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1 Abstract

We propose an upgraded gravitational model which provides population

counts beyond the binary (urban/non-urban) city simulations. Numerically

studying the model output, we find that the radial population density gra-

dients follow power-laws where the exponent is related to the preset gravity

exponent γ. Similarly, the urban fraction decays exponentially, again de-

termined by γ. The population density gradient can be related to radial

fractality and it turns out that the typical exponents imply that cities are

basically zero-dimensional. Increasing the gravity exponent leads to extreme

compactness and the loss of radial symmetry. We study the shape of the
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major central cluster by means of another three fractal dimensions and find

that overall its fractality is dominated by the size and the influence of γ is mi-

nor. The fundamental allometry, between population and area of the major

central cluster, is related to the gravity exponent but restricted to the case of

higher densities in large cities. We argue that cities are shaped by power-law

proximity. We complement the numerical analysis by economics arguments

employing travel costs as well as housing rent determined by supply and de-

mand. Our work contributes to the understanding of gravitational effects,

radial gradients, and urban morphology. The model allows to generate and

investigate city structures under laboratory conditions.
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2 Introduction

The large number of processes working in cities make them complex ob-

jects extending over a range of spatio-temporal scales (White et al., 2015,

Barthelemy, 2016). As pointed out by Batty (2013), a city science that ex-

plains city growth, sprawl, etc. needs to be supported by theories about how

people relate to each other. Despite ongoing digitalization and globalization,

geographical proximity still matters (Morgan, 2004). The small distances

within cities, as extreme agglomerations, attract urbanites and thereby en-

hance the proximity.

Certainly, ideas of geographical gravitation have a long tradition and can

be traced back to the middle of the 20th century and beyond (Zipf, 1946,

Stewart, 1948, Carrothers, 1956). In view of new empirical findings we revisit

and extend a probabilistic city model (Rybski et al., 2013) from two states

(non-urban, urban) to population counts. Specifically, we validate it against

recent findings of urban fraction and population density gradients (Lemoy

and Caruso, 2018) as well as of building heights within cities (Schläpfer et al.,

2015).

The model to a large extent reproduces the features described for real-

world cities. The numerical simulations enable us to relate both works to

each other as well as to other properties including 4 different measures of

city fractality and the fundamental allometry, i.e. between population and

area of cities. Interestingly, the population density gradient decaying with

the radial distance to the power −2 as found in Lemoy and Caruso (2017)

corresponds to a fractal dimension of 0, which supports the point character

of cities, i.e. singularities in space. We complement the numerical analy-

sis by economics arguments employing travel costs as well as housing rent

determined by supply and demand.
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Figure 1: Examples of city structures generated by the model, Eq. (1). For

panels (a) and (b) γ = 2.25 was used and for (b) and (c) it was γ = 2.5.

For better comparability, in (a) and (c) as well as (b) and (d) iterations with

approximately the same fraction p of occupied cells were chosen. The color

bar indicates the number of ‘inhabitants’ in the cells (in log-scale). The red

line in (a)-(d) shows the boundary of the major central cluster. Panel (e) is

a 3-dimensional illustration of the major cluster from (d), whereas the third

dimension is in linear scale.

3 Model

We consider a two dimensional square lattice of size N × N whose sites wj

with coordinates j ∈ {(1 . . . N, 1 . . . N)} can be empty (0) or occupied by an

integer number of ‘inhabitants’. The probability that an inhabitant is added

to a site is

qj = G

∑
k 6=j wkd

−γ
j,k∑

k 6=j d
−γ
j,k

, (1)
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where dj,k is the Euclidean distance between the sites j and k. The denomi-

nator compensates for border effects of the finite system. The exponent γ > 0

is a free parameter that determines how strong the influence of occupied sites

decays with the distance. The constant G (exogenously) determines the over-

all growth rate and is given by G = g/
(
max

∑
wd−γ∑
d−γ

)
where the parameter

g is used to tune the speed of growth (0 < g ≤ 1).

We start with an empty grid (wj = 0 for all j) and, without loss of

generality, put one inhabitant on the single central site. In every iteration,

a random number z is drawn (from a uniform distribution between 0 and 1)

for each grid cell with coordinates j and if z < qj then wj is incremented

by 1. We consider w as population counts in each grid cell. The procedure

is repeated and stopped before the major central cluster reaches any of the

system boundaries. Figure 1 shows examples of the emerging structures.

This version differs from the original model (Rybski et al., 2013) only by

(i) the wj which originally were 0 or 1 and (ii) the g which originally was

fixed to g = 1, so that the maximum probability was 1. Please see Rybski

et al. (2013) for details.

For some analyses, we extract the major cluster by applying the City

Clustering Algorithm (CCA) (Hoshen and Kopelman, 1976, Rozenfeld et al.,

2008, 2011, Fluschnik et al., 2016, Kriewald et al., 2016) with l = 1, i.e. only

connecting nearest neighbors. The area Ac of the major cluster is given by the

number of cells with w > 0 belonging to the cluster. Analogously, the total

population Sc of the cluster is defined by the sum over w it consists of. For

each major cluster, we extract its envelope, i.e. those cells which have at least

one empty (nearest) neighbor which is not part of a hole within the cluster.

We denote the number of cells the envelope consists of as perimeter C, and

the largest distance from the envelope to the central cell of the lattice as Rc.
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The cells of the grid can also be understood as plots for buildings and the

wj as the height of the buildings. Assuming each floor corresponds to one

apartment and each apartment is home to one person, then wj corresponds

to the number of inhabitants. More apartments per floor or more persons

per apartment only represent a factor. We assume homogeneity, i.e. living

space per person is constant throughout the city.

4 Analysis

On a square lattice of size 1000 × 1000 we run 10 realizations for vari-

ous γ-values. As with the same normalization constant g a larger γ re-

quires more iterations to fill the lattice, we take different normalization con-

stants g for different γ-values to balance between the need of enough itera-

tions and the computational time. Specifically, we run simulations for γ =

2.0, 2.05, . . . , 2.7, 2.75 with g = 0.02, 0.02, 0.1, 0.1, 0.1, 0.1, 0.2, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1

respectively. All iterations where the major central cluster is smaller than

200 occupied cells are excluded during the post-processing. We end up with

approximately 1700 useful iterations in total for γ = 2.0. The number of

iterations increases with γ.

4.1 Radial gradients

First we want to study the gradients generated by the model and compare

them with empirical results (Guérois and Pumain, 2008, Peiravian et al.,

2014, Lemoy and Caruso, 2018). Following Lemoy and Caruso (2018) we

define concentric rings around the initial central cell and calculate within

them the population density and urban fraction. We also apply the rescaling

proposed in (Lemoy and Caruso, 2018).
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Figure 2: Population density gradients. The rescaled population density is

plotted as a function of the rescaled distance to the center, both according

to Eq. (2), for (a) γ = 2.25, (b) γ = 2.5, and (c) γ = 2.75. All panels are

in log-log scale. Due to rescaling the values of all realizations and iterations

fall onto each other. The shades of blue represent densities, the red line

corresponds to the data of an individual curve, and the straight green line

is a guide to the eye with slope given by Eq. (5). The population density

asymptotically decays as power-law.

4.1.1 Population density gradient

The density is given by D(r) =
∑
k wk/

∑
k 1, where k is the index represent-

ing all cells at a distance between r and r+ δr from the center. In this study

the width of the rings is δr = 1. We only take rings up to Rc into account.

We rescale the population density according to

r∗ =
r

S1/3
D∗(r) =

D(r)

S1/3
(2)

as proposed in Lemoy and Caruso (2018). It can be seen in Fig. 2, that

the rescaled curves collapse (Stanley, 1999, Malmgren et al., 2009), i.e. they

reasonably well fall onto each other.

Specifically, we find that the population density decays following a power-
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law
D(r)

S1/3
∼
(

r

S1/3

)−α
(3)

for r∗ > r∗p, where r∗p is the rescaled radius at which the plateau ends and

the power-law decay begins. Rescaling does not affect the power-law relation

and we conclude that the population density generated by our model follows

D(r) ∼ r−α (4)

for r∗ > r∗p. The power-law reasonably well agrees with the empirical results

(Lemoy and Caruso, 2018). Since Lemoy and Caruso (2018, 2017) study

profiles across many cities at the same time step and we rescale various

realizations but across time (instead of only across samples) we hypothesize

ergodicity, in a sense that cross-sectional and temporal behavior are the same.

As can be seen in Fig. 2, the density gradient exponent α depends on the

gravity exponent γ. We find

α = 2γ − 3 . (5)

Small γ-values lead to scattered/sprawled structures and large γ-values lead

to compact patches. The value γ ' 2.5 as estimated for Paris (Rybski et al.,

2013) agrees well with α ' 2 as indicated in Lemoy and Caruso (2018).

4.1.2 Urban fraction gradient

Analogously to the population density, the urban fraction is given by u(r) =∑
k θ(wk)/

∑
k 1, where θ(wk) = 0 for wk = 0 and θ(wk) = 1 for wk > 0.

Again, as proposed in Lemoy and Caruso (2018), we rescale the urban fraction

according to

r∗ =
r

S1/2
u∗(r) = u(r) . (6)
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Similar to the population density, the rescaled curves of urban fraction col-

lapse onto each other in Fig. 3. For the urban fraction we find an exponential

decay

u(r) = exp

(
− b

S1/2
r

)
(7)

for r∗ > r∗p. The urban fraction gradient parameter depends on the gravity

exponent, i.e. b/S1/2 ∼ exp (c γ) with c ≈ 10/3, see Fig. 3(b),(d),(f).

Equation (7) seems to hold reasonably well (Makse et al., 1995), but

overall Lemoy and Caruso (2018) find a slower than exponential decay.

4.2 Urban fractality

Next we want to argue that Eq. (4) is related to fractality (Batty and Longley,

1994, Frankhauser, 2008, Encarnação et al., 2012, Zhou et al., 2017). The

fractal dimension d is commonly defined by M ∼ Ld, i.e. by the way how the

mass M of the considered structure changes with linear size L, see (Bunde

and Havlin, 1995, e.g.). In our case the relation between M and L can be

expressed as a mass-radius relation (Makse et al., 1998, Daqing et al., 2011).

Moreover, we are studying the density D = M/L2. In combination we can

write D(r) ∼ rdrad−2 (Batty and Longley, 1994, Eq. (8.12)). Comparison

with Eq. (4) leads to α = 2− drad and with Eq. (5) to

drad = 5− 2γ . (8)

For γ = 2.5 the resulting structures are zero-dimensional in terms of fractal

geometry, i.e. essentially corresponding to a point. For γ > 2.5 we obtain

negative fractal dimensions, from which we infer that the mass-radius relation

is not valid anymore, i.e. radial symmetry is lost.
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Figure 3: Urban fraction gradients. The urban fraction is plotted as a func-

tion of the rescaled distance to the center according to Eq. (6), for (a)+(b)

γ = 2.25, (c)+(d) γ = 2.5, and (e)+(f) γ = 2.75. Panels (a), (c), (d) are in

lin-lin scale and in panels (b), (d), (f) the vertical axis is logarithmic. Due

to rescaling the values of all realizations and iterations fall onto each other.

The shades of blue represent densities. The red line in (b), (d), and (f) cor-

responds to the data of an individual curve, and the straight green line is a

guide to the eye from Eq. (7). The urban fraction decays exponentially.
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Figure 4: Area-perimeter relation. (a) The area and perimeter of the major

central cluster are correlated according to a power-law Eq. (9), here shown

for γ = 2.5. In the panel all realizations have been combined. (b) Fractal

dimension of the perimeter d◦apr according to the area-perimeter relation as

a function of the gravity exponent γ. The red dots represent the averages

among the realizations.

4.2.1 Area-perimeter relation

While so far we have studied the resulting w-values of the whole system,

from now on we focus on the properties of the major central cluster. To be

more specific, here we consider its shape. As introduced by Lovejoy (1982)

we first investigate the area-perimeter relation [see also (Batty and Longley,

1994, Ch. 6.2)], according to which the area A· and the perimeter C of the

object under consideration are related by a power-law

C ∼ A
d◦apr/2
· (9)

where d◦apr is the fractal dimension of the perimeter. By A· we denote the

area of the cluster where we fill any empty cells (holes) within the perimeter,

accordingly, Ac ≤ A·.

Figure 4(a) shows an example of the correlations between area and perime-

ter. As expected there is a power-law relation. We have fitted the exponent
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in Eq. (9) based on the evolution of the major central cluster of each real-

ization separately. In Fig. 4(b) the resulting fractal dimensions of all realiza-

tions are plotted as a function of the various γ-values. There is considerable

spreading among the realizations but a minor increase of the average values

can be observed from d◦apr ≈ 1.25 . . . 1.32 for γ = 2.1 . . . 2.75, respectively.

This range is comparable to the range achieved by the correlated percolation

model (CPM) (Makse et al., 1998). Any size dependence of d◦apr cannot be

studied since in this case size variation defines the dimension.

4.2.2 Box-counting dimensions

Next we employ box-counting to characterize the structure of the major cen-

tral cluster. The method consists of counting the number of non-overlapping

square-shaped boxes necessary to cover an object, see Bunde and Havlin

(1995) and references therein. By varying the size of the box the dimension

is quantified via

Nbc ∼ Ld (10)

where Nbc is the number of boxes, L their size, and d the dimension. We

assess the cluster as a whole as well as the envelope of the cluster and denote

the dimensions d•bc and d◦bc, respectively.

In Fig. 5 we plot the resulting fractal dimensions as a function of the size

of the major central cluster Ac. It can be seen that the fractal dimensions

tend to increase with Ac, which is qualitatively consistent with empirical

findings and previous results (Shen, 2002, Rybski et al., 2013, Zhou et al.,

2017). The correlations are non-linear and more pronounced for d•bc, i.e. the

fractal dimension of the entire cluster correlates better with the size.

In Zhou et al. (2017), based on 5,000 clusters of urban land-cover in

Europe, the fractal dimension of the envelope roughly varies between 1.3
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Figure 5: Box-counting fractal dimensions of major central cluster and its

envelope. The fractal dimensions are plotted vs. cluster size in (a)-(d) for

the envelope, d◦bc, in (a)+(b), and the entire cluster, d•bc, in (c)+(d). As

examples we use (a)+(c) γ = 2.25 and (b)+(d) γ = 2.75. The different colors

represent the various realizations. The two fractal dimensions are plotted

against each other in (e), where it can be seen that the fractal dimension of

the envelope is slightly smaller for the larger γ-value. Overall, the influence

of the cluster size is stronger than the gravity exponent. Panel (f) illustrates

for an example of the population density gradient (semi-log) how the different

fractal dimensions are defined by different features of the simulations. The

orange curves represents the major central cluster and the green one the

entire system, i.e. including small surrounding clusters.
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and 1.5, while for the cluster itself it varies between 1.3 and 1.7. From our

simulations we obtain d◦bc roughly between 1.1 and 1.4 [Fig. 5(a),(b)] and d•bc

roughly between 1.5 and 1.9 [Fig. 5(c),(d)]. However, Zhou et al. (2017) also

report an anisometry of the clusters which could affect the fractal dimension.

The influence of γ is small and can be seen in Fig. 5(e) where we plot the

fractal dimensions against each other. The smaller γ = 2.25 leads to slightly

larger d◦bc. Overall, the dependence on the size is more pronounced than the

influence of the gravity exponent γ.

It needs to be noted that while drad in Eq. (8) describes the fractality of

the entire cluster, including the population (i.e. the third dimension), d◦apr

in Eq. (9) and d◦bc characterize what in the context of the CPM is called

percolation front (Makse et al., 1998), i.e. the fuzziness of the envelope [see

Fig. 5(f)]. The measure d•bc is a combination of both, but does not consider

the third dimension.

4.3 Fundamental allometry

Schläpfer et al. (2015) find a power-law between the average building height

and city size. In our context the building height translates into population

density so that their relation corresponds to Sc/Ac ∼ Sφc . This power-law,

in turn, is associated to the fundamental allometry relating the population

and area of cities (Stewart and Warntz, 1958, Nordbeck, 1971, Batty and

Ferguson, 2011, Fluschnik et al., 2016, Rybski, 2016, Rybski et al., 2017)

Sc ∼ Aδc (11)

via φ = 1 − 1/δ. Accordingly, in the following we analyze Eq. (11) for our

model, i.e. the major central cluster.

In Fig. 6(a) one can see that the resulting populations and areas follow
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Figure 6: Fundamental allometry. The population of the major central

cluster as a function of its area is plotted in panel (a) for various γ-values as

indicated in the legend. The dotted line has slope 1. Values of all realizations

and iterations are shown. The scaling exponent δ according to Eq. (11) is

plotted in panel (b) together with a parabolic regression. The 10 realizations

for each γ-value are represented by a box-plot. Larger values of γ lead to

increased population density in big cities.

power-laws according to Eq. (11). The allometry exponent δ depends on

the gravity exponent γ, approximately following a parabolic relationship, see

Fig. 6(b). Schläpfer et al. (2015) report φ ' 0.34 – considering buildings

within 2 km from the city center – which corresponds to δ ' 1.52 and γ ≈ 3

according to our numerical results. Our model seems to be restricted to

δ > 1, which is consistent with the results for the majority of real-world

cities (Batty and Ferguson, 2011, Bettencourt and Lobo, 2016).

5 Economics Reasoning

We want to motivate Eq. (4), i.e. propose a setting under which the density

gradient goes as

D(r) ∼ r−α (12)
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Figure 7: Illustration of the sum of housing rent and transportation costs as

well as the influence of the weight a. The values ρ = 2, τ = 3, and b = 1

have been used exemplary. With decreasing a the minimum moves towards

the center.
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whereas α ≈ 2. The population density is given by population per area. The

area of concentric rings is proportional to the distance from the center, i.e.

∼ 2πr. Then D(r) = S(r)
A(r)
∼ S(r)

r
and the population follows S(r) ∼ r−α+1.

If we normalize to the total population, then we have a probability density

p(r) ∼ r−α+1 . (13)

We begin with the common approach according to which the commodity

Z is given by the wages W minus the housing rent R and the transportation

costs T , see e.g. (Barthelemy, 2016, Ch. 3.3), i.e.

Z = W −R− T , (14)

which is maximized by minimizing expenses

max(Z) = W −min(R + T ) . (15)

In the mono-centric case it is common sense that the rents decrease further

away from the city center but the transportation costs increase. We assume

power-law relations

R = a r−ρ (16)

T = b rτ , (17)

with the distance r from the center and ρ, τ > 0. The power-law rent profile is

motivated below, for the power-law transportation costs see e.g. (Fabinger,

2012, Sec. 1.4.3) and references therein. Delloye et al. (2018) use linear

transportation costs (τ = 1).

In order to find the optimal distance to the center, the derivative of R+T

needs to be zero, i.e.

ropt =
(
ρa

τb

)1/(ρ+τ)

. (18)
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By summing R with T we are essentially comparing apples with oranges.

However, the prefactors a and b determine the weights they have relative to

each other. Certainly, for wealthy people the rent becomes less of an issue

and the weight should be smaller while transportation is similar for everyone

[people spend 20 % to 30 % of their time commuting (Kahneman et al., 2006)].

We assume a ∼ W−1, b = const (see Fig. 7) and obtain

ropt ∼ W−1/(ρ+τ) . (19)

Wealthier people can afford living close to the city center while low income

population is pushed outward.

Further, we take the power-law income or wealth distribution

p(W ) ∼ W−ζ (20)

with ζ ≈ 2.5 [ζUSA ' 2.4 (Levy and Solomon, 1997, Brzezinski, 2014)]. The

exponent ζ is also related to the Gini coefficient via ζ = 1
2G

+ 3
2

(Pfähler,

1985). Typical values are between G = 0.65 and G = 0.80 corresponding to

ζ ' 2.27 and ζ ' 2.13, respectively.

If two quantities A and B follow power-law distributions with pdfs p(A) ∼

A−ζA and p(B) ∼ B−ζB , then the transformation B ∼ Aβ with β = (ζA −

1)/(ζB−1) translates one into the other (Gomez-Lievano et al., 2012). Com-

parison leads to ζA = ζ, ζB = α− 1, and

−1

ρ+ τ
=
ζ − 1

α− 2
. (21)

The lhs is negative and since ζ � 1 the rhs can only become negative if α < 2.

At α = 2 a transition occurs and for α > 2 the mono-centric assumption does

not hold. This is consistent with the transition at γ = 2.5 in Eq. (8). From

α = 2− (ζ − 1)(ρ+ τ) it can be seen that only small values of τ and ρ lead

to α close to 2.
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As a critical remark, we need to add that it is not a surprise to obtain

a power-law (or a relation between exponents) when the derivation itself is

based on power-laws. However, in economics power-laws are theoretically

understood and empirically established (Gabaix, 2016).

5.1 Housing rent

Here we want to motivate Eq. (16) and the exponent ρ. The housing rent is

determined by supply and demand. We postulate that the number of people

willing to pay rent larger than R decreases as a power-law with R

PD(X ≥ R) ' R−εD . (22)

Analogously, the number of people willing to sell property or rent it out for

a price lower than R decreases as a power-law with R

PS(X ≤ R) ' 1−R−εS . (23)

The market price is then given by the price where both curves cross each

other

aDPD(X ≥ R×) = aSPS(X ≤ R×) (24)

aDR
−εD
× + aSR

−εS
× = aS , (25)

where the factors aD and aS are required to adjust for the amount and con-

vert the cdfs into cumulative frequency distributions. Increasing availability

should decrease the price and increasing demand should increase the price.

We assume aD ∼ 1/r and aS ∼ r leading to 1/r R−εD× + rR−εS× ∼ r. For large

r the second term dominates, implying R× = const. Thus, large supply leads

to a (low) price that is independent of the location. For small r the first term

dominates, leading to

R× ∼ r−2/εD , (26)

19



i.e. ρ = 2/εD. The price is dominated by the demand.

Linearity should work if we consider the area. In case of living space/apartments

another exponent might be necessary to take changes of density into ac-

count, i.e. aD ∼ r−δD and aS ∼ rδS . With the same reasoning as before, we

then obtain R× ∼ r−(δS+δD)/εD . In particular, if we consider Eq. (13) and

δD = δS = α− 1, then ρ = (2α− 2)/εD. For α ≈ 2 we have ρ ≈ 2/εD.

6 Summary & Discussion

In summary, our simulations show that the gravitational approach – accord-

ing to which the probability of incremental growth is proportional to d−γ – is

capable of reproducing radial gradients of real-world cities. We numerically

find a relation between the gravity exponent γ and the population density

exponent α, suggesting equivalence i.e. the power-law population gradient is

an expression of the gravitation (or vice versa). Accordingly, our results con-

firm the idea of a friction of distance (Batty and Ferguson, 2011), (Benenson

and Torrens, 2004, Sec. 3.2.2). However, the strength of proximity follows

a power-law and it can be anticipated that an exponential functions instead

of d−γ in Eq. (1) will not lead to rich spatial complexity. If we accept that

the model generates structures that resemble real-world cities, then we can

conclude that gravitation represents a composite mechanism of the various

attractive processes influencing location choices (proximity to friends and

work, availability of infrastructure, clustering of business types, etc.).

Our results add to the pioneering work by Batty and Sik Kim (1992) who

described a power-law population density gradient – in contrast to an expo-

nential one (Clark, 1951). However, the proposed range of α between 0 and

1 corresponds to γ between 1.5 and 2, which is below the range investigated
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here. For γ < 2 the emerging structures are too noisy (Rybski et al., 2013)

and unrealistic compared to real-world cities. A recently suggested value is

α ' 2 (Lemoy and Caruso, 2017) which corresponds to γ ' 2.5 (Rybski

et al., 2013). Interestingly, at this precise value of α = 2 and γ = 2.5 the

fractal dimension is drad = 0 which agrees with the perception of cities as

(zero-dimensional) points. For γ > 2.5 a transition occurs where the fractal

dimension is not defined or does not well-behave which we denote singularity.

Moreover, it needs to be mentioned that we study our model results in

terms of mono-centric cities. If the main cluster merges with surrounding

smaller ones, then sub-centers can appear, but overall the main center dom-

inates, as illustrated in Fig. 1. It remains to be studied what happens in

the regime γ > 2.5. In any case, a coherent definition and an appropriate

measure for poly-centrism are lacking.

We investigate additional three fractal dimensions characterizing the struc-

ture of the major central cluster, disregarding the population density. Overall

we find that the fractality is dominated by the size of the cluster while the

gravity exponent γ has a minor influence. This is consistent with various

previous papers.

Our approach also leads to urban allometry between population and area,

although the scaling seems to be restricted to δ > 1 in Eq. (11), i.e. the

case where large cities exhibit higher densities. In a sense the exponent γ

determines how sprawled or compact the emergent cities are. If one could

find a policy instrument to control γ, then one could use it to influence the

urban development in the desired way. This could address sustainability

questions, e.g. related to the ratio of land consumption rate to population

growth. Specifically, larger γ-values lead to more compact cities – due to the

fundamental allometry Eq. (11) this influences mostly the large ones.
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An alternative model that elegantly generates spatial complexity and

radial gradients is Diffusion-Limited Aggregation (DLA) (Witten Jr. and

Sander, 1981, Fotheringham et al., 1989, Batty et al., 1989, Batty and Lon-

gley, 1994, Batty, 2013). Contrasting Eq. (7), DLA leads to a power-law

gradient of the urban fraction (Fotheringham et al., 1989, Eq.(3)). A form of

allometry, Eq. (11), is also obtained from DLA (Fotheringham et al., 1989,

Eq.(5)). The fractal dimension of the DLA in its basic form is ≈ 1.71 (Batty

and Longley, 1994, e.g.). However, as the present model also grows in the

third dimension, DLA can rather be compared to the binary gravitational

model (Rybski et al., 2013).

In contrast to the correlated percolation model (CPM) proposed in (Makse

et al., 1995, 1998), where the urban fraction gradient and the structure are

introduced artificially, in the gravitational approach presented here they are

emergent. Moreover, it is not straight forward to extend the CPM to also

simulate population density. It would be interesting to analyze which gradi-

ents are generated by the Spatial Network Model (SNM) (Frasco et al., 2014,

Wickramasinghe et al., 2018).

The qj in Eq. (1) are often interpreted as potential of a gravitational force

Fj,k (Batten and Boyce, 1987). In physics, they are related via F = −∇q and

as the distance appears ∼ d−γ in the potential, it should be ∼ d−(γ+1) in the

force. However, the analogy only works partly. First, the system does not

have any dynamics and the kinetic energy as counterpart to the potential is

missing. Second, the qj are probabilities and more similar to the probability

density of finding a particle at a given place, i.e. the squared modulus of a

wave function, but it is questionable if a wave function makes sense in this

context.

We also would like to discuss some limitations of our gravitational model.
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(i) The maximum urban fraction reaches 1 which is higher than in real cities.

Analogously, population shows unbounded growth in the core and not a

plateau as in real cities (although in Fig. 2 a plateau can be seen in the

log-log scale, in lin-lin representation it is negligible). (ii) The assumed pro-

portionalities between the w-values, population density, and building height

do not affect the model interpretations but for the comparison with real-

world cities they represent rough assumptions and might require refinements

from follow-up studies (Biljecki et al., 2016). In particular, a central busi-

ness district and similar features would require to distinguish residential from

commercial and other uses. (iii) Real-world cities are rarely radial and many

exhibit anisometry (Zhou et al., 2017), which in most cases results from land-

scape contraints (e.g. coast lines). Our model apparently does not reproduce

such anisometry but was also not intended to do so. (iv) The growth is

exogenous and the constant growth parameter g leads to idealized urban

development trajectories.

In principle the model can be extended by another exponent ε, i.e. wεkd
−γ
j,k

in Eq. (1), giving more or less dense cells more or less weight. For the sake

of simplicity we did not follow this approach. Moreover, in the context of

complex networks it has been shown that “nonlinear preferential attachment”

(ε 6= 1) leads to degree distributions which are different from power-laws

(Krapivsky et al., 2000). For systems of cities this would imply deviations

from Zipf’s law.

Last but not least we would like to discuss an outlook to future work.

(i) Recently, Volpati and Barthelemy (2018) proposed a dispersion index to

characterize the degree of localization in populous areas. A direction of future

research could be to apply it to our model output and establish a relation.

(ii) It could also be of interest to operationalize the gravitational approach
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in order to apply it to real-world data (Jones and O’Neill, 2016). More

landscape features need to be taken into account for a realistic modeling.

(iii) The described gradients could be related to other quantities, such as the

Urban Heat Island (UHI) effect (Watkins et al., 2002, Fig. 6), (Zhou et al.,

2017).
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