equation (10) from the reaction-diffusion system identifies the constant ν in terms of
the one-dimensional pulse profile, its response function and thematrix of diffusion coefficients, see [34] for
details. For a planewave, any iso-concentration level is a straight line and therefore its curvature vanishes,

s t, 0k º( ) , everywhere along g . The stability of a planewave is determined by the sign of the curvature
coefficient ν. As long as ν>0, any point along the iso-concentration line of a convex bulgemoves slower than a
planewave. Points along a concave dentmove faster than a planewave, thereby smoothing out deviations from a
planewave. If ν<0, a convex bulgemoves faster than a planewave, protruding the bulge even further and
thereby leading to an ever increasing curvature: a transversal instability arises. Patterns arising for ν<0 cannot
be described by the linear eikonal equation and terms depending nonlinearly on the curvature have to be taken
into account which saturate the growth of an ever increasing curvature. At least two different nonlinear versions
of equation (10) exist in the literature. Zykov et al [32, 35–37] renormalize ò andσ in equation (2) to derive a one-
dimensional velocity c depending on the curvature. Dierckx et al [34] derive higher order nonlinear corrections
in the curvature by a rigorous perturbation expansionwith a small parameter proportional to the curvature,
additionally generalizing the eikonal equation to anisotropicmedia.

2.3. Curvature-dependent feedback control
The feedback scheme proposed in this article requires that the velocity c of a one-dimensional wave depends
sufficiently strong on a parameter awhich is accessible in numerical or real-world experiments. First, we linearly
approximate relationship between velocity and excitation threshold as

c a c c a. 130 1= +( ) ( )

Second, we propose a feedback scheme for a depending linearly on the curvature,

a . 14k a bk= +( ) ( )

The parametersα andβ are accessible to an experimentalist. In general, these parameters can be adjustedwith
time to achieve a better performance of the control. Together with equations (14) and (37), the linear eikonal
equation (10) becomes

c c c , 15n 0 1a nk= + - ˜ ( )

with the effective curvature coefficient

c . 161n n b= -˜ ( )

Depending on the sign of ñ , the control has very different effects. If a planewave is stable with respect to
transversal perturbations because ν>0, we can excite transversal instabilities if c 01n n b= - <˜ . Conversely,
if ν>0 such that planewaves are unstable with respect to transversalmodulations, patterns can be stabilized if

c 01n n b= - >˜ . An appropriate choice of the parametersα andβ in the feedback scheme (14) allows forfine
control over transversal instabilities.

For the piecewise linear FHNmodel equations (1)–(6), the excitation threshold a is used as the feedback
parameter. The approximately linear relation between planewave velocity c and a yields equation (15)with
c0=2.23 and c1=−8.75.We use a slightlymodified formof the feedback law equation (14)
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Solitary pulses exist only for a certain range a a a,min maxÎ [ ]of a values. The coefficient tb ( ) in equation (17) is
adjusted in time such that themaximumvalue of a k( ) along the iso-concentration line does not exceed or
undershoot the range of existence of solitary pulses. Every 100 time steps, we determine themaximumcurvature

tmaxk ( ) along the iso-concentration line and setκmax to this value,

t
a a

t
. 18max min

max

b
k

=
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The background value of a is set to a0=0.1 everywhere before the feedback control is switched on at time ton.
To apply the feedback scheme (17) it is necessary to compute the curvature of an iso-concentration line of a
chosen componentwith sufficient accuracy. This raises considerable difficulties.
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2.4. Computation of curvature via level setmethods
The curvature s t,k( ) of an iso-concentration line s t,g ( ), equation (12), is proportional to the second
derivative of the iso-concentration line with respect to the curve arclength s. Computations of iso-concentration
lines in numerical simulations or experiments are affected by noise due to the discretized nature of the computed
ormeasured concentration field u. Numerical differentiation is an ill-posedmathematical operation and
typically amplifies noise. A variety ofmethods to compute the curvatureκ directly from a numerically
determined iso-concentration linewere tested and discarded due to insufficient performance [38].

An indirectmethodwhich avoids the differentiation of an iso-concentration line is to compute the curvature
field k̃ as

t
u t

u t
r

r

r
,

,

,
. 19k = 




·˜ ( ) ( )
∣ ( )∣

( )

According to the formula of Bonnet [39], evaluating k̃ at an iso-concentration line s tr ,g= ( ) of u yields the
curvatureκ of g ,

s t s t t, , , . 20gk k=( ) ˜ ( ( ) ) ( )
See appendix B for a proof of Bonnetʼs formula. Equation (19) involves the determination of the second
derivative of uwith respect to x and y. These expressions are readily available from the finite difference algorithm
used to solve the RD systemnumerically. The problem is now that the concentration u of a pulse solution
typically varies very fast in a small spatial regionwhile it is constant everywhere else, leading to an ill-defined
denominator in equation (19). This difficulty can be addressedwith the help of the level setmethod [40], which,
however, is numerically quite expensive.

Originally, level setmethodswere developed byOsher and Sethian to compute and track themotion of
interfaces. Thesemethods have since been successfully applied in diverse areas such as computer graphics,
medical image segmentation and crystal growth [40–42].

We introduce a secondfield variable r,c t( )which evolves in (virtual) time τ according to the so-called
reinitialization equation [40, 43, 44]
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Equation (21) is solvedwith the initial condition

u t ur r r, 0 , , 23c
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where uc is the activator value along the iso-concentration line g for whichwewant to determine the curvature
κ, i.e., u s t t u, , cg =( ( ) ) . Note that

s t s t, , , 0 240g gc t c= =( ( ) ) ( ( )) ( )

for all times τ such that the position of the level set g is not changed by equation (21). However, equation (21)
transforms the neighborhood ofχ=0 such that, after sufficientlymany time steps τ,

rlim , 1. 25c t =t¥∣ ( )∣ ( )

The curvatureκ of g , equation (12) can now readily be computed in terms of the Laplacian ofχ as

s t s t t s t, , , lim , , . 26g gk k c t= = Dt¥( ) ˜ ( ( ) ) ( ( ) ) ( )

Numerically, the evolution ofχup to thefinal time τ=0.01 is sufficient to obtain a very accurate smooth result
for the curvature of g . The reinitialisation equation (21) has to be solved at every real time stept. However,
because the time evolution of the RD system is slow enough, we recompute the curvatureκ only every 200 time
steps.

2.5. Results
Figure 3 demonstrates the suppression of a transversal instability. For the same parameter values slightly beyond
the threshold as infigure 1, the initially sinusoidally shapedwave relaxes back to a planewave and no dip
appears, see also the video in the supplementalmaterial (SI video 1). Patterns deep in the regime of transversal
instabilities are characterized by a continuing segmentation of waves and spreading spiral turbulence as shown
infigure 2. For the same parameter values, patterns stop to segment after the feedback is switched on, giving rise
to a persistent planewave and two counter-rotating spiral waves, see figure 4 and the video in the supplemental
material (SI video 2). Thewave front of rotating patterns has positive curvature. According to the linear eikonal
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equation (10), it advances slower than a planewave if the effective curvature coefficient ñ is positive. Therefore,
the planewave has a tendency to annihilate rotatingwaves, which ultimately leads to a single planewave.

3. Excitation of transversal instabilities

3.1. ThemodifiedOregonatormodel
ThemodifiedOregonatormodel [45] describes the light-sensitive BZ reaction:

u

t
u u w q u D u

1
, 27u

2


¶
¶

= - + - + D[ ( )] ( )

v

t
u v, 28

¶
¶

= - ( )

Figure 3.Curvature-dependent feedback control stabilizes an unstable planewave. For the same parameters slightly beyond the
threshold of transversal instabilities as the corresponding uncontrolled time evolution infigure 1, the initially sinusoidally shaped
wave relaxes back to a planewave and no dip develops. Snapshots of amovie (SI video 1)with (a) t=43, (b) t=67, (c) t=159, and
(d) t=400. The values of the feedback parameters are amin=0.05 and amax=0.15 and the control is switched on at ton=40.

Figure 4.Curvature-dependent feedback suppresses spiral turbulence. After the feedback control is switched on at t=256 (b), waves
stop to break up, leaving behind a planewave and a pair of counter rotating spiral waves (c) andfinally a solitary planewave (d).
Parameters as infigure 2. Snapshots of amovie (SI video 2)with (a) t=5, (b)t=301, (c) t=672, and (d) t=891. The values of the
feedback parameters are amin=0.04 and amax=0.08.
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Parameters ò and ̃ characterize the time scales for the dynamics of the activatoru and inhibitorw, respectively.
The stoichiometric parameters q and f depend on the temperature and chemical composition. All parameter
values used in numerical simulations are listed in table A2 in appendix A. In experiments, the catalyst v can be
immobilized in a gel and therefore the corresponding diffusion coefficient is set to zero. The activator u and
inhibitorw diffusewith diffusion coefficientsDu andDw, whose ratio for typical BZ recipes is approximately
Dw/Du≈1.2 [46]. This value is too low to support transversal instabilities. The parameterΦ in equation (29) is
proportional to the applied light intensity and the local excitation threshold.

3.2. TheKuramoto–Sivashinsky (KS) equation
Apart fromnonlinear eikonal equations, which are difficult to solve numerically, patterns arising beyond the
threshold of transversal instability can be described by theKS equation [7, 47],

y t c
c

y t y t y t,
2

, , , . 30t y y y
2 2 4f f n f l f¶ = + ¶ + ¶ - ¶( ) ( ( )) ( ) ( ) ( )

Equation (30) is an evolution equation for the x-component y t,f ( ) of an iso-concentration line g parametrized
in the form y t y t y, , , Tg f=( ) ( ( ) ) (see figure 1). A derivation of equation (30) from a general RD system is
given in references [14, 48].WithNeumann boundary conditions at the top and bottom edge of the domain iso-
concentration lines of activator and inhibitormeet the domain boundary orthogonally. This corresponds to
Neumann boundary conditions forf,

t L t0, 0, , 0. 31y yf f¶ = ¶ =( ) ( ) ( )

Similarly, periodic boundary conditions in the RD system carry over to periodic boundary conditions forf.
Equation (30)was originally proposed by Sivashinsky [7] in the study of turbulent flame propagation and
adapted for reaction-diffusion systems byKuramoto [14, 47]. The parameterλ can be expressed in terms of a
sumover all eigenfunctions of the linear stability operator arising through a linearisation of the one-dimensional
RD system around the travelingwave solution [14]. To computeλ, we use amethodwhich avoids the virtually
impossible task of computing all eigenfunctions, see [48] for details. The values ofλ and ν for themodified
Oregonatormodel with parameters as given in appendix A are

0.68, 1.05. 32l n= = ( )

TheKS equation (30) allows a refined investigation of the onset of transversal instabilities. For a stability analysis
of a planewave in a channel of width LwithNeumann boundary conditions, we apply a perturbation expansion
in 0 1< ˆ with an ansatz in formof a Fourier series,
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where ct corresponds to a planewave solution of the RD system traveling in x-direction. The dispersion relation
follows as
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Transversal instabilities occur only ifω1>0. This is the case if ν is negative and the channel width exceeds

L . 35p
l
n

=
-

( )

Thus, the transversal instability can be suppressed in thin channels. It is a long-wavelength instability, i.e., the
firstmodewhich becomes unstable upon reaching the threshold is themodewith the longest possible
wavelength.

As can be seen from equation (35), if ν<0, the fourth order termwithλ>0 in theKS equation (30)
counteracts the negative diffusion term and leads to a saturation of the growth of wavefrontmodulations.
Starting at the threshold of instability, the solution to theKS equation (30) displays awave frontwith a dip
located at y=L/2, similar to thewave pattern shown infigure 1.Upon increasing L, this steadywave loses
stability via a supercritical Hopf bifurcation [15] and thewave front starts to oscillate back and forth in a
symmetrical fashion. Increasing L even further leads to a symmetry breaking bifurcationwith asymmetrical
oscillations followed by a period doubling cascade to fully developed spatio-temporal chaos. In this regime, the
KS equation displays a sensitive dependence on initial conditions. Small variations in the initial state lead to a
dramatically different time evolution. This behavior of the KS equation is also studied as an analogy for
hydrodynamic turbulence [49].
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As long as ν>0, no instability can arise and the fourth order term can be safely neglected by settingλ=0.
In this case, equation (30) simplifies to the nonlinear phase diffusion equation, which in turn can be transformed
to the usual diffusion equation via theCole–Hopf transform [13]. Therefore, equation (30)withλ=0 can be
solved analytically for arbitrary initial and boundary conditions.

To assess the accuracy of theKS equation (30) as an approximation for propagating reaction-diffusion
waves, we compare the transition from an initially curved shape to a planewave for ν>0with numerical
simulations of the underlying two-dimensionalmodifiedOregonatormodel equations (27)–(29). The iso-
concentration lineg of the activator variable u is determined numerically as the set of points x yr , T= ( ) for
which u t ur, 0.2c= =( ) .We compute themean x-component of the iso-concentration line in a co-moving
frame as

x t
L

y t y t
1

, d 0, . 36
L

0
ò f fá ñ = -( ) ( ) ( ) ( )

Figure 5 shows the time evolution of x tá ñ( ) obtained from theKS equation (black dotted line) and nonlinear
phase diffusion equation (blue solid line) and for themodifiedOregonatormodel obtained by numerical
simulations (red dashed line) for two different values of the amplitudeAwhich characterizes the initial deviation
froma planewave. As onewould expect intuitively, the agreement between numerical simulations on the one
hand andKS equation and nonlinear phase diffusion equation on the other hand becomesworse the larger is the
initial amplitudeA. For large times, i.e., when the curved iso-concentration line approaches a straight line, all
results agree. The nonlinear phase diffusion equation and theKS equation practically yield the same result for all
times. This confirms the fact that the fourth order derivative in theKS equation can safely be neglected if the
curvature coefficient is ν>0.

3.3. Curvature-dependent feedback control
For themodifiedOregonatormodel, we use the parameterΦ as the feedback parameter. A numerical
computation of the dependence of the planewave velocity c onΦ is shown infigure 6. The dependence follows
roughly a linear relationship,

c c c , 370 1F = + F( ) ( )

with parameters c1=−90.191, c0=9.013 obtained from a least squarefit. Solitary waves exist only in the
excitable regime, which is bounded by dashed lines infigure 6. BelowΦ≈0.045, the rest state is unstable and
themediumbecomes oscillatory. ForΦ 0.068, the solitary pulse profile becomes unstable and decays to the
stable rest state. A successful feedback control is possible ifΦ is restricted to lie between these two values. The
feedback law forΦ depends linearly on the curvature,

. 38k a bkF = +( ) ( )

For the parameters of the feedback schemewe setα=Φmax and max min normb k= - F - F( ) such that the
effective curvature coefficient is

c
c

. 391
1

norm
max minn n b n

k
= - = + F - F˜ ( ) ( )

Figure 5.Time evolution of themean x-coordinate of an iso-concentration line in a co-moving frame of reference. Comparison of
Kuramoto–Sivashinsky equation (black dotted line), nonlinear phase-diffusion equation (blue line) and for the activator iso-
concentration linewith u x y t, , 0.2=( ) of themodifiedOregonator obtained by numerical simulations (red dotted line).
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The values ofΦmax andΦmin can be chosen arbitrarily as long asΦmin<Φmax and both values lie within the
regime of an excitablemedium, see figure 6. The curvatureκ is determined for the activator iso-concentration
line g with u s t t u, , 0.2cg = =( ( ) ) . An area offixed size in the front and back of g is illuminatedwith the
same value s t,kF( ( )), while within the remainingmediumΦ attains its background valueΦ=Φ0. Before the
feedback is switched on at time t1=0.4, thewave evolves uncontrolled. The value ofκnorm=1.2 is an estimate
of the largest valuewhich the curvature attains during the overall time evolution. For simplicity, we choose a
constant value ofκnorm, but in principle this value can be set to themaximumcurvature every time the curvature
is recomputed.

3.4. Results
Figure 7 showswave patterns arising forweak feedbackwith an effective curvature coefficient 0.75n = -˜ , see
also the video in the supplementalmaterial (SI video 3). The black solid lines denote the iso-concentration line g
for the activator level uc=0.2. The rightmost line corresponds to thewave frontwhile the trailing line
corresponds to thewave back. The colors represent the value of the feedback parameterΦ and are proportional
to the curvature of thewave front iso-concentration line. An initially sinusoidal shape decays and a planewave
with transversalmodulations of small wavelength develops. For the example presented here, themodulations
are not stationary but travel along the iso-concentration line until they annihilate each other or at theNeumann

Figure 7. Smallmodulations of thewave shape occur for weak feedback in themodifiedOregonatormodel with an effective curvature
coefficient of 0.75n = -˜ . Snapshots of amovie (SI video 3) for (a) t=3.5, (b) t=10.6, (c) t=25.2, and (d) t=69.3. Colors denote
the value of the applied spatio-temporal illumination field x y t, ,F( )which is proportional to the curvature of the black iso-
concentration line. Shown are clippings of size 21.5×30 centered on thewaveʼs center ofmass while the computational domain is
110×30. Parameter values for the feedback scheme areΦmin=0.018,Φmax=0.042.

Figure 6.Velocity c of a one-dimensional solitary pulse over the parameterΦ proportional to applied light intensity for themodified
Oregonatormodel. The result of numerical simulations (blue dots) can bewell approximated by a linear least squarefit (dashed black
line).
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boundaries. For evenweaker feedback, themodulations do not travel such that the pattern is truly stationary in a
co-moving frame of reference. The overall velocity of the patterns is approximately the velocity c of the one-
dimensional unperturbed travelingwave. Apart from thewavelength of themodulations, this type of pattern is
similar to the patterns arising in the uncontrolled FHNmodel slightly beyond the threshold of transversal
instabilities, see figure 1.

Figure 8 displays the effects ofmoderate feedbackwith an effective curvature coefficient 1.059n = -˜ , see
also the video in the supplementalmaterial (SI video 4). V-shaped patterns arise which travelmuch faster than a
corresponding one-dimensional solitary pulse. In a frame of reference co-movingwith the center ofmass, the
V-shaped patterns appear stationary apart frommodulations traveling along the iso-concentration line. The
V-patterns observed under feedback are long-time stable and do not decay or break up. A solitary V-pattern in
an unbounded domain can be explained analytically as a solution to the linear and nonlinear eikonal equations
[50, 51]. AVwith opening angleα has amean velocity ṽ given by

v
c

sin
, 40

a
=˜

( )
( )

where c is the one-dimensional velocity. Because sin 1a <∣ ( )∣ , all V-patterns aremoving faster than a plane
wave. Experimentally, these patterns were observed in homogeneous [52] and stratified [53]BZmedia.

Figure 8.Moderate feedback corresponding to an effective curvature coefficient of 1.059n = -˜ in themodifiedOregonatormodel
leads toV-shaped patternsmovingmuch faster than a planewave. Snapshots of amovie (SI video 4) for (a) t=2, (b) t=7, (c) t=62,
and (d) t=80. They are clipped to a size of 30×30 from a computational domain of size 110×30. Feedback parameter values are
Φmin=0.018,Φmax=0.046.

Figure 9. Segmentationofwaves occurs under very strong feedbackwith an effective curvature coefficient of 2.337n = -˜ in the
modifiedOregonatormodel. Segmentsmay break off, nucleate newwaves and often start to rotate. Snapshots of amovie (SImovie 5) for
(a)t=4, (b) t=6, (c) t=25, and (d) t=50. The domain size is 110×30, and feedback parameters areΦmin=0.006,Φmax=0.05.

10

New J. Phys. 20 (2018) 053034 STotz et al



Figure 9 shows the effect of strong feedbackwith an effective curvature coefficient 2.337n = -˜ , see also the
video in the supplementalmaterial (SI video 5). Similar as formoderate feedback,V-shapedpatterns appear.
However, their shape is non-stationary andoscillating. TheV-shape is segmented in an irregular andnon-stationary
way,with segments eithermerging again or breaking off and serving as thenucleation site for newwaves. These new
waves propagate as segmented circles andoccasionally start to rotate until they annihilate upon collisionwith other
waves.Qualitatively, the segmentation andoccurrence of rotating segments is similar to the spreading spiral
turbulence observed for the uncontrolled FHNmodel deep in the regimeof transversal instabilities, seefigure 2.

These results show that the proposed feedback scheme is not only able to excite transversal instabilities but
allows, to some extent, the selection of patterns beyond the instability threshold by tuning the feedback
parametersΦmax andΦmin, which are accessible to an experimentalist.We present a phase diagramwith a
classification of the observed patterns in theΦmax−Φmin plane infigure 10.Note that according to theKS
equation (30), the observed patterns should only depend on the effective curvature coefficientñ given by
equation (39). However, numerical simulations show that the type of pattern depends not only on the difference
ofΦmax andΦmin, but also displays a slight dependence on their absolute values. This dependence is due to
nonlinear corrections in the relation for the one-dimensional velocity c overΦ and higher order effects neglected
by theKS equation (30). By adjusting the effective curvature coefficient ñ , we are able to validate the predicted
onset of transversal instabilities equation (35),

L 41p
l
n

=
- ˜

( )

Figure 10.Phase diagram for patterns in themodifiedOregonatormodel under feedback control. Red bullets correspond to folded
waves stationary in a co-moving frame of reference, green triangles stand for non-stationary wave frontmodulations, yellow
squares denotes segmentation of waves and spiral turbulence. (a) refers to figure 9, (b) to figure 8 and (c) to figure 7.

Figure 11.Transversal instabilities are suppressed in thin channels. Shown is the stability boundary of a planewave under feedback in
a channel of width LwithNeumann boundary conditions. Using feedback, the effective curvature coefficient c1n n b= -˜ is adjusted
until a planewave becomes unstable. Red line: theoretical prediction equation (35) obtained from theKuramoto–Sivashinsky
equation. Blue dots: result of numerical simulations of themodifiedOregonatormodel. Blue line: least squarefit to numerical results.
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and its dependence on the channel width L.We performnumerical simulations of the controlledOregonator
model in a channel withwidth L andNeumann boundary conditions in the y-direction. Starting from a planar
noisy wavefront(7), we change the effective curvature coefficient ñ until a planewave becomes unstable, i.e., the
curvature along the iso-concentration line is different from zero. Figure 11 shows that both numerical
simulations and analytical prediction yield a linear relation between channel width L and1 n- ˜ over a large
range of effective curvature coefficients ñ . The slopes differ due to higher order corrections for theKS
equation (30) and nonlinear corrections for the velocity c overΦ, equation (37), used for the feedback scheme.

Beyond the onset of transversal instabilities, the emerging patterns can in principle be described by theKS
equation (30).We compare the time evolution of themodifiedOregonatormodel with the solution of theKS
equation for an effective curvature coefficient of 0.02n = -˜ (figure 12). Due to sensitive dependence on initial
data, any early agreement between the two curves vanishes quickly during time evolution.

4. Conclusions

In this article, we present a feedback loop to induce, control, and suppress transversal instabilities of reaction-
diffusionwaves. The control signal is calculated from the local curvature of the iso-concentration line of the
wave.We show that the curvature-dependent control can amplify or suppress small curvature perturbations in
thewave shape. Simultaneously, the feedback allows one to study a large variety of artificially producedwave
patterns associatedwith transversal instabilities. Often these patterns are non-stationary and sensitively depend
on small changes in the initial conditions, which is a characteristic of chaotic dynamics.

Mathematically, the onset of transversal instabilities can be understoodwith the help of the linear eikonal
equation, which relates thewave velocity normal to an iso-concentration line to its local curvature. The
coefficient ν in front of the curvature determines the stability of aflat wave. For positive values of ν, convexwave
segments slow downwhile concave wave segments propagate at a higher velocity. Under these conditions a
perturbed flat travelingwave recovers itsflat shape. In the case of negative ν, a small positive curvature causes an
increase of thewave velocity, which in turn increases the local curvature. Now, a flat wave is unstable with
respect to small curvature perturbations. The proposed feedback loop allows for finely tuning and changing the
sign of the coefficient ν.

Figure 12.Time evolution of awaveʼs iso-concentration line slightly beyond the threshold of transversal instability causedby feedback
with an effective curvature coefficient 0.02n = -˜ . Compared are the results of two-dimensional numerical simulations of themodified
Oregonatormodel (dashed red line)with the solutionof theKuramoto–Sivashinsky equation (blue line). Due to the strong dependence
on the initial conditions, the time evolutions are comparable only for a short time span. (a) corresponds to t=0, (b) t=6, (c) t=12 and
(d) t=25.Comparison ismade in the co-moving frameof reference because the center ofmass velocities donot agree.
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With experiments on chemical waves in the PBZR inmind, for realistic parameter valueswe show in
numerical simulationswith theOregonatormodel that transversal instabilities of planar waves can be induced
by the feedback. Right beyond the transversal instability of planar waves, wefind nearlyflat foldedwaves which
are stationary in a co-moving frame of reference. Forweak feedbackwe observe small ripple-shaped undulations
traveling along thewave front. Upon increasing the feedback strength further, V-shapedwave patterns with
spatio-temporal transversalmodulations appear. These V-shapedwaves travel at a velocity that depends on the
opening angle but is considerably faster than that of the planar wave. Far away from the instability threshold,
breakup ofwaves causes persistent annihilation andmerging of excited domains, self-sustained rotational
motion and nucleation of rotatingwave segments. Qualitatively, the emergingwave patterns correspond to
those observed in numerical simulationswith separated activator and inhibitor diffusivity [12].

Regarding chemical wave propagation in the PBZR,we emphasize that the feedback parameters of the
control scheme are experimentally accessible. For suitable BZ concentrations the dependence of thewave
velocity on the intensity of applied light should be strong enough to induce transversal wave instabilities. The
iso-concentration line of thewave can be determined by 2d spectrophotometry with sufficient spatial resolution
using the contrast between oxidized and reduced formof the catalyst.We expect that computation of the
curvature by the Level SetMethod as described in section 2.4will work reliably for noisy experimental data, too.
Because all chemical components share similarly shaped iso-concentration lines, themeasurement of the
concentration field of an arbitrary single chemical species is sufficient for setting up the control loop. Fine-
tuning the feedback parameters allows one to study the onset of transversal instabilities in dependence of the
boundary conditions as e.g. the channel width L, as pointed out in section 2.2.

In the opposite case, sufficiently strong feedback changes the sign of the effective curvature coefficient from
negative to positive. Consequently, naturally occurring transversal wave instabilities leading to the breakup of
waves are suppressed—the feedback stabilizes planar waves and spiral waves. Spreading of spiral turbulence is
inhibited due to the suppression of segmentation of waves.

Reaction-diffusionwaves describe, at least approximately, a huge variety of wave processes in biology. Our
results are potentially applicable to deliberately induce or inhibit transversal wave instabilities and to control the
emerging patterns under very general conditions. The essential condition for applicability is that the
propagation velocity of thewave can be externally controlled over a sufficiently large range such that the
curvature coefficient of the eikonal equation switches its sign.

Moreover, we expect that curvature dependent feedbackmight have interesting applications in interfacial
pattern formation. For example, this feedbackmechanism could be the starting point for a control strategy
aimed at the purposeful selection of patterns affected by instabilities as in, e.g., bacterial colony growth [54],
dendrite formation in batteries [55] or alloys growing into an undercooledmelt [56, 57].
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AppendixA. Parameter values for numerical simulations

TableA1.Parameter values used for numerical simulations of the
piecewise linear FitzHugh–Nagumomodel.

Parameter Value Description

a 0.1 Excitation threshold

kf 2 Model parameter

kg 2 Model parameter

σ 2.1 Ratio of diffusion coefficients

δ 0.01 Model parameter

ò 0.1425 Time scale separation

c1 −8.75 Slope of linearfit for velocity over a

c0 2.23 Constant of linearfit for velocity over a

Δt 0.00001 Time step

Δx,Δy 0.15 Stepwidth of spatial resolution
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Appendix B. Bonnetʼs formula

Weprove the formula of Bonnet, i.e., we demonstrate that evaluating the curvature field defined by
equation (19) at an iso-concentration line g yields the curvature of g .Wewrite

u x y u y y, , B.1x x y x xx
g¶ = ¶g=( ) ∣ ( ( ) ) ( )( )

for derivatives with respect to x. Let u u x y,= ( ) be themap 2  and y y y,x
Tg g=( ) ( ( ) ) be the iso-

concentration line g parametrized by y. It follows that u y y u, const.x cg = =( ( ) ) for all values of y. Therefore
we canwrite

y
u y y u y y y u y y

d

d
, , , 0 B.2x x x x y xg g g g= ¶ ¢ + ¶ =( ( ) ) ( ( ) ) ( ) ( ( ) ) ( )
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and generally u y y, 0
y x

d

d

n

n g =( ( ) ) with n n, 0Î > . The curvature field k̃, equation (19), expressed in
Cartesian coordinates is
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Evaluating k̃ at the iso-concentration line yields
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Using equation (B.2), the denominator of equation (B.5) can be simplified as

u y y u y y u y y u y y y

u y y y
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x x y x x x x x x
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Table A2.Parameter values used for numerical simulations of the
modifiedOregonatormodel.

Parameter Value Description

f 1.4 Stoichiometric parameter

q 0.002 Model parameter

ò 1/49 Time scale separation

̃ 1/4410 Time scale separation

Φ0 0.02 Background illumination

Du 1.0 Activator diffusion coefficient

Dw 1.2 Inhibitor diffusion coefficient

ν 1.05 Curvature coefficient

λ 0.68 Fourth order coefficient in theKS

equation

c1 −90.19 Slope of linear fit for velocity overΦ

c0 9.01 Constant of linearfit for velocity overΦ

κnorm 1.2 Curvature normalization

Δt 0.0001 Time step

Δx,Δy 0.05 Stepwidth of spatial resolution
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Similarly, using equations (B.2) and (B.3), thefirst termof the numerator of equation (B.5) can be rewritten in
the form

u y y u y y u y y u y y x

u y y x u y y y

, , , ,

, 2 , , B.7

y x x x x x x x x

x x x x y x x

2 2 2

2 2
,

g g g g g

g g g g

¶ ¶ =- ¶ ¶ 

+ ¶ ¢ + ¶ ¢

( ( ) )( ( ( ) )) ( ( ( ) )) ( ( ( ) ) ( )

( ( ) )( ( )) ( ( ) ) ( )) ( )

while the second termof the numerator of equation (B.5) can be cast as

u y y u y y u y y u y y x, , , , . B.8x x y x x x x x x
2 2 2 2 2g g g g g¶ ¶ = ¶ ¶ ¢( ( ) )( ( ( ) )) ( ( ) )( ( ( ) )) ( ( )) ( )

The last termof the numerator of equation (B.5) becomes

u y y u y y u y y
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All terms except the termproportional to xxg( ) in the numerator cancel.We are left with

y y
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y
,

1
, B.10x
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x
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which is exactly the curvature of a graph, see equation (12).
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