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Effects of changing population or density on urban
carbon dioxide emissions
Haroldo V. Ribeiro 1, Diego Rybski 2 & Jürgen P. Kropp 2,3

The question of whether urbanization contributes to increasing carbon dioxide emissions has

been mainly investigated via scaling relationships with population or population density.

However, these approaches overlook the correlations between population and area, and

ignore possible interactions between these quantities. Here, we propose a generalized

framework that simultaneously considers the effects of population and area along with

possible interactions between these urban metrics. Our results significantly improve the

description of emissions and reveal the coupled role between population and density on

emissions. These models show that variations in emissions associated with proportionate

changes in population or density may not only depend on the magnitude of these changes but

also on the initial values of these quantities. For US areas, the larger the city, the higher is the

impact of changing its population or density on its emissions; but population changes always

have a greater effect on emissions than population density.
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Carbon dioxide (CO2) emissions are considered one of the
main causes of Earth’s climate change1. Despite covering
only 0.4–0.9% of global land surfaces2, urban areas are

responsible for more than 70% of such emissions3,4. This fact
assigns cities a central role in pursuing solutions and mitigation
strategies for the global climate change problem. Because of that,
researchers from several disciplines have investigated the effects
of urbanization on CO2 emissions5–20. The question of whether
urbanization promotes or mitigates climate change is ubiquitous
among these works, and the approaches to probe such issues
differ, but can be roughly organized into two groups.

Underlying the first approach, there is the so-called urban
scaling hypothesis21,22, which states that city emissions (C) are
described by a power-law function of population size (P), that is,
C ~ Pβ, where β is the urban scaling exponent or the scale-
invariant elasticity. For CO2 emissions in the United States (US),
researchers have reported a 1:1 relationship (β ≈ 1, constant
returns to scale) with the population of metropolitan areas8, while
the same quantity was found to scale superlinearly (β= 1.46,
increasing returns to scale) when defining the US cities as
connected urban spaces9. When considering local air pollution,
an exponent β ≈ 3/4 (decreasing returns to scale) was observed for
US metropolitan areas19. There is also evidence supporting the
idea that the scaling between emissions and population depends
on the degree of economic development of the urban systems,
with increasing returns to scale (β > 1) observed for cities
of developing countries and economy of scale (β < 1) for
developed ones17. The second approach is focused on the
understanding how population density affects CO2 emissions per
capita5,6,12,14,15,23, that is, to investigate the relationship between
C/P and P/A, where A stands for the urban unit area. A recent
work has proposed that CO2 emissions per capita (related to
buildings and on-road sectors) and population density are related
via the power-law C/P ~ (P/A)α, with an exponent α ≈−0.8 for
the US urban areas15.

Although these two bodies of the urban CO2 literature are
strongly linked by the purpose of understanding how urbaniza-
tion affects climate change, they have operated widely indepen-
dent from each other, and their approaches are perceived as
different issues. Researchers using urban scaling are assuming
population size as the most relevant urban feature for describing
CO2 emissions, while those working with the per capita density
scaling consider population density as the most significant cov-
ariate. Both approaches, however, have produced controversial
results regarding the influence of population or population
density on urban emissions (see, for instance, refs. 7,12 and Sup-
plementary Table 1). Large part of these discrepancies can be
attributed to different methodologies for estimating CO2

emissions and defining the boundaries of urban areas, but also
because both approaches ignore that population and area are
correlated24,25 and the influence of a possible interconnected role
between these quantities on urban emissions.

Inspired by the economic theory of production functions26, we
propose here a new approach for investigating emissions in urban
areas that simultaneously considers the effects of population
and area along with possible interactions between these urban
metrics. We show that our models recover the two conventional
approaches when ignoring the effects of urban area (urban scal-
ing) or when assuming that the emissions display constant
returns to scale with population and area (per capita density
scaling). When compared with the two conventional approaches,
our models provide a significantly better description for the
emissions in US urban areas. These results confirm the predictive
power of the interactions between population and area, which in
turn have intriguing consequences about the effect of these
quantities on urban emissions. Our approach indicates that

emissions may display decreasing or increasing returns to scale
with population and area depending on whether the product P ×
A exceeds a particular threshold. We further find that the impact
of a proportionate change in the population and density of a city
on its emissions increase with its area but always have decreasing
returns to scale; moreover, changes in population always have
more impact on emissions than changes in density.

Results
Urban scaling and per capita density scaling of emissions. We
start by revisiting how population scaling and per capita density
scaling approaches have been applied for investigating CO2

emissions in urban areas. To do so, we used the same dataset
reported by Gudipudi et al.15 which comprises CO2 emissions
(sum of on-road and building emissions) in US urban areas in the
year 2000. As described in Methods section, this dataset is con-
structed by combining gridded data from different sources, and
by applying the city clustering algorithm27 for defining the urban
units. There are a total of 3285 urban units and for each one we
have population (P in raw counts), area (A in km2), and CO2

emissions (C in tonnes of CO2).
Having defined our variables, within the urban scaling

framework, CO2 emissions and population size are related via
the power-law function

C � Pβ; ð1Þ
where β is the scaling exponent. To estimate the parameter β, we
have applied the usual least-squares method to the relationship
between logC and logP. This approach leads to β= 0.48 ± 0.01
(p-value= 0, permutation test, Supplementary Fig. 1) and the
relationship between both variables (on logarithm scale) is shown
in Fig. 1a. At a cursory glance, this value of β indicates a sublinear
trend between emissions and population, so that a 1% increase in
the population level of a city associates with only 0.48% increase
in its CO2 emissions. However, a closer inspection of Fig. 1a
shows that Eq. (1) deviates systemically from the data and
underestimates the emissions in large populated areas. In addition
to that, the exponent β is likely to be biased by the confounding
effect of area because population and area of urban units are
correlated to each other via a power-law relation24,25.

On the other hand, within the per capita density scaling
framework, the relationship between CO2 emissions per capita
and population density is described by the power-law function15

C=P � ðP=AÞα; ð2Þ
where α is another scaling exponent. Figure 1b illustrates this
relationship on logarithmic scale (logC/P versus logP/A) from
which we have estimated α=−0.79 ± 0.01 (p-value= 0, permu-
tation test, Supplementary Fig. 1) via ordinary-least-squares
method. We observe that Eq. (2) is slightly better than Eq. (1) for
describing our data (Supplementary Fig. 2), and does not seem to
exhibit any systematic deviation. Our estimate for α is in
agreement with the results reported by Gudipudi et al.15, and
indicates that every 1% increase in the population density of a city
associates with a 0.79% reduction in its CO2 emissions per capita.
However, and similarly to the urban scaling case, the exponent α
is also likely to be biased by the confounding effect of population,
since density and population values are also correlated24,25.

In order to improve the description of urban emissions, we
propose here an analogy with the economic theory of production
functions. This theory has a central role in several branches of
economics26, and in general terms, a production function
establishes a mathematical relationship between inputs (capital,
labor, land, etc.) and output of goods (iron, cars, wheat, etc.) in
some production process. Using this mathematical description,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11184-y

2 NATURE COMMUNICATIONS |         (2019) 10:3204 | https://doi.org/10.1038/s41467-019-11184-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


economists may ask how much output can be produced with
particular combinations of inputs, and what are the alternatives
(in terms of inputs) for producing a particular good. These ideas
transpose well into our context assuming CO2 emissions as the
output and population and area as the inputs in a production
process mediated by cities. Similarly to a two-factor production
model, we thus consider that C= F(P, A), where F(…) stands for
the form of the production function. By putting this analogy
forward, we establish a more general approach for modeling
urban emissions that simultaneously accounts for the effects of
population and area along with possible interactions between
these urban metrics. As we shall verify, we can borrow not only
functional forms from the theory of production functions but also
key concepts that are very useful in the context of urban
emissions (see Methods).

Cobb–Douglas model of urban carbon emissions. We start this
analogy with the Cobb–Douglas model28, arguably the most
widely known and used production function26. In our case, it
takes the form

C � PβP AβA or logC � βPlogP þ βAlogA; ð3Þ
where βP and βA are two independent exponents. We immedi-
ately notice that this model recovers the urban scaling (Eq. (1)) if
βP= β and βA= 0 (that is, when ignoring the effect of area) and
the per capita density scaling (Eq. (2)) if βP= α+ 1 and βA=−α.
We further remark that the Cobb–Douglas model can be obtained
from Eqs. (1) and (2) if we consider the empirical relation
between population and area24,25 (see Methods). Similarly to the
models of Eqs. (1) and (2), the Cobb–Douglas function exhibits a
scale-invariant elasticity ε= βP+ βA (see Methods), meaning that
a proportionate increase in emissions associated with a propor-
tionate increase in population and area is independent of P and A.
Thus, when βP+ βA < 1 there are decreasing returns to scale
(doubling P and A implies less than doubling C), whereas if βP+
βA > 1 there are increasing returns to scale (doubling P and A
implies more than doubling C), and only for βP+ βA= 1
this model presents constant returns to scale (doubling P and A
implies exactly doubling C). Thus, we notice that Eq. (2) is a
particular case of the Cobb–Douglas model with constant returns
to scale. On the other hand, without any constraint for the
exponents βP and βA, the Cobb–Douglas model represents a
genuine generalization that cannot be related to Eqs. (1) and (2).
In addition to that, we can interpret Eq. (3) as the result of

accounting for the confounding effect of area A within the urban
scaling framework (Eq. (1)) via a multiple linear regression (in
log-transformed variables).

Although the model of Eq. (3) may represent a better
description for CO2 emissions, it introduces some drawbacks
related to the use of ordinary-least-squares for finding the best
fitting parameters βP and βA. This happens because population
and area are correlated to each other, a problem known as
multicollinearity and that can lead to unstable estimates for the
model parameters. As detailed in Methods, we have applied the
regularization approach of the ridge regression29,30 in order to
account for this problem. To state briefly, the ridge regression
adds a penalty/regularization term proportional to the square of
the magnitude of coefficients upon the residual sum of squares,
which in turn stabilizes the regression coefficients and accounts
for the multicollinearity. This approach yields βP= 0.31 ± 0.01
and βA= 0.45 ± 0.03 (p-values= 0, permutation test, Supplemen-
tary Fig. 3), and Fig. 2a shows the relationship between the actual
values of the CO2 emissions and those predicted by Eq. (3). We
have verified that the Cobb–Douglas model provides a signifi-
cantly better fit to our data (Supplementary Fig. 2) when
compared with the urban scaling (Eq. (1)) and the per capita
density scaling approaches (Eq. (2)). Moreover, the fact that βP is
much smaller than β reinforces the idea that the urban scaling
approach is indeed affected by the confounding effect of the area.

Because βP+ βA < 1, our results indicate that CO2 emissions
display diminishing returns as population and area are incre-
mentally increased by the same factor (that is, keeping density
constant). In particular, our estimates indicate that every 1%
increase in both the population and area of a city associates with a
0.76% increase in its emissions. The interconnected role of
population and area on CO2 emissions is better visualized in
Fig. 2b, where we depict a contour plot of Eq. (3) on logarithmic
scale. In this representation, the isoquants (or isolines) are
described by straight lines [logA ~−(βP/βA) logP] and show how
population and area must change to keep emissions constant.
These isoquants also indicate that if the population of a city
increases, its population density must also increase to keep
emissions unaltered. This behavior is better understood by
rewriting Eq. (3) as C � PβPþβAðP=AÞ�βA and noticing that βP >
0 and βA > 0 (Supplementary Fig. 4 shows the contour plot in
terms of population density). From this form of Eq. (3), we also
conclude that a proportionate change in population has more
impact on CO2 emissions than a proportionate change in density
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Fig. 1 Conventional approaches for investigating urban emissions. a Urban scaling: the scaling relationship between CO2 emissions (C) and population size
(P). The dashed line represents a power-law fit (Eq. (1)) with an exponent β= 0.48 ± 0.01. We observe that this model underestimates the emissions for
large population sizes. b Per capita density scaling: the scaling law between CO2 emissions per capita (C/P) and population density (P/A). The dashed line
is a power-law fit (Eq. (2)) with an exponent α=−0.79 ± 0.01. In both plots, each dot is associated with a US urban unit obtained from the city clustering
algorithm (see Methods) and all quantities are expressed in base-10 logarithmic scale. Emissions are measured in tonnes of CO2, population in raw counts,
and area in square kilometers
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since |βP+ βA| > |βA|. For a particular urban unit in our data, this
means that if its population decreases by 1% while its density
remains constant (that is, a 1.01% increase in its area), the model
predicts a 0.76% reduction in its CO2 emissions; whereas a 1%
raise in its density while population is unaltered (that is, a 1%
reduction in its area), implies only 0.45% decrease in its CO2

emissions.
Another interesting aspect of an isoquant is its slope, a quantity

known as the technical rate of substitution in economics26 (see
Methods). In our context, this slope measures how much the
population of a city should change in response to alterations in its
area in order to keep the same level of emissions. For Eq. (3), the
slopes of the isoquants are dA

dP ¼ � βP
βAðP=AÞ, and thus, they are

completely determined by the city density (assuming that βP and
βA are known). If we consider a logarithmic scale, these slopes are
equal to d logA

d logP ¼ �βP=βA regardless of the values of P and A (as
we see in Fig. 2b). In economics, these isoquants are also analyzed
in terms of the so-called elasticity of substitution26 (see Methods),
a dimensionless measure that (mapped to our case) quantifies the
efficiency at which population and area substitute each other, and
that somehow reflects the shape of the isoquants26. Usually, more
L-shaped isoquants are associated with low elasticity of substitu-
tion (that is, there is no room for replacing A by P while keeping
emissions constant), whereas more linear/smooth isoquants tend
to have high elasticity of substitution (it is easy to replace A by P
while keeping emissions constant). The Cobb–Douglas model has
unitary elasticity of substitution, regardless of the values of P, A,

and C, and also the exponents βP and βA26. Thus, although the
Cobb–Douglas model provides a better fit to our data (compared
with Eqs. (1) and (2)), it also makes a series of assumptions that
do not have any compelling reasons to hold true in urban systems
(as it also happens in economics26). Moreover, Fig. 2a shows that
Eq. (3) has a bias for large values of C, which indicates that
relaxing some underlying assumptions of the Cobb–Douglas
model may lead to a better description of the emissions.

We first relax the condition of unitary elasticity of substitution
by considering a model based on the constant elasticity of
substitution (CES) production function26,31

C � ðβPP�γ þ βAA
�γÞ�1=γ; ð4Þ

where γ is a parameter and βP+ βA= 1. The CES model emerged
as a generalization of the Cobb–Douglas function (which is
recovered when γ→ 0) exactly because economists have con-
sidered the assumption of unitary elasticity of substitution as
unduly restrictive31. As the name suggests, the CES model has a
constant elasticity of substitution equal to 1/(γ+ 1), and thus, by
varying γ we have a wide range of possible elasticities. We have
adjusted Eq. (4) to our data using the Levenberg–Marquardt
algorithm. However, these fits are very problematic because of the
non-linear nature of the model. Depending on the initial guess
used for the parameters, we find very unstable and meaningless
results. These fits also lead to very large variations in the
parameters when applying a resampling strategy to our data.
Furthermore, we have observed that even when the fits converge,
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Fig. 2 The interplay between population and area on CO2 emissions. a Scatter plot of the observed values of CO2 emissions (C) and those predicted (CP) by
the Cobb–Douglas model (Eq. (3) with βP= 0.31 ± 0.01 and βA = 0.45 ± 0.03). This model is a significantly better fit when compared with the urban
scaling and the per capita density scaling models (Supplementary Fig. 2). b A contour plot of Eq. (3) as a function of P and A on logarithmic scale. The
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predicted CO2 emissions obtained from the translog model (Eq. (5) with βP= 0.28 ± 0.02, βA= 0.14 ± 0.05, and βC= 0.07 ± 0.01). This model further
refines the goodness of the predictions (Supplementary Fig. 2), particularly reducing the bias in urban areas with high emissions. d A contour plot of Eq. (5)
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employed base-10 logarithmic quantities in all panels
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the CES model does not represent the best description to our
data. In addition to the non-linearity, this happens because the
CES model also carries crucial assumptions that appear not to
hold in our case. This model has unitary elasticity of scale (ε= 1,
that is, it assumes that by doubling P and A implies doubling C),
and similarly to Cobb–Douglas, the slopes of the isoquants
dA
dP ¼ � βP

βAðP=AÞγþ1

� �
are determined solely by the city density.

Transcendental logarithm model of emissions. To overcome
these limitations and constraints, we considered a more general
production function known as the transcendental logarithm
(translog) model26,32. Just like the CES is a natural extension of
the Cobb–Douglas function, the translog model represents the
next logical step towards a more flexible function for modeling
the CO2 emissions in terms of P and A. This model is written as

logC � βP logP þ βA logAþ βC log ðPÞ log ðAÞ; ð5Þ
where βC is an additional parameter. Different from Eqs. (3) and
(4), the translog model has a non-constant elasticity of scale [ε=
βP+ βA+ βC log (PA)], meaning that proportionate changes in
the emissions associated with proportionate changes in popula-
tion and area depend on the initial values of P and A. Further-
more, the elasticity of substitution of Eq. (5) varies with P, A, and
C, and the isoquant slope depends on P and A (see Methods). By
comparing the translog model with the Cobb–Douglas, we notice
that all this additional flexibility is solely related to the inclusion
of the interaction term [βC log (P) log (A)] between population
and area, where βC quantifies the intensity of this interaction. It is
this interaction term that allows the effect of population and area
on emissions to vary with P and A. This effect is better under-
stood in terms of the marginal products26 (see Methods), an
economic quantity that mapped to our context represents the
response in CO2 emissions caused by changes in population or
area. The marginal product of population (in logarithmic scale) is
defined as d logC

d log P ¼ βP þ βC logA, while the marginal product of

area is d logC
d logA ¼ βA þ βC log P. Thus, for instance, we observe that

the marginal product of population depends on the area of the
urban unit. This behavior contrasts with the Cobb–Douglas
predictions (corresponding to βC= 0), in which the marginal
products are independent of P and A.

As in the Cobb–Douglas case, we have considered the
ridge regression approach in order to account for the multi-
collinearity and adjust Eq. (5) to our data (see Methods).
This approach yields βP= 0.28 ± 0.02, βA= 0.14 ± 0.05, and βC=
0.07 ± 0.01 (p-values= 0, permutation test, Supplementary Fig. 3).
We further note that the translog model is a significantly better fit
to our data when compared with the previously discussed models
(Supplementary Fig. 2). This fact is highlighted in Fig. 2c, where
we observe that the model of Eq. (5) refines the quality of the
predictions and reduces the bias observed for Eq. (3) in urban
areas with high emissions. We further remark that all fitted
parameters of Eq. (5) are significantly different from zero,
confirming the predictive power of the interaction term between
population and area. Therefore, in addition to improving the
description of the CO2 emissions, Eq. (5) reveals that the effect of
population and area on the emissions intensifies with the increase
of urban population and area. This becomes clear by noticing that
the elasticity of scale increases with P and A [ε= 0.42+ 0.07 log
(PA)], that is, the more populous and the more widespread a city
is, the larger is the impact of a proportionate change in its
population and area (a growth with constant density) on its
emissions. It is further intriguing to notice that, because the
elasticity of scale varies with P and A, the translog model displays
decreasing, increasing, or constant returns to scale depending on

whether the product Ω= PA is, respectively, smaller, larger, or
equal to the critical value

Ω� ¼ 10
1�βP�βA

βC : ð6Þ
For the US data Ω* ≈ 1.93 × 108, and thus, cities having Ω <Ω*

display decreasing returns to scale, while those having Ω >Ω*
feature increasing returns to scale. For instance, the translog
model predicts that a 1% increase in population and area of a
large city with P= 8 × 106 and A= 6000 km2 (roughly the size of
Chicago, Ω= 4.8 × 1010) associates with 1.17% raise in its
emissions, whereas the same change in a relatively small city
with P= 90,000 and A= 140 km2 (roughly the size of Santa Fe,
Ω= 12.6 × 106) associates with only 0.92% raise in its emissions.

The interconnected role of population and area on CO2

emissions is better visualized in the contour plot of Eq. (5) shown
in Fig. 2d. In comparison with Fig. 2b, we note that the
interaction term bends the isoquants upward and make their

slopes dA
dP ¼ �1

ðP=AÞ
βPþβC logA
βAþβC logP

� �h i
a function of P and A, and not

only of the city density as in the Cobb–Douglas model. We
further observe that the spacing between the isoquants represent-
ing equally incremented values of logC changes with the values of
log P and logA. This behavior contrasts with the equally spaced
isoquants produced by the model of Eq. (3), and emphasizes that
proportionate changes in emissions caused by changes in both
population and area depend not only on the intensity of the
changes but also on the initial values of population and area.

In terms of density, we can rewrite Eq. (5) as

C � PβPþβAþβC log PðP=AÞ�βA�βC log P; ð7Þ
and from this expression, we find that the elasticity of scale in
terms of population and density is ε= βP+ βC logA. Thus, the
more widespread a city is, the larger is the impact of a
proportionate change of population and density (that is, area
remains constant) on its emissions. In a concrete example, our
estimates indicate that a 1% raise in population and density of a
large city with 6000 km2 associates with a 0.54% increase in its
emissions, while the same change in a city with 140 km2

correlates with a 0.42% raise in its emissions. Furthermore, in
terms of population and density, increasing returns to scale (ε > 1)
is only possible for urban areas exceeding the critical value
A� ¼ 10ð1�βPÞ=βC . For the US data, A* ≈ 1.93× 1010 km2, an area
roughly corresponding to 38 times the area of Earth. Therefore,
our estimates indicate that only decreasing returns to scale are
possible when the CO2 emissions are described in terms of
population and density.

The translog model of Eq. (7) also allows us to verify
whether changes in population have more impact on the
emissions than changes in density. To do so, we have
compared the absolute values of the marginal products

of population d logC
d log P ¼ βP þ βA þ βC logðPAÞ
h i

and density

d logC
d log ðP=AÞ ¼ �βA � βC log P
h i

. The marginal product of popula-

tion represents the response in emissions associated with changes
in population when density remains constant, whereas the
marginal product of density expresses the response in emissions
caused by a change in density when population remains constant.

The inequality d logC
d logP

��� ���> d logC
d log ðP=AÞ
��� ��� simplifies to A>A� ¼ 10�βP=βC

when βP, βA, βC > 0 and A, P > 1 (assumptions that agree with our
estimates). By plugging the estimated values of βP and βC, this
condition becomes A > 10−4 km2, and hence we conclude that
population size always have more impact on emissions than
changes in population density. We have reached the same
conclusion with the simpler model of Eq. (3). However, and as we
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have verified, the translog approach further refines the descrip-
tion of CO2 emissions and indicates that the impact of population
and density on the emissions changes with the population and
density of the cities. For instance, according to our estimates for
the US data, a 1% increase in the density of a town with 10,000
inhabitants associates with a 0.42% reduction in its emissions,
while the same change in a larger city with 1 million inhabitants
associates with a 0.56% reduction in its emissions. This behavior
contrasts with results of Eq. (3), whose predictions related to
changes in the density of a city are independent of its population.
By carrying this predictions forward and in line with other
studies33, our results suggest that the densification of large
populated urban areas is likely to have important contributions to
the reduction of urban CO2 emissions.

Discussion
We have shown that two conventional approaches used to study
the effect of urbanization on urban CO2 emissions suffer from
confounding effects, and are unable to describe the inter-
connected role of population and area on urban emissions.
Inspired by the economic theory of production functions, we have
proposed new models for describing urban emissions simulta-
neously in terms of the population and area (or population
density) of urban units. These models not only account for such
confounding factors but significantly refine the description of the
emissions in terms of urban quantities. In addition to being better
fits to data, our models reveal intriguing aspects about the
interplay between population and area (or density) on urban
emissions that would be entirely neglected under the urban
scaling or the per capita density scaling frameworks. Among these
findings, our results indicate that variations in emissions asso-
ciated with proportionate changes in population and area do not
only depend on the magnitude of these changes but also on the
product Ω= PA. In particular, depending on whether Ω exceeds
or not the critical value Ω*, urban emissions can display
increasing (Ω >Ω*) or decreasing returns to scale (Ω <Ω*) with
population and area. When described in terms of population and
density, we have found that urban emissions display decreasing
returns to scale, meaning that doubling population and density of
a city always associates with less than doubling its emissions. We
have further verified that changing the population of a city has
more impact on its emissions than changing its density. In spite
of that and in general terms, our models define conditions under
which changes in population have more impact than changes in
density (or vice versa) on emissions and further predict a
transition-like behavior where the dominant role changes
between these quantities if the urban area exceeds a threshold
value (A*).

Our work has, however, its limitations in a sense that ideally
the comparison between the effects of population and area (or
density) on the emissions should be made after accounting for
every other factor (such as economic activity, technology, and
even individual attitudes) that possibly affects urban emissions.
Thus, while our models account for the confounding effects of
area (and density), the emissions may also be affected by other
confounding factors not available in our dataset. One possibility
for addressing this problem would be to include further control
variables in our models, an approach that somehow resembles the
IPAT equations34–36, a framework proposed to model environ-
mental impact (I) as the product of population (P), affluence (A),
and technology (T), but with the advantage of considering
population density (or area) as a predictor and allowing the
interactions among such factors. Another possibility for over-
coming these possible confounding effects is to combine our
approach with the recently proposed urban Kaya scaling20 that

relates CO2 emissions, population, gross domestic product, and
energy consumption. Combining these different approaches into
a single and coherent framework could represent an exciting
perspective for solving the economics of urban CO2 emissions
and defining its most important covariates. However, such
endeavors require homogeneous and consistent data, which are
still scarce on large spatial scales. While moving from urban units
defined in terms of connected urban spaces to some political or
administrative divisions would be a possibility, this approach is
likely to introduce serious bias to the empirical estimates37 in
addition to overestimating urban areas38 (see Methods). Another
important limitation of our study is related to the intra-city
processes and urban characteristics that cannot be accounted for
only by population and area (or density). Case studies on this
subject have shown that the urban form and intra-city population
distribution have a substantial impact on urban emissions, par-
ticularly on transportation emissions. Cities from rapid devel-
oping countries such as China and India have undergone through
a remarkable decentralization and suburban growth processes39.
These more dispersed urban forms and the consequent increase
of the population living in urban frontier areas have direct
implications for commuting and contribute to increasing CO2

emissions39–41. Regarding this aspect, it would be very interesting
for future works to include possible covariates able to account for
population imbalance and urban form in our models and thus
quantify their impact in a large scale study.

Despite of these limitations, our work adds to the current
understanding about the role of urbanization on CO2 emissions,
shedding light particularly upon the role of population and urban
area (including their interactions) on urban emissions. Such
interactions are completely overlooked within the urban scaling
and per capita density scaling approaches and our work
demonstrates that they play an important role in the description
of urban emissions. Finally, our framework can be directly
applied to other urban metrics in the place of emissions, opening
thus a considerable range of possibilities for investigating the
interplay between population and area (or population and den-
sity) over other important urban metrics.

Methods
Dataset. Our dataset is the same as analyzed by Gudipudi et al.15 and comprises
the CO2 emissions from urban areas of the US in the year 2000. As described by
Gudipudi et al., this dataset is compiled from different sources through the fol-
lowing steps. First, gridded population data are obtained from the Global Rural-
Urban Mapping Project (GRUMP)42 and the Global Land Cover Dataset (GLC)43.
Both datasets are from the year 2000 and are available at a spatial grid resolution of
1 km × 1 km. The GRUMP data are spatially overlaid to the GLC in order to
attribute population to the land use, which is classified as urban and non-urban.
Next, sectoral emissions data (building and transportation) are obtained from the
Vulcan Project44. This dataset is initially available at a resolution of 10 km × 10 km
and has been down-scaled to 1 km × 1 km to be superimposed on the populated
settlements. This process consists of equally splitting the emissions located in a cell
of the Vulcan project among all overlapping population cells classified as urban.
Finally, the city clustering algorithm (CCA)27 is used to systematically define the
urban units, leading to the population size (P in raw counts), area (A in square
kilometers), and CO2 emissions (C in tonnes of CO2) for each urban unit. CCA is
an iterative clustering algorithm that assigns any two cells to the same cluster if
their distance is smaller or equal than a predefined threshold distance l.

All results presented in our paper have been obtained using l= 5 km, a
threshold distance that does not overestimate nor underestimate the urban
extents15. However, we have verified that our conclusions are very robust against
variations in l from l= 1 km to l= 10 km. In particular, the translog model (Eq.
(5)) always provides the best description for the US data (Supplementary Fig. 5).
We have observed that the scaling exponents β and α present slightly variations
with threshold distance l (Supplementary Fig. 6) that have no implications for the
conclusions drawn from our findings. The parameters of the Cobb–Douglas (βP
and βA) and translog (βP, βA, and βC) models present somewhat larger variations
(Supplementary Fig. 7), but all remain statistically significant, particularly the
parameter related to the interaction term in the translog model (βC). These changes
affect our point estimates for the Cobb–Douglas (Supplementary Fig. 8) and
translog (Supplementary Fig. 9) models. In general, changes in emissions associated
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with a 1% increase in P and A tend to increase with l. Similarly, the reduction in
emissions associated with −1% change in P with fixed density or with a 1% change
in density with fixed P also increase with l. This dependence on l is smaller in the
translog than in the Cobb–Douglas model. The critical product Ω* displays a
decreasing trend with l (Supplementary Fig. 10), that in turn affects the point from
which the effect of P and A on C changes from decreasing to increasing returns to
scale. The critical value A* is approximately independent of l (Supplementary
Fig. 10), indicating that changes in population have more impact than changes in
density on emissions regardless the value of l. We have further verified that the
contour plots of the translog function (Eq. (5)) are very similar for different values
of l (Supplementary Fig. 11).

These robustness tests are important because there has been a great debate
about how to accurately define the correct boundaries of a city37. In spite of that,
there is still no consensus on this issue nor has a fail-safe procedure for defining the
correct boundaries of a city been proposed yet. This issue also has great similarity
with the more general concept of clustering and a quite similar issue arises when
applying community detection algorithms in complex networks. All these topics
have been exhaustively studied, but no silver bullet method exists. In the case of
cities, additional complexity emerges because some urban indicators are more
spatially constrained than others, and also because people commute to work and
move from place to place in the long run.

Partly because of the seminal works by Bettencourt et al.21, the use of functional
definitions for cities such as the metropolitan statistical areas (MSAs) in US or
larger urban units (LUZ) and metropolitan areas (MAs) in Europe have become
very popular. These definitions are based on the idea of integrated socio-economic
units and appear to be the gold standard for the urban scaling hypothesis as well as
other purposes. In particular, MSAs are defined by a core county (or even more
than one) having at least 50,000 people aggregated with adjacent counties that
display a high degree of interaction (social and economic) with the central county
(as measured by commuting flows). While this definition may work well for
studying urban scaling, it is very problematic in our case. Since MSAs are made up
of counties, they often include vast rural areas which in turn hugely overestimate
the urban extent areas. In addition to that, MSAs can also fragment urban clusters
into different pieces.

These problems are the main reason why we have chosen the CCA to define the
urban units in our study. It is worth noticing that the CO2 emissions we have
analyzed are from building and transportation, and thus primarily associated with
settlements where people reside and commute. Because of that, we argue that the
approach of combining gridded data from the Vulcan project, GLC and GRUMP
with CCA (proposed in ref. 15) provides more precise emission estimates and
associated spatial extents of urban clusters. Despite these problems and limitations,
we have also applied our models to emissions data associated with MSAs. To do so,
we have used the dataset provided by Fragkias et al.8 and considered the emissions
from the year 2000 (the same used in our analysis). Indeed, these data allowed us to
consider not only MSAs but also micropolitan areas (μSAs are defined as labor
market areas with population between 10,000 and 50,000 people that are also made
up of counties) and both together (core-based statistical areas—CBSAs).

Supplementary Figure 12 shows the urban and per capita density scaling laws
for MSAs. We notice that the quality of these relationships is not comparable with
those reported in Fig. 1, and a similar situation happens for μSAs and CBSAs.
Supplementary Fig. 13A compares the scaling exponents obtained from MSAs,
μSAs, and CBSAs with those obtained via CCA with l= 5 km. We observe that the
values of β estimated from these functional city definitions are much closer to one
(in agreement with Fragkias et al.8) than the values obtained with the CCA
approach. As discussed in more detail by Bettencourt et al.45, the disaggregation
from the true urban unit can either introduce a positive or negative bias in the
estimates of β. On the other hand, the aggregation of different true urban units
tends to make β closer to one. In the case of MSAs, it is likely that both
disaggregation and aggregation effects play some role, but the fact that β is smaller
for μSAs than MSAs suggests that aggregation may have greater influence. Due to
the poor quality of the per capita density scaling, it is hard to directly compare the
values of α obtained from MSAs, μSAs, and CBSAs with those estimated with the
CCA; however, Supplementary Fig. 13B shows that at least they have the same sign.

We have also applied the models of Eqs. (3) and (5) to MSAs, μSAs, and CBSAs
data. Supplementary Fig. 14 shows that these models do not represent an improved
description when compared with Eq. (2). For CBSAs and MSAs, Eq. (3) has about
the same predictive power as Eq. (2). Supplementary Fig. 15 compares the exponents
βP and βA obtained from MSAs, μSAs and CBSAs with the CCA values for l= 5 km.
We notice that βP is not so different from β for these functional city definitions,
indicating that the confounding effect of the area is much weaker when compared
with the CCA results. This fact reinforces the idea that MSAs and μSAs areas are not
good predictors for CO2 emissions. We also observe that βP is much larger for the
functional definitions, and that βA is smaller than the values obtained from the CCA
approach. In spite of all discrepancies, the results for MSAs, μSAs, and CBSAs also
indicate that population has more impact on emissions than density because |βP+
βA| > |βA|. On the other hand, βP+ βA ≈ 1 for the functional definitions, while βP+
βA < 1 for the CCA approach. The approximate constant returns to scale observed for
the functional city definitions is also likely to be related to disaggregation and
aggregation effects that we previously discussed.

Finally, it is worth remarking that the CCA is also likely to suffer from
disaggregation or aggregation effects, as is the case of administrative or functional

city definitions. However, differently from such ad hoc definitions, CCA allows us
to quantify the impact of such effects by changing the threshold distance l and to
verify that our conclusions are robust under different values of l.

Cobb–Douglas and the urban scaling models. To relate the Cobb–Douglas model
(Eq. (3)) with the urban scaling (Eq. (1)) and the per capita density scaling (Eq.
(2)), we first rewrite Eq. (1) as

C � Pβ ¼ Pβ1Pβ2 ; ð8Þ
where β= β1+ β2 stands for the same urban scaling exponent as in Eq. (1). Now,
we replace the right-most P in the previous equation by the allometry relation
between population and area24,25, P ~Aδ (where δ is another power-law exponent),
leading to

C � Pβ1Aβ2δ ; ð9Þ
which has the same form as Eq. (3), that is, β1= βP and β2δ= βA. Consequently,

β ¼ βP þ
βA
δ
; ð10Þ

and the two approaches are uniquely related only if there is another constraint for
the exponents. One possibility is by imposing constant returns to scale in the
Cobb–Douglas model (βA+ βP= 1), which leads to

βP ¼ βδ � 1
δ � 1

and βA ¼ δðβ� 1Þ
1� δ

; ð11Þ

for δ ≠ 1; while for δ= 1, we obtain βP= 1 and βA= 0. Thus, the existence of an
additional constraint for the parameters βP and βA implies that the Cobb–Douglas
model is equivalent to Eqs. (1) and (2); otherwise, it represents a generalization.

The Cobb–Douglas model with βA+ βP= 1 is also related to scaling
relationships between indicator density and population density46–48. To obtain this
connection, we rewrite Eq. (3) as

C � PθA1�θ; ð12Þ
where βP= θ and βA= 1− θ. Next, we divide both sides by A

C=A � ðP=AÞθ ; ð13Þ
leading to a scaling relationship between CO2 density and population density.

Analogy with the production functions. As we have argued, our approach is
inspired by the economic theory of production functions26. By following this
analogy, we have considered the urban emissions as the output and population and
area (or density) as the inputs of a two-factor production process mediated by
cities. The mathematical formula that describes the possible relations between the
inputs (P and A) and the output (C) is the production function, that is, C= F(P,A).
The functional forms for F used in our work comprise the most widely known and
used production functions in economics and should be viewed as an empirical/
phenomenological description (as it also happens in economics). In what follows,
we summarize concepts from the economic theory of production functions that
have been used in our work.

Elasticity of scale. The elasticity of scale ε is the ratio between a proportionate
change in the output (emissions) and a proportionate change in the inputs
(population and area), that is, ε= (dF/F)/(dP/P), where dP/P= dA/A represents the
proportionate change in the inputs. This measure quantifies the impact of changing
population and area on emissions.

Technical rate of substitution. The technical rate of substitution measures the
rate at which an input must change in response to a change in the other input so
that the output remains constant. In absolute value, it represents the slope of the
isoquants of the production function. For instance, assuming a particular value for
the output F(P, A)= C0, the technical rate of substitution between area and
population is δAP ¼ dA=dP.

Elasticity of substitution. The elasticity of substitution σ somehow summarizes
the shape of an isoquant. It is defined as the ratio between a proportionate change
in the inputs and the associated proportionate change in the slope of the isoquant.

Mathematically, we write σ ¼ ½dðP=AÞ=ðP=AÞ�
½dðdP=dAÞ=ðdP=dAÞ� ¼ d log ðP=AÞ

d log ðdP=dAÞ, where the numerator

represents the proportionate change in the inputs and the denominator the
proportionate change in the slope of the isoquant. This measure quantifies the
efficiency at which population and area substitute each other.

Marginal products. The marginal product of an input is defined as the
(infinitesimal) change in the output resulting from a (infinitesimal) change in one
of the inputs. For instance, the marginal product of population is ΔP= dF/dP (it
can also be defined in terms of logarithmic quantities: ΔP = d log F/d log P).

We summarize all these properties calculated for Cobb–Douglas (Eq. (3)) and
translog (Eq. (5)) models in Supplementary Table 2.

Fitting models with the ridge regression approach. As we have discussed in the
main text, multicollinearity is present in the models of Eqs. (3) and (5). This effect
happens when at least two predictors in a multiple linear regression are correlated
to each other29,30. Under this situation and depending on the degree of correlation
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among the predictors, ordinary-least-squares estimates of the parameters can be
unstable against minor changes in the input data and also display large standard
errors. To better illustrate this problem, consider the simple linear model

y � a1x1 þ a2x2; ð14Þ
where y is the response variable, x1 and x2 are the predictors, and a1 and a2 are the
linear coefficients. The least-squares estimator for the parameters is usually written

as a ¼ a1
a2

� �
¼ ðXTXÞ�1XTy, where y ¼

yð1Þ1

..

.

yðnÞ

2
64

3
75 is an n × 1 vector of the response

variables, X ¼
xð1Þ1 xð1Þ2

..

. ..
.

xðnÞ1 xðnÞ1

2
64

3
75 is an n × 2 matrix of the regressors, and n is the

number of observations. If the values of predictors are strongly correlated, the
inversion of the matrix XTX can become unstable, and consequently lead to
unstable estimates for the linear coefficients.

To account for the multicollinearity problem, we have fitted Eqs. (3) and (5)
by using the ridge regression approach29,30. This method solves the matrix
inversion problem by adding a constant λ to the diagonal elements of XTX, so
that the ridge estimator for the linear coefficients is a = (XTX+ λI)−1XTy, where
I is the identity matrix. The ridge estimation is equivalent to finding the optimal
linear coefficients that minimize the residual sum of squares plus a penalty term
(also called regularization parameter) proportional to the sum of the squares of
the linear coefficients29,30, that is, finding the a that minimizes the objective
function ∥y− Xa∥2+ λ∥a∥2. The optimal value of λ is usually unknown in
practice and needs to be estimated from data. To do so, we have used the
approach of searching for the value of λ that minimizes the mean squared error
(MSE) in a leave-one-out cross validation strategy. In this approach, we estimate
a (for a given λ) using all data except for one point that is used for calculating
the squared error. This process is repeated until every data point is used exactly
once for estimating the squared error, and then we calculate the value of the
MSE for a given λ. The optimal value of λ= λ* is the one that minimizes the
average value of the MSE estimated with the leave-one-out cross validation
method. We have also standardized all predictors before searching for the
optimal value λ*. This is a common practice when dealing with regularization
methods and ensures that the penalty term is uniformly applied to the
predictors, that is, the normalization makes the scale of the predictors
comparable and prevents variables with distinct ranges from having uneven
penalization.

The standardized version of Eq. (3) can be written as

logC � ~βP
dlogP þ ~βA

dlogA; ð15Þ
where

dlog P ¼ logP � μP
σP

and dlogA ¼ logA� μA
σA

: ð16Þ

In addition, μP is the average value of logP μP ¼ 1
n

P
logP

� �
, σP is the standard

deviation of logP σ2P ¼ 1
n�1

PðlogP � μPÞ2
	 


, μA is the average value of logA
μA ¼ 1

n

P
logA

� �
, and σA is the standard deviation of logA

σ2A ¼ 1
n�1

PðlogA� μAÞ2
	 


. It is worth remarking that the values of dlog P anddlogA are invariant against changes in the scale of P and A, that is, their values do
not change under the transformations P→ νP and A→ νA, where ν is a positive
constant. The same invariance holds for σP and σA, whereas the average values
change according to μP→ log ν+ μP and μA→ log ν+ μA.

The connection between the parameters of the standardized model (~βP and ~βA)
and the usual ones (βP and βA) is obtained by plugging Eq. (16) into Eq. (15),
collecting the terms multiplying log P and logA, and then directly comparing the
results with Eq. (3). By following this approach, we find that

βP ¼
~βP

σP σA
and βA ¼

~βA
σP σA

; ð17Þ

where we observe that βP and βA are independent of the units of P and A (as they
should be, since σP and σA are scale invariants). Supplementary Fig. 16 illustrates
how the ridge regression approach is applied to the model of Eq. (15).
Supplementary Fig. 16A shows the dependence of the MSE on the values of λ, from
which we obtain λ*= 9.78. Supplementary Fig. 16B shows the dependence of the
parameters ~βA and ~βP , whose values for the optimal regularization term λ ¼ λ�ð Þ
are ~βP ¼ 0:37 ± 0:02 and ~βA ¼ 0:24 ± 0:02, which correspond to βP= 0.31 ± 0.01
and βA= 0.45 ± 0.03. The errors in ~βP and ~βA stand for the standard deviation of
their values estimated over 1000 random samples with replacement of the data, as
shown in Supplementary Fig. 17. The errors in βP and βA are calculated with
common error propagation formulas. Moreover, the p-values of permutation tests
reject the null hypothesis that these parameters are equal to zero.

In the case of Eq. (5), its standardized version can be rewritten as

logC � ~βP
dlogP þ ~βA

dlogAþ ~βC
dlog ðPÞ dlog ðAÞ; ð18Þ

where the connecting formulas

βP ¼ σA~βP � μA
~βC

σP σA
; βA ¼ σP~βA � μP

~βC
σP σA

; and βC ¼
~βC

σP σA
; ð19Þ

are obtained as in the previous case. Unlike the models of Eqs. (1)–(3), the
generalization expressed by Eq. (5) is not scale-invariant and thus its parameters
depend on the measurement units. In particular, if the area is rescaled by a factor ν
(A→ νA), βP is incremented by the factor −βC log ν and βA remains unchanged.
Similarly, if population is rescaled by ν (P→ νP), βA is also incremented by −βC
log ν and βP remains unchanged. Only βC is invariant against scale changes in P
and A. Thus, all interpretations related to the behavior of the emissions obtained
from the model Eq. (5) involve the assumption that area is expressed in units of
km2 and raw population counts. Supplementary Fig. 18 illustrates how the ridge
regression approach is applied to the model of Eq. (18). Supplementary Fig. 18A
shows the dependence of the MSE on λ, from which λ*= 8.67 is obtained.
Supplementary Fig. 18B shows the behavior of the model parameters as a function
of λ. This approach yields ~βP ¼ 0:40 ± 0:02, ~βA ¼ 0:17 ± 0:02, and ~βC ¼
0:044 ± 0:006 for λ= λ*, which correspond to βP= 0.28 ± 0.02, βA= 0.14 ± 0.05,
and βC= 0.07 ± 0.01. The standard errors are calculated as in the previous case and
the p-values of the permutation tests reject the null hypothesis that the model
parameters are equal to zero (Supplementary Fig. 3).

In addition to the models of Eqs. (3) and (5), we have further tested for a more
general translog model (full translog model) having quadratic terms in logP and
logA, that is,

logC � βP log P þ βAlogAþ βC logðPÞlogðAÞ
þβP′ðlog PÞ2 þ βA′ðlogAÞ2;

ð20Þ

where βP' and βA' are additional parameters. This expression can also be related to
the CES production by applying the Taylor series expansion to Eq. (4) around the
point γ= 0 (the Kmenta approximation49). We have fitted Eq. (20) by following
the same procedure used for Eqs. (3) and (5). In particular, Supplementary Fig. 19
illustrates how the ridge approach is applied to this model and Supplementary
Fig. 20 shows the best fitting parameters and their estimated errors. However, as
shown in Supplementary Fig. 2, the full translog model of Eq. (20) does not
improve the goodness of the fit when compared with Eq. (5).

Data availability
The dataset used in this study were obtained from Gudipudi et al.15, which in turn rely
on freely available data obtained from the Global Rural-Urban Mapping Project
(GRUMP)42, the Global Land Cover Dataset (GLC)43, and the Vulcan Project44. All data
supporting the findings of this study are available from the corresponding authors on
reasonable request.

Code availability
The code used for analyzing data is available from the corresponding authors on
reasonable request.
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