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Abstract Flow accumulation algorithms estimate the steady state of flow on real or modeled
topographic surfaces and are crucial for hydrological and geomorphological assessments, including
delineation of river networks, drainage basins, and sediment transport processes. Existing flow
accumulation algorithms are typically designed to compute flows on regular grids and are not directly
applicable to arbitrarily sampled topographic data such as lidar point clouds. In this study we present a
random sampling scheme that generates homogeneous point densities, in combination with a novel flow
path tracing approach—the Facet-Flow Network (FFN)—that estimates flow accumulation in terms of
specific catchment area (SCA) on triangulated surfaces. The random sampling minimizes biases due to
spatial sampling and the FFN allows for direct flow estimation from point clouds. We validate our
approach on a Gaussian hill surface and study the convergence of its SCA compared to the analytical
solution. Here, our algorithm outperforms the multiple flow direction algorithm, which is optimized for
divergent surfaces. We also compute the SCA of a 6-km2-steep, vegetated catchment on Santa Cruz Island,
California, based on airborne lidar point-cloud data. Point-cloud-based SCA values estimated by our
method compare well with those estimated by the D∞ or multiple flow direction algorithm on gridded
data. The advantage of computing SCA from point clouds becomes relevant especially for divergent
topography and for small drainage areas: These are depicted with much more detail due to the higher
sampling density of point clouds.

1. Introduction
Recent advances in generating high-resolution topographic data have increased the demand on computing
resources, new algorithms, and techniques (Larsen et al., 2016; Roering et al., 2013). Methods such as lidar
and Structure-from-Motion generate densely sampled “point clouds” that are then used for a wide range
of hydrologic and tectonogeomorphologic applications (see, e.g., Arrowsmith & Zielke, 2009; Hurst et al.,
2012; Hilley & Arrowsmith, 2008; Meigs, 2013; Neely et al., 2017; Perroy et al., 2012; Passalacqua et al., 2010,
2015; Tarolli et al., 2009). A typical airborne lidar data set can contain on the order of 10 points per square
meter, leading to a billion points for a study site of 100 km2 (Passalacqua et al., 2015; Roering et al., 2013).
Before being used in geomorphic and hydrological analyses, however, high-resolution point-cloud data sets
are often converted to digital elevation models (DEMs) by aggregating them to a regular, coarser grid (e.g., to
a resolution of≈1 grid point per square meter). This is typically done in order to allow for more realistic com-
putation times, potentially reduce the impact of random errors in the measurements, and to gain analytical
tractability because of the regularity of the gridded estimates. Although there exist several applications that
are not severely impacted by the ‘gridding’ step, as they do not require the fine-scaled, sub-meter spatial res-
olution, we contend that the inherent data set resolution—that of the point cloud itself—would allow more
detailed insights into the hydrological features of the landscape. Geomorphic studies of ephemeral channels,
channel heads in dry areas with weak lithologies, landslide scarps and arroyo formation would all benefit
from submeter spatial resolution data. Existing approaches that are commonly used to construct river-flow
networks from elevation data sets, however, are not equipped to handle point clouds directly, and require a
DEM as a starting point of the analysis. Additionally, DEMs usually have fewer pixels than the underlying
point cloud in order to mitigate elevation uncertainties and to avoid interpolation artifacts (Florinsky, 1998;
Oksanen & Sarjakoski, 2006; Wechsler & Kroll, 2006; Wechsler, 2007).

In this study, we describe a network approach to perform flow accumulation on irregularly spaced point
clouds and provide a framework that links this method to existing, grid-based flow accumulation techniques.
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In our approach, we generate a flow network from the irregularly sampled point-cloud data set by repre-
senting the topographic surface with a triangulated irregular network (TIN). Such a representation of the
topographic surface assumes a linear model for elevations between measurements, which might not be a
valid approximation depending on the roughness of the terrain and the number of measurements per square
meter. However, since a TIN can be constructed from any arbitrary set of sampled points, our method is
directly applicable to point-cloud data, which yields the highest possible measurement densities. Despite
the existence of flow accumulation approaches on TINs (see, e.g., Jones et al., 1990; Ivanov et al., 2004; Zhou
et al., 2011), we put forward an efficient and realistic approximation of flow on the surface of the TIN facets
themselves and hence refer to this network as Facet-Flow Network (FFN). Our approximation is realistic
because estimates converge to the analytical solution even for terrain with diverging flow where flow parti-
tioning is most important, and it is efficient because our flow partitioning depends only on the local gradient
and not on the full evolution of the corresponding stream tube. We define a stream tube to be the flow path
bounded by the two flow lines originating at the boundary of that flow path's first facet. The evolution of
flow lines on TINs is determined by the gradient of its facets.

The underlying assumption in our flow path estimation is that rain falling onto the triangulated surface
(facet) of the TIN is transported from facet to facet as determined by the local gradient and thereby aggre-
gates into channels and rivers that eventually drain into one or more outlets. However, we do not consider
variations in the flow density at the subfacet level. Water exiting a facet is considered to be homogeneously
distributed along the corresponding contour of the facet.

Although we are interested in a geometric terrain analysis in terms of drainage areas, the FFN approach
could be extended for studies of hydrological modeling. Such a hydrological model may analyze the flow
propagation and its temporal evolution due to variations of rainfall in time and space. However, assuming
a constant rain rate (m/s), a steady flow pattern will emerge, which can be expressed by the amount of
water per time (m3/s) at each point on the topographic surface. Because we assume rainfall as spatially
homogeneous (i.e., the rain rate is the same at all locations), the flow can be studied in terms of the total
drainage area (TDA). For each point in space, the TDA is defined as the size of the 2-D surface area that
drains into it. Note that the TDA at a chosen location is not proportional to the area of the 3-D surface
upstream of that location, but it is rather proportional to area of the xy projection of the 3-D surface. TDA
is thus proportional to water amounts that flow through the surface due to spatially homogeneous rainfall.
However, although not implemented that way, our approach could as well be used to accumulate the 3-D
surface area of facets if a slope dependent TDA is desired.

TDA has been used by many hydrologic and geomorphologic applications to model the flow of water and
sediment (Montgomery & Foufoula-Georgiou, 1993; Rengers et al., 2016; Tucker & Bras, 1998). However,
TDA is inherently resolution dependent, making it difficult to compare between data sets of different reso-
lutions (Pelletier, 2010). The resolution dependence leads to biases in estimates for irregularly sampled data.
The higher the resolution, the smaller the grid cells or facets and the lower the TDA, because TDA is an
aggregated measure along the contour width of cells (Erskine et al., 2006; Schoorl et al., 2000; Zhou & Liu,
2002). Although our network-based approach also accumulates flow to TDA, we use the specific catchment
area (SCA), which is defined as TDA per unit contour width. Hence, even though both TDA and SCA are
directly estimated using FFNs, SCA is unbiased even if the sampling density changes across the geographic
region of interest and is therefore used throughout this study. An advantage of using FFNs is that each
facet has a well-defined corresponding contour width, and thus, a more accurate estimation of SCA can be
directly calculated for high spatial resolution data. For other approaches it is often challenging to estimate
SCA accurately because corresponding contour widths are unknown or heuristically estimated in terms of
effective contour widths (Chirico et al., 2005; Pelletier, 2010; Qin et al., 2007). Given a grid-based flow accu-
mulation that allows multiple flow directions (MFDs), the correct contour width inside channels is the grid
cell width. However, the more diverging the landscape, the higher the corresponding contour width.

An additional advantage of the FFN approach is that it enables us to apply a novel way to resolve sinks
in the landscape. A sink in digital topography is a single cell, or a group of grid cells that have no lower
neighbor (Jenson & Domingue, 1988; O'Callaghan & Mark, 1984). Instead of carving or filling sinks in digital
topography (e.g., O'Callaghan & Mark, 1984; Rieger, 1993; Planchon & Darboux, 2002; Soille et al., 2003;
Zhang et al., 2017), we propose a fundamentally different approach that does not alter the digital topography.
We introduce new additional links into the flow network that “tunnel” the flow out of sinks. This approach

RHEINWALT ET AL. 2014



Journal of Geophysical Research: Earth Surface 10.1029/2018JF004827

Figure 1. Two conceptual examples of 12 elevation measurements (red dots) on an inclined plane and their
corresponding Facet-Flow Networks (FFNs, blue arrows) for regular grid sampling (a) and irregular random sampling
(b). The gridded sampling leads to 12 facets and the random sampling to 18. All possible flow patterns for flow on
facets are listed below. Sequential flow (c): The flow enters on one side and exits on one. Merging flow (d): The flow
enters on two sides and exits on one. Branching flow (e): The flow enters on one side and exits on two. Red arrows
indicate the direction of the gradient, and cyan colored ridges are those across which the flow exits the facet.

is more similar to sink carving than to sink filling, in the sense that water is routed away from the bottom
of sinks instead of overflowing the sink. High-resolution topography creates new challenges because the
effect of anthropogenic artifacts such as road embankments and bridges increases with increased resolution.
Similarly, at fine spatial scales, sinks exist in natural landscapes and high-resolution topographic data will
result in hydrologically disconnected landscapes. Part of the difficulty arises from the problem of reliable
point-cloud classification and the removal of nonground objects (i.e., vegetation and buildings) from a point
cloud used for generating digital topography. Specifically, classification inaccuracies in densely vegetated
terrain will introduce false point elevations, which ultimately will result in surface water flow obstruction.
The FFN sink-tunneling approach mitigates some of these constraints.

In order to apply the FFN algorithm and demonstrate its usefulness, we validate FFN SCA estimations of
a Gaussian hill against the analytical solution of SCA and compare the efficiency of our algorithm to that
of the MFD algorithm (Freeman, 1991; Pelletier, 2008). We then analyze classified point-cloud data from
the steep and vegetated Pozo catchment of the Santa Cruz Island in Southern California. For the Pozo point
cloud, we compare our FFN SCA to the one derived by MFD from a corresponding set of sink-filled 60-cm
DEM (see the supporting information for comparisons to the D∞ algorithm). Our findings suggest that FFN
SCA estimations are more efficient and accurate than conventional SCA estimations from gridded data.

2. Methods
2.1. FFN Construction
We first construct a TIN from all elevation measurements using a 2-D Delaunay triangulation (Barber et al.,
1996). Delaunay triangulation is applied to the projected, spatial coordinates (e.g., UTM eastings and nor-
things) of the elevation measurements such that the resulting TIN is a unique nearest neighbor network
embedded in geographical space. Note that depending on coordinate systems and space, the distance metric
might change. For our applications, we consider Cartesian coordinates with Euclidean distances. We define
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Figure 2. For Facet-Flow Network construction, we separate the branching
flow (E1) into two sequential flow patterns (E2). The equivalence of a facet
with a branching flow pattern and its two corresponding subfacets is
obtained by dissecting the original flow pattern along the gradient that
points to the lowest corner. That is, the branching flow pattern can be
routed with two parallel sequential flow patterns.

facets as the triangular surfaces formed in the TIN that guide the flow of
water. This is in contrast to existing approaches where flows are modeled
along the edges of the TIN (e.g., Ivanov et al., 2004). The flow direction
on a facet follows the gradient determined by the elevation values of its
three corners. The flow has to exit at one or two sides of the facet and
enters from corresponding neighboring facets. This determines a directed
connection between facets, which we define as the directed links of the
FFN in which the facets are the network nodes. Since we obtain the TIN
by Delaunay triangulation, the FFN is spatially structured as a Voronoi
graph. This FFN can be seen as a drainage network, and since we assume
the flow to be homogeneous along contours within facets, FFN links con-
nect facets that drain into each other via flow lines. Accordingly, the FFN
is a relational network and flow lines are not parallel to FFN links. We
conceive FFN flow lines as flow paths following the gradient of the faceted
surface of the TIN. This is in contrast to flow lines estimated at subpixel
resolution by adjusting the flow path in the current grid cell according to
the exit point in the previous grid cell(Zhou et al., 2011).

We illustrate the concept of FFN using 12 elevation measurements on
an inclined plane obtained by two different sampling schemes: (i) regu-
lar grid (Figure 1a) and (ii) irregular random sampling (Figure 1b). The
gradient-determined flow pattern within a facet can be only one of three

types, all of which manifest in the two conceptual samples shown in Figure 1. The patterns are (i) sequen-
tial (Figure 1c), the flow enters from one side and exits through another; (ii) merging (Figure 1d), the flow
enters from two sides and exits through one; and (iii) branching (Figure 1e), the flow enters from one side
and exits through the remaining two sides.

These flow patterns arise because at each nonflat facet, the flow either enters the facet through one of its
sides and exits either at one or both of the other remaining sides or enters on two sides and exits on the
remaining one. We note that perfectly flat facets occur only because of the finite elevation measurement
precision. In that case, one can lift one corner of such a facet, while remaining within the bounds of elevation
uncertainty. We detect flat facets while computing the gradient for each facet. In the FFN, each exit side is
seen as an outgoing link, and in order to construct the entire FFN, it suffices to focus only on these outgoing
links. From the perspective of outgoing links, the sequential and merging flow patterns are equivalent as
each of them have only one outgoing link. The branching flow pattern can in turn be seen as two parallel
sequential flow patterns by dissecting the facet along the FFN flow line that passes through the lowest corner
of the facet (Figure 2). The dissection is unique, and it conserves both area and flow; that is, the area of the
original facet is equal to the sum of both subfacet areas, and the flow routed through the original facet is
equal to the sum of both flows that get routed through the two subfacets. The conservation of flow holds
because we assume homogeneous flow and the ridge length l() is conserved (lorig = lleft + lright; see Figure 2).
Although we are not dissecting branching facets in practice, each facet is seen as one node in the FFN; this
perspective highlights how we accumulate the flow along branching facets.

2.2. Sinks and Connecting Facets via Tunnels
We define a sink as a depression in the landscape where water accumulates and then either internally drains
via subsurface flow, evaporates, or overflows. Sinks are a common feature of elevation data sets at various
spatial scales (O'Callaghan & Mark, 1984; Roering et al., 2013). Many sinks that are found in elevation data
sets, such as tiny depressions that may cause puddles, are in fact an integral part of the geomorphic and
hydrologic signature of the landscape. That being said, one of the primary goals of a flow model is to route
water through all parts of the landscape, including sinks, to one or more outlets.

Conventionally, in gridded data sets, the issue of sinks is resolved either by filling up the depression or by
carving a channel through the surrounding landscape, resulting in a modified, “hydrologically corrected”
landscape (O'Callaghan & Mark, 1984; Planchon & Darboux, 2002; Rieger, 1993; Zhang et al., 2017). Other
approaches avoid this modification by directing flow uphill out of a sink toward the outlet of that sink (Du
et al., 2017; Wang et al., 2009). Here, we propose an approach that modifies the FFN without a modification
of the underlying TIN. Instead of changing the elevation of the landscape, we introduce tunnels—new links
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Figure 3. Schematic of a sink causing cycles (solid cyan arrows) and the corresponding tunnels (dashed magenta
arrows) that route the flow below the surface to lower facets. Cycles are not physical and are replaced by tunnels. For
display purposes, all links are drawn on top of the surface even if they are underneath or behind. FFN = Facet-Flow
Network.

that tunnel through sink-forming barriers (Figure 3). In FFNs, sinks cause link cycles and to introduce tun-
nels, we detect facets that are part of a cycle, remove the links that cause the cycle (cyan links in Figure 3),
and place new links that connect the sink with lower facets nearby (dashed magenta links in Figure 3).
In other words, for each cycle-causing link, starting at the facet where the link originates, we perform a
breadth-first search for the next closest facet, which has its highest point below the level of the bottom of
the sink. This results in two tunnels for each facet forming the sink, which may or may not connect to the
same facet. This is clear from Figure 3b, where the facet on the far side has tunnels that end up in differ-
ent locations, whereas for all the other facets forming the sink, both tunnels from each of them link to the
same facet. Similar to filling or carving algorithms, a threshold of maximum distance or elevation drop can
be included, in order to exclude nonphysical tunneling.

We acknowledge that a small and shallow depression in the landscape might rather overflow, than drain
via subsurface flow, but in such cases tunnels will be short and shallow with differences between the two
cases being negligible in terms of drainage area. We note that subsurface flow is typically orders of magni-
tude slower than overland flow, but since we focus on the steady state of flow, flow speeds are irrelevant.
Fundamentally, the question whether a sink is rather filled or drained via subsurface flow is answered by a
full hydrological model, which is beyond the scope of this study. For our application to airborne lidar data
most sinks are very shallow and sampling dependent; that is, we conclude that all areas drain and that sinks
are spurious (see supporting information Figures S7 and S8). Despite the use of tunnels in our approach,
we aim at creating a hydrologically corrected flow on a TIN that can be used to study upslope areas, river
profiles, and similar geomorphologic metrics.

Additionally, we note that in the FFN, cycles of length two occur that are not due to physical sinks but simply
because two neighboring facets point toward each other such as the pages of a half open book (cf. only two
facets connected by a cyan link as in Figure 3). This is also dealt with in the same way as in the case of sinks,
only that we now search for the nearest facet lower than the lowest point of their common side. This has to
be a facet whose highest corner is the lowest point of that common side. These new links represent the flow
along the common side, which drains into the next lower facet.

2.3. Flow Accumulation and FFN-Derived SCA
In landscapes and their static consideration, flow is often expressed as flow accumulation or drainage area
and not in units of cubic meters per second (Chirico et al., 2005; Gallant & Hutchinson, 2011; Jenson &
Domingue, 1988; O'Callaghan & Mark, 1984). In that sense, the flow that exits a facet possibly comes from
two areas: the upstream drainage area, which is the flow that is routed through the facet, and the area of
the facet itself. The flow that exits a facet is therefore always larger than the flow that entered it through
its sides. The flow accumulates along its path. We call these paths stream tubes, which are bounded by two
flow lines. In general a stream tube changes its shape from facet to facet, which creates variations in the flow
density along the stream tube and also within facets (Figure 4). This is relevant for SCA estimation since our
flow partitioning assumes a homogeneous flow density along the contours of facets. The error introduced by
this assumption occurs only at branching flow facets (Figure 2) but can propagate downstream (Figure 5).
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Figure 4. Schematic of a TIN with all stream tubes differentiated in color. For comparison to our Facet-Flow Network
estimations (see Figure 5) the analytical TDA values are shown for each stream tube and facet. The value of
TDA < 1.024 is given by 1.024 minus the very small area of the yellow stream tube part of that facet. Depending on the
structure of the TIN and resulting facet gradients (red arrows), flow lines (black arrow lines) can diverge from each
other in diverging landscapes. TIN = triangulated irregular network; TDA = total drainage area.

At branching facets the error is proportional to the TDA value, but further downstream the error reduces
its relative importance because of additional contributions to the local TDA. Furthermore, since TDA is
preserved and flow partitioning errors are both positive and negative, they will average out in converging
landscapes and on larger scales. However, we validate our FFN-derived SCA on diverging terrain where the
cancelation of errors is suppressed and still observe a better convergence to the analytical solution than the
grid-based approach (see section 2.4 and Figure 9).

In practice, the flow accumulation on the FFN is calculated similar to a breadth-first search along the out-
going links. Starting at facets i, which have no incoming flow (e.g., hilltops and ridges), their outgoing links
i ⇀ 𝑗 along with the flow they transport fij (m2), are added to a First-In-First-Out queue. This queue is suc-
cessively emptied, while the sum F𝑗 =

∑
i∈I𝑓i𝑗 of all incoming flows for each facet is maintained (I is the

set of all facets i that have a link to the current facet j). If the sum Fj (m2) is complete, the TDA draining
into the facet j is thereby determined and can, together with the 2-D projected area of the facet j itself (Aj;
m2), be distributed among its outgoing links. Hence, now the outgoing links of the j facets, 𝑗 ⇀ k along
with their outgoing flows fjk, are added to the queue. In this way, the algorithm works itself in layers down-
hill (i, j, k, … ) and collects all contributions from all facets (cf. Figure 5). See section 6 for a link to our
implementation of this algorithm (section 6) with a pseudo-code description in Appendix A.

We define the TDA (m2) of facet j as the sum of all incoming flows Fj (m2) and its own contribution, the
area of the facet Aj (m2). Otherwise facets i with no incoming links would have drainage zero. Since facets

Figure 5. Schematic of the same TIN as in Figure 4 together with the associated FFN with corresponding layers of the
algorithm (i, j, k, …). Facets with no incoming links (flow) form the initial layer (i) of the breadth-first walk.
Contributions from that initial layer (i) are passed to the next layer (j) and after all contributions are collected from
there to the layer (k). The TDA value for each facet is shown in bold and its estimation error in parenthesis
(cf. Figure 4). FFN = Facet-Flow Network; TIN = triangulated irregular network; TDA = total drainage area.
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Figure 6. The left-hand side shows a uniform-randomly sampled point cloud of a Gaussian hill with 100-point
measurements leading to a point density of 𝜌 = 10 number of points per unit area, because the sampled area is ten unit
areas. The right-hand side shows the corresponding sampled profile (red solid line) in comparison to the analytical
elevation profile (black dashed line) and the analytical solution for SCA (blue dash-dotted line). See supporting
information Figure S1 for a sampling with a point density of 𝜌 = 100 number of points per unit area. SCA = specific
catchment area.

are planar, contour lines on these are straight and perpendicular to the gradient. Hence, the contour length
dj (m) corresponding to the TDA of a facet is the width of that facet projected onto the axis perpendicular to
the gradient of the facet. Thus, the FFN-derived SCA (m) is defined as

SCA𝑗 =
TDA𝑗

d𝑗

=
F𝑗 + A𝑗

d𝑗

. (1)

2.4. Validation of FFN-Derived SCA
In order to quantitatively evaluate our flow accumulation scheme, and to compare it to existing measure-
ments from regularly spaced data, we consider a Gaussian hill (Figure 6) as a synthetic landscape. The
Gaussian hill serves as a first approximation of the low SCA, hilltop-like part of real-world landscapes. We
expect point-cloud approaches such as our FFN approach to be especially useful in divergent parts of the
landscape because the increased point density of point clouds extends studies to smaller SCAs. Note that
by validating SCA, we validate TDA and the corresponding contour widths, which are both independently
estimated by our FFN approach. Nevertheless, we are aware of the usefulness of TDA despite its resolution
dependence.

Because of the polar symmetry of the surface, the analytical SCA0 of a Gaussian hill is one-dimensional in
the radius r if polar coordinates (r, 𝜙) are used. As for the cone in Shelef and Hilley (2013), or any other
hill-like surface with polar symmetry, the TDA that drains through the circle of radius r and that has the
origin at the hilltop is given by TDA(r) = 𝜋r2. Together with the circumference of that circle, which is the
corresponding contour width, the SCA0(r) at a distance r from the center of such hills is given by

SCA0(r) = r
2
. (2)

Note that equation (1) is for facets, whereas equation (2) is for points on the surface. For a comparison of the
two, we interpret the SCAj of a facet j as an estimate of SCA at the centroid of the facet. In this way, we can
numerically compare the SCAj obtained from a facet j to the corresponding SCA0(rj), where rj is the radial
distance of the centroid of facet j.

The FFN-derived SCAs are defined for the centroids of the corresponding facets and are therefore irregularly
sampled in space (Figure 7, dark blue box, top layer). This is in contrast to established SCA estimates such
as D∞ SCA or MFD SCA, which are only defined for gridded DEMs. To compare our SCA estimates to the
existing approaches, we aggregate the FFN-derived SCAs to a grid (Figure 7, light blue box, bottom layer) or
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Figure 7. Workflow chart for the different flow accumulation scenarios and the resulting SCA estimates. We separate
three layers shown in horizontal order: (i) point-cloud layer, (ii) TIN layer, and (iii) grid layer. We distinguish between
our point-cloud SCA estimate in the point-cloud layer from other SCA estimates shown in the grid layer. The color
scheme introduced here is consistent with all other following figures of the manuscript: Blue colors denote FFN flow
accumulation performed on point clouds. Dark blue corresponds to the resulting SCA values, which are then also
structured as a point cloud and light blue corresponds to gridded versions of those point-cloud SCA values. Green
colors mark FFN flow accumulation performed on gridded data. Similarly, red colors denote MFD flow accumulation
on gridded data. Note that D∞SCA estimates (yellow color) are shown exclusively in the supporting information.
FFN = Facet-Flow Network; TIN = triangulated irregular network; SCA = specific catchment area; MFD = multiple
flow direction; DEM = digital elevation model.

we apply the proposed FFN accumulation scheme to the TIN obtained from a gridded DEM (Figure 7, green
box, bottom layer). These are then compared to the SCAs obtained by MFD (Figure 7, red box, bottom layer)
and to the SCAs obtained by D∞ (Figure 7, orange box, bottom layer). The D∞ SCA estimates are shown
exclusively in the supporting information, while here we focus on the MFD results because it performs better
than D∞ on diverging surfaces (Erskine et al., 2006; Zhou & Liu, 2002).

We validate our FFN-derived SCA (equation (1)) in terms of its errors of estimation. Instead of analyzing the
root-mean-square errors as done in earlier studies (e.g., Qin et al., 2007; Shelef & Hilley, 2013; Zhou & Liu,
2002), we analyze spatial error patterns in terms of relative deviations from the analytical solution given by

𝛿SCA(r𝑗) =
SCA𝑗 − SCA0(r𝑗)

SCA0(r𝑗)
. (3)

This has the advantage that small deviations in regions of low SCA are more visible than similar deviations
in regions of high SCA. Additionally, since SCA varies on many orders of magnitude, and because deviations

Figure 8. Topographic map of the Santa Cruz Island in Southern California (cf. red star in inset) with the Pozo
catchment outlined by a black polygon. The white line shows the trace of the longitudinal longest flow path profile of
the application to lidar point-cloud data (Figure 16). The blue star denotes the center of the depicted region in the
specificcatchmentarea pattern analysis (Figure 12).
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generally increase with an increase in SCA, the root-mean-square error would be dominated by high errors
for high SCA estimates (see supporting information Figure S2). Moreover, we do not aggregate deviations
into a single value, but rather study the distribution of 𝛿SCA estimates.

In particular, we investigate how 𝛿SCA varies over different point densities 𝜌 (number of points per unit
area; see section 3.1) and how these are distributed spatially (see section 3.2). For a given 𝜌, we sample the
Gaussian hill on the interval

√
10∕2 ≤ x, 𝑦 <

√
10∕2 such that its xy area is 10 square units. In this sampling

scheme, a sample with 𝜌 = 10 would contain 100 uniformly random distributed elevation measurements
from the Gaussian surface (see Figure 6). Next, for each point density, we sample the hill 1,000 times and
therefore obtain a distribution of 1, 000× 𝜌× 10 relative deviations 𝛿SCA. We then compare the distribution
of 𝛿SCA values obtained from the point clouds to three different gridded SCA estimation approaches: two
obtained from applying MFD routine and FFN routine on the same gridded DEM, and the third obtained
by gridding point-cloud FFN-derived SCAs to the same grid as the DEM. For the gridded approaches, we
compute the DEMs by linear interpolation of the uniform randomly sampled elevation measurements to
a grid with the same number of pixels as elevation measurements. Hence, given 𝜌, we determine the grid
cell width w by w = 1∕

√
𝜌. This procedure of interpolating point measurements to a grid cell elevation is

in contrast to directly measuring the surface elevation at the grid cell centers. However, we consider this to
be a more realistic representation of how real-world DEMs are constructed because measurements are not
performed at grid cell centers. We perform linear interpolation because it is common and most comparable
to TINs.

Complementing the above analysis of 𝛿SCA distributions and their dependence of 𝜌, we also analyze the
spatial pattern of 𝛿SCA, which shows how deviations from the analytical solution are spatially structured.
For this, we choose a specific 𝜌 = 168.1 points per unit area, which results in a point cloud of 1681
uniform-randomly distributed surface measurements from the Gaussian hill. Correspondingly, we compute
a 41× 41 pixel DEM by linear interpolation with a grid cell width w of w ≈ 0.077. We compare the following
four scenarios: (i) 𝛿SCA from the FFN of the gridded DEM, (ii) 𝛿SCA from the FFN of the point-cloud data,
(iii) 𝛿SCA by MFD of the gridded DEM as in (i), and (iv) 𝛿SCA as in (ii), but aggregated to the same grid as
the DEM.

2.5. Application to Lidar Point-Cloud Data
Apart from synthetic surfaces, we also apply the FFN approach to airborne lidar data from the Santa Cruz
Island in southern California. This tectonically active, very steep and densely vegetated terrain provides an
ideal location to test the algorithm for an area where lidar point clouds represent an imperfect characteriza-
tion of the bare-earth surface (Baguskas et al., 2014; Neely et al., 2017; Perroy et al., 2010, 2012). In particular,
we choose the Pozo catchment in the southwestern part of the island (see Figure 8) covering different litholo-
gies and vegetation covers. In this area, the deeply incised gullies and chaparral-like vegetation cover does
not always allow for the lidar pulses to reach the surface(Perroy et al., 2010). We specifically selected this
terrain for the difficulties in lidar point-cloud ground classification, because FFNs can also be constructed
from unclassified or imperfectly classified point clouds.

Data were collected using a Riegl LMS-Q560 laser scanner flown on a helicopter retrieving on average 9
points per square meter leading to a point-cloud data set containing ≈7 ·107 points for this catchment (NSF
OpenTopography Facility, 2012). To ensure accurate triangulation of the data, we apply an initial thinning
step that removes the higher point out of a pair of points if they occur within an xy distance of less than 5 cm
to each other. The xy distances are computed using the cKDtree implementation of a quick nearest neigh-
bor lookup distributed in the spatial module of the scientific computing package SciPy. This thinning
results in a point cloud of ≈6 ·107 points with unique xy coordinates. Additionally, we use the ground-only
classified points in order to have more comparable results with existing grid-based techniques. The number
of ground points for the Pozo catchment is ≈24 ·106.

Lidar data are not randomly distributed: for example, measurements are aligned with flight lines and higher
measurement densities occur for vegetation due to multiple returns and overlapping swaths. These sampling
biases have the potential to bias SCA estimates. In order to partly overcome these biases and quantify SCA
uncertainties, we propose an optional bootstrapping approach where we select a subset of k measurements
out of N; that is, we cross validate SCA in terms of elevation measurements. Theoretically, the number of
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Figure 9. Comparison of relative deviations from the theoretical SCA0 with
numerical SCA estimates of a Gaussian hill for MFD (Freeman, 1991), FFN
on gridded DEMs, FFN on the point clouds, and gridded SCA from
point-cloud FFNs. The spread of the different error distributions is
visualized by the lower and upper quartiles for each point density 𝜌.
Optimal deviations would be 0%. The gridded SCAs from point-cloud FFNs
converge similar to the nongridded SCAs from point-cloud FFNs, whereas
the other approaches that route the flow on gridded DEMs suffer from grid
effects, that is, the decline of deviations stagnates or is offset. The gray bar
highlights the region of linear y scale. FFN = Facet-Flow Network;
SCA = specific catchment area; MFD = multiple flow direction;
DEM = digital elevation model.

possible bootstrapping samples is finite. However, given an initial num-
ber of N measurements and a sample size of k, the number of combina-
tions are give by the binomial coefficient

(
N
k

)
= N!

k!(N−k)!
and therefore

in practical terms limitless. For instance, in our application to lidar
point-cloud data of a single catchment on the Santa Cruz Island in Cali-
fornia, we bootstrap our samples from an initial number of N ≈ 6 · 107,
or N ≈ 24 · 106, respectively, elevation measurements. In a bootstrapping
sample, each measurement is chosen with the selection probability Psel

𝑗
,

Psel
𝑗

=

( N∑
i=1

1
𝜌(xi, 𝑦i)

)−1
1

𝜌(x𝑗 , 𝑦𝑗)
, (4)

where 𝜌(xj, yj) is the spatial point density at (xj, yj). Thus, measurements
in regions of low density 𝜌 are very likely to be chosen, whereas points
in densely sampled regions (e.g., vegetation and overlapping flight lines)
are not. This leads to a homogeneous sampling if not too many mea-
surements per bootstrapping sample are selected. For a homogeneous
sampling the sample size k is limited by kmax < N, with kmax being
determined by the lowest spatial densities in the region of interest. How-
ever, for our application to lidar data, we choose k = N∕2 as a trade-off
between homogeneity and data density. Additionally, we take the Voronoi
cell area for each lidar data point as a good approximation for the inverse
of the point density. Hence, given the 2-D Voronoi tessellation of the
region of interest into Voronoi cell areas aj corresponding to each point
measurement at (xj, yj), we approximate the selection probability as,

Psel
𝑗

=

( N∑
i=1

a𝑗

)−1

a𝑗 . (5)

According to this probability we select 100 bootstrapping samples with N∕2 lidar measurements each,
from which we obtain an ensemble of 100 FFNs. This results in almost all elevation measurements to be
incorporated at least once.

For comparisons to gridded approaches, we generate gridded DEMs from the lidar point cloud samples by
linear interpolation as with the synthetic examples, that is, the number of valid elevation pixels is given by
N∕2. In section 3.3, we compare our FFN approach for lidar data to grid-based approaches in three ways:
(i) we compare the distributions of SCA for ground-classified points; (ii) we analyze spatial flow patterns
and the influence of vegetation and microtopography to such patterns, and compare our FFN approach to
MFD in that respect for ground-classified points and the full point cloud; and (iii) since the channel is in
parts highly vegetated, we highlight the efficiency of tunnels for the real-world example of tunneling the
flow through vegetation and along the channel and compare longitudinal longest flow path profiles using
the unclassified full point cloud.

3. Results
3.1. Dependence of Relative Deviations on Point Densities
For the synthetic landscape of the Gaussian hill (Figure 6) and for our FFN approach on point clouds, rel-
ative deviations 𝛿SCA decline similar to a power law ∝ 𝜌1/2. We quantify this by the decline of the upper
quartile of the 𝛿SCA distributions and a corresponding increase of the lower quartile, both toward zero
(Figure 9, dark blue solid lines). Naturally, the convergence of the same SCA only aggregated to a grid is
very similar (Figure 9, light blue dashed lines). However, different results are retrieved by flow accumula-
tion on the gridded DEMs of the Gaussian hill. For FFN SCA estimations using linear interpolation DEMs,
relative deviations 𝛿SCA are larger for low point densities 𝜌 and converge toward zero. However, the lower
quartile converges similar to the point-cloud FFN 𝛿SCA but offset to larger negative deviations, whereas the
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Figure 10. Comparison of three different FFN approaches and MFD (Freeman, 1991) in respect to 𝛿SCA patterns. All
four scenarios rely on the same set S of 1,681 uniform random surface measurements from the same Gaussian hill as in
Figure 9: (a) S aggregated to a 41 × 14 grid DEM with the same number of measurements as grid cells (𝜌 = 168.1
number of points per unit area) and 𝛿SCA is of the FFN of that DEM. (b) 𝛿SCA from the FFN of S directly. (d) Gridded
SCA from the same FFN as in (b), and (c) SCA via MFD from the same underlying gridded DEM as in (a). Black
contour lines indicate unitless elevation contours of the Gaussian hill (0–1). FFN = Facet-Flow Network;
SCA = specific catchment area; MFD = multiple flow direction; DEM = digital elevation model.

upper quartile converges faster (see Figure 9, green dash-dotted line). For MFD SCA estimations using lin-
ear interpolation DEMs, relative deviations 𝛿SCA are larger for low point densities 𝜌 and do not converge
toward zero. For overestimations, here represented by both quartiles of the MFD 𝛿SCA distributions, the
convergence slows down with an increase in 𝜌 until it stagnates at 𝛿SCA ≈ 5% (see Figure 9, red dotted line).

3.2. Spatial Patterns of Relative Deviations
Relative deviations of the point-cloud FFN SCA from the Gaussian hill do not exhibit strong spatial patterns
except for a radially symmetric increase of SCA overestimation close to the center, that is, with increasing
elevation (Figure 10b). This holds also for the gridded version of the same SCA, except that some of the
smaller deviations from the analytical solution average out with the aggregation to the grid, leading to a
larger fraction of pixels being within the (−5%, 5%) interval (Figure 10d). This is in contrast to FFN and MFD
flow accumulation on the gridded DEM (Figures 10a and 10c). As expected from the distributions of 𝛿SCA,
both show larger deviations from the analytical solution than estimations directly from point clouds and
the largest deviations occur along the cardinal and diagonal directions, especially for FFN on the gridded
DEM. Furthermore, MFD leads more often to overestimations in SCA (Figure 10c), whereas FFN approach
results in more underestimations (Figure 10a).
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Figure 11. (a) Probability density function estimates for SCA of the entire Pozo catchment. (b) Quantile-quantile maps
corresponding to (a) for quantile comparisons to the point-cloud FFN SCA. The flow accumulations from the 60-cm
digital elevation model ensemble (FFN on grid and MFD) fail to resolve the rollover at ≈10 cm due to the too coarse
resolution. The gridded point-cloud SCA density depicts the rollover less pronounced and washed out compared to the
point-cloud FFN SCA. For the common range of larger SCA values, densities are in good agreement, with differences
being mostly explainable by grid effects. FFN = Facet-Flow Network; SCA = specific catchment area; MFD = multiple
flow direction.

3.3. Pozo Catchment Lidar Point Cloud
The SCA probability density functions (PDFs) estimated by the four different approaches are fairly similar
within their ranges of SCA values (Figure 11a). All PDFs have a similarly modulated power law-like tail,
which is slightly offset according to the different normalizations due to different SCA value ranges, that is,
different supports. The differences between the PDFs are highlighted by quantile-quantile plots, which map
the quantiles of our proposed point-cloud FFN SCA measure to the corresponding quantiles of the three
compared approaches (Figure 11b). Since the point-cloud FFN SCA has the largest value range, ranges of
very low (high) quantiles of the point-cloud FFN SCA correspond to the minimum (maximum) of the other
SCAs. Within the possible range of SCA values, quantile-quantile plots have a finite positive slope. If two
PDFs are identical up to a normalization constant, their quantile-quantile function will have a slope of one.
None of the compared PDFs are identical in that sense and consequently their quantile-quantile function
slopes vary around one. This variation is most pronounced for MFD SCA, less for FFN on grid SCA and
gridded FFN SCA. Note that the variation of slopes is very similar between these three quantile-quantile
functions for intermediate SCA values (from 101 to 105), especially between the three FFN approaches.

The spatial SCA patterns obtained from the MFD routine on the 60-cm DEM ensemble (Figure 12b) contain
no SCA values below 0.36 due to the limit in spatial resolution. Our point-cloud estimates of TDA and SCA,
however, although gridded to the same resolution, are computed directly from irregular data and resolve
smaller drainage areas (Figures 12a and 12c). The overall flow pattern in terms of the shapes of the rivers
and the magnitudes of the SCA values are similar for both SCApcl and SCAmfd. However, relative deviations
between both reveal pronounced differences in channels and at hilltops (Figure 12d). Despite many positive
deviations (red), most deviations are negative (blue); that is, SCApcl is often lower than SCAmfd. This is
especially visible at broad hilltops and at channel boundaries (cf. Figure 13). Possible influences of vegetation
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Figure 12. Map view comparison of our TDA and SCA point-cloud estimates with the MFD SCA on 60-cm DEM
resolution of the Pozo catchment in the southwestern part of the Santa Cruz Island, California (see blue star in
Figure 8). In the left column our point-cloud estimates TDApcl (a) and SCApcl (c) gridded to 60 cm using the
ground-classified points only. In the right column for comparison the mean MFD estimate of SCA (b) using the 60-cm
DEM ensemble, that is, SCAmfd ∝ TDAmfd, and the relative deviations of our SCApcl to SCAmfd in percent (d). The
outlined insets are shown in Figures 13-15. TDA = total drainage area; SCA = specific catchment area;
MFD = multiple flow direction; DEM = digital elevation model.

are best seen in combination with the point-cloud intensity which is low for vegetated points (Figure 14).
Focusing on two arbitrary starting points of flow lines, we compute for each FFN of the bootstrap ensemble
one deterministic FFN flow line for each starting point. This provides us with an ensemble of FFN flow
lines for each starting point that captures the flow line uncertainty given the point-cloud elevation data.
With individual flow lines depicted, a tunnel is exemplified by a long straight part in the flow line. These
occur mainly within vegetated regions, especially if the full unclassified point cloud is studied (Figure 15).
However, FFN flow lines rather meander around some vegetated parts or get dispersed (Figure 14b).

The longitudinal flow path profiles for the FFN SCA of the unclassified full point cloud and the MFD
SCA of the longest flow path in the catchment are estimated in terms of the path distance from the hilltop
(Figure 16). The two profiles are quite similar for low path distances but are visibly offset for the rather steep
descent around 750 to 1,000 m. In the detailed views of the profiles from the hilltop (Figure 16a) and the
vegetated channel (Figure 16b), the interquartile range (gray shaded regions) of the surrounding elevations,
that is, <1 m from the channel, are better resolved. For vegetated regions, this distribution is shifted toward
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Figure 13. Corresponding to the inset of Figure 12 the map view of our mean SCApcl (a) and its relative deviations
(b) to mean SCAmfd from the 60-cm digital elevation model ensemble. Blue deviations, for instance, at the hilltop, are
due to MFD's tendency to overestimate SCA in diverging parts of the landscape. Red deviations emerge as additional
small-scale channels in the SCApcl compared to the SCAmfd field. SCA = specific catchment area; MFD = multiple
flow direction.

Figure 14. Corresponding to the inset of Figure 12 the map view of SCApcl (a) in comparison to the point-cloud
intensity (b), revealing subtle influences of chaparral vegetation (slightly darker intensity). The spatial subsampling
approach allows for an ensemble of flow lines (red lines) for each starting point although each individual Facet-Flow
Network flow line is deterministic. Shown are two examples close to the hilltop. Both ensembles are for the
ground-classified points. SCA = specific catchment area.
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Figure 15. Corresponding to the inset of Figure 12 the map view of the unclassified SCApcl (a) in comparison to
vegetation height (b), highlighting influences of vegetation points to flow line ensembles. The spatial subsampling
approach allows for an ensemble of flow lines (red lines in panel a and white lines in panel b) for each starting point
although each individual Facet-Flow Network flow line is deterministic. Shown are two examples close to the hilltop.
Both ensembles are for the unclassified full point cloud. SCA = specific catchment area.

higher elevations and the flow is routed via tunnel (a few representative examples of which are shown using
magenta lines). Particularly for MFD, we observe flat sections which correspond to regions which have
undergone sink filling. The point-cloud FFN SCA increases on average monotonically as elevation decreases,
but shows fluctuations on smaller length scales due to branching and merging of the channels.

4. Discussion
4.1. Dependence of Relative Deviations on Point Densities
Our results suggest that relative deviations 𝛿SCA for flow accumulation on DEMs from linearly interpolated
point clouds are less centered around optimal deviations (𝛿SCA = 0) than for flow accumulation on the
point clouds assuming the same linear model of a TIN. Although FFN on grid 𝛿SCA distributions converge
similarly to point-cloud FFN 𝛿SCA distributions, they are biased by underestimations due to grid effects.
MFD 𝛿SCA distributions on the other hand have higher quartiles due to SCA overestimations. Regarding
MFD convergence, we note that for point densities between 101 and 102 points or pixels per unit area, the
convergence is comparable the FFN, for 𝜌 between 102 and 104 the convergence slows down, and from
104 points per unit area on, an increase in spatial resolution has no effect on MFD SCA accuracy; that is,
it stays at a fixed overestimation of ≈5%. However, for the FFN flow accumulation on the point clouds,
relative deviations steadily decline by one order of magnitude for an increase in point density by roughly 2
orders of magnitude. For an analysis regarding the scaling in computational costs we refer to the supporting
information (see Figures S5 and S6).

4.2. Spatial Patterns of Relative Deviations
The analysis of spatial patterns of 𝛿SCA illustrates the advantage of deriving SCA from irregular point clouds
instead of first gridding the data and then deriving flow accumulations. The gain in SCA precision is not due
to more elevation measurements in the point cloud versus pixels in the DEM, both are kept equal, but due to
a lack of grid effects. For the example of a 41×41 grid and 𝜌 = 168.1 number of points per unit area, we have
on average one surface measurements per grid cell (Figure 10). Apart from the variability in SCA accuracy
due to random sampling, SCA tends to be overestimated close to the hilltop for all four scenarios. However,
since we study relative deviations, errors close to the hilltop are emphasized (i.e., 𝛿SCA → ∞ as r → 0).

RHEINWALT ET AL. 2027



Journal of Geophysical Research: Earth Surface 10.1029/2018JF004827

Figure 16. Longitudinal flow path profile for the longest flow path of the Pozo catchment on the Santa Cruz Island
(see white trace in Figure 8). Each point marker of the profile SCA corresponds to a node from the FFN of the
point-cloud data including vegetation (from one bootstrap sample). The interquartile range (IQR) of all elevations
surrounding the path of the profile within a 1-m radius is shown in gray. Vegetation in the point-cloud data leads to
high IQR relative to the bare-earth elevation. Links of the point-cloud FFN then tunnel through vegetation and become
longer (cf. insets a and b with three tunnels being highlighted in magenta). For comparison the corresponding MFD
profile is shown (red dotted curve). Even though the MFD flow path tracing was performed on an approximately
vegetation free DEM, DEMs are constructed from ground-classified points only, the sink filling leads to an in parts
stepwise profile (see inset (b) of the vegetated channel). Additionally, the MFD flow has a more meandering path than
the FFN flow, which leads to a shift of the MFD profile toward longer path distances. MFD = multiple flow direction;
FFN = Facet-Flow Network; SCA = specific catchment area; DEM = digital elevation model.

Another spatial pattern is aligned with the orientation of the grid and best visible in the first scenario (i) of
FFN SCA estimation from the gridded DEM (Figure 10a). For this case, SCA is highly overestimated along
the cardinal directions of the grid and rather underestimated otherwise. Such spatial patterns in relative
deviations are also caused by grid effects. For MFD SCA, grid effects are more difficult to see at this coarse
resolution, but these become more pronounced at higher resolutions and grids with perfect elevation data
or other flow accumulation algorithms such as D∞ (see supporting information Figures S3 and S4).

4.3. Implications of Grid Effects and SCA
DEM metrics such as TDA, SCA, slopes, and curvatures are typically calculated using the gridded prod-
uct, rather than using the TIN of measured data directly. Here we put forward the idea of taking advantage
of the usually much higher resolution of the raw measurements instead of aggregating measurements to
a grid. For our examples we choose grids with on average one measurement per grid cell; however, that
is not often the case. The motivation to take point-cloud data directly is twofold: First, the above analysis
illustrated the benefits in accuracy of higher measurement densities (cf. Figure 9). Second, the regularity
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of grids can cause spatial effects that propagate on scales beyond the spatial scale of grids (cf. Figure 10).
Any neighborhood-based flow accumulation will suffer from the fact that locally only a finite set of flow
directions occur. Extreme cases are the D4 and D8 flow directions, but even D∞ and MFD allow only the
four cardinal directions plus the four 𝜋∕4-shifted directions (Freeman, 1991; Tarboton, 1997). Because these
routines are designed for square grids only, the eight local flow directions are also globally the only ones
occurring. Biases due to imperfect flow partitioning can therefore aggregate along these directions together
with the flow aggregation. On cones, or other highly symmetric surfaces, these biases create especially obvi-
ous and well known artifacts in the flow as previously described by Shelef and Hilley (2013), Qin et al.
(2007), Zhou and Liu (2002), and Freeman (1991). In order to minimize such grid effects, the MFD algorithm
includes an additional parameter that is adjusted to the analytical solution of the SCA of a cone(Freeman,
1991). However, although this leads to reduced grid effects when compared to D∞, they are still apparent (cf.
Figures S4 and S5). In contrast, on irregular sampled data a finite-neighborhood flow accumulation scheme
does not lead to a finite set of total flow directions. This is an advantage of our FFN approach, as it is explic-
itly designed for irregular sampled data such as point clouds. Sometimes an aggregation of measurements
to a grid might seem inevitable because of noisy data or the necessity of a gridded flow product for fur-
ther analysis, but in order to avoid grid effects it is advisable to aggregate SCA results instead of elevation
measurements.

4.4. Pozo Catchment Lidar Point Cloud
Due to the high spatial resolution of the airborne lidar point cloud, and especially due to the random homo-
geneous density sampling, we have a larger ensemble of SCA estimates for the point-cloud data as well as
for the grid-based approaches.

The ensembles of SCA values allow a smooth and reliable histogram estimation, even for very small drainage
areas (Figure 11a, solid dark blue line). If this ensemble of point-cloud SCA estimates is aggregated to the
60-cm grid prior to the density estimation, the correspondingly estimated PDF is flattened out, that is, grid
cells with many low SCA estimates (e.g., from vegetation or boulders) and relatively fewer, but much higher
SCA estimates (e.g., from channels or river basins) will aggregate to grid cells of high SCA. Although this is
intended, because grid cells should represent the channel SCA if they include a channel, it leads to relatively
fewer low SCA and higher SCA values (Figure 11a, dashed light blue line). Essentially, this is due to the too
coarse grid resolution of 60 cm. The same holds for MFD and FFN on the 60-cm DEM ensembles, but for a
different reason. For flow accumulation on grids, channels have a discretized width of multiples of the grid
resolution. This leads to an overrepresentation of channels in the PDF of SCA estimates (see also Figure S6
for results corresponding to D∞), less so for the FFN on the gridded DEM, because the grid is triangulated
and the flow is discretized by triangles with an area of half a grid cell. This is also the reason why FFN flow
accumulation on the 60-cm DEM resolves SCAs below 0.36 cm (cf. Figure 11a, dash-dotted green line). The
smallest TDA in this case is 0.18 m2, and the smallest SCA is therefore 0.6

√
2∕4 m.

The quantile-quantile maps for the SCA PDFs highlight the differences between our point-cloud SCA esti-
mate and the other grid-based approaches in terms of quantile-position thresholds (Figure 11b). Since all
PDF estimates have a different support, the images of the quantile-quantile maps vary between densities.
In that sense, absolute differences between probabilities are meaningless because each PDF is normalized
on its own support. The more parallel a density relative to the reference line of the point-cloud SCA PDF is
(Figure 11b, solid dark blue line), the more similar their quantiles vary with SCA. For instance, on the inter-
val 10−2 ≤ SCA < 106 the PDF for the gridded SCA evolves more parallel to the PDF for the point-cloud
SCA than the PDFs for the flow accumulation on the gridded DEMs. Overall, the FFN-based PDFs are more
parallel to the reference PDF than the MFD PDF.

In an analysis of spatial SCA patterns, we confirm the aforementioned differences in SCA for the differ-
ent approaches and the dependence of these differences on SCA magnitude (Figure 12). In contrast to low
SCA values from the point-cloud FFN, low MFD SCA values are bounded by the resolution of the DEM and
cannot resolve areas smaller than 0.36. This effect is further emphasized by the tendency of MFD to overes-
timate SCA values (Figure 9). For the comparison by relative deviations (Figures 12d and 13b), this results
in negative deviations (blue) for regions where SCAmfd is limited by the resolution of the DEM. Interest-
ingly, our SCApcl reveals channelization closer to the drainage divide than SCAmfd, which leads to positive
deviations (red) in the form of channels (Figure 13).
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Further, it is possible to see feedbacks between vegetation and channelization using this high spatial res-
olution lidar data. Due to the stabilization of soil by vegetation (Ludwig et al., 2005), soil is rather eroded
around it, leading to more surface runoff there than in vegetated patches. This enhances erosion around
vegetation and combined with weak lithologies leads to early channelization close to the drainage divide
(Perroy et al., 2012). Additionally, vegetation traps fluvial and aeolian sediment, which elevates vegetated
patches. However, since we use only ground-classified points, vegetated patches are gaps in the point cloud
that are incorporated into the FFN by gap-spanning facets. In order to see the influence of these gaps, we
compare our flow line ensemble using only ground points (Figure 14) with an ensemble using all points
(Figure 15). Both ensembles show a very similar SCA as well as flow line pattern with the ground-only
ensemble being less influenced by vegetation. In the flow line ensemble using all points, vegetation acts as
stable patches and forces flow around vegetation rather than through itself. Most flow lines go around bushes
and trees with only few tunnels going through bigger vegetation patches. The biggest difference between the
ensemble using only ground-classified points and the ensemble using all points is seen for high vegetation
(dark colors in Figures 14b and 15b). For the unclassified point-cloud ensemble flow lines rather meander
around high vegetation such as trees, whereas for the ground points ensemble flow lines are less obstructed.
This suggests that the erosional imprint of trees is overestimated in the unclassified point cloud. Neverthe-
less, both ensembles show meandering around chaparral vegetation with early channelization close to the
drainage divide.

The efficiency of tunnels in our FFN approach is also demonstrated with a comparison of two longitudinal
flow path profiles: one for our point-cloud FFN approach and the other from the SCAmfd field of the approx-
imately vegetation-free gridded DEM ensemble (Figure 16). Especially within the first kilometer from the
hilltop, there are very steep and highly vegetated parts of the channel where lidar pulses do not reach the
surface. As a result, some of the grid cell elevations are over estimated and combined with the discretization
of the channel into grid cells, this leads to sinks in the channel. Resolving these by a sink-filling approach
leads to plateaus (i.e., flat sections) in the MFD profile, while in the FFN profile sinks are circumvented by
tunneling (cf. Figures 16a and 16b). Although the tunnels are often much longer than the grid cell spacing
for MFD, the resulting FFN profile appears to be more smooth. In map view, this also leads to a straighter
and less meandering path for the FFN profile. The MFD profile in turn is shifted to the right of the FFN as a
result. Since the spatial resolution of the point cloud samples is the same than that of the gridded DEMs, this
suggests that discretization of the channel into a series of grid cells makes the river longer than it actually is
(cf. Fisher et al., 2013). This highlights again the advantage of irregular point-cloud sampling. Even though
the FFN longitudinal flow path profile includes many tunnels due to vegetation, it records the channel bot-
tom at those geographic locations where the corresponding elevations were measured and not at predefined
grid cell centers.

4.5. Outlook: Additional FFN-Based Metrics
Drainage area is only one measure of interest in flow terrain analyses, and it is often accompanied by mea-
sures such as direction of descent, slope, and curvature. Although an analysis of these is beyond the scope of
this study, some of them are directly retrievable by our FFN approach. For instance, the direction of descent
and slope at each facet would be given by the gradient of that facet. An alternative to the slope could be
the derivative of elevation along FFN flow lines and similar to that the second derivative could serve as a
curvature estimate.

5. Conclusions
We presented a novel approach for the representation of flow on topographic surfaces and the estimation
of SCA on irregular sampled elevation measurements. The approach is based on the calculation of a TIN
of measured data by Delaunay triangulation and routes the flow from each facet of the TIN according to
the so called FFN. The validity of the linear TIN model depends on the data density and surface rough-
ness. Considering the analyses done in this study, we conclude that a TIN is a sufficient surface model for
high-resolution data such as airborne lidar point clouds. Based on the FFN, we also present a fundamen-
tally different treatment of sinks without any modification of the digital representation of the landscape,
that is, changing elevation measurements by sink filling or carving. This also allows a quantification of
uncertainties in SCA and resulting flow patterns by generating a bootstrapping ensemble of elevation mea-
surements and therefore an ensemble of FFNs. Both, the treatment of sinks as well as the bootstrap sampling
are optional steps, but useful in real-world applications. Results from our FFN point-cloud approach were
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compared to grid-based procedures for the estimation of SCA using real-world data as well as synthetic data
from a Gaussian hill where the analytical solution for SCA is known. For all comparisons we use DEMs
that have the same number of pixels as elevation measurements in the corresponding point clouds. Based
on these comparisons, we conclude that our network-based approach generates flow patterns closer to the
analytical solution on a synthetic surface than, for example, the MFD flow accumulation and offers the fol-
lowing advantages: (i) The association of a well-defined contour width to each link of the FFN, which grants
an accurate estimation of SCA from the corresponding TDA values; (ii) the applicability to irregular spaced
data makes high-resolution point-cloud data directly accessible to flow path tracing, not requiring the cre-
ation of DEMs. (iii) Additionally, this allows for a dynamic data density in terms of a varying point density
depending on, for instance, surface roughness or measuring technique.

Although in this study we create high-resolution DEMs with the same number of pixels as points in the point
cloud, this is only for comparison and not a recommended DEM creation scheme. Typical DEMs have less
pixels than the underlying point cloud in order to mitigate elevation uncertainties and to avoid interpolation
artifacts. Compared to that, our FFN approach is beneficial regarding an increased SCA accuracy due to a
more dense spatial sampling, but it also makes it possible to study features in the landscape that are smaller
than the grid cell width of such typical DEMs.

6. Software Availability
A Python module written in C called FacetFlowNetwork, which implements the FFN construction and
SCA estimation, is available at https://github.com/UP-RS-ESP/FacetFlowNetwork website. Additionally, an
implementation of the MFD algorithm by Freeman (1991), based on the implementation of Pelletier (2012),
is available at https://github.com/UP-RS-ESP/mfdrouting website.

Appendix A: FFN Flow Accumulation Algorithm
Our flow accumulation algorithm requires the in-degree Kj of each facet j in the FFN in order to con-
firm the arrival of all inflows. We compute the in-degree by simple counting with two nested for loops
(cf. Algorithm 1). This is reasonably fast because facets have either one or two outgoing links; that is, the
outer loop has N (number of facets) iteration and the inner only one or two.

Similar to the array of in-degree K, the flow accumulation algorithm maintains an array of counters Seen and
an array for the sums of inflows F. These arrays are initialized as zero vectors (Algorithm 2, L1). The sum of
inflows Fj for a given facet j together with the area Aj of the facet is defined as its TDAj (cf. equation (1)).

The breadth-first walk starts at facets i that have no in-degree (Ki == 0, Algorithm 2, L2) and initializes a
queue with their downhill neighbors j along with the flow fij from i to j. This queue is emptied in a while
loop, while the counters Seen and the sums of inflows F are updated (Algorithm 2, L5 and L6). If the counter
Seenj for a given facet j is equal to its in-degree (Seenj == Kj, Algorithm 2, L7), all inflows are accumulated
and are passed on to the next layer of k facets.

If the facet j is a sequential or merging facet, ajk and wjk are given by ajk = Aj and wjk = 1, because there is
only one downhill neighbor k. However, if the facet j is a branching facet the areas ajk are given by the areas
of two corresponding sequential facets and the weights wjk are given by lleft∕lorig and lright∕lorig, respectively
(cf. Figure 2).
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