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Abstract Magnetic storms are the most prominent global manifestations of out-of-equilibrium
magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables
can provide valuable insights into relevant physical processes as well as temporal scales associated
with this phenomenon. In this work, we utilize several innovative data analysis techniques enabling a
quantitative nonlinear analysis of the nonstationary behavior of the disturbance storm time (Dst) index
together with some of the main drivers of its temporal variability, the VBSouth electric field component,
the vertical component of the interplanetary magnetic field, Bz , and the dynamic pressure of the solar
wind, Pdyn. Using recurrence quantification analysis and recurrence network analysis, we obtain several
complementary complexity measures that serve as markers of different physical processes underlying quiet
and storm time magnetospheric dynamics. Our approach discriminates the magnetospheric activity in
response to external (solar wind) forcing from primarily internal variability and highlights the case-specific
nature of interdependencies between the Dst index and its potential drivers that need to be accounted for
in future improved space weather forecasting models.

1. Introduction

Geospace magnetic storms are major perturbations of the Earth’s magnetic field that are initiated by
enormous bursts of plasma erupting from the solar corona. In addition to coronal mass ejections (CMEs),
high-speed solar streams emanating from coronal holes provide solar wind structures that create favorable
conditions for the development of magnetic storms. The ejection of highly energetic charged particles onto a
trajectory intersecting with the Earth’s orbit can have severe impacts on the Earth’s magnetosphere (Bothmer
& Zhukov, 2007; Richardson & Cane, 2012). Similar to other extreme events in nature, the resulting pertur-
bations of the geomagnetic field can vary remarkably in both magnitude and duration. However, unlike
many other natural hazards, they commonly manifest themselves in simultaneous effects across vast parts of
the globe.

The mechanism underlying these large-scale perturbations of the Earth’s magnetic field is closely related with
mass, momentum, and energy input provided by the solar wind that is stored in the magnetotail—if not
dissipated. Due to this continuous input by the highly dynamic solar wind, the magnetosphere is always far
from equilibrium (Consolini et al., 2008). When a critical threshold is reached, the magnetospheric system may
be reconfigured through a sequence of energy and stress accumulating processes (Baker et al., 2007; Klimas
et al., 1997, 1998, 2005). During major magnetic storms, charged particles confined in the Earth’s radiation
belts are accelerated to high energies and the intensification of electric current systems results in characteristic
disturbances of the geomagnetic field (Baker, 2005; Daglis et al., 2009). The response of the magnetosphere
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to the external forcing by the solar wind is in general not simply proportional to the input, and changes are
episodic and abrupt rather than slow and gradual.

This distinct behavior has motivated the description of the Earth’s magnetosphere as a complex system com-
posed of several nonlinearly coupled subsystems, within which multiple interconnected processes act on a
wide range of spatial and temporal scales (Chang, 1992; Consolini, 2002; Klimas et al., 1996; Valdivia et al.,
2005; Watkins et al., 2001, and references therein). Vassiliadis et al. (1990) provided evidence of large-scale
coherence in magnetosphere dynamics manifested as low-dimensional chaos in time series of auroral elec-
trojet (AE) index measurements. Following upon these initial findings, subsequent studies have been based
on a variety of complementary concepts from nonlinear dynamics and complex systems science to derive
in-depth knowledge on the magnetosphere’s response to the solar wind forcing. Among other approaches,
the nonlinearity of magnetospheric dynamics has been studied using nonlinear filters (Vassiliadis et al., 1995;
Weigel et al., 2003), explicitly accounting for the magnetosphere being a nonautonomous, driven system and
contributing to a more accurate and efficient prediction of imminent magnetic storms (Valdivia et al., 1996).
Accordingly, recent attempts to developing empirical forecast models of geomagnetic activity have mostly
been based on nonlinear approaches like nonlinear autoregressive moving average models with exogenous
inputs (NARMAX), neural networks, fuzzy methods combined with singular spectrum analysis, or Gaussian
process regression (e.g., Boynton et al., 2011; Chandorkar et al., 2017).

Building upon the current understanding of magnetic field fluctuations at the Earth’s surface and in the
surrounding space, recent studies have drawn the picture of the magnetosphere as a hierarchically orga-
nized multiscale system based on power law scaling identified in time series of geomagnetic activity indices
(Consolini, 1997; Chapman et al., 1998; Takalo et al., 1994; Uritsky & Pudovkin, 1998; Watkins et al., 2001;
Wanliss et al., 2004; Wei et al., 2004). For instance, the adoption of a phase transition approach (Shao et al.,
2003; Sharma, 2006) revealed a close connection between global coherence and scale invariance of the
magnetosphere’s behavior. Specifically, Sitnov et al. (2001) suggested that while the multiscale activity dur-
ing substorms resembles second-order phase transitions, the largest substorm avalanches exhibit common
features of first-order nonequilibrium transitions. Moreover, Balasis et al. (2006, 2018) demonstrated the
existence of two different regimes in the magnetospheric dynamics associated with the prestorm activity
and magnetic storms, respectively, a picture that is compatible with the occurrence of a phase transition.
Another intense point of research is the inherent separation of timescales between internal and externally
driven/triggered processes (e.g., Alberti et al., 2017; Consolini & De Michelis, 2005; Kamide & Kokobun, 1996;
Tsurutani et al., 1990). Low-dimensional dynamics, self-organized criticality (Consolini, 1997; Chapman et al.,
1998; Uritsky & Pudovkin, 1998; Uritsky et al., 2006) and phase transitions offer different perspectives on
geomagnetic activity, all of which need to be taken into account to obtain a coherent global picture of the
underlying dynamical processes. However, when considered individually, each of these approaches has its
intrinsic limitations that are inherent to the specific methodology and respectively taken viewpoint on specific
aspects of nonlinear dynamics.

This paper aims to offer an additional viewpoint on nonlinear magnetospheric variability based on empiri-
cal observations of the system and its potential drivers that has rarely been addressed in previous studies.
Specifically, we utilize three complementary measures characterizing the dynamical complexity of time series
provided by the powerful tools of recurrence analysis (Marwan et al., 2007). The main idea behind this
approach is that most physical processes lead to recurrences of previous states or sequences thereof, meaning
that a system’s current dynamical state has some close analog in its past dynamics, both of which are separated
by some period with different system properties. Knowledge on such past analogs can thus be employed
for studying the predictability of the investigated system or even provide model-free probabilistic forecasts.
Recent developments in dynamical systems theory have provided evidence that such a recurrent behavior is
a generic property of both deterministic and stochastic dynamics (Marwan et al., 2007; Webber Jr. & Marwan,
2014). Among the existing nonlinear time series analysis approaches based on the evaluation of such recur-
rences, recurrence quantification analysis (RQA; Marwan et al., 2007) and recurrence network analysis (RNA;
Donner et al., 2011) have already proven their potential for tracing time-varying dynamical complexity in a
wide variety of different fields (Bastos & Caiado, 2011; Donges, Donner, Rehfeld, et al., 2011; Donges, Donner,
Trauth, et al., 2011; Schinkel et al., 2009; Zbilut et al., 2002). In particular, a vast amount of publications has pro-
vided ample evidence that recurrence-based characteristics are well suited for quantitatively characterizing
different expressions of chaotic dynamics, as well as transitions between regular and chaotic motion (Marwan
et al., 2007; Webber Jr. & Marwan, 2014, and references therein).
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In this work, we apply RQA and RNA to trace dynamical complexity variations in the Earth’s magnetic field
that have distinct signatures in geomagnetic activity indices. We start by investigating hourly recordings of
the disturbance storm time (Dst) index, one of the most intensively studied indicators for magnetospheric
variability on timescales between hours and weeks (which integrates over any higher-frequency magnetic
field fluctuations and is therefore less prone to exhibit bursty short-term dynamics than other conceptually
related geomagnetic indices like Sym-H; Wanliss & Showalter, 2006). Specifically, the Dst index is defined as
the average change of the horizontal component of the Earth’s magnetic field recorded at four low-latitude
magnetic observatories and therefore provides an integral picture of the overall state of the magnetosphere.
Dst alone cannot represent the full complexity associated with geomagnetic storms (i.e., phenomena with
very specific electromagnetic and particle signatures in different regions of the inner magnetosphere—from
ionospheric to thermospheric disturbances to the dynamics of particle populations in radiation belts, which
can be directly observed by in situ measurements like those provided by the Van Allen probes; Fox & Burch,
2014) and thus cannot be used as an appropriate indicator of all magnetic storms (Borovksy & Shprits, 2017).
Its continuous availability, however, makes it a useful proxy for studying long-term variations of the Earth’s
magnetosphere.

Notably, the geomagnetic field component represented by the Dst index is determined by both solar wind
forcing and internal magnetospheric processes. By comparing temporal changes in the dynamical complexity
of Dst index fluctuations with those of variables associated with the driving processes, in this work we pro-
vide a possible strategy to disentangle the dynamical signatures originating from internal magnetospheric
complexity from the additional complexity enforced by the solar wind. This is performed at timescales that
are typical for geomagnetic storms, that is, from 1 hr to a few days. Specifically, we present the results of
recurrence analysis for time variations of the VBSouth electric field component acting as a coupling function
between external (solar wind) and geomagnetic field, as well as for the vertical component of the interplan-
etary magnetic field (IMF) Bz and the solar wind dynamic pressure Pdyn. While the relationship of VBSouth and
Bz with Dst as a proxy of the Earth’s magnetic field is easy to understand, an intensification of the solar wind
Pdyn can significantly compress the Earth’s magnetosphere and thus lead to global changes in the magne-
tospheric and ionospheric currents. Furthermore, Shi et al. (2006) concluded that pressure enhancements
also cause further intensification of the storm time preexisting partial ring current, provided that the IMF Bz

component has been southward for a while before the onset of the pressure enhancements. In this regard,
anomalies in the dynamical behavior of Pdyn can be crucial for the development of intense magnetic storms.
Taken together, the recurrence analysis of all four variables together potentially allows us to differentiate the
level of magnetospheric variability due to solar wind forcing alone from the level of magnetospheric vari-
ability imposed both from external driving and internal magnetospheric processes. By means of recurrence
analysis, we resolve subtle aspects of magnetospheric dynamics resulting from potentially nonlinear interac-
tions between subsystems (Tsurutani et al., 1990; Valdivia et al., 1996), which have been hidden to previously
employed methods. The properties explored here have not yet been captured by any other linear or nonlinear
method of time series analysis previously applied for studying these four specific variables.

This paper is structured as follows: in section 2, we describe in detail the observational data used in this study,
while the recurrence analysis methods employed to trace different aspects of the time-dependent dynamical
complexity of the coupled solar wind-magnetosphere system are discussed in section 3. The resulting mean
dynamical complexity and its associated temporal variability as revealed by different recurrence-based mea-
sures for the Dst index and solar wind parameters are detailed in section 4, while implications of our results
are addressed in section 5. A summary of our main findings is provided in the concluding section 6.

2. Description of the Data

In this work, we study the dynamical complexity variations of the hourly Dst index together with three key vari-
ables of the solar wind: the VBSouth component of the electric field, the Bz magnetic field component, and the
dynamic pressure Pdyn. The Dst index measurements have been obtained from the World Data Center for Geo-
magnetism of the Kyoto University at http://wdc.kugi.kyoto-u.ac.jp/index.html, whereas the interplanetary
data have been retrieved through the National Aeronautics and Space Administration space physics data facil-
ity OMNIWeb at http://omniweb.gsfc.nasa.gov/. While the corresponding analysis for the Dst index has already
been largely provided and discussed elsewhere (Donner et al., 2018), we focus in this work on the intercompar-
ison with the complexity variations of the different potential input variables associated with the solar wind. In
this context, it is notable that there exist different versions of the Dst time series. While the one used by Donner
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Figure 1. Time series of four variables characterizing the states of the Earth’s magnetosphere and the solar wind: (a) Dst
index, (b) VBSouth, (c) Bz , and (d) Pdyn. All data have hourly time resolution and cover the period from 1 January 2001 to
31 December 2001. Gray-shaded areas indicate two periods (Julian days 65–110 and 285–330 of the year 2001)
characterized by intense magnetic storm activity, whereas the other intervals are considered as periods of relative
magnetospheric quiescence. The horizontal line in the upper panel corresponds to a value of Dst = −50 nT, which is
commonly considered as a threshold for defining a magnetic storm.

et al. (2018) and also throughout this paper has been recently reported to exhibit some bias (Love & Gannon,
2009), an alternative data set provided by the U.S. Geological Survey (https://geomag.usgs.gov/plots/dst.php)
did not lead to markedly different results (for details, see the supporting information accompanying this paper,
Figure S2). In the case of Pdyn a few missing values in the considered time series have been filled by employing
a gap filling procedure based on singular spectrum analysis (von Buttlar et al., 2014; Kondrashov & Ghil, 2006).
This approach provides reasonable results as long as existing gaps in the data are sufficiently sparse and short.

As a period of interest, we focus on 1 year of observations during this solar activity maximum from 1 January
2001 to 31 December 2001 (corresponding results for another year of data—2003—can be found in the sup-
porting information, Figures S3–S6). This period belongs to a prolonged activity maximum between 2000 and
2003 associated with the solar cycle 23 (May 1996 to January 2008), which was characterized by numerous
strong solar eruptions followed by enhanced Earth’s magnetospheric activity. As it can be seen from Figure 1,
the year 2001 has been of particular interest in the context of the present analysis, because it exhibited two
unusually large CMEs on 29 March 2001 and 4 November 2001 that were followed by intense magnetic storms
on 31 March 2001 and 6 November 2001, when the Dst index reached minimum values of −387 and −292 nT,
respectively. These two magnetic storms marked the respective peaks of two time periods of intense mag-
netospheric disturbances that were separated by a phase of relatively low geomagnetic activity. Note that in
general, a seasonal variation observed in the geomagnetic activity under extreme solar wind conditions dur-
ing the solar cycle maximum can be explained by the Russell-McPherron effect (Russell & McPherron, 1973;
Zhao & Zong, 2012): Geomagnetic activity is much more intense around the spring equinox (when the IMF is
directed toward the Sun) and around the fall equinox (when the direction of IMF points away of the Sun) than
during the rest of the year.
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According to the overall mean state of the coupled solar wind-magnetosphere system during time intervals of
the order of weeks, previous work has identified five distinct segments in these time series data based on the
general geomagnetic activity level together with various associated dynamical characteristics (Balasis et al.,
2006, 2008, 2009; Balasis, Daglis, Papadimitriou, et al., 2011; Donner & Balasis, 2013). The second and fourth
segments (gray-shaded areas in Figure 1) have been characterized by enhanced solar and magnetospheric
activity and include the two aforementioned intense magnetic storms of March and November 2001. The
remaining three time intervals correspond to a rather quiescent Earth magnetosphere.

More specifically, the aforementioned studies—mostly focusing on the Dst index alone—have shown that
the variability of the Earth’s magnetosphere during these periods of geomagnetic activity and quiescence
was characterized by two distinct patterns of dynamical organization in the Dst index: (i) periods with intense
magnetic storms exhibit a markedly elevated degree of organization, representative of states of a “disturbed”
magnetosphere and (ii) typical nonstorm periods, when the magnetosphere remained at “normal” states,
with a lower degree of organization. It should be noted that this differentiation between distinct magneto-
spheric states has been based on the persistent versus antipersistent character of the Dst index fluctuations
(Balasis et al., 2006) rather than the actual hourly Dst index values recorded within periods of different levels
of geomagnetic activity.

3. Recurrence Analysis

The nonlinear time series analysis methods employed in this study make use of the concept of phase space, an
abstract metric space in which each possible system state is represented as a unique point. For deterministic
dynamical systems, the state vectors at each point in time are fully determined by a minimal set of variables
that govern the system’s dynamical equations of motion (which are commonly not explicitly known).

3.1. Phase Space Reconstruction by Time Delay Embedding
In the case of univariate time series {x(ti)}

N
i=1 —presumably originating from a dissipative and (at least

partially) deterministic dynamical system, as implicitly considered in the present work—only one possible
coordinate of the phase space is known explicitly. In such a case, phase space reconstruction by means of time
delay embedding (Mañé, 1981; Packard et al., 1980; Takens, 1981) provides a widely applicable approach to
qualitatively estimate the action of unobserved variables. A multivariate representation X(t) in a new space,
known as the reconstructed phase space or embedding space, is obtained from time-shifted replications of
the original data:

X(t) = (x(t), x(t − 𝜏), x(t − 2𝜏),… , x(t − (m − 1)𝜏)), (1)

where the different coordinates of the reconstructed state vector X(t) need to be sufficiently independent of
each other (e.g., linearly decorrelated). Accordingly, in order to properly select the embedding delay 𝜏 , esti-
mates of the decorrelation time can be used. As it is discussed in full detail in the supporting information (Text
S1 and Figure S1), in what follows we will use 𝜏 = 100 hr for Dst (consistent with the results of Donner et al.,
2018) and 𝜏 = 24 hr for the other three variables. Note that durations of severe magnetic storms or corre-
sponding anomalies in the solar wind can markedly exceed the selected embedding delay, which can make
the different components of the embedding vector (1) become insufficiently decorrelated. However, since
such events are exceptional and “normal” (quickly decaying) dynamics is rather the rule, the possible error
made by this setting is within tolerable limits. In general, as it is further discussed in the supporting informa-
tion Text S1, we argue that the corresponding choices do not contradict results of other studies highlighting
the presence of different characteristic timescales of relevant correlations in different variables or associated
with different overall conditions (e.g., Borovsky, 2012; Johnson & Wing, 2005; Mourenas et al., 2018; Owens
et al., 2017).

For the embedding dimension m, we use m = 3 for all four variables as a trade-off between the possibly
larger dimensionality of the observed fluctuations and the increased requirements for the length of the time
series that needs to be considered when operating in higher embedding dimensions. Note that the latter
are incompatible with the demand for the highest possible temporal resolution when studying dynamical
complexity within running windows in time (see below for details).

3.2. Recurrence Plots
Recurrence plots allow us to visualize the timing of observations of dynamically similar states of a system
based on their mutual closeness in phase space (Eckmann et al., 1987; Marwan et al., 2007). In the case of the
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coupled solar wind-magnetosphere system, we use the embedded time series {X(ti)}N
i=1 as described above

to define a binary recurrence matrix as

Rij(𝜀) = Θ(𝜀 − ‖X(ti) − X(tj)‖), (2)

where Θ(⋅) denotes the Heaviside function, 𝜀 the threshold distance used to define whether or not two
embedded state vectors are close to each other, and‖⋅‖ some norm in the phase space. In our case, we use the
maximum norm, also known as L∞ or Chebyshev norm, which is defined as ‖D‖∞ = maxk D(k) with D(k) being
the kth component of the vector D. The graphical visualization of this matrix is known as the recurrence plot.

Different from the three solar wind-related variables, the Dst index is provided in discretized form, that is,
it takes only integer values, which would cause problems when evaluating the recurrence matrix with 𝜀

chosen such that a dedicated recurrence rate RR (i.e., the fraction of pairs of state vectors that are consid-
ered to be mutually close) is obtained. Specifically, since Dst is discrete, all possible distances between the
three-dimensional embedding vectors constructed from Dst will be discrete, too. As a result, there may be
a finite range of values of 𝜀, say, [𝜀−, 𝜀c), resulting in a constant recurrence rate RR− that is smaller than the
desired value RR∗, while there may be another finite range [𝜀c, 𝜀+) for which the observed recurrence rate RR+
is larger than RR∗. In other words, as we vary 𝜀 gradually, the recurrence rate RR commonly changes discontin-
uously and possibly never takes the desired value. In order to avoid this effect, we add artificial Gaussian white
noise with a standard deviation of 10−5 times the respective standard deviation to all considered time series,
which makes Dst a continuous variable. Note that this addition of noise is not intended to represent the effect
of the original discretization of Dst and would also work for other symmetric distributions of the noise with
zero mean. Different realizations of this noise have been found to have only negligible effects on the results
described in the remainder of this paper (not shown). Note that the actual variance of the artificial noise will
not affect the obtained results as long as it is small compared to the intrinsic discretization step of Dst.

In the following, we will exclusively consider the case of RR = 0.05, which has been found to be a reasonable
value for recurrence analysis in many examples of geoscientific time series (Donges, Donner, Trauth, et al.,
2011; Donges, Heitzig, et al., 2015).

We emphasize that recurrence plots have already been used in the context of geomagnetic activity indices
as well as related observables by (Dendy & Chapman, 2006; Ponyavin, 2004; March et al., 2005a; Oludehinwa
et al., 2018; Unnikrishnan, 2010), however, mostly for visualization purposes. March et al. (2005b) used two
index time series as examples to illustrate how to infer time-localized information on the mutual informa-
tion from time series. Recently, Mendes et al. (2017) presented a first study aiming at obtaining quantitative
information on high-intensity and long-duration continuous auroral activity from recurrence plots. In turn,
regarding different solar activity indicators, a number of studies have utilized recurrence plots to characterize
the underlying nonlinear dynamics (see Donner, 2008; Stangalini et al., 2017, and references therein).

3.3. RQA and RNA
Beyond simple visual inspection of the recurrence matrix with the associated recurrence plots, a multitude of
quantitative measures based on the pattern of recurrences can be used to reveal different aspects of a system’s
underlying dynamical complexity. In this study, we employ three selected measures that have been found
particularly suitable for this purpose when they were applied to time series from different fields of sciences
(see Donner et al., 2018, for further details on their applications to the Dst index):

1. In a recurrence plot, noninterrupted diagonal line structures formed by recurrent pairs of state vectors indi-
cate that similar states tend to evolve similarly over a certain period of time. This property is captured by
the mean diagonal line length that can also be interpreted as a measure of predictability (Zbilut & Webber,
1992; Webber Jr. & Zbilut, 1994). In the case of white noise or other short-term correlated stochastic pro-
cesses, diagonals only occur by chance and are most commonly short in length (Marwan et al., 2007). To
distinguish between deterministic and stochastic dynamics, one can thus consider the so-called degree of
determinism

DET =

dmax∑
d=dmin

d p(d)

dmax∑
d=1

d p(d)
(3)

as one of the most standard RQA measures, where d denotes the length of a diagonal line, p(d) is the asso-
ciated probability density function, dmax is the length of the longest diagonal (except for the main diagonal
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in the plot), and dmin ≥ 2 (we use dmin = 2 in this study to cover also cases where the maximum line length
is relatively small). DET gives the fraction of recurrences confined in diagonal structures and as such pro-
vides a heuristic measure that takes values close to one in the case of deterministic (predictable) dynamics
but lower values for stochastic (less predictable) behavior. However, note that values of DET alone do not
allow for identifying a possibly deterministic nature of a signal.

2. In a similar way as diagonal line structures, noninterrupted vertical line structures formed by recurrent state
pairs in a recurrence plot indicate that a system’s state changes slowly with time (Marwan et al., 2002). With
p(v) being the probability density function of the vertical line length v, one convenient measure to quantify
this aspect is the trapping time

TT =

vmax∑
v=vmin

v p(v)

vmax∑
v=vmin

p(v)
. (4)

Low TT values generally indicate fast changes of the system’s state, whereas high values correspond to slow
changes. Unlike DET , TT is not normalized and can take any nonnegative value between 0 (when there are
no vertical structures in the recurrence plot) and the length N of the considered time series (constant time
series). Consistent with DET , we will consider a minimum line length of vmin = 2 in this study. In general,
the use of (diagonal and vertical) line-based recurrence measures is referred to as RQA (Marwan et al., 2007;
Webber Jr. & Marwan, 2014).

3. Making use of the formal equivalence between the binary recurrence matrix Rij(𝜀) and the adjacency matrix
Aij(𝜀) = Rij(𝜀) − 𝛿ij (with 𝛿ij being the Kronecker delta) of an undirected and unweighted network, it is
possible to exploit the toolbox of complex network analysis to characterize different geometric properties
of the system’s organization in phase space (Donner, Small, et al., 2011; Donner et al., 2010; Marwan et al.,
2009). In recent applications of RNA to artificial as well as real-world time series from various fields (Donges,
Donner, et al., 2015; Donges, Donner, Rehfeld, et al., 2011; Donges, Donner, Trauth, et al., 2011; Marwan
et al., 2009; Zou et al., 2010), it has been found that the recurrence network transitivity

 =

∑
i,j,k

AijAikAjk

∑
i,j,k

AijAik

(5)

provides a particularly useful measure for discriminating between qualitatively different types of dynamics.
Specifically, this measure is closely related with the effective degrees of freedom of the system’s dynamics
and can be used to obtain an easily calculable generalization of a fractal dimension (Donner et al., 2011;
Donges et al., 2012). Specifically, high (low) transitivity values indicate a low (high) dimensionality of the
observed dynamics.

In addition to the aforementioned three recurrence measures, both RQA and RNA provide a variety of further
characteristics that can be used for tracing different aspects of the dynamical complexity of the system under
study. Here we focus on just these three specific characteristics that have been demonstrated to be particularly
useful in previous applications to different geoscientific time series (Donges, Donner, Rehfeld, et al., 2011;
Donges, Donner, Trauth, et al., 2011).

3.4. Sliding Windows Analysis
In order to trace temporal changes in the dynamical complexity of the Earth’s magnetosphere coupled to
the solar wind, we do not solely attempt a global characterization of the system’s state but consider sliding
windows in time. For this purpose, we construct recurrence plots of all four variables of interest with a fixed
recurrence rate RR = 0.05 and windows with a width of w = 168 hr (7 days, covering the typical durations of
geospace storms) and a mutual offset of Δw = 1 hr. By conserving the recurrence rate RR = 0.05, we ensure
that the results obtained for all four variables and three recurrence measures are quantitatively comparable
over time.

As a reference time coordinate, we choose the second embedding coordinate, implying that information
from past and future conditions is considered in a balanced way in the different recurrence characteristics
(Donner et al., 2018). While such an approach is not particularly suited to the search for possible precursory
structures in solar wind parameters and geomagnetic activity indices related to the initiation phase of mag-
netic storms, it allows the best possible differentiation between the dynamical characteristics of storm and
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Figure 2. Recurrence plots for the time series of (A) the geomagnetic activity index Dst and the solar wind parameters
(B) VBsouth , (C) Bz and (D) Pdyn (see also Figure 1), obtained with a global recurrence rate of RR = 0.05. Gray shaded areas
indicate the two time intervals considered as storm periods, whereas the time intervals in between are considered as
epochs of quiescence (see section 2 for details).

nonstorm periods (Donner et al., 2018). It should also be noted that due to the finite embedding delay 𝜏 , all
running windows effectively include information from time intervals [tc−w∕2−𝜏, tc+w∕2+𝜏], with tc denoting
the window midpoint. In other words, the effective time window of data utilized by our analysis has a width
of w + 2𝜏 , which is considerably larger than w, especially in the case of the Dst index (𝜏 = 100 hr). This detail
needs to be kept in mind when interpreting the results of our recurrence analysis, as well as when employing
the proposed analysis approach to identify dynamical structures in the solar wind corresponding to possi-
ble precursory phenomena of magnetic storms. Specifically, considering such relatively large window sizes
is necessary to obtain reliable statistics but may at the same time lead to a mixing of information from quite
different dynamical regimes, since they clearly exceed the common duration of individual magnetic storms.

The aforementioned considerations imply that we employ sliding windows over the three-dimensional state
vectors of the reconstructed phase spaces of all four variables of interest instead of the original univariate
time series. Thereby, we explicitly disregard the time dependence of the temporal correlation structure of
the variables of interest during different overall conditions of the system (which are particularly well known
for the Dst index; Balasis et al., 2006; Donner & Balasis, 2013) that might otherwise require using different
embedding parameters (𝜏,m) for different time windows. In turn, choosing the latter parameters adaptively
for each window would, on the one hand, require much larger windows than the chosen width w and, on the
other hand, hamper the comparability of dynamical characteristics obtained for different windows due to the
different timescales covered by the respective embeddings.

4. Results
4.1. Recurrence Plots of All Variables
Figure 2 shows the recurrence plots for the full 1-year time series of the Dst index and the three solar wind
parameters analyzed in this work. We find that the global patterns exhibited by these plots markedly differ
among the four studied variables. Notably, there is no clear distinction between storm and nonstorm periods
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as one could have expected since the magnitude range of fluctuations of the Dst index, but also the three solar
wind variables, is much larger during storm periods, so that such high-amplitude variations should not find
many recurrences within the considered time series interval. The reason why this does not have any remark-
able effect here is the relatively short duration of individual storms and solar wind disruptions, respectively,
as compared to the time interval covered by each individual state vector after time delay embedding (see
above). Accordingly, even during storm periods, we have only few embedded data points that differ markedly
from the distribution observed for periods of magnetospheric quiescence.

Regarding the qualitatively different structures in the obtained recurrence plots, we recall that the magneto-
sphere acts as a nonlinear filter to the temporal variations in the solar wind forcing, which can lead to similar
magnetospheric dynamics during storm periods (as illustrated by similar Dst values during the two consid-
ered time windows with intense magnetic storms) even though the dynamical characteristics of the input
variables (solar wind) can be distinctively different, as suggested by the recurrence plot for VBSouth. Even more,
the temporal recurrence patterns of solar wind variables (input) and Dst index (output) can be qualitatively
different (see below). This finding is compatible with the hypothesis that during phases of an externally per-
turbed magnetosphere, additional internal processes are triggered and take place in the magnetosphere that
lead to different dynamical complexity levels in input and output variables.

The qualitatively different appearance of the recurrence plots of the three considered quantities could serve
as a starting point for additional quantitative characterizations of these global recurrence plots, including
the distribution of durations of laminar phases or the properties of curved line segments, which resemble
recurrence patterns known from Brownian motion. To this end, we leave corresponding in-depth analyses
as a subject of future work while resorting next to the time-dependent recurrence properties obtained from
sliding windows in time.

4.2. Time Dependence of Recurrence Characteristics
The results of our recurrence analysis for sliding windows in time are presented in Figure 3. We clearly rec-
ognize that as expected from the qualitative recurrence plot characterization above, all three recurrence
measures (DET , TT , and  ) exhibit marked variations with time, which are interpreted as changes in the
dynamical complexity of different components of the coupled solar wind-magnetosphere system. Since both
the solar wind and the magnetosphere exhibit strong fluctuations on a wide variety of timescales, there is no
distinct baseline state for neither of the recurrence measures considered. Instead, they display variations on
different timescales. In the following, we will discuss in some more detail (i) what information can be obtained
from the typical ranges that the values of each recurrence measure take during the specific 1 year of obser-
vations and (ii) how the respective recurrence characteristics differ between storm and quiescence periods as
well as between the two studied storm periods.

4.3. Typical Complexity Levels for All Variables
As a first step toward a more detailed interpretation of our recurrence analysis results, we compare the ranges
of values that all three considered recurrence measures take for the four variables of interest. Here we aim to
characterize the typical complexity levels of the latter from different perspectives.

Regarding DET , Figure 3 demonstrates that for the Dst index, the estimated values range from about 0.53
to 0.91 and maxima appear during storm periods. These relatively high values indicate a moderate level of
statistical predictability of the Dst index variations. In other words, if the temporal evolution of Dst index fluc-
tuations in the past is known, it is possible to anticipate at least short-term trends in future variations for similar
starting conditions—a feature that is expressed in terms of diagonal line structures in the recurrence plot.
Specifically, long diagonal line structures indicate that two segments of the (embedded) time series behave
dynamically similar over a certain period of time (Marwan et al., 2007), which is essentially the definition of sta-
tistical predictability and the foundation of model-free forecasting based on dynamical analogs. Notably, the
longer the diagonal lines, the larger the corresponding prediction horizon. Similar DET values are observed
for Pdyn (with however much larger variance), whereas the two other solar wind parameters VBSouth and Bz

exhibit distinctively lower values with the calculated mean over all windows being approximately 0.3. This last
observation suggests that (irregular) high-frequency variability is more pronounced in these two solar wind
variables than in Pdyn and the Dst index. This finding is consistent with the fact that the power spectral scaling
exponent for the Dst index can take values both above 2 (during storm periods, indicating persistent behavior)
and below 2 (during periods of quiescence, indicating antipersistent dynamics), whereas it has been found to
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Figure 3. Temporal variations of the four variables of interest along with the recurrence characteristics DET , TT , and 

(from top to bottom) calculated over sliding windows with a width w of 168 hr (1 week). (left to right) Geomagnetic
activity index Dst and solar wind parameters VBSouth, Bz , and Pdyn. Gray-shaded areas indicate the two time intervals
considered as storm periods, whereas the time intervals in between are considered as epochs of quiescence (see
section 2 for details).

always stay below 2 for VBSouth even during periods of intense geomagnetic activity triggered by enhanced
solar activity (Balasis et al., 2006).

The trapping time TT of the Dst index variations takes a wide range of window-wise values between 3.0 and
6.8, with maximum values clearly coinciding with storm periods. For Pdyn, the obtained values of TT cover an
even slightly larger range. For the two other solar wind variables (VBSouth and Bz), both the minimum and max-
imum values of TT are clearly smaller than for Dst and Pdyn, indicating again more (irregular) high-frequency
variability and the absence of time periods during which the respective observable varies only weakly. This
general distinction between the TT ranges for the Dst index and Pdyn versus VBSouth and Bz is in agreement
with the findings reported above for DET , indicating that the observed differences in the two RQA measures
reflect dissimilar short-term fluctuations of the individual observables.

Finally,  provides a measure for the dimensionality of the time series (Donner et al., 2011; i.e., the redundan-
cies among components of the embedding vectors). Notably, for VBSouth, we observe numerous time intervals
with  approaching this measure’s limit value of 1 (indicating a zero-dimensional object in the underlying
dynamical system’s phase space, i.e., a fixed point). Because of this very specific behavior, we will not use  for
further interpretation of the VBSouth records. In turn, the variability of  for Dst and the two other solar wind
variables exhibits better interpretable features. Specifically, the Dst index and Pdyn have larger average values
of  than Bz , indicating again the presence of lower-dimensional dynamical structures, while Bz appears to be
“more stochastic.” In general, Pdyn shows the largest overall values of  (with the exception of VBSouth with its
distinct behavior as described above) during a few distinct time intervals corresponding to both storm and
nonstorm periods. We observe that these periods correspond to situations where Pdyn drops and remains at
relatively low values for a certain period of time (see also Figure 1). This is consistent with the temporal profile
of  previously observed for other geoscientific data sets (Donges, Donner, Trauth, et al., 2011) of fluctuations
in comparison with the “typical” values.

4.4. Differences Between Storm and Nonstorm Periods
For the Dst index, the three considered recurrence measures clearly differentiate between storm and non-
storm periods. In particular, DET , TT , and  reach higher values during periods of increased geomagnetic
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Figure 4. Probability density functions of the four considered magnetospheric and solar wind variables (from top to
bottom: Dst index, VBSouth, Bz , and Pdyn) and their associated recurrence characteristics (from left to right: window-wise
mean value of each variable, DET , TT , and  ). Different line styles correspond to the three quiescence periods (solid),
first storm period (spring 2001, dashed) and second storm period (fall 2001, dotted) as explained in the text.

activity than in periods of quiescence. This finding is in agreement with the general observation that during
periods of enhanced geomagnetic activity, the magnetosphere exhibits a larger degree of dynamical organi-
zation, which is also reflected in longer timescales of variability becoming more relevant (e.g., the initiation
and recovery phases for sequences of magnetic storms). As mentioned above, it has been demonstrated
previously that this behavior is expressed in terms of persistent dynamics, reduced dynamical disorder char-
acterized by lower values of several entropy measures, and stronger autocorrelations (Balasis et al., 2006,
2008, 2009, 2013; Balasis, Daglis, Papadimitriou, et al., 2011; Balasis, Daglis, Anastasiadis, et al., 2011; Donner
& Balasis, 2013). Mourenas et al. (2018) recently reported a stronger organization of the magnetosphere and
persistent cumulative effects over days during extreme time-integrated Dst events, which appears compatible
with the observations of this as well as the aforementioned studies. In particular, Figure 4 (first row) demon-
strates that the distributions of values of DET , TT , and  differ from each other during storm and nonstorm
periods. As can be inferred from Figure 3 (first column), this difference visually appears most pronounced
for TT . Note that while the difference in the distribution of recurrence characteristics is in most cases appar-
ent from visual inspection, appropriate statistical testing against the null hypothesis of identical distributions
(e.g., using Kolmogorov-Smirnov or similar statistics) is not straightforward since due to the strong overlap
between successive time windows, the different values exhibit strong serial correlations and, thus, violate the
common independence condition.
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In turn, regarding the three solar wind observables, we find no similarly clear difference between the recur-
rence characteristics observed during storm and nonstorm periods (Figure 4, second to fourth rows). In
general, the three considered measures cover similar ranges of values during periods of increased geo-
magnetic activity and quiescence; however, all three recurrence characteristics for Bz differ in the maximum
values reached during storm periods. A similar conclusion cannot be drawn for VBSouth and Pdyn, where
we observe an absence of marked differences in the recurrence characteristics during storm versus quies-
cence phases of magnetospheric dynamics. This points to a nonlinear and highly context-specific response
of the magnetosphere to temporal changes in the dynamical characteristics of the solar wind variables,
where similar dynamical complexity in the interplanetary medium may correspond to different overall condi-
tions resulting in different levels of magnetospheric activity. For instance, the interplanetary driving through
southward-oriented magnetic fields is not always by itself sufficient to drive magnetic storms, because it is
subject to modulation by internal magnetospheric conditions (Daglis et al., 2003).

Specifically, a fast moving magnetic cloud with organized internal magnetic field is expected to cause an
intense magnetic storm if it engulfs Earth, but this condition is not sufficient. A magnetic cloud (or, likewise,
a CME triggering a magnetic storm) should have a magnetic field with a significantly negative Bz component
for reconnection to occur at the dayside magnetopause. Vörös, Jankovičovà, et al. (2005) have shown that, in
addition to the geoeffective southward component of IMF, intermittency, small-scale rapid changes, singular-
ities and non-Gaussian statistics of IMF fluctuations play an important role in the solar wind-magnetosphere
interaction. Figure 3 shows that for Bz , DET and  exhibit a generally similar time evolution as the correspond-
ing recurrence characteristics for the Dst index (but at a clearly lower level of the respective measures). This
underlines that geomagnetic fluctuations at the typical timescales of geospace storms result from the simul-
taneous action of multiple magnetospheric processes, including the component represented by intermittent
solar wind fluctuations.

Generally, CMEs behave as nonlinearly interacting dynamical systems characterized by the presence of
large-scale coherent structures of different sizes that decrease the degree of multifractality in the IMF’s Bz

component because they privilege only a few scales (Bolzan & Rosa, 2012). After the passage of a CME, an
increase in the complexity is necessary to promote the dissipation of energy. However, some CMEs, like the
first event in March 2001 studied in this work, are characterized by slow solar wind (approximately 550 km/s),
which is more intermittent than fast solar wind and contributes to the intermittency of the interplanetary
medium (Bruno et al., 2003). This is reflected in the lower maximum values of the three recurrence measures
during this specific time period as compared to the second event in November 2001. However, even in the
case of fast solar wind, intermittency increases with the heliocentric distance until it reaches the Earth’s orbit,
and IMF fluctuations tend to be more intermittent than velocity fluctuations (Bruno et al., 2003).

In turn, fluctuations of the interplanetary electric field as reflected by VBSouth are considered responsible for
initiating magnetospheric substorms, while its quasi-steady component plays the central role in the enhance-
ment of the ring current that is monitored by the Dst index (Kamide, 2001). This is also corroborated by
previous findings of Balasis et al. (2006), who have observed this behavior in geomagnetic time series where
the degree of dynamical complexity of the Dst index is reduced in the presence of powerful oscillations. The
lack of similarity between the recurrence characteristics of VBSouth and the Dst index in Figure 3 also suggests
that only a part of the Dst index variation can be explained as a direct response to VBSouth. In the past, Price
and Prichard (1993) focused on an interval when the IMF had a nearly constant Bz component to be able
to find some evidence for a deterministic nonlinear coupling between the solar wind forcing, expressed by
the VBSouth electric field component, and the terrestrial magnetosphere. Besides the IMF and electric fields, a
whole set of variables, including solar wind velocity, density, Pdyn, and plasma 𝛽 , affect to different degrees the
energy input to the magnetosphere. This is reflected by the recurrence-based characteristics of the selected
solar wind parameters considered in this study.

4.5. Differences between the Two Storm Periods
The magnetic storms of 31 March and 6 November 2001 were among the 11 superintense storms (Dst ≤

−250 nT) that occurred during solar cycle 23 (Echer et al., 2008). The first event was caused by a combination
of sheath and magnetic cloud fields, while the second one by sheath fields alone (Echer et al., 2008). This is
reflected in the TT values of the solar wind variables and in the response of the magnetosphere as expressed
by the Dst index.
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In the gray-shaded area of Figure 3 that is related to the second magnetic storm period, TT exhibits a pro-
nounced maximum for both solar wind parameters Bz and Pdyn, while there are no peaks of similar magnitude
during the first magnetic storm period. Specifically, the peak values of all three recurrence measures for Pdyn

are observed between days 285 and 332.5 of the year 2001, and their timing of occurrence corresponds to
the onset phase of the 6 November 2001 magnetic storm. This finding is in accordance with Wang et al.
(2003), who argued that the ring current injection increases when the magnetosphere is compressed by a
particularly strong solar wind forcing and that the injection rate is proportional to Pdyn. We note that the Dst
variations of the 6 November 2001 magnetic storm were also found to obey a power law with log-periodic
oscillations (Balasis, Papadimitriou, et al., 2011), which is a sign for the emergence of discrete scale invariance
in the magnetosphere.

One possible interpretation of our results on the values of TT is as follows. During the first storm phase, VBSouth

and Bz exhibit faster variations (lower TT) than Dst and Pdyn that both show comparable maximum values
(around 6) reflecting similar timescales at which the two variables change. During the second storm phase,
we find a general tendency toward higher TT values than during the first storm phase (and, hence, slower
changes) for all three solar wind variables. In order to explain this observation, we suggest that in the first case,
the magnetosphere (and in particular the ring current) has absorbed or screened the faster changes of the
two solar wind variables VBSouth and Bz and follows more closely the (somewhat slower) variations of Pdyn. This
situation is compatible with the scenario proposed by Wang et al. (2003), who argued that the ring current
injection increases when the magnetosphere is more compressed by a particularly strong solar wind forcing
and that the injection rate is proportional to Pdyn. In contrast, during the second storm phase, the ring current
seems to have more closely followed the variations in VBSouth and Bz .

5. Discussion

Based on the results described in the previous section, we suggest that recurrence-based complexity mea-
sures have a great potential to trace temporal variations in the dynamical complexity of geomagnetic and
solar wind dynamics but also other nonstationary geophysical observables. In particular, the dynamical com-
plexity profile of magnetospheric fluctuations during storm and nonstorm conditions (which we have studied
in terms of DET , TT , and  , capturing the regularity of fluctuations in the Dst index from different perspec-
tives) is in good agreement with the existing body of literature on this subject (cf. Balasis et al., 2009), as will
be discussed in the following.

Consolini et al. (2008) investigated long-term variations in the dynamical state of the Earth’s magnetosphere
in terms of the Dst index. Their results clearly demonstrated the nonequilibrium nature of magnetospheric
dynamics. Specifically, the Earth’s magnetosphere behaves like expected for a system far from equilibrium
due to the continuous interaction with the time-dependent solar wind forcing. The presence of two differ-
ent dynamical regimes—near and away from a nonequilibrium stationary state—has been independently
confirmed by other studies. Specifically, Sitnov et al. (2001) provided evidence that substorms exhibit dynam-
ical characteristics that are typical for phase transitions. This picture is consistent with the findings of Balasis
et al. (2006) who reported the transition from antipersistent to persistent behavior when an intense magnetic
storm is imminent. Moreover, the metastability and topological complexity of the geomagnetic variations
established with the model of Chang (1999) are in good agreement with the transitions from the observed
prestorm activity to magnetic storms that have been found in our study. Chang et al. (2003, 2004) and Vörös,
Baumjohann, et al. (2005) provided indications for the presence of intermittent turbulence in space plas-
mas, which further supports our results. Furthermore, the statistical properties of magnetic fluctuations
in the Venusian magnetosphere determined by Vörös et al. (2008) point to multiscale turbulence at the
magnetosheath boundary layer and near the quasi-parallel bow shock.

In addition, a reduction of multiscale complexity was observed in the geomagnetic activity at high latitudes
before strong substorms. With the use of cellular automata models, Uritsky and Pudovkin (1998) and Uritsky
et al. (2001) demonstrated transitions between subcritical, critical, and supercritical states. A similar behavior
was found in the spatial scaling of the auroral brightness (Uritsky et al., 2006; Uritsky et al., 2008). The multiscale
complexity of geomagnetic substorms was explored in a series of studies (Chang, 1992; Consolini, 1997; Chap-
man et al., 1998; Klimas et al., 2000; Lui et al., 2000), while the first discussions on the critical nature (self orga-
nized criticality) of geomagnetic storms were initiated by Consolini (1997), Uritsky and Pudovkin (1998), and
Chapman et al. (1998). Wanliss et al. (2004) and Wanliss and Uritsky (2010) reported evidence for intermittency
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and non-Gaussianity associated with large magnetic storms using symbolic dynamics analysis of the Dst time
series. These findings strengthen the hypothesis of a constantly out-of-equilibrium ring current that under-
goes state changes in terms of multiplicative cascades. In general, the results obtained in this study further
support the existence of two distinct dynamical regimes of the magnetospheric variability corresponding to
storm and nonstorm conditions.

Attempts to determine the nonlinear properties of the magnetospheric system from just its response—no
matter how robust and complete the diagnostic means are—would not be meaningful without considering
the solar wind forcing. Following the observed power law behavior of the AE index and the southward com-
ponent of the IMF, the multiscale properties of magnetospheric dynamics have been interpreted in terms of
intermittent turbulence and self organized criticality (Consolini, 1997; Consolini et al., 1996; Chang, 1999). In
the seminal paper by Tsurutani et al. (1990), the magnetosphere was considered as an input-output system
to find a typical timescale of 5 hr allowing to disentangle the internal fast and bursty dynamics of the mag-
netosphere from the directly driven one. In this study, we analyzed the response of the magnetosphere as
expressed by the Dst index, while the solar wind input has been represented by the IMF’s Bz and the dawn-dusk
component of the electric field VBSouth together with Pdyn to provide evidence that (at least) a part of the Dst
index variations can be explained as a direct nonlinear response of the magnetosphere to the solar wind.

Several previous studies focused on the overall characteristics of fractal properties of (a) longer Dst time series
(e.g., 20 years of Dst data in Wei et al., 2004) or (b) solar wind data from 1 solar maximum year and 1 solar
minimum year (Hnat et al., 2007). In particular, Hnat et al. (2007) applied a novel sensitive discriminator of
fractality to the magnetic energy density time series from WIND and ACE, showing that at a year of solar
maximum activity (2000), the time series is found to be fractal, whereas there is a weak but clearly discernible
departure from fractality at solar minimum activity (1996). The difference with respect to the current study
is that while we have largely focused on specific intense magnetic storm events that occurred within a year
close to solar maximum (2001), we have analyzed both solar wind and Dst data. However, the interpretation of
our recurrence network transitivity as a generalized fractal dimension (Donner et al., 2011) may permit further
comparison between the respective results when operating with the same data and analysis protocol. In this
regard, we emphasize that Wei et al. (2004) had studied the exponent of the power spectral density, which
actually provides a measure of long-range dependence, which is often (but not necessarily always) closely
associated with a fractal scaling. More generally, it is important to note that fractal scaling and dynamical
complexity are commonly closely interrelated aspects of nonlinear dynamical systems. While we have focused
solely on the latter aspect as quantified by recurrence characteristics, combining these different aspects may
provide additional information that could be helpful for integration into future space weather applications. A
systematic assessment of the fractal or multifractal properties of is, however, beyond the topical focus of the
present work.

The consideration of multiple measures from RQA and RNA—all based on the same underlying struc-
ture of the corresponding recurrence plots but generally characterizing different aspects of dynamical
complexity—allowed us to distinguish periods of magnetic storms and quiescence based on the dynamical
complexity of Dst index and solar wind parameter fluctuations. The thus obtained results confirm previous
findings that the dynamical characteristics of magnetospheric activity are fundamentally different between
storm and nonstorm periods, while we have for the first time reported evidence that a corresponding distinc-
tion is not possible for the potential driving variables associated with characteristic observables of the solar
wind variability. In this regard, we have found considerable small-scale differences between the recurrence
plots of the Dst index and the three solar wind parameters, IMF Bz , VBSouth, and Pdyn. Moreover, the large-scale
structure of the recurrence plots is distinctively different for Dst and its potential drivers. In particular, the
recurrence characteristics for the IMF Bz exhibit rather distinct behaviors during the transition from periods of
relative quiescence to magnetic storms, which can be explained by the nonlinear response of the terrestrial
magnetosphere to the geoeffective southward component of the IMF as CMEs or magnetic clouds approach
the Earth’s neighborhood.

In the past, March et al. (2005a) employed recurrence plots to visualize nonlinear correlations between the AE
index and VBSouth times series. While they also observed many differences between the obtained recurrence
plots at small scales that were attributed to fast fluctuations, the overall large-scale structure displayed by
both variables was qualitatively similar. It seemed that the shared structure on the recurrence plots covering
periods of both high and low activities is the result of electric fields in the solar wind related to effects on
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Earth observed on a timescale of the order of hours. Even though our analysis has not yielded any discernible
change in the degree of determinism DET during magnetic storms for VBSouth time series, a multiple-measure
approach promises to provide interesting information from the study of the Earth’s magnetic field variations,
even below the general storm/quiescence variability. This perspective shall be further explored in future work,
thereby extending this study to other geomagnetic activity indices employed for tracing magnetospheric
phenomena like substorms.

Finally, we note that various methodologies have been applied in past studies to model the dynamics of the
Dst index (Boynton et al., 2011; Chandorkar et al., 2017; Valdivia et al., 1996; Vassiliadis et al., 1999). These
attempts have been mostly originating from machine learning approaches and usually employed solar wind
parameters and/or solar wind-magnetosphere coupling functions. These methods have been demonstrated
to exhibit high performance with respect to their forecasting ability of magnetic storms. In turn, the recurrence
measures applied in the present study clearly indicate different levels of stochasticity, complexity, and fractal
dimensionality between the quiet-time and storm-time magnetosphere. In this context, their added value is
that recurrences may be utilized to offer an alternative viewpoint on the space weather conditions and the
state of the solar wind-magnetosphere system, thereby providing complementary information beyond the
former well-established forecasting techniques. In our opinion, this is potentially relevant for future improved
models, since our results underline that (i) Dst variations during periods of magnetospheric activity and
quiescence fundamentally differ from each other and (ii) solar wind input signals with different complexity
signatures may lead to similar reactions of the magnetosphere. Taking these two observations together, it
is not unlike that a single empirical (data-driven) model cannot optimally describe and forecast variability
in both dynamical regimes, as well as corresponding transitions between both regimes. In turn, including a
priori knowledge on the existence of such two distinct regimes in creating some state-dependent empiri-
cal dynamical model could help greatly improving the skills of contemporary models. We therefore outline
further investigations along the aforementioned lines as a prospective field for future research.

6. Conclusions and Outlook

We have applied a set of three complementary recurrence-based measures to study the temporal changes
in dynamical complexity exhibited by the Dst index together with three characteristic variables of the solar
wind during 1 year of observations near a solar maximum. Our results demonstrate that in the case of Dst,
all three measures are able to trace variations associated with the time-dependent dynamical complexity of
magnetospheric variability during a succession of storm and nonstorm periods. Nonetheless, the measures
exhibit different degrees of sensitivity with respect to such changing conditions resulting from characteristic
phenomena like CMEs and magnetic clouds imprinted in the solar wind’s dynamical properties. Specifically,
the degree of determinism DET takes relatively large values for the Dst index, the IMF Bz , and the VBSouth during
storm time periods, but typically much lower values during periods of quiescence, indicating a more stochastic
behavior. Low values of the trapping time TT indicate fast changes of the system’s state, whereas high values
observed in the Dst index, the IMF Bz and Pdyn point toward slower changes, which are characteristic for a
decrease in the complexity of the solar wind driver of magnetospheric disturbances. The recurrence network
transitivity  can be used to define an easily calculable generalization of a fractal dimension and reaches
higher values (indicating lower dimensionality) for both the Dst index and Bz .

Our results, together with other recent findings characterizing the multifractality of the interplanetary plasma,
suggest that measures associated with recurrence plots provide valuable insights into the temporal structure
of solar wind measurements with geomagnetic effects observed through the Dst index. The recurrence-based
complexity measures employed here serve as tools to detect characteristic dynamical structures embedded
in the temporal variations of solar wind properties that may initiate intense magnetospheric events.

We emphasize that the quantitative differences in the considered measures applied to different variables are
clearly affected by the spectral properties of the respective time series. Specifically, for signals with a strong
high-frequency content and hardly any variability at lower frequencies, large-scale structures in the recurrence
plot are unlikely to emerge, and this would be reflected by relatively low values of our complexity measures.
In turn, signals with a low level of high-frequency variability are prone to highlight long-term changes, which
would result in large-scale recurrence patterns and, consequently, a higher probability of elevated values of
the three considered recurrence characteristics. Future work should address this aspect more explicitly, for
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example, by considering sophisticated filtering of the selected observables to retain only the variations below
a certain minimum frequency.

In this work, we have mostly focused on 1 year of continuous measurements of the variables of interest. In
this context, we have chosen the year 2001 for various reasons. On the one hand, it includes two of the most
intense magnetic storms of solar cycle 23 as well as several commonly observed (weaker) storm events along
with time intervals of (lower) background geomagnetic activity. On the other hand, it presents a well-studied
case using various time series analysis techniques and complexity measures (e.g., wavelet transforms, Hurst
exponent, and entropies). The goal of our study has been to provide an initial attempt to demonstrate the
applicability of recurrence measures to revealing various dynamical aspects (e.g., stochastic behavior and level
of complexity) hidden in the variability of the coupled solar wind-magnetosphere system. Follow-up work
will systematically expand the present study to one or more complete solar cycles in order to draw statisti-
cally more robust conclusions on the nonlinear variability of magnetospheric activity and the associated solar
wind driver.

Finally, it is arguable that solar wind forcing and possible magnetospheric response are characterized by dif-
ferent temporal variability scales, which have not yet been accounted for in our present analysis (in particular,
by keeping the embedding delay as a fundamental parameter of our analysis intentionally fixed at the same
value during storm time and quiescence periods). To shed further light on the relevance of different scales, it
might be advisable to disentangle variability at different scales (Alberti et al., 2017) and consider the dynami-
cal complexity associated with fluctuations at individual timescales (as seen by recurrence properties or other
nonlinear characteristics) independently. Even more, studying the possible transfer of information on the
fluctuation properties across different scales might provide another fruitful subject of future studies. In this
context, we note that the recurrence characteristics employed in the present work have not been selected
to unveil any cause-effect relationships. For the latter purpose, there exist further sophisticated approaches
based upon recurrence plots (e.g., based on conditional recurrence probabilities [Romano et al., 2007; Zou
et al., 2011] or intersystem recurrence networks [Feldhoff et al., 2012]) or related phase space-based tech-
niques like convergent cross-mapping (Sugihara et al., 2012). However, applying such approaches has been
clearly beyond the scope of the present work. An alternative approach to this problem has recently been made
in terms of causal inference methods based on information theory and graphical models (Runge et al., 2018).
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