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The Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset of the Agricultural Model 
Intercomparison and Improvement Project (AgMIP) provides an unprecedentedly large dataset of 
crop model simulations covering the global ice-free land surface. The dataset consists of annual data 
fields at a spatial resolution of 0.5 arc-degree longitude and latitude. Fourteen crop modeling groups 
provided output for up to 11 historical input datasets spanning 1901 to 2012, and for up to three 
different management harmonization levels. Each group submitted data for up to 15 different crops 
and for up to 14 output variables. All simulations were conducted for purely rainfed and near-perfectly 
irrigated conditions on all land areas irrespective of whether the crop or irrigation system is currently 
used there. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses 
and understanding of crop model performance, potential relationships between productivity and 
environmental impacts, and insights on how to further improve global gridded crop model frameworks. 
We describe dataset characteristics and individual model setup narratives.
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Background & Summary
Croplands cover about 11% of the total land area and are responsible for most of the 60% of anthropogenic 
nitrous oxide (N2O) emissions that are attributed to agriculture and 11% of the anthropogenic methane emissions 
from rice production1, summing up to 4.5% of the total anthropogenic greenhouse gas emissions2. Croplands 
are subject to climate change impacts3, land-use change4,5, climate mitigation strategies6,7, interact directly with 
the climate system8, consume large quantities of human freshwater withdrawals9 and are connected to various 
sustainable development goals10. Understanding and quantifying cropland dynamics is thus an integral research 
question for Earth System Science.

Future agricultural production faces several challenges that need to be understood in scope and implications: 
(1) growing and increasingly wealthier populations are projected to demand more and different compositions 
of food commodities11,12, (2) climate change impacts3,13 will require adaptation14–18, and (3) the environmental 
impact of agricultural production needs to be reduced, including pollution19,20, water consumption9, land con-
sumption21,22 and greenhouse gas emissions23–25. The potential to address these challenges is often explored with 
computer simulation models of agricultural productivity or outputs of such agricultural productivity models in 
combination with other models, e.g. economic models of the agricultural sector5 or hydrology models26.

AgMIP (Agricultural Model Intercomparison and Improvement Project, see Table 1 for a complete list of 
abbreviations) was initiated to help improving agricultural modeling capacities across scales and aspects (soils, 
different crops, economics etc.) by intercomparing models in simulation experiments using common protocols27. 
The general idea of AgMIP is that different modeling groups around the world can participate, contributing data 
to the ensemble dataset. Protocols are developed to clearly describe important aspects in the configuration of the 
modeling experiments and all prescribed inputs are supplied to interested modelers. AgMIP analyses typically 
start out by describing the range of model results and thus quantifying the uncertainty embedded in the choice of 
the crop model used and its parameterization. This source of uncertainty has previously not gained much atten-
tion. Different groups using the same model are explicitly invited to participate, which allows for analyzing how 
important modelers’ choices are28 beyond model configurations as specified in the protocol or where protocol 
instructions were not implemented correctly.

Data of the GGCMs provided by AgMIP27 in the framework of ISIMIP29 have been used to assess impacts 
of climate change3,30, study sources of uncertainties6,31 and have been used in combination with other data for 
cross-sectoral impact analyses26,32. The term “cross-sectoral” in the ISIMIP context refers to analyses using data 
from different impact categories, referred to as “sectors”. The data were also used for economic assessments of 
climate change impacts on agricultural production systems5,33–36. However, this first global-scale simulation 
ensemble of AgMIP that was conducted as part of the ISIMIP project3 revealed a broad range of GGCM results 
under different climate change scenarios and in response patterns6,31. This high level of uncertainty motivated the 
following GGCMI phase 1 to assess model performance and to identify general fields of model improvement. The 
protocol for GGCMI phase 137 thus designed a comprehensive modeling exercise aiming to understand GGCM 
skill in reproducing observed historic crop yield patterns in space and time. Besides inviting a broad group of 
modeling teams and models, the GGCMI phase 1 protocol also adds variants of management harmonization and 
weather input datasets. Different assumptions on growing seasons across GGCMs had rendered the initial GGCM 
simulations3 as difficult to compare. The broad availability of different historic weather data products, which also 
differ substantially in parts37, motivated the inclusion of different weather data products to address this source of 
uncertainty. A comprehensive initial model evaluation study based on the GGCMI phase 1 dataset38 showed that 
GGCMs typically have better skill than statistical models to explain observed crop yield variability but also have 
little explanatory power in regions where yield variability is mostly driven by changes in management or pest 
outbreaks, rather than weather variability. None of the GGCMs proved to be generally superior to the others but 
differences in model skill were reported38.The output data from this set of simulations are described here.

The GGCMI phase1 dataset provides an unprecedentedly large dataset of crop model simulations covering the 
global ice-free land surface. While the dataset has already served various analyses on crop yields38–41, there are still 
many aspects unexplored; variables apart from crop yields have hardly been assessed so far, with the exception of 
actual growing season evapotranspiration by Wartenburger, et al.42. The multi-dimensionality of the dataset (14 
GGCMs, 11 input datasets, 3 harmonization levels, 4 crops, 14 output variables, time, and space) allows for fur-
ther analyses and can also serve as an input to other models, the quantification of model uncertainties, and crop 
model emulation43,44. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses 
and understanding of crop model performance, potential relationships between productivity and environmental 
impacts (e.g. water, nutrients), and eventually insights on how to further improve global gridded crop model 
frameworks and configurations.

Methods
The GGCMI phase 1 dataset37 consists of the model output of 14 GGCMs (Table 2) for up to 11 weather datasets 
covering various time frames and up to 3 harmonization levels (default, fullharm, harmnon) for the 4 priority 
one (P1) crops (maize, wheat, rice, soybean), as well as for any number of additional crops (priority two, P2). Not 
all models have been able to simulate all P1 crops and a number of models provided several P2 crop simulations 
(see Table 3). The GGCMI phase 1 dataset has been compiled by 14 different crop modeling groups that have 
followed the protocol instructions37 to achieve as much consistency as possible. It has to be noted, however, that 
not everything was or could have been harmonized across models. The focus of harmonization was on weather 
datasets to drive the models and on a few core crop management settings: the growing period and fertilizer 
inputs. Many other aspects of crop management have not been specified by the protocol37. This is in part owing 
to the complexity of this task, as the models have very different capacities to represent management options and 
thus require different sets of parameters. As such, we acknowledge the importance of soil parameters for crop 
model simulations45 but were unable to harmonize on these here. However, the lack of harmonization in various 
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management and soil aspects can also be considered an asset of the analysis. For most regions in the world, the 
management systems are not documented and typically quite diverse so that the diversity of the assumptions 
made in the ensemble may better reflect this than a single harmonization target. Folberth et al.46 indeed show 
that assumptions made by the different EPIC modeling teams affect the models’ performances and sensitivities.

Modeling protocol.  The overall modeling protocol is described by Elliott, et al.37 and we provide here only 
a summary of the main features. Modelers were asked to supply a minimum set of simulations, but could include 
additional simulations, addressing different directions of analysis. Online-only Table 1 lists all inputs used by the 
modeling groups. Modelers were asked to provide data for all simulated crops for all grid cells, even if crops are 
not currently cultivated in these areas. For these non-cultivated areas, input data were provided, but simulations 
could be skipped if no plausible assumptions on growing seasons could be made for that location37. According to 

Abbreviation Explanation

AgCFSR Agriculture Climate Forecast System Reanalysis

AgMERRA Agriculture Modern-Era Retrospective Analysis for Research and Applications

AgMIP Agricultural Model Intercomparison and Improvement Project

AgroIBIS agricultural version of the Integrated Biosphere Simulator

APAR absorbed photosynthetically active radiation

CERES Crop Environment Resource Synthesis

CESM1 Community Earth System Model

CGMS European Crop Growth Monitoring System

CLM Community Land Model

CLM4CN model Community Land Model version 4.0 carbon nitrogen model

CROPGRO physiologically-based crop model

CRU Climate Research Unit

EPIC Environmental Policy Integrated Climate model

EPIC-BOKU EPIC model run by the University of Natural Resources and Life Sciences Vienna (BOKU)

EPIC-IIASA EPIC model run by the International Institute for Applied Systems Analysis

EPIC-TAMU EPIC model run by the Texas A&M University

FertiSTAT database for statistics on fertilizer use by crop

FPAR Fraction of Photosynthetically Active Radiation absorbed by the canopy

GEPIC Geographic Information Ssystem-based EPIC model

GGCMI Global Gridded Crop Model Intercomparison

GGCMs Global Gridded Crop Models

GPCC Global Precipitation Climatology Centre

GSWP3 Global Soil Wetness Project Phase 3

ISIMIP Inter-Sectoral Impact Model Intercomparison Project (www.isimip.org)

LAI Leaf-Area Index

LPJ-GUESS Lund Potsdam Jena General Ecosystem Simulator

LPJmL Lund Potsdam Jena managed Land

ORCHIDEE-crop Organising Carbon and Hydrology In Dynamic Ecosystems crop model

P1 crops Priority one crops: maize, wheat, rice, soybean

P2 crops Priority two crops: additional crops

pAPSIM parallel version of the Agricultural Production Systems sIMulator

pDSSAT parallel version of the Decision Support System for Agrotechnology Transfer

PEGASUS Predicting Ecosystem Goods And Services Using Scenarios Model

PEPIC Python based EPIC model

PGFv2 dataset Princeton GF version two that spans 1901 - 2012

PHUs Potential Heat Units

PRYSBI2 Process-based Regional-scale crop Yield Simulator with Bayesian Inference version 2

pSIMS platform parallel System for Integrating impact Models and Sectors

SWAT Soil Water Assessment Tool

WATCH Water and Global Change project

WFDEI WATCH Forcing Data methodology applied to ERA‐Interim data

WFDEI.CRU WFDEI; precipitation bias-corrected against CRU

WFDEI.GPCC WFDEI; precipitation bias-corrected against GPCC

WOFOST WOrld FOod STudies crop simulation model

Table 1.  Acronyms used in article. Note that some acronyms are only used in specific tables and are only 
explained there.
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the modeling protocol as described by Elliott, et al.37, modelers provided simulations for the default setup of their 
model (default), for harmonized growing seasons (i.e. prescribed grid-cell- and crop-specific sowing and maturity 
dates) and fertilizer inputs (fullharm) and for the same harmonized growing seasons but with unlimited nutrient 
supply (harmnon, also referred to as harm-suffn in some publications, e.g. Müller, et al.38). All simulations were 
conducted for purely rainfed (noirr) and for fully irrigated (firr) conditions as separate datasets so that crop yield 
could be aggregated with given crop- and irrigation masks to larger spatial entities in the post-processing38,47,48.

Global Gridded Crop Models.  The GGCMs contributing to the GGCMI phase 1 data archive differ in 
model structure, input requirements, and processes covered and thus have implemented the simulations in dif-
ferent ways. We here first describe each individual GGCM with central references and a short description of 
the model setup and conduction of simulations. In the following section, we provide tabular overviews of these 
narratives.

CGMS-WOFOST.  General description.  CGMS-WOFOST (European Crop Growth Monitoring System 
with the WOrld FOod STudies crop simulation model)is a spatially distributed version of the WOFOST crop 
simulation model49–51. WOFOST is a mechanistic crop growth model that describes plant growth using light 
interception and CO2 assimilation as growth driving processes, and crop phenological development as a growth 
controlling process. The model can be applied using the following two modes: (1) a potential mode, in which 
crop growth is driven solely by temperature and solar radiation, and in which no growth limiting factors are 
taken into consideration; and (2) a water-limited mode, in which crop growth is limited by the availability of 
water. The difference in yields between the potential and water-limited modes can be interpreted as the effect of 
drought. Currently, no other yield-limiting factors (e.g. nutrients, pests, weeds, farm management) are taken into 
consideration.

WOFOST has been embedded in the European CGMS that was developed within the framework of the MARS 
(Monitoring Agricultural ResourceS project) project of the Joint Research Centre of the European Commission. 
CGMS allows the regional application of WOFOST by providing a database framework that handles model input 
(e.g. weather, soil and crop parameters), model output (crop indicators such as total biomass and leaf area index), 
aggregation to statistical regions and yield forecasting.

Model setup and protocol.  The planting and harvest dates were taken from Elliott, et al.37 for the different crops. 
For each crop and grid cell a pre-run was executed in order to determine the temperature sum requirements (phe-
nological heat units: PHU) from planting to harvest based on the 30-year AgMERRA (Agriculture Modern-Era 
Retrospective Analysis for Research and Applications) weather forcings52. This total PHU was then divided into 

Model Typea CO2 effectsb Stressesc Calibrationd Calibrated parameters Key literature

CGMS-WOFOST Site-based LF, TE W, T Site-specific PHU requirements 50

CLM-crop Ecosystem LF, TE W,N,H Uncalibrated NA 128

EPIC-BOKU Site-based RUE, TE W, T, H, A, 
N, P, BD, AL Site-specific (EPIC 0810) NA EPIC v0810 -60,130

EPIC-IIASA Site-based RUE, TE W, T, H, A, 
N, P, BD, AL Site-specific and global F, HIpot (ric, mai) F (others) EPIC v0810 -60,130

EPIC-TAMU Site-based RUE, TE W, T, H, A, 
N, P, BD, AL Site-specific and global HIpot (maize) EPIC v1102 –65

GEPIC Site-based RUE, TE W, T, A, N, P, 
BD, AL Site-specific (EPIC 0810) F HIpot (for maize and rice) EPIC v0810 -60,66,78,130

LPJ-GUESS Ecosystem LF, SC W, T Uncalibrated NA 83,221

LPJmL Ecosystem LF, SC W, T National LAImax HI αa 77,84

ORCHIDEE-crop Ecosystem LF, SC W,T,N Uncalibrated — 94

pAPSIM Site-based RUE W, T, H, A, N Site-specific (APSIM) NA APSIM v7.5 -98,99

pDSSAT Site-based
RUE (for wheat, rice, 
maize) and LF (for 
soybeans)

W, T, H, A, N Site-specific (DSSAT) NA pDSSAT v1.0 -98,104

PEGASUS Ecosystem RUE, TE W, T, H, N, 
P, K Global β v1.1 -106, v1.0 -105

PEPIC Site-based RUE, TE W, T, A, N, P, 
BD, AL Site-specific and global F HIpot (for maize) EPIC v0810 -60,108,125

PRYSBI2 Ecosystem LF, SC W,T Global yield TH, TC, TS, LR 114

Table 2.  GGCMs that provided data to the phase 1 dataset and their main characteristics. Notes: (NA 
where not applicable). aSite-based: site-base crop model; Ecosystem: global ecosystem model. bElevated CO2 
effects: LF: Leaf-level photosynthesis (via rubisco or quantum-efficiency and leaf-photosynthesis saturation; 
RUE: Radiation use efficiency; TE: Transpiration efficiency; SC: stomatal conductance. cW: water stress; 
T: temperature stress; H: specific-heat stress; A: oxygen stress; N: nitrogen stress; P: phosphorus stress; K: 
potassium stress; BD: bulk density; AL: aluminum stress (based on pH and base saturation) dF: fertilizer 
application rate; HIpot: Potential harvest index; LAImax: maximum LAI under unstressed conditions; HI: 
harvest index; αa: factor for scaling leaf-level photosynthesis to stand level; β: radiation-use efficiency factor; 
TH: Total Heat unit required for the maturity; TC: Technological coefficient; TS: Temperature sensitivity of 
photosynthesis; LR: ratio of leaf to above ground biomass.
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a PHU from sowing to emergence, from emergence to anthesis and from anthesis to maturity based on the ratio 
of PHU values in the original WOFOST crop parameter files. As a result each grid cell receives its own variety 
definition in terms of temperature sum requirements for each of the 14 crops. The remaining model parameters 
were taken from the default WOFOST parameter files for each crop.

The cropping calendars provided by GGCMI are derived from regional sources (e.g. FAO which describe a 
static growing season for an entire region). However, many of those areas for which a growing season is defined 
do not have soil types that are suitable for crops. Therefore, grid cells for which a cropping calendar was defined 
but where soils are unsuitable were not simulated by CGMS-WOFOST. In practice, grid cells were excluded 
mainly in Northern Africa, Central Australia and Siberia.

Simulations with CGMS-WOFOST were carried out for the AgMERRA and WFDEI.GPCC weather forcings 
for all years within the range of the forcing set. The crop simulations for the irrigated scenario were executed with 
the WOFOST model running for the potential production scenario, assuming that crops were irrigated to the 
extent that no water stress occurs. The crop simulations for the rainfed scenario were executed with the model 
running in water-limited production scenario. For the latter scenario, large spin-up periods are not necessary as 
the model does not include simulation of carbon or nutrient pools. All simulations were started by starting the 
water balance calculation 90 days before the start of the crop sowing date with the water balance initialized at 50% 
of its water holding capacity (the range between wilting point and field capacity). This allows some time for the 
water balance to accumulate water as a result of rainfall. Finally, all 14 crops defined in GGCMI were simulated 
with CGMS-WOFOST for the two weather forcings mentioned above.

CLM-Crop.  General description.  The CLM crop model was developed to improve the fully-coupled simu-
lations of the Community Earth System Model (CESM1) and to help begin answering questions about changes 
in food, energy, and water resources in response to changes in climate, environmental conditions, and land use 
within the CESM modeling framework. CLM crop was initially incorporated into the CLM4CN model53 by 
replacing the unmanaged C3 crop plant functional type (using the C3 photosynthesis pathway) which repre-
sented all crops globally, with a small number of interactive managed crops over temperate northern hemisphere 
latitudes54. The CLM4CN crop model introduced the managed crop types of maize, soybean, and spring wheat 
(which represented more generally temperate cereals). The new crops reside on their own soil column, independ-
ent to the remaining natural vegetation that shares a single soil column. These crops were chosen based on the 
availability of their corresponding algorithms in the crop model AgroIBIS (agricultural version of the Integrated 
Biosphere Simulator)55. The main additions to CLM4CN involved the addition of the AgroIBIS crop phenology 
and allocation algorithms to those of the existing algorithms used for natural vegetation. In the CLM version 4.5 
of the CLM crop model the standard CLM calculation of the parameter Vcmax25 (photosynthetic capacity at 
common temperature of 25 °C) was reintroduced to crops, along with new fertilizer management and nitrogen 
fixation by soybeans56. The fertilizer functionality adds a central U.S. annual crop specific amount of nitrogen 
directly to the soil mineral nitrogen pool for each crop. In the CLM post-4.5 version of the crop model used in the 
AgMIP GGCMI studies, extra tropical crops were added, to include sugarcane, rice, cotton, tropical maize, and 
tropical soybean using the CLM version 4.5 parameterizations with modified parameter values from Badger and 
Dirmeyer57. Specifically for sugarcane and tropical maize, functional form of temperate maize is used because 
all three are C4 plants (i.e. they use the C4 photosynthesis pathway). For tropical soybean the functional form of 
temperate soybean is used and for rice and cotton the spring wheat functional form is used.

Crop Species’ scientific names Abbreviation Simulation priority

Maize Zea mays mai P1

Wheat Triticum aestivum whe P1

Rice Oryza spp. ric P1

Soybean Glycine spp. soy P1

Barley Hordeum vulgare bar P2

Millet Various mil P2

Rapeseed Brassica napus rap P2

Rye Secale cereale rye P2

Sorghum Sorghum spp. sor P2

Sugar beet Beta vulgaris sgb P2

Sugar cane Saccharum officinarum sug P2

Cotton Gossypium hirsutum cot P2

Cassava Manihot esculenta cas P2

Groundnut Arachis hypogaea nut P2

Field pea Pisum sativum pea P2

Sunflower Helianthus annuus sun P2

Dry bean Various ben P2

Potato Solanum tuberosum pot P2

Managed grassland Various mgr P2

Table 3.  Crops simulated by the GGCMI phase 1 ensemble, abbreviations, and simulation priorities.
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Model setup and protocol.  CLM Crop simulations were configured following the experimental design and initial 
conditions generated in the recent CLM Crop model investigations by Levis, et al.58. In those simulations the 
CLM post-4.5 model was spun up for 1050 years with repeated 1900–1920 meteorological forcing and an atmos-
pheric CO2 mixing ratio of 299.7 ppm generated from a previous 20th Century CESM simulation contributed 
to the CMIP5 (Coupled Model Intercomparison Project Phase 5) effort59. Following the spin up period, a 20th 
Century simulation was performed from 1901–2005 using transient meteorological forcing and atmospheric 
CO2 generated from the same CESM simulation as used for the spin up. For AgMIP GGCMI all simulation con-
figurations were started in 1978 with initial conditions provided for CLM crops from the 1978 state in the 20th 
Century simulation of Levis, et al.58. The CLM Crop AgMIP simulations were performed over the 1978–2010 
period for rainfed and irrigated versions of cotton, maize, rice, sugar cane, soy and wheat crops. Temperate and 
tropical versions of maize and soy were represented separated by latitude, with tropical versions from 30°S–30°N 
and temperate versions outside of those latitudes. Meteorological forcing was generated for CLM on a 6-hour 
time step from the daily values provided by the AgMERRA and WFDEI datasets. The diurnal cycle for each of 
the reference height forcing variables (downwelling solar radiation, temperature, precipitation, pressure, specific 
humidity, and wind) were prescribed from the CLM CRU-NCEP (Climate Research Unit and National Centers 
for Environmental Prediction)6-hour forcing time series for the same period. For the harmonization simula-
tions the annual nitrogen fertilizer applied was taken from spatially-varying crop-specific values provided by 
the AgMIP GGCMI protocol rather than the U.S. annual crop specific amount of the default model. Attempts to 
modify the planting dates and crop phenology were unsuccessful and so were not included in the study.

EPIC-Boku.  General description.  EPIC-BOKU is a global grid-based modelling system based on the EPIC 
version 0810 model60. It contains routines for simulating crop growth and yield, hydrological, nutrient and carbon 
cycle, soil temperature and moisture, soil erosion and a wide range of crop management options. EPIC operates 
on a daily time step and can be used for long-term assessments. Potential plant growth is calculated based on 
intercepted solar radiation, conversion of CO2 to biomass and vapor pressure deficit. The potential growth is 
decreased by stresses imposed by temperature, nutrient deficit, salinity, aluminum toxicity, soil strength or aera-
tion deficiency. Temperature stress occurs each day when average temperature exceeds the optimum temperature 
or falls below the base temperature, and water stress when soil water supply is insufficient to meet the potential 
plant evapotranspiration. Nutrient stress is calculated based on N (nitrogen) and P (phosphorus) deficit com-
pared to optimal supply. Phenological development is based on daily heat unit accumulation that determines 
leaf area growth, canopy height, nutrient uptake, harvest index and, optionally, date of harvest. Crop yield is 
calculated from above-ground biomass and harvest index. EPIC incorporates equations that adjust radiation-use 
efficiency and evapotranspiration for elevated atmospheric CO2 concentration. The Penman-Monteith method 
was used to compute potential evapotranspiration.

Model setup and protocol.  Global EPIC-BOKU was constructed within the “Global earth observation - benefit 
estimation: now, next and emerging” project of the Sixth Framework Programme of the European Commission to 
support integrated land-use modelling at global scale. It is run on a 5 arc-minutes grid by combining Geographic 
Information System layers on soils, relief, administrative units and a 0.5 arc-degrees (°) weather grid using the 
approach by Skalský, et al.61. Global crop simulations are performed on total cropland cover (GLC2000) strati-
fied by homogenous response units at 5 to 30 arc-minutes grid resolution61, resulting in about 103,000 spatial 
modeling responses for cropland. The spatial modeling responses of crops and crop management variants are 
integrated in global economic land use models such as GLOBIOM62,63. The crops can be simulated for three 
management/input systems allowing to carry out the three GGCMI phase 1 configurations: 1) automatic nitrogen 
fertilization – N-fertilization rates based on crop specific N-stress levels (N-stress free days in 90% of the crop 
growing period). The upper limit of N application is 200 kg ha−1 a−1. 2) automatic nitrogen fertilization and irriga-
tion – N and irrigation rates are based on crop specific stress levels (N and water stress free days in 90% of the crop 
growing period. N and irrigation upper limits of 200 kg ha−1 a−1 and 500 mm a−1). 3) subsistence farming – no 
N fertilizations and irrigation. All crops and management variants are simulated on total global crop land cover.

The GGCMI phase 1 protocol is applied to aggregate the spatial modeling responses of maize, rice, soybeans, 
and wheat to 0.5° × 0.5° grids. Sowing dates and the length of the growing season were obtained from Sacks, et al.64.  
Planting and harvesting dates are considered as the earliest possible dates. The planting and harvest operations 
were automatically postponed if the required PHU had not been accumulated on the given day. PHUs were esti-
mated based on Princeton (default) and WATCH (fullharm and harmnon) historical weather data. Amount of 
fertilizer (N, P) as well as planting and harvesting dates were harmonized according to the GGCMI phase 1 data 
and protocol.

EPIC-IIASA.  General description.  EPIC-IIASA is a global grid-based modelling system based on the EPIC 
version 0810 model60, described above for the EPIC-BOKU model. In contrast to EPIC-BOKU, EPIC-IIASA 
used the Hargreaves method to calculate potential evapotranspiration, static computing of field water capacity 
and wilting point, the Cesar Izaurralde denitrification method65 and no water erosion was included. A detailed 
description of other differences in parameterization of fundamental biophysical routines in EPIC-IIASA and 
EPIC-BOKU are provided by Folberth et al.46.

Model setup and protocol.  Sowing dates and the length of the growing season were obtained from Sacks, et al.64 
for the default setup, and from the data provided by GGCMI phase 1 for the harmonized simulations. Harvesting 
dates are considered as the earliest possible dates of harvest. The harvest operations were automatically post-
poned if the required PHU had not been accumulated on the given day. PHUs were estimated based on Princeton 
(default) and WATCH (fullharm, harmnon) historical weather data.
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The regions of spring and winter wheat were identified based on observed data by Sacks, et al.64, if available. 
Otherwise, the same rules as in Liu, et al.66 were applied, assuming that spring wheat is grown between 30°S and 
30°N and winter wheat in regions with greater latitudes. For maize, a low-yielding cultivar with a harvest index of 
0.35 was used in sub-Saharan Africa, while a harvest index of 0.5 was used for other regions. Maize with optimum 
temperature of 22.5 °C and a base temperature of 6 °C is used for temperate and colder regions in Europe and 
Russia, while an optimum temperature of 25 °C and a base temperature of 8 °C was used elsewhere. For rice, the 
harvest index and biomass-energy ratio were regionally modified based on Xiong, et al.67. All other crop growth 
parameters were left at the default values, which are based on literature.

In the default setup, crop-specific annual N and P fertilizer application rates were obtained from Balkovič, et al.68  
and Mueller, et al.69 for European and other countries, respectively. P fertilizer was applied as a fixed amount 
together with tillage, while N dosing was triggered automatically based on plant requirements until the annual N 
application rate was fulfilled70. Irrigation was estimated based on the MIRCA2000 database using the automatic 
irrigation trigger in EPIC to supply water when the water stress exceeded 10% in one given day, with a maximum 
annual amount of 2000 mm.

EPIC-TAMU.  General description.  The EPIC version 1102 model is a further development of EPIC version 
0810 described above for the EPIC-BOKU and EPIC-IIASA models, with the same fundamental routines for 
mechanistically simulating soil-plant-atmosphere dynamics. Additional model capabilities include improved soil 
water balance methods71, denitrification methods72, perennial crop growth routines73, and soil health impacts of 
biochar74.

Model setup and protocol.  Data were computed for 40,500 pixels for which appropriate weather, soil and crop 
calendar data were available. A one-year spin up period was simulated in addition to the simulated years of each 
weather dataset. Planting occurs on the first day following the prescribed sowing date in which soil temperature is 
at least 2 °C above the 8 °C base temperature. Harvest occurs once the specified heat units are reached. Heat units 
to maturity were calibrated from the prescribed crop calendar data, and were limited to values between 900 and 
3800 to ensure reasonable bounds75,76. Pixels with no prescribed harvest dates were provided a “fast-maturing” 
crop that would reach maturity at 900 heat units. Fast-maturing pixels were harvested one year following planting 
if maturity was not reached beforehand. For simulations with full irrigation, a high (0.99) threshold plant stress 
trigger was used, with any single application of water ranging from 25–100 mm. N, P and K (potassium) were 
applied on the sowing date based on the prescribed values for each site. For the harmnon runs, additional N was 
applied when a 0.99 threshold was triggered during the growing season. Additional N was added in increments of 
25 kilograms per hectare. The Penman-Monteith method was used to compute evapotranspiration.

GEPIC.  General description.  GEPIC is based on the field-scale model EPIC v0810, which calculates potential 
biomass increase for each day of a defined growing season based on leaf-area index (LAI) and solar radiation, and 
subsequently reduces the potential to an actual biomass increase using the maximum stress out of water, temper-
ature, nutrients, salinity and aeration as a correction factor. Key parameters for crops are base temperature, max-
imum temperature, maximum leaf area index and development of LAI over time, as well as an energy-biomass 
conversion coefficient describing the efficiency of photosynthesis. Besides plant growth, EPIC estimates changes 
in soil properties and nutrient cycles based on plant and soil management.

Model setup and protocol.  Planting dates were estimated similar to the approach of Waha, et al.77, but with a sim-
plified classification. Grid cells with <5 °C in the coldest month are defined as temperature limited, all other grid 
cells as precipitation limited. In precipitation-limited grid cells, crops are planted on the first day of the month 
after which four consecutive months provide the highest precipitation throughout the year. In T limited grid cells, 
planting dates for summer crops are defined by cumulating PHU starting from the coldest month of the year until 
a crop-specific germination threshold is met. For winter crops, the same process is carried out backwards from 
the coldest month of the year.

PHU were estimated from reported current sowing and harvest dates according to Sacks, et al.64 for the default 
setup and from the datasets provided by GGCMI phase 1 for the harmonized runs based on long-term climate 
averages.

We found that it is necessary to simulate depletion of soil nutrients in low-input regions like sub-Saharan Africa 
in order to represent current reported yields satisfactorily, as soil are usually highly depleted under such condi-
tions due to continuous cultivation without sufficient nutrient replenishment and decreasing fallow durations78.  
An appropriate time-scale was found to be about 30 years. In order to represent this current state of soil depletion 
in the crop model, each decade was simulated separately with a run-time of 40 years, out of which only the last 10 
years are used as a simulation result.

The choice of spring wheat and winter wheat is based on temperature thresholds published by Stehfest, et al.79: 
Winter wheat is planted in grid cells with a minimum temperature in the coldest month of the year of >−10 °C 
and <5 °C based on decadal monthly means. Winter wheat and spring wheat sowing areas change dynamically 
throughout the simulations period in each decade.

For maize, a dataset of national human development index for the year 2000 (retrieved from http://geodata.
grid.unep.ch) is used for distinguishing low- and high-input countries. Maize with a high potential harvest index 
(corresponding to current hybrids) of 0.55 is planted in countries with a Human Development Index larger 0.8 
and maize with a lower harvest index of 0.35 (corresponding to local conventional varieties80) in all other coun-
tries. For rice, the harvest index and maximum leaf area index were modified based on current literature81. All 
other crop growth parameters were left at the default values, which are based on literature and field trials76,80,82.
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LPJ-GUESS.  General description.  The model is the crop-enabled version of LPJ-GUESS (Lund Potsdam 
Jena General Ecosystem Simulator), described in Lindeskog, et al.83. Its implementation bears similarities to 
LPJmL as described in Bondeau, et al.84, but differs in several important aspects, including not being calibrated 
to observed country-level yields, a new phenology scheme, and a dynamic calculation of the PHU required for a 
crop to achieve maturity. Sowing dates are calculated dynamically following Waha, et al.77. The PHU sum needed 
for full development of a crop in a particular grid cell is calculated using a 10-year running mean of heat unit 
sums accumulated from the sowing date to the end of a sampling period (ranging from 190 to 245 days) derived 
from default sowing and harvest limit dates83. There is no differentiation between varieties other than PHU, 
except for wheat for which either spring or winter sowing varieties are selected, based on prevailing climate. 
Crops are harvested upon full development. This dynamic variation of PHU to climate effectively assumes a per-
fect adaptation of crop cultivar to the prevailing climate. N limitation is not explicitly accounted for in this version 
of the model, which precedes Olin, et al.85.

Model setup and protocol.  Outputs have been computed for 59,191 pixels covering the entire ice-free land sur-
face. Spin-up was for 30 years using the first 30 years of the input-data timeseries. Spin-up only influences the 
initialization of the sowing date and dynamic PHU algorithms. A full spin-up of soil carbon pools, as required for 
standard LPJ-GUESS simulations86 was not required as they do not feedback on crop yields in this model version. 
Simulations ran uninterrupted for the whole timeseries. Simulations did not consider nitrogen limitation explicitly 
in this simulation set, so data for the fullharm setting are not available but only the default and harmnon settings.

LPJmL.  General description.  Simulations with LPJmL (Lund Potsdam Jena managed land) have been using 
the latest version available at that time as described by77,84,87, with the expanded soil implementation as described 
by Schaphoff, et al.88. The model computes daily gross primary production and autotropic respiration as a func-
tion of intercepted radiation, air temperature and water stress in a mechanistic way and allocates assimilates to 
the different organs as a function of phenological stage and water stress. Nitrogen dynamics are not considered 
explicitly in this version, which precedes the von Bloh et al.89.

Model setup and protocol.  Data have been computed for 67,420 pixels (CRU land mask) with LPJmL from 1951-
2099 in a transient simulation run, using a 200-year spin-up to initialize soil water and to bring soil temperatures 
into equilibrium (natural vegetation and soil carbon pools are neglected here, so the model spin-up simulation 
could be short), recycling the first 30 years of that time series for the spin-up phase.

National cropping intensities of the default runs have been calibrated to FAO statistics (1996–2000) as 
described by Fader, et al.87 but with a linear LAI-FPAR model for maize90 and maximum intensity levels for 
maize at a maximum LAI of 5. The harmnon runs were conducted without calibrated intensity settings but using 
a maximum LAI of 5 everywhere for all crops except wheat and sugarcane (maximum LAI = 7). The minimum 
root-to-shoot ratios at maturity were set to 10% based on insights from the AgMIP wheat91,92 and maize93 pilot 
studies. Sowing dates were computed as described by Waha, et al.77, but were kept constant after 1951. The model 
decides internally whether to grow winter or spring wheat on wheat areas. It has a preference for winter wheat, 
but if winters are too long, it will grow spring varieties84.

Simulations with LPJmL did not consider nitrogen limitation explicitly in this simulation set, so data for the 
fullharm setting are not available but only the default and harmnon settings. For the harmnon simulations pre-
scribed planting days were used directly as input. To compute (PHU requirements for the parameterization of 
observed maturity dates per crop and grid cell, the model was run once with the WATCH climate data, prescrib-
ing varieties that never mature and recording accumulated PHU on the prescribed maturity date. From this run, 
the average 1972–2001 PHU requirements were extracted and prescribed in the harmnon runs, so that maturity 
dates vary between years but on average are consistent with prescribed maturity dates. Variety traits other than 
those determining the growing season length were not varied in space or time.

ORCHIDEE-crop.  General description.  Simulations with ORCHIDEE-crop (Organising Carbon and 
Hydrology In Dynamic Ecosystems crop model) have been conducted using an improved version from Wu, et al.94.  
The improvements include an allocation scheme resolving the source-sink regulation on biomass and yield, an 
irrigation scheme, and a fertilizer scheme. These updated developments are documented in Wang95.

Model setup and protocol.  Simulations were performed over global land grids according to the land-sea mask 
of each climate input dataset. One-year spin-up was performed to balance the soil water budget. The time length 
of the spin-up was selected after testing the turnover time needed to balance the water budget of the 11-layer soil 
hydrology module in the model.

No calibration was made for GGCMI simulations. However, during development of ORCHIDEE-crop, 
the wheat and maize parameters were evaluated and calibrated against several agricultural eddy flux sites over 
Europe94. The rice phenology parameters were calibrated against phenological observation networks in China96.

For the fullharm scenario, all input data instructed in the protocol were used. For the default simulation, 
the nitrogen fertilizer map was derived from a combination dataset of FAO and the International Fertilizer 
Association97, which is static and crop-specific. For the harmnon scenario, an over-saturation rate of 500 kgN ha−1  
was applied in order to eliminate nitrogen constraints.

pAPSIM.  General description.  The pSIMS platform98 leverages high-performance computing resources at 
the University of Chicago and Argonne National Lab. It comprises an assortment of survey-based and geospatial 
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data sources, and field-scale crop models, including those based in the APSIM99 (referred to as pAPSIM, the par-
allel version of the Agricultural Production Systems sIMulator), to simulate food, fiber and biomass production 
systems at high spatial resolution and continental or global extents.

Model setup and protocol.  The default set-up was based on fixed planting dates for each grid cell from the Sacks 
et al. crop calendar64, with additional detail in the conterminous US provided by crop calendar data of the US 
Department of Agriculture100. All crops were first simulated using a range of cultivar phenology parameters and 
the cultivar which best reproduced the harvest dates from the Sacks et al. crop calendar64 was selected to be used 
in the default set-up. For maize, grid cells described in the SPAM2000 (spatial allocation model) dataset101 as 
“rainfed high input” or “irrigated” were assumed to use high-yielding hybrid cultivars, parameterized with 50% 
higher max grain number and 10% higher grain filling rate. Fertilizer levels in the default setting were the same 
as those used in the harmonized scenario (fullharm)37, with half applied at planting and half applied 40 days 
later. Wheat cultivar groups were selected based on mega-environments102 and then phenology parameters were 
calibrated as with other crops. Soybean cultivars were selected based on standard maturity groups and were then 
calibrated to reproduce Sacks et al.64 harvest dates3. In the fullharm and harmnon settings, growing periods of all 
crops were calibrated in the same manner to reproduce given GGCMI growing periods37.

The simulation period was reinitialized each year on January 1st assuming a 50% full soil water profile in each 
location. Soil dynamics typically stabilized at expected levels before planting, though some caution must be taken 
for locations with planting very early in the calendar year (e.g. before the end of January). All other crop growth 
parameters were left at default values.

pDSSAT.  General description.  The pSIMS platform98 leverages high-performance computing resources at the 
University of Chicago and Argonne National Lab. It comprises an assortment of survey-based and geospatial data 
sources, and field-scale crop models, including those based in the Decision Support System for Agrotechnology 
Transfer (DSSAT) framework (CROPGRO103 and CERES (Crop Environment Resource Synthesis104)) (referred to 
as pDSSAT, the parallel version of the Decision Support System for Agrotechnology Transfer), to simulate food, 
fiber and biomass production systems at high spatial resolution and continental or global extents.

Model setup and protocol.  The model setup and protocol is identical to that of pAPSIM described above as both 
models are run by the same group in the pSIMS environment98.

PEGASUS.  General description.  PEGASUS (Predicting Ecosystem Goods And Services Using Scenarios 
Model) combines a radiation use efficiency model to estimate daily photosynthesis and annual net primary pro-
duction with a surface energy and soil water budget model. In addition, the model uses a dynamic allocation 
scheme to assign daily biomass production to the different organs of the crop. Thus, crop yield is eventually 
derived from the amount of carbon contained in the storage organs at harvesting date105. PEGASUS 1.1 simu-
lates crop response to elevated CO2 and effects of extreme temperature events occurring at crop anthesis. A spe-
cific heat stress factor is calculated as a function of intensity and duration of extreme temperature events during 
crop anthesis according to crop specific temperature thresholds106. Farm management practices represented in 
PEGASUS include irrigation and fertilizer application, decision of planting dates and choice of crop cultivars105.

For the GGCMI phase 1 simulations, PEGASUS version 1.1 was used106.

Model setup and protocol.  PEGASUS was calibrated to match average crop yields around the year 2000 of the 
Monfreda et al. dataset107, using a subset of the WATCH data (6 years from 1997 to 2002). Note that the calibra-
tion procedure in PEGASUS entails tuning only one global parameter, the light-use-efficiency coefficient (ε) as 
described in Deryng, et al.105.

For the default simulations, the calibrated version of PEGASUS from the ISIMIP fast-track3 was used, making 
use of PEGASUS’ internal algorithm to simulate planting date decision and choice of crop cultivars, as well as 
fertilizer data as referenced in Deryng, et al.105. This means that the default configuration allows for progressive 
adaption of planting dates and choice cultivars according to annual mean climate conditions.

For simulations of the fullharm and harmnon settings, a new calibrated version was used, using the same 
WATCH dataset as climate input and average crop yields around the year 2000 Monfreda et al. dataset107, but 
using: the harmonized crop calendar dataset and the harmonized fertilization application rates as specified by 
Elliott, et al.37. However, this calibrated version differs only for wheat, for which ε was set to 0.029 mol C m−2 s−1 
APAR, instead of 0.027 mol C m−2 s−1 APAR. APAR (mol quanta m−2 s−1) represents the daily average absorbed 
photosynthetically active radiation. ε = 0.035 mol C m−2 s−1 APAR for maize and ε = 0.011 mol C m−2 s−1 APAR 
for soybean was used for both default and fullharm versions.

For this set of simulations, climate data were provided in one time-slice so that PEGASUS was run contin-
uously over each time-period, including an initial 4-year spin-up. PEGASUS was run with downwelling long-
wave radiation input from the WFDEI dataset for AgMERRA and AgCFSR (Agriculture Climate Forecast System 
Reanalysis) simulations.

PEPIC.  General description.  PEPIC (Python based EPIC model) is a grid-based EPIC model com-
piled under the Python environment108. The EPIC model was initially introduced by Williams, et al.109 
to evaluate the impacts of soil erosion on soil productivity. EPIC can be used to simulate a large number of 
soil-water-climate-management processes, for example, weather, hydrology, erosion, pesticide, nutrient, plant 
growth, tillage, soil temperature, and environmental control109. EPIC simulates crop growth at a daily step based 
on the concept of energy-biomass conversion. Daily potential biomass increase is the product of intercepted solar 
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radiation and a crop-specific biomass-energy ratio. Several crop growth stresses (water, nutrient, temperature, 
aeration, and salinity) are considered to reduce the potential biomass to actual biomass. The crop grain yield is 
estimated by the product of the harvest index and actual biomass accumulation60.

Model setup and protocol.  In PEPIC, the whole study domain is firstly categorized into a number of subareas 
depending on the study purposes (e.g. administrative boundaries, climate regions, watersheds). Input data need 
to be specified for each grid cell with a spatial resolution of 30 arc-minutes. After all simulations are completed 
for all grids cells, PEPIC extracts the results and presents the spatial distribution of desired variables for a given 
time period. Irrigated and rainfed crop cultivations are simulated separately. To get combined outputs for each 
grid cell, values from irrigated and rainfed cultivation were aggregated using an area-weighted averaging method.

Potential heat units are calculated with a PHU calculator from the SWAT (Soil Water Assessment Tool) web-
site (https://swat.tamu.edu/software/), with input of planting date, growing season length, and monthly minimum 
and maximum temperature. In the simulation, different PHUs have been computed for each weather forcing data-
set. For default setup, crop calendar data (planting and harvesting dates) were derived from Sacks, et al.64, and N 
and P fertilizer from FertiSTAT (database for statistics on fertilizer use by crop)110 were used. For the harmonized 
setups (fullharm and harmnon), crop calendar, N, P and K fertilizer from GGCMI were used37.

For the simulation forced by each weather forcing dataset, 20 years were treated as model spin-up period. 
Automatic irrigation was used for irrigated cultivation with sufficient water supply (maximum value of 1000 mm). 
For default and fullharm scenarios, P was applied directly prior to planting and N was applied three times based 
on input data: first time before planting, second time one month after germination, third time two months after 
germination. One third of N inputs were applied for each application. For the harmnon scenario, N was applied 
automatically based on crop N requirement, with a stress trigger of 0.99 and sufficient N inputs. Similar to N fer-
tilization under the harmnon scenario, P inputs were also determined by the model without limitation.

For cultivars of wheat and maize, PEPIC adopted the same approach as GEPIC (Section 2.2.6) to distribute the 
cultivar distribution globally. Rice and soy used the default parameters from the EPIC model.

PRYSBI2.  General description.  The PRYSBI2 model (Process-based Regional-scale crop Yield Simulator 
with Bayesian Inference version 2.1) is a semi-process-based large-area crop model for major crops: maize, 
soybeans, wheat, and rice. Daily crop biomass growth and resulting crop yields are calculated for each global 
grid (1.125° in latitude and longitude). The daily biomass growth is calculated according to photosynthetic car-
bon assimilation based on the enzyme kinetics model (i.e. Farquhar model111). A sun/shade model112 is used 
for the calculation of intercepted solar radiation. The soil water balance is calculated by the SWAT model113. 
The crop development is calculated via PHU, as in the EPIC model. Daily temperature affects crop growth 
through mainly the changes in phenology, photosynthetic rate, and evapotranspiration rate. Daily precipitation 
affects crop growth through water stress calculated according to the SWAT model. Crop yield is calculated from 
above-ground biomass and a harvest index. The model (version 2.0) is described by Sakurai, et al.114.

We refer to this model as “semi-process-based” because the model parameters relevant to the past technolog-
ical trend (i.e. it includes the past change of nutritional input, crop variety, and the degree of the irrigation etc.) 
were inversely estimated using historical crop yield data115 for each spatial grid using Markov Chain Monte Carlo 
methods. As such, the processes of fertilizer input and irrigation are not explicitly included put part of the inverse 
parametrization.

The version of the model is 2.1. From the version 2.0114, mainly following processes were changed.
1. The big leaf model was replaced by a sun/shade model112.
2. The calibrated technological factor no longer affects final biomass, but now affects daily biomass growth.
3. The estimated parameter set has been re-calibrated.

The PRYSBI2 model used here should not be confused with PRYSBI1 (an older version)116 which has a funda-
mentally different model structure.

The PRYSBI2 output was interpolated to the requested 0.5° resolution from its original 1.125° resolution at 
which simulations were conducted. This means that the output of a 0.5° grid was the same as the 1.125° grid in 
which the 0.5° grid was included. If a 0.5° grid straddled multiple 1.125° grids, the average value of these 1.125° 
grids was used. PRYSBI2 data do not distinguish irrigated and rainfed production as irrigation is subsumed in the 
technology factor as described above.

Model setup and protocol.  The parameters relevant to the technological factor, including the temporal change 
rate of the technological factor and irrigation, were inversely estimated using historical crop yield data117 for each 
grid cell and crop using the DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm118. The number 
of Markov Chain Monte Carlo steps was set to 50,000 for each grid cell. This large amount of calculation (about 
3 × 109 simulations in total) was executed on the super computer system of the Japan Agency for Marine-Earth 
Science and Technology (JAMSTEC).

In PRIBY2, the parameter values for the grid cells for which the reference data do not exist were extrapolated 
using the relationship between (1) the parameter values estimated at the grid cells in which the reference data 
exist and (2) environmental factors, such as elevation, harvested area, latitude, longitude, irrigated area119, plant-
ing day64, and the value of gross domestic product.

The dataset of Sacks, et al.64 was used for parametrizing the planting date in the default setup. The parame-
ter set that has the maximum likelihood to reproduce observed yield dynamics115 for each grid and each crop 
was used for the default run. The simulation was set up to include one spin-up year before the first year of the 
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simulation, using the weather data of the first simulation year. No other spin-up procedure was conducted, which 
was the same setting as in the calibration procedures (to reduce calculation time).

GGCM configurations, calibration and evaluation.  We distinguish two GGCM types: (i) site-based 
process models, and (ii) ecosystem models (Table 2). In addition to the models’ main characteristics (Table 2), 
Tables 4–6 provide overviews of agricultural practices and inputs used (Online-only Table 1), the most impor-
tant biophysical processes implemented (Online-only Table 2), and calibration procedures (Table 4). Site-based 
models have typically been calibrated at field-scale level in previous model applications. Some of the site-based 
models were also calibrated at national scale, especially those EPIC models used to provide data to global or 
national economic analyses (EPIC-BOKU62,120,121, EPIC-IIASA122). Ecosystem models were either calibrated at 
national scale (LPJmL, PEGASUS) or not at all. An exception is PRYSBI2, which was extensively calibrated at 
grid-cell level. Generally, calibration of global-scale crop models is complicated by the lack of high-quality data 
and the absence of data on any aspect other than yield. Furthermore, calibration does not substantially improve 
model skill in global-scale applications, other than improving the reproduction of spatial patterns by imposing 
management-driven differences in yield levels in the calibration process38.

GGCMs have been evaluated in various forms: individually at field and global scale (see examples in Table 4, 
but note that this list is far from exhaustive) or in model intercomparison exercises also at field91–93 and global 
scale38. Aspects other than yield have not been evaluated in GGCMI, even though some models have been 
assessed also for other output variables65,72,83,94,123–130.

Input data.  All input data that have been supplied to modelers for the simulations has been described by 
Elliott, et al.37 and are available for download at http://www.rdcep.org/research-projects/ggcmi. In addition to the 
nine weather datasets listed by Elliott, et al.37, modelers also supplied simulations for an updated version of the 
Princeton data (PGFv2) that span 1901 to 2012 as well as the GSWP3 (http://hydro.iis.u-tokyo.ac.jp/GSWP3/) 
dataset, which has been supplied by ISIMIP phase2a (Online-only Table 1). The complete set of weather datasets 
to drive the crop models thus comprises eleven historical datasets that are based on retrospective datasets and 
nine of these have been bias-corrected against different observation-based products, including CRU and GPCC 
(Global Precipitation Climatology Center). This broad set of input data is meant to cover the uncertainty intro-
duced from different reanalysis products and different bias-correction methods. An analysis of the role of differ-
ent weather input data for GGCMs’ skill to reproduce historic yield variability is still pending.

All weather variables are bias-corrected individually, and against different data products. The 2-m temperature 
is typically bias-corrected against different versions of the CRU dataset, but precipitation can be bias-corrected 
against CRU, GPCC or other targets. The WFEDI bias-correction provides 2 sets, in which only the precipita-
tion bias-correction differs131, denoted as WFDEI.CRU and WFDEI.GPCC respectively, no other subversions 
of weather forcing datasets are included or used here (Table 5). With this approach to bias-correct individual 
weather variables, the physical consistency between variables is not necessarily maintained. As such, it also seems 
acceptable to supplement weather variables from one dataset to another, if not supplied by the latter. This is the 
case for downwelling long-wave radiation, which is not used by all GGCMs but only by some (Table 4) and which 
is also not supplied by all datasets (Table 5). Additionally, not all weather variables have been bias-corrected in 
the different weather datasets. For some, bias-correction targets are non-existent (e.g. wind speed), for others, the 
authors of the bias-corrected datasets decided to not bias-correct all variables, such as 2-m temperatures in the 
WATCH dataset, which was only corrected for elevation after interpolation132. In contrast, in the WFDEI data-
sets 2-m temperatures were corrected to CRU temperature averages and diurnal ranges. All bias-correction was 
applied at the monthly level.

Soil data were not supplied to modelers, who were requested to use their own soil input data. Acknowledging 
the importance of soil information for crop yield simulations45, it was not possible to harmonize soil parameters 
within phase 1 across the different GGCMs, given the diversity in soil input requirements (number of layers; 
chemical, physical, biological and specific parameters or variables per layer).

Data Records
Data format.  Data come in netCDF4 (network Common Data Form 4) files, with a naming convention as 
in Elliott, et al.37, using only lowercase letters in file names, but properly capitalized letters in subfolders. Each file 
contains only a single output variable. Files are named following the GGCMI convention37 (Table 6):

model climate clim scenario sim scenario variable crop timestep start year end year nc4[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]. . − − .− − − − − − − −

In the data archive, each model has its own subfolder (proper capitalization of model names), which includes 
a subfolder for each climate dataset simulated, which again contain subfolders for each simulated crop, using the 
long crop name rather than the abbreviation used in the file name (Table 3).

Data availability.  Data are available at https://zenodo.org/ (see Online-only Table 4). The GGCMs have pro-
vided different output sets, covering different climate datasets, crops (Online-only Table 3), and output variables 
(Table 7). The overall GGCMI phase 1 dataset at https://zenodo.org/ is structured by GGCM and crop, which have 
been published as 86 individual packages (Online-only Table 4). Given that models have submitted data for dif-
ferent crops, there are 13 individually published datasets for CGMS-WOFOST135–147, 6 for CLM-Crop148–153, 4 for 
EPIC-Boku154–157, 4 for EPIC-IIASA158–161, 2 for EPIC-TAMU162,163, 4 for GEPIC164–167, 15 for LPJ-GUESS168–182, 
13 for LPJmL183–195, 4 for ORCHIDEE-crop196–199, 4 for pAPSIM200–203, 6 for pDSSAT204–209, 3 for PEGASUS210–212, 
4 for PEPIC213–216, and 4 for PRYSBI2217–220. All data are published under the Creative Commons Attribution 4.0 
International (CC BY 4.0) license.
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Technical Validation
All data submitted to the GGCMI phase 1 were tested by a set of quality check scripts. Data were tested for com-
pliance with data formats, checking units (Table 7), variable naming (Table 7), file naming (Table 6), and space 
and time dimensions. Formatting errors led to rejection from the data base. Statistics on data ranges, spatial 
coverage with valid data points were reported to modeling groups, so that they could check and decide if the 
simulation data needed fixing.

Usage Notes
The GGCMI phase1 simulation dataset was conducted with the objective to have as much spatial coverage glob-
ally for all crops as possible. As such, crops are also simulated in many regions, where these crops are not currently 
grown or cannot be currently grown. Growing season data were supplied for an as large area as possible37, with 
the intention to harmonize across models but not necessarily to suggest that cropping is possible during these 
periods. As such, management, soil and/or weather data at any given site may differ from conditions assumed for 
the corresponding grid cell and results should mainly be analyzed for larger spatial entities rather than individual 
sites. Any aggregation or analysis of these data should consider this caveat and either mask currently cropped 

Model
Model 
origina Calibration method

Parameters for 
calibrationb

Output variable 
and dataset for 
calibrationc

Spatial scale of 
calibration

Temporal scale of 
calibration evaluation of simulated yieldsd

CGMS-WOFOST Site-based
Default parameters from 
site-specific analysis 
(WOFOST 6.0)

NA NA Field scale Mostly trials from 
1980-2000

Müller, et al.38, Dobermann, 
et al.222, Bregaglio, et al.223, 
Boogaard, et al.224, Todorovic, et 
al.225, Eweys, et al.226, Setiyono, 
et al.227, Lecerf, et al.228, de Wit, 
et al.229

CLM-crop Ecosystem NA NA NA NA NA Müller, et al.38, Drewniak, et 
al.128

EPIC-BOKU Site-based Site-specific (EPIC 0810) NA Yield (FE & FAO) Field scale & 
National Various various, e.g. Müller, et al.38, 

Wang, et al.230, Wang, et al.231

EPIC-IIASA Site-based Site-specific (EPIC 0810) 
& Globale

F, HIpot (ric, 
mai)F (others) Yield (FE & FAO) National Around 2000 various, e.g. Müller, et al.38, 

Wang, et al.230, Wang, et al.231

EPIC-TAMU Site-based Site-specific HIpot (mai) Yield (SPAM 2000 
by You, et al.134) Grid cell level 2000 Müller, et al.38, Izaurralde, et al.65

GEPIC Site-based Site-specific (EPIC 0810)e NA Yield (FE & FAO) Field scale & 
National Various

various, e.g. Müller, et al.38, 
Folberth, et al.78, Wang, et al.230, 
Wang, et al.231

LPJ-GUESS Ecosystem Uncalibrated NA NA NA NA Müller, et al.38, Pugh, et al.124

LPJmL Ecosystem Global LAImax HI 
alpha_a Yield (FAO) National Average for  

1998-2003 Müller, et al.38, Bondeau, et al.84

ORCHIDEE-crop Ecosystem Uncalibrated NA NA NA NA Müller, et al.38, Wu, et al.94

pAPSIM Site-based Default parameters from 
site-specific analyses NA NA field scale NA

various, see http://www.apsim.
info/, e.g. Müller, et al.38, 
Gaydon, et al.232

pDSSAT Site-based Site-specific (DSSAT) NA Yield (FE) Field scale Various various, e.g. Müller, et al.38, 
Jones, et al.104

PEGASUS Ecosystem Global Β Yield (Monfreda, 
et al.107)

Grid cell level 
(0.5° lon × 0.5° 
lat resolution)

Average for  
1997-2004 Müller, et al.38, Deryng, et al.106

PEPIC Site-based
Default parameters from 
site-specific analyses of 
EPIC0810

NA Yield (FAO yield 
statistics) National Average for  

1998-2002
various, e.g.Müller, et al.38, Liu, 
et al.108, Wang, et al.230, Wang, 
et al.231

PRYSBI2 Ecosystem Global TH, TC, TS, 
LR

Yield (Iizumi, et 
al.115) Grid cell level

1982-2006 (but 
the odd-numbered 
years were used as 
learning data for 
the estimation for 
the even years, and 
vice versa)

Müller, et al.38, Sakurai, et al.114

Table 4.  Model calibration, evaluation, parameters, scale and methods. Notes: (NA where not applicable). aSite-
base crop model, ecosystem: global ecosystem model. bF: fertilizer application rate; HIpot: Potential harvest 
index; LAImax: maximum LAI under unstressed conditions; HI: harvest index; αa: factor for scaling leaf-level 
photosynthesis to stand level; β: radiation-use efficiency factor; TH: Total Heat unit required for the maturity; 
TC: Technological coefficient; TS: Temperature sensitivity of photosynthesis; LR: ratio of leaf to above ground 
biomass. cFE: field experiments; FAO: FAOSTAT national yield statistic; dreferences to evaluation studies at 
global scale or to evaluation studies of the underlying site-based crop model at other scales. Often, only some 
examples are provided, given that model application studies also often provide some form of model evaluation. 
eGEPIC & EPIC-IIASA: Default parameters coming with the field scale model EPIC version 0810 are mostly 
used. Potential HI has been adjusted for maize cultivars based on literature and the Human Development Index 
(GEPIC) or major world regions (EPIC-IIASA) and for rice based on literature. Fertilizer application rates 
have been modified for few countries that report very high yields and low fertilizer use, whereas most of these 
countries are known for their intensive use of manure.
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areas with crop- and irrigation-specific masks133,134 or handle and interpret these data with the necessary caution. 
Since aggregation masks can affect results47 these should be selected carefully to fit the intended purpose.

Almost all data analyses already conducted focused on crop yields for which models have been evaluated 
individually and jointly38. All other output variables have not been evaluated in this context. Generally, all data 
from the GGCMI phase 1 archive should be subjected to plausibility checks. Analyses that are sensitive to outliers 
should test for extreme values that are likely to exist in rare cases. It is also advisable to generally assess the range 
of simulated data when conducting analyses with these data, which can provide an indication of the embedded 
uncertainty.

Despite the semi-automated quality control scripts that tested spatial coverage and data ranges of values in 
submitted files, not all errors in the output files provided by the modelers could be identified and/or corrected. 
All issues that were identified after utilization of the data in other publications as well as the corrections applied 
are described here. As such, simulation outputs of LPJ-GUESS and LPJmL were initially reported with an erro-
neous grid definition, in which all grid cells were shifted. In the LPJ-GUESS results all pixels were shifted one 
grid cell eastward and northwards, in the LPJmL data, all pixels were shifted one grid cell northwards. These 

Filename tag [] Values

[model] pdssat, epic-iiasa, lpjml, etc. (see Table 2)

[climate] watch, wfdei.gpcc, wfdei.cru, grasp, agmerra, agcfsr, Princeton (see Table 5)

[clim.scenario] Hist (included for consistency with the ISIMIP file naming convention)256

[sim.scenario] default_firr, fullharm_noirr, etc. (see Section 2)

[variable] yield, pirrww, plant-day, anth-day, etc. (see Table 7)

[crop] mai, soy, whe, ric, mil, sor, etc. (see Table 3)

[timestep] Annual (included for consistency with the ISIMIP file naming convention)256

[start-year]_[end-year] 1958_2001, 1980_2009, 1980_2010, etc. (see Table 5)

Table 6.  Filename conventions for standardized model outputs.

Dataset
File name 
abbreviation Reanalysis Years Resolutiona Bias correction targetb Notes

AgCFSR52 agcfsr CFSR233 1980–2010 0.3 (0.5/0.25) CRU-TS3.1234/GPCCv6235/UDel236/SRB237,238/
TRMM239/PERSIANN240/CMORPH241

No longwave radiation provided, use 
rlds from WFDEI

AgMERRA52 agmerra MERRA242 1980–2010 0.5° × 0.66 (0.5/0.25) CRU-TS3.1234/GPCCv6235/UDel236/SRB237,238/
TRMM239/PERSIANN240/CMORPH241

No longwave radiation provided, use 
rlds from WFDEI

CFSR reanalysis233 cfsr CFSR233 1979–2012 0.3 (N/A) N/A

ERA-I reanalysis243 erai ERA-I243 1979–2012 0.75 (N/A) N/A

GRASP244 grasp JRA-25245 & 
ERA-40246 1961–2010 1.125 (1.125) CRU-TS3.10/3.10.01/3.00234 CRU-CL1.0247, 

SRB237,238
No longwave radiation provided, use 
rlds from Princeton GF version 2

GSWPc gswp 20CR248 1901–2010 0.5° GPCC, CRU, SRB
Versions of bias-correction targets 
unclear. Addresses variability at high 
frequencies (less than monthly)

Princeton GF249 princeton NCAR 
Reanalysis1250,251 1948–2008 2.8 (0.5) CRU-TS2.1252/SRB237,238/TRMM239, GPCP253

Princeton GF 
version 2249 pgfv2 NCAR 

Reanalysis1250,251 1901–2012 2.8 (0.5) CRU-TS3.1234, SRB237,238, TRMM239, GPCP253

WATCH132 (WFD) watch ERA-40246 1958–2001 2.5 (0.5) GPCCv4254, CRU TS2.1252

Only using the precipitation version, 
which is bias-corrected against 
GPCCv4, even though there is also a 
version available for CRU

WFDEI.CRU131 wfdei.cru ERA-I243 1979–2009 0.75 (0.5) CRU TS3.1/3.101/3.21234

WFDEI.GPCC131 wfdei.gpcc ERA-I243 1979–2009 0.75 (0.5) CRU TS3.1/3.101/3.21234, GPCCv5255/v6235

Table 5.  Weather datasets used to drive simulations in GGCMI phase 1. We provide references for all 
datasets, where available, and an overview of the datasets used to generate these. For details on how the bias-
correction was conducted we refer the reader to the corresponding publications. aThis denotes the resolution 
of the underlying reanalysis dataset (and in parentheses the typical resolution of the key target data, temp and 
precipitation, used in the bias correction). All datasets will be standardized to a 0.5° × 0.5° spatial resolution 
in the GGCMI archives. bAbbreviations used: CMORPH: CPC MORPHing technique; CRU: Climate Research 
Unit; GPCC: Global Precipitation Climatology Centre; GPCP: Global Precipitation Climatology Project; 
PERSIANN: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks; 
SRB: Solar Radiation Budget; TRMM: Tropical Rainfall Measuring Mission; UDel: University of Delaware; 
cThe GSWP dataset is not documented in an article yet, but briefly described at http://hydro.iis.u-tokyo.ac.jp/
GSWP3/exp1.html#initial-conditions (accessed 2018/12/29).
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erroneous data were used in the analyses of Müller, et al.38, Porwollik, et al.47, but corrected versions were used 
for Frieler, et al.39, Schauberger, et al.41. The data from pAPSIM and pDSSAT do not cover the full land sur-
face, as the simulations were conducted with an incomplete land mask, missing part of the eastern coastlines. 
These data are not available and could not be supplied at a later stage. The output variables on growing season 
weather conditions (sumt, gsrsds and gsprec, Table 7) were not sufficiently clearly defined in the protocol37 and 
have thus been reported in an inconsistent manner. Outputs of pAPSIM and pDSSAT report average daily values, 
the other models report total growing season sums. LPJ-GUESS and LPJmL results for sumt have not included 
negative temperatures (°C) but only reported values above the crops’ base temperatures, whereas the other models 
included all values. Users are advised to compile their own growing season climate indicators using the weather 
input data (Table 5) and data on sowing and maturity dates (Table 7). CGMS-WOFOST provided wrong file 
names and dimensions for WFDEI.GPCC, which run until 2012 instead of 2010 and contain 2 empty elements 
for the last 2 time steps.

Code Availability
The data of the GGCMI phase 1 simulation set were produced by the individual modeling groups using different 
GGCMs. The source code of these models is subject to different distribution policies and needs to be requested 
from the individual groups. The source code of the central quality check as well as some general aggregation and 
data-processing scripts are available at https://github.com/RDCEP/ggcmi/tree/phase1.
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