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A B S T R A C T

In the face of increasing socio-economic and climatic pressures in growing cities, it is rational for managers to
consider multiple approaches for securing water availability. One often disregarded option is the promotion of
reforestation in source regions supplying important quantities of atmospheric moisture transported over long
distances through aerial rivers, affecting water resources of a city via precipitation and runoff (‘smart refor-
estation’). Here we present a case demonstrating smart reforestation’s potential as a water management option.
Using numerical moisture back-tracking models, we identify important upwind regions contributing to the aerial
river of Santa Cruz de la Sierra (Bolivia). Simulating the effect of reforestation in the identified regions, annual
precipitation and runoff reception in the city was found to increase by 1.25% and 2.30% respectively, while
runoff gain during the dry season reached 26.93%. Given the city’s population growth scenarios, the increase of
the renewable water resource by smart reforestation could cover 22–59% of the additional demand by 2030.
Building on the findings, we argue for a more systematic consideration of aerial river connections between
regions in reforestation and land planning for future challenges.

1. Introduction

Reforestation has been one of the most active initiatives to mitigate
global climate change impact. Being potentially a useful tool to se-
questrate atmospheric carbon, it also presents co-benefits such as im-
proving status of biodiversity loss and enhancing ecosystem integrity
(United Nations Framework Convention on Climate Change (UNFCCC,
2013). These co-benefits have been included as objectives of several
international agreements addressing those issues, e.g. the Aichi Targets
(Convention on Biological Diversity (CBD, 2010) and the Bonn Chal-
lenge (Bonn Challenge, 2019). However, an undesirable effect of such
intervention is the trade-off with downstream water availability
(Connor et al., 2016; Cunningham et al., 2015; Farley et al., 2005). A
dramatic decrease in river runoff is normally observed downstream of
the reforestation sites compromising water supply and other ecosystem
services from the river (Filoso et al., 2017; Jackson et al., 2005). This
has become a major factor of low societal acceptance impeding refor-
estation projects and invoking conflicts (Cao, 2011; Cao and Zhang,
2015) which poses challenges for local implementation of such an in-
tervention despite the top-down forces.

However, a usually neglected aspect of reforestation is that it can
also enhance water availability through invisible aerial river

connections (van Noordwijk et al., 2014; Ellison et al., 2017, 2018).
Similar to surface river networks, aerial rivers (preferential pathways of
moisture flows in the atmosphere; Arraut et al., 2012) connect regions,
often across administrative borders and topographic watersheds. Up-
wind land activities govern evapotranspiration (Gordon et al., 2005;
Silvério et al., 2015), the moisture input to terrestrial aerial rivers, and
influence precipitation downwind via atmospheric circulation
(D’Almeida et al., 2007; Ellision et al., 2012; Pitman and Lorenz, 2016;
Spracklen and Garcia-Carreras, 2015). Through the hydrological cycle,
this influence propagates to rivers and groundwater, thus impacting
water availability (Bagley et al., 2012; Coe et al., 2011; Lima et al.,
2014; Swann et al., 2015; Ramírez et al., 2017; Weng et al., 2018).
Reforestation in general enhances evapotranspiration resulting in more
water loss at the catchment scale compared with non-forested land
cover (Brown et al., 2005; Dean et al., 2015; Farley et al., 2005).
However, released from the land surface, these moisture fluxes to the
atmosphere are important inputs of continental aerial rivers (Gordon
et al., 2005). Through this mechanism, reforestation strengthens the
delivery of water to downwind regions. A prerequisite of integrating
this concept in land and water management is an assessment on how
relevant it is for downwind water availability. Since aerial river con-
nections are not directly observable, utilization of scientific tools are
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required to recognize connections between upwind and downwind re-
gions (Ellison et al., 2018). Via numerical modelling or isotopic tracing
it is possible to reveal the aerial river network connecting regions.
Utilizing numerical modelling as a tool, we quantify the effect of stra-
tegic reforestation in the upwind regions on those downwind via aerial
rivers, thus exploring the potential of the latter as a water resource
management option.

2. Material and methods

Expanding on a previous study’s methods of structuring aerial rivers
(Weng et al., 2018), we use the results of the WAM-2layers moisture
back-tracking algorithm (van der Ent et al., 2014) to identify the most
important upwind regions influencing precipitation in our study region,
Santa Cruz de la Sierra. Based on a Eulerian approach, the model traces
the origin of rainfall using the water balance principle and an as-
sumption of well-mixed atmosphere in two vertical layers according to
given input data. The WAM-2layers was shown to agree well with other
moisture tracking approaches in the Amazon region while having lower
computation cost (van der Ent et al., 2014; Zemp et al., 2014). For our
analysis, we use a simulation experiment (MOD experiment, described
in Zemp et al., 2014) that utilizes observation-based climatic input data
(precipitation, evaporation, humidity and wind field) spanning 2000-
2010. By averaging annual means of the simulations, we get a network
quantifying the contribution of evapotranspiration from each grid cell
(1.5° x 1.5° longitude and latitude) to rainfall at the Bolivian economic
capital, Santa Cruz de la Sierra. This network can therefore be used to
determine the precipitationshed (upwind surface area providing eva-
potranspiration to a specific sink area’s precipitation; Keys et al., 2012,
2018) of the city.

It is known that for a given location, its upwind regions can have
different influences on its water resource through the aerial rivers (Keys
et al., 2014; Weng et al., 2018). For planning purposes, it is actually
possible to identify influential upwind regions which have greatest
impact influencing a given region’s water availability. We investigated
a reforestation intervention in these important upwind regions of Santa
Cruz de la Sierra to estimate the optimal potential of such an inter-
vention as a water management option for the city. In order to do this
for our example location, we rank the regions’ importance in con-
tributing to rainfall of Santa Cruz de la Sierra and outline the Most
Influential part of Precipitationshed (MIP) of the city (see the blue re-
gion in Fig. 1) by a boundary designating the smallest area which
contributes 40% of the total continentally recycled precipitation in the
city. This threshold was proven applicable in reflecting the most im-
portant moisture source regions for assessing land use change impacts
on aerial rivers (Weng et al., 2018); also see Appendix A. for more
details outlining the MIP.

3. Study case

Santa Cruz de la Sierra in the Plurinational State of Bolivia, is one of
the world’s most rapidly growing cities (annual population growth rate
3.7% between 1992 and 2012; Trohanis et al., 2015) and the home of
1.4 million residents (INE, 2012). Migration flows, the main reason of
the city’s growth in the past decades, are expected to persist. Though
the city has the highest coverage of potable water in the country, the
current groundwater resources that the city relies heavily on are under
stress with a continuous deepening of modern recharge front and de-
terioration in quality (Morris et al., 2003). Water availability for both
the growing population and peri-urban agriculture is becoming un-
certain (Castelli et al., 2017). In addition, more frequently occurring
severe droughts in the region also intensify the water challenge faced by
the city (Erfanian et al., 2017; Jiménez-Muñoz et al., 2016; Marengo
et al., 2011).

Following the moisture tracking and the identification of the city’s
MIP, we tested the potential of managing aerial rivers by smart

reforestation as an option to ease the city’s water stress. Here “smart”
refers to the selective decision of reforestation sites (in the MIP) con-
sidering their impacts on aerial rivers and thereby on the water re-
ception of Santa Cruz de la Sierra. Our smart reforestation scenario in
each MIP component grid cell was built according to the restoration
opportunities map of the International Union for Conservation of
Nature (IUCN)/World Resources Institute (WRI) for the Bonn challenge
(Potapov et al., 2011; Maginnis et al., 2014; see Appendix B.) where
reforestation potential was assessed by ecological conditions and local
land use culture. The additional evapotranspiration input from smart
reforestation in each MIP cell was determined using the measured
evapotranspiration per area of a neighboring forest reference cell (with
forest fraction>95%). We then subtracted the evapotranspiration ty-
pical of pasture-land (Sakai et al., 2004), which is the major current
land-use type in areas selected for smart reforestation, from the re-
ference forest evapotranspiration per area before multiplying the area
reforested. The measured evapotranspiration used for forest evapo-
transpiration reference was derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) evapotranspiration product
MOD16ET (Mu et al., 2013). Thus the additional evapotranspiration
input considered is corresponding to the forest structure and age during
the observational period of the data (2000–2010). We then calculate
the newly added evapotranspiration’s influence on the city’s water
availability including annual rainfall and runoff reception. Changes in
annual rainfall could be directly quantified from our networks assuming
that changes in atmospheric moisture flow is proportional to changes in
the contribution of this moisture flow to local precipitation (Zemp et al.,
2017). This assumption is justified by a positive relationship between
atmospheric moisture and rainfall in the region (Boers et al., 2014)
which also implies sufficient supply of condensation nuclei in the region
(van Noordwijk et al., 2015). In turn, the new runoff budget of the city’s
upstream basin (belonging to the larger Madeira River basin) was
evaluated by balancing the changed annual basin precipitation and
annual evapotranspiration. We also analyzed changes in seasonal
rainfall and runoff budgets in the smart reforestation scenario based on
dry (June, July, August and September) and wet (December, January,
February and March) months’ basin precipitation and evapotranspira-
tion, in line with previous studies showing significant seasonal differ-
ences in the influence of aerial rivers on hydrological cycle (Trenberth,
1999; Zemp et al., 2014). For an operational scheme of the study case,
we refer the reader to Appendix C.

4. Results and discussion

We found that smart reforestation of 7.1 million ha in the MIP re-
gion of Santa Cruz de la Sierra lead to an increase of 1.25% in annual
rainfall reception of Santa Cruz de la Sierra (absolute rainfall gain
5.86×108m3). This scenario further leads to a rise of 2.23% (absolute
runoff gain 2.00× 109m3) in the city’s annual runoff enabled by the
spatial relationship between its upwind aerial river (more specifically
the MIP) and upstream surface river basin. As shown in Fig. 1, the MIP
region of Santa Cruz de la Sierra is located in Brazil (states of Acre and
Rondônia), Peru (departments of Madre de Dios), and Bolivia (depart-
ments of Pando and El Beni). The increase in runoff in Santa Cruz de la
Sierra is due to the fact that smart reforestation in the MIP of the city
also enhances rainfall in the city’s upstream surface river basin. Even
more interestingly, the MIP region of Santa Cruz de la Sierra is largely
separated from the upstream surface river basin of the city. Thus the
expected local runoff decrease resulting from increasing evapo-
transpiration of reforestation in the MIP is not fully experienced by the
city’s upstream surface river basin. In fact, the precipitation increase in
the basin (through the aerial rivers) results in a marked gain in runoff
reception of the city. The runoff increase is more prominent in the dry
season (June, July, August and September) reaching a 26.93% increase.
In the wet season (December, January, February and March), gains are
moderate (1.85%). Slight seasonal variation in rainfall increase
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following smart reforestation is also observed (dry season 1.27% and
wet season 1.24%). The rainfall and runoff gain of the study region
from smart reforestation are listed in Table 1.

Uncertainties in our estimates may stem from the moisture tracking
model, but moisture recycling ratios in the Amazon region estimated
from the MOD experiment agree well with other studies’ estimation in
the same region using other datasets and other moisture tracking ap-
proaches (see the table 2. in Zemp et al., 2014). We have also validated
our runoff estimation in the Madeira river basin with the historical river
observation data (Molinier et al., 1996) and found a slight (8%) over-
estimation. This has only a small impact on our estimation of the runoff
gain by smart reforestation (-8.6% of the annual runoff gain). Our
calculation of the reforestation impact on aerial rivers was based on the
condition of the transferability of measured forest evapotranspiration
from neighboring sites and minor wind field changes after changing
land cover (Bagley et al., 2014). Local convection that may be de-
creased by a lower local land cover heterogeneity (Baidya Roy and
Avissar, 2000; D’Almeida et al., 2006) after reforestation is not con-
sidered in our study. However, this effect is minor compared to changes
in aerial river flows after land-use change in the Amazon (Bagley et al.,
2014). Potential increase of soil infiltration (Bruijnzeel, 2004) after
reforestation are not considered in the runoff calculation, but this is
unlikely to affect our results since most of the reforestation sites are
located remotely (in the downstream areas or out of the upstream
catchment) of the city.

Our results show that smart reforestation is an option to enhance
water supply especially during dry seasons. An increase of 26.93% in
dry season runoff can be beneficial for sustaining ecosystem (Anderson
et al., 2013; Brienen et al., 2015) and livelihood (Castelli et al., 2017)

given the past (Fu et al., 2013; Vicente-Serrano et al., 2014) and pro-
jected (Marengo and Espinoza, 2016; Seiler, 2013) lengthening and
intensification of the dry season. The amount of water added to the
region by smart reforestation can be used to ease the growing water
stress brought about by fast urbanization (Castelli et al., 2017). Using
the population growth projections implied by different Shared Socio-
economic Pathways (SSP) (Jones and O’Neill, 2016), we calculated the
additional water resources needed to secure the current water con-
sumption per capita (Instituto Nacional de Estadíticas de Bolivia (INE,
2017a,b) in the city of Santa Cruz by 2030. In the case of withdrawal
being proportional to available water resources, our results imply that
an early implementation (2020) of smart reforestation can gradually
increase the renewable water resource of the city and ultimately cover
between 22% and 59% of the additional water demand by 2030.
Though the city’s current water system does not extract directly from
runoff, the already confirmed large dam projects (Ministerio de
Hidrocarburos y Energía, 2012) will allow to benefit from our proposed
management option. Such benefits might be particularly relevant given
the fact that the glaciers currently sustaining runoff are retreating under
climate change (Rabatel et al., 2013; Rangecroft et al., 2016; Vuille
et al., 2018). In addition, induced increases in both rainfall and runoff
reception will have a positive impact on groundwater recharge which
the city currently relies heavily on. Smart reforestation therefore has
the potential to increase water supply being beneficial in mitigating the
stress on the existing water system under both population growth and
climate change. Additional benefits of smart reforestation include se-
questering atmospheric carbon at the reforestation sites (Don et al.,
2011; Post and Kwon, 2000) and sustaining ecosystem integrity (Coe
et al., 2013). Our results add new insights into trade-off between carbon
sequestration and fresh water supply (Connor et al., 2016; Farley et al.,
2005; Gao et al., 2014), while a win-win situation between those is
presented in our case.

5. A more holistic practice of land-water management

Nationally in Bolivia, under the commitment of Ley 1333, refor-
estation has been also one of the priority land management targets to
preserve ecosystems and their services. Under the commitment of
Decreto Supremo Nº 2912, there is a Bolivian national target of refor-
esting 4.5 million hectares by 2030. The smart reforestation scenario

Fig. 1. Smart reforestation for water supply in
Santa Cruz (conceptual representation). The
Most Influential part of the Precipitationshed
(MIP) is highlighted in blue and the upstream
surface river basin of Santa Cruz de la Sierra is
shown in purple. The blue arrows represent
aerial river flows whereas the purple arrows
represent surface river flows. The city Santa
Cruz de la Sierra, is shown with an orange dot.
See Appendix B for an actual map of the MIP
and the reforestation potential sites. (For in-
terpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article).

Table 1
Estimated rainfall and runoff changes to the baseline due to smart reforestation.

Dry season
(June, July, August,
September)

Wet season
(December, January,
February, March)

Annual

Baseline rainfall 6.79× 109m3 2.54× 1010m3 4.69×1010m3

Baseline runoff 7.56× 108m3 6.21× 1010m3 8.68×1010m3

Rainfall change +1.27% +1.24% +1.25%
Runoff change +26.93% +1.85% +2.23%

W. Weng, et al. Land Use Policy 84 (2019) 105–113

107



includes reforestation areas of 7.1 million hectares and is therefore in
line with the national target while the Bolivian part covers 45% of these
areas. A full implementation of smart reforestation will require cross-
border cooperation. Current implementation of reforestation is mainly
planned at the upstream catchments (the Piraí river banks) aiming at
the improvement of water quality downstream. Nevertheless, following
this strategy, tension usually arises from a reduction of water quantity
in downstream areas. In addition, the feasible sites in upstream catch-
ments are usually limited while most of these areas are not easily ac-
cessible for development or are protected. Thus, a gap for fulfilling the
national reforestation target hectares can be expected if prioritizing this
traditional strategy. In this context, smart reforestation might be a good
alternative to fill the gap, even more, it might be worth considered
before the traditional strategy when aiming for a more water – resilient
city of Santa Cruz in the future. In order to implement smart refor-
estation, it will be necessary to negotiate with other departments out of
the Santa Cruz department, which the city belongs to. It is true that blue
water and sediments losses can be expected from the reforestation sites
locally and downstream. Nevertheless, the friction stemming from
compromise in downstream water supply is likely small while those
departments (Beni and Pando) and their downstream regions have re-
latively rich runoff resources. The concept of “right tree at the right
place for a clear function” (Creed and van Noordwijk, 2018) can be a
national strategy prioritizing those areas facing challenges. A full im-
plementation of smart reforestation will require international co-
operation because a part of the city’s MIP is located in Peru and Brazil.
This could be feasible when included in the context of both the Bonn
Challenge (http://www.bonnchallenge.org/content/challenge) and the
Initiative 20×20 (https://www.wri.org/our-work/project/initiative-
20×20), where the Latin American countries have a common target of
reforesting 20 million hectares by 2020. In addition, smart reforestation
is in line with the Intended Nationally Determined Contributions
(INDC) targeting atmospheric carbon reduction which increases in-
dividual country’s will to participate. A recent call for the regional joint
effort mitigating drought may also impose momentum for the joint
management on the aerial rivers (United Nations Convention to Combat
Desertification (UNCCD, 2017).

Our case implies that, similar to integrated surface river basin
management requiring collaboration between upstream and down-
stream entities, joint management between the upwind and downwind
regions is necessary for the implementation of aerial river management
and smart reforestation. This requires improved understanding of spa-
tial connections by the aerial rivers (Dirmeyer et al., 2009; Keys et al.,
2017) and the effect of land use practices at upwind regions propa-
gating to downwind regions through hydrological cycle (Ellison et al.,
2017, 2018; Weng et al., 2018). Nationally, an assessment that outlines
critical regions (e.g. the MIPs) to preserve aerial rivers will be a pre-
condition of involving relevant regions for cooperation. By the time the
present study was written, there is no inter-regional or international
agreement explicitly governing aerial river connections. The Conven-
tion on Long-Range Transboundary Air Pollution (United Nations
Economic Commission for Europe (UNECE, 1979; Sliggers and
Kakebeeke, 2004) might provide a feasible framework to develop on
(Ellison et al., 2017). Moreover, establishment of bridging organiza-
tions can facilitate co-production of knowledge and collaborative de-
cision making between actors (Cash et al., 2006; Olsson et al., 2007;
Crona and Parker, 2012). Interestingly, different roles in aerial river
regime and surface water regime may also foster positive policy en-
vironment for cooperation between aerial river sharing entities. Take

our case for instance, the upwind regions of Santa Cruz de la Sierra are
located downstream of the Madeira River, receiving impacts from the
city through the surface rivers, but they can exert influences on the city
through the aerial rivers since they are located upwind. The reverse
roles in this case imply that the shared aerial rivers might challenge
current relationships between entities established from surface water
regime and the according paradigms of land-water management.
Nevertheless, the aerial rivers are indeed the key to bring out a more
holistic one of those.

6. Conclusions

To sum up, by taking advantage of a model recognizing tele-
connections through the aerial rivers, we have exposed the potential of
smart cross-border reforestation as a water management option miti-
gating challenges of future population growth and climate change.
Through transportation by aerial rivers, atmospheric water added by
smart reforestation is collected and delivered to the downwind region,
presenting potential in increasing both rainfall and runoff (especially in
the dry season) in our study region, and certainly beyond. Different
from traditional upstream catchment approaches, smart reforestation
projects attest the possibility of breaking the usual trade-off in refor-
estation projects between carbon sequestration and fresh water supply
by enhancing both for specific target regions. Prioritization of smart
reforestation projects in the important upwind regions of those ex-
periencing or expecting water stress can present significant benefits but
be also in line with national and global efforts in reducing atmospheric
carbon. For example, the smart reforestation project can provide pre-
ferable results watering Bolivia’s fastest growing city and at the same
time fulfilling the Bolivian national INDC. Beyond the study region, a
more systematic consideration of the interconnection between the land
and water system while planning reforestation projects should be taken.
Further studies should focus on exploring smart reforestation sites that
optimizes the aerial river impacts downwind for such regions. The re-
levance of other land use types e.g. wetlands in aerial river manage-
ment should be explored as well. However, full reception of aerial river
benefits from smart reforestation or other approaches will, in most
cases, require cross-border cooperation, which is arguably the key to
sustainably managing the interrelated systems that underlie a livable
planet.
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Appendix A. Selection of the MIP

Apart from surface river upstream basins having clear boundary, the aerial river source regions for a given target sink, the precipitationshed, does
not have fixed and deterministic boundaries (Keys et al., 2012) and can be very broad. However, due to the fact that aerial river connections between
sources and sinks are spatially different (Keys et al., 2014), there exist prominent contributing source regions governing a given sink’s rainfall more
efficiently. The collection of the most important source regions is defined as the Most Influential part of Precipitationshed (MIP) (Weng et al., 2018).

W. Weng, et al. Land Use Policy 84 (2019) 105–113

108

http://www.bonnchallenge.org/content/challenge
https://github.com/ruudvdent/WAM2layersPython
https://github.com/ruudvdent/WAM2layersPython


By including the most important components of the source areas, the MIP governs a given proportion of a target sink’s precipitation within the
smallest land surface area. Thus for managing the aerial river, identification of the MIP can be considered a budget-efficient approach.

The selection of the MIP from the precipitationshed of a given sink requires a threshold which depends on the study purpose. Previous studies
applied different standards as thresholds. e.g. 70% of the precipitation (Keys et al., 2012) or 1% of the precipitation from continental sources (Keys
et al., 2017). In the present study, we are interested in the terrestrial source areas since we aim to analyze reforestation within the MIP. Fig. A1 shows
the terrestrial component of the precipitationshed for Santa Cruz de la Sierra. We further use a boundary of 40% terrestrial contribution (the 0.4
contour on Fig. A1.) to determine the MIP in our study. This threshold was a trade-off between enough aerial river influences (terrestrial contribution
represents 53% of the precipitation received in Santa Cruz de la Sierra) and the fast growing size of the MIP when the threshold value goes up. As Fig.
A2 shows, there is a change in the characteristics of the increase of the aggregated area around aggregated 40% contribution. Up to 40%, we observe
an almost linear increase while for larger contributions the area increases super-linearly (approximately exponential). Other breakpoints deliver
significantly worse R2 - values. We arrive at the 40% continental contribution as threshold applied in our study since thresholds above imply the
inclusion of less efficient areas. Furthermore, the MIP identified here designates reforestation high potential areas close to the national reforestation
target in Bolivia. While the chosen threshold was more policy target-oriented in our study, the selection of the MIP threshold for future studies,
however, will have to follow their study purposes.

Fig. A1. The terrestrial precipitationshed of Santa Cruz de la Sierra. The contour value represents the delimited area’s contribution to Santa Cruz de la Sierra’s rainfall
that is from the continental recycling. The 0.4 contour was the threshold used for selecting the MIP in our study (the blue region in Fig. 1). Note that the delimited
areas grow quickly as the contour value grows.

Fig. A2. MIP size-contribution relationship for Santa Cruz de la Sierra. Black solid line: size of the delimited area and its corresponding collective contribution to
Santa Cruz de la Sierra’s rainfall from continental source (x-axis). Blue dashed line: up to 40% contribution the aggregated area increases almost linearly
(R2=0.991). Red dashed line: above 40% the area increases super-linearly, very close to exponential growth (R2=0.997).
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Appendix B. Reforestation potential in the MIP

The reforestation potential considered in our analysis for smart reforestation was based on the restoration opportunities map of the IUCN/WRI in
which the forest growing potential was assessed by climate and current land use conditions (Potapov et al., 2011; Minnemeyer et al., 2011), shown in
Fig. B1. Intact forests and fragmented/managed natural forests were considered no potential for restoration. The restoration opportunities were
constrained by human pressure taking into account population density and land use practices. Restoration opportunities were then categorized into
four groups for degraded forestlands. These groups include wide-scale restoration (low human pressure; with potential to support closed forest),
mosaic restoration (moderate human pressure), remote restoration (very low human pressure) and agricultural lands (intensive human pressure). In
our MIP area, remote restoration areas are not presented. We used wide-scale restoration category as potential areas for smart reforestation because
it refers to areas where closed forests can possibly grow back on a large scale (Minnemeyer et al., 2011). Note that the restoration opportunities map
used in the present study was an assessment at a global scale aiming to give indication for capability of lands to support forests. Identification of local
reforestation sites should be complemented by other socio-economic investigations for interventions to begin with (Maginnis et al., 2014).

Fig. B1. Reforestation potential in the MIP. The MIP of Santa Cruz de la Sierra outlined by our network is the skin color area (conceptualized as the blue area in
Fig. 1). In the present study, the wide-scale restoration category (highlighted by dark green areas) is selected to describe smart reforestation areas. Source: Global
map of forest landscape restoration opportunities (Potapov et al., 2011).
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Appendix C. Operational scheme for smart reforestation

See Fig. C1.
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