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Behavioral experiments evidence that attention is not maintained at a constant level,

but fluctuates with time. Recent studies associate such fluctuations with dynamics

of attention-related cortical networks, however the exact mechanism remains unclear.

To address this issue, we consider functional neuronal interactions during the

accomplishment of a reaction time (RT) task which requires sustained attention. The

participants are subjected to a binary classification of a large number of presented

ambiguous visual stimuli with different degrees of ambiguity. Generally, high ambiguity

causes high RT and vice versa. However, we demonstrate that RT fluctuates even when

the stimulus ambiguity remains unchanged. The analysis of neuronal activity reveals that

the subject’s behavioral response is preceded by the formation of a distributed functional

network in the β-frequency band. This network is characterized by high connectivity in

the frontal cortex and supposed to subserve a decision-making process. We show that

neither the network structure nor the duration of its formation depend on RT and stimulus

ambiguity. In turn, RT is related to the moment of time when the β-band functional

network emerges. We hypothesize that RT is affected by the processes preceding

the decision-making stage, e.g., encoding visual sensory information and extracting

decision-relevant features from raw sensory information.

Keywords: perceptual decision-making task, reaction time, behavioral response fluctuations, cortical network

reorganization, functional brain network

1. INTRODUCTION

When performing a task implying visual information processing and decision-making (perceptual
decision-making task), the brain dynamically adjusts the structure of its functional network so as
to maintain an optimal behavioral performance under the increasing cognitive demand (Parks and
Madden, 2013; Davison et al., 2015; Shine and Poldrack, 2018). Modern neurophysiological studies
emphasize the leading role of the brain functional connectivity in human cognition and behavioral
performance (Smith, 2016). According to functional magnetic resonance imaging (fMRI) studies,
the whole-brain network activity is generated through the interaction of multiple functional
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subnetworks during either a resting state or task accomplishing.
These functional subnetworks include a dorsal attention network,
a frontoparietal network, an executive control network, a default
mode network, etc. (Van Den Heuvel and Pol, 2010). Although
functional networks have different anatomical locations, they
interact with each other and overlap during task accomplishing
(Xu et al., 2013).

In their recent work, Rosenberg et al. (2016) demonstrated
that brain functional connectivity restored from fMRI during
a resting state can predict the subject’s ability to maintain
sustained attention during demanding tasks. Next, Li et al. (2016)
showed that a fatigue-related decrease in behavioral performance
during a long-term cognitive task is accompanied by topology
reshaping of the functional brain connectivity network. Namely,
brain regions become more segregated and their communication
is less efficient under a fatigue state. Furthermore, Xu et al.
(2014) indicated that high and low attention demands engage
a different functional network architecture. In particular, the
left frontoparietal network is mostly implicated during a low
attention load, while the dorsal attentional network is involved in
tasks that require high attention. In addition, Finc et al. (2017)
highlighted that an increase in cognitive demands results in a
decrease in network modularity. In this case, the default mode
network enhances its connectivity with other networks, while
the connectivity inside the network itself decreases. Finally, it
was shown that along with slow fatigue-related and demand-
related changes there are spontaneous fluctuations in functional
connectivity that affect behavioral performance. In this respect,
Kucyi et al. (2017) evidenced that when the attention level
fluctuates during a long-term attention task, different parts of the
attention-related network (dorsal-attention and default-mode
networks) exhibit antiphase changes in functional connectivity.
In addition, the fMRI study allowed Elton and Gao (2015) to
reveal the relationship between task-related changes in functional
connectivity fluctuations and task performance. Recently, slow
rhythmic oscillations of sustained attention were detected during
a prolonged cognitive load (Helfrich et al., 2018; Maksimenko
et al., 2018a, 2019).

Along with fMRI, functional network connectivity can
effectively be restored from the signals of electrical brain
activity, electroencephalograms (EEG), recorded by non-invasive
electrodes. EEG signals are composed of various rhythms of
neural activity in different frequency bands, e.g., δ-band (1–
5 Hz), θ-band (5–8 Hz), α-band (8–12 Hz), β-band (15–30
Hz), and γ -band (>30 Hz). According to neurophysiological
studies, these rhythms contribute to the coordination of neuronal
activity in remote brain regions (Lisman and Jensen, 2013; Fries,
2015). For instance, Canolty et al. (2006) clearly demonstrate
that the low-frequency θ-rhythm modulates electrical brain
activity at the high-frequency γ -band of the electrocorticogram
(ECoG). Apart from the θ-band, according to Fries (2015),
the low-frequency α- and β-band neuronal activity in visual
cortex controls the neuronal activity in the γ -band. This
means that the high-frequency spiking activity of single neurons
is modulated by a low-frequency rhythm that spreads over
distributed cortical regions.

The functional connectivity between cortical regions is usually
measured in terms of correlation or synchronization of the
recorded EEG signals for different rhythms (Lisman and Jensen,
2013; Fries, 2015). As stated in Maksimenko et al. (2017a),
neuronal populations in remote brain regions interact at different
frequency bands with different strengths. Recent studies (Buffalo
et al., 2011; Michalareas et al., 2016) demonstrate that during
the performance of visual tasks, neural populations in the
visual cortex communicate at frequencies in the joint α, β
(8–30 Hz) and γ (50–70 Hz) ranges. Moreover, an analysis
of the functional connectivity between regions of the parieto-
occipital cortex performed on the EEG sensory level reveals a
different connectivity structure in separated α- and β-frequency
bands, while the functional connectivity in the β-band is
affected by visual information complexity (Maksimenko et al.,
2018c). Along with the neuronal communication in the visual
cortex, accomplishing the visual task requires communication
between the remote cortical regions. For instance, during visual
information processing, δ-activity in the frontal area and α-
activity in the parieto-occipital area are functionally coupled
and jointly guide visual perception to integrate sensory evidence
with current task demands (Helfrich et al., 2017). During a
sustained attention task, a long-range functional connectivity
between different parts of the frontoparietal network is mediated
by oscillations in the θ-band, and connectivity within these areas
is subserved by γ -band oscillations (Sellers et al., 2016). The
attention-related functional connectivity was also found in the
frontoparietal cortex in different frequency ranges (Clayton et al.,
2015; Scolari et al., 2015).

Summarizing the above discussion, we highlight the following
results related to functional connectivity during the perceptual
decision-making task performance.

• Accomplishing the perceptual decision-making task requires
coordination of neural activity across multiple cortical areas in
the frontoparietal network.

• Coordination of neuronal activity in particular regions is
subserved by high-frequency rhythms, while the coordination
of neural activity between remote regions relies on low-
frequency oscillations.

• Functional interactions dynamically reconfigure the neuronal
network structure to maintain sustained attention and avoid
fatigue and distraction during task performance.

• fMRI and EEG studies evidence spontaneous fluctuations of
functional connectivity correlated with the fluctuations of
behavioral performance during a prolonged attention task.

Despite numerous studies, the mechanism of functional network
reconfiguration underlying spontaneous behavioral fluctuations
during a demanding task remains unclear. To address this issue,
we consider functional connectivity in the cortical network by
analyzing EEG signals in low-frequency α- and β-bands during
a prolonged perceptual decision-making task which requires
sustained attention.

Generally, sustained attention refers to the ability to focus
on relevant stimuli with repeated presentation over extended
periods. In consonance with Miodrag and Hodapp (2011),
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the tasks of sustained attention often involve long series of
presentations of target and non-target stimuli on computer
screens, to which the participants must respond to the targets
and refrain from responding to the non-target stimuli. In our
study, we considered a perceptual decision-making task implying
a binary classification of a large number of consistently presented
ambiguous visual stimuli (Necker cubes) with different degrees
of ambiguity (Kornmeier et al., 2011; Maksimenko et al., 2017b;
Hramov et al., 2018). In line with Denison et al. (2018), we
suppose that processing each stimulus depends on the level
of attention during the moment of its presentation. Since the
stimuli are subsequently presented with 3–5 s pauses and each
stimulus is presented for 1–1.5 s, the subject has to constantly
maintain a high level of attention to successfully respond to
the stimuli.

The Necker cube image classification can be considered as
an example of perceptual decision-making, which is known to
include two stages (sensory processing and decision-making;
Mostert et al., 2015). Usually, perceptual decision-making is
not viewed as a classical cognitive domain like attention or
memory. At the same time, this is mostly true for near-
threshold stimuli (Weisz et al., 2014) or unambiguous stimuli
when the subject has to choose between two totally different
stimuli. In our experiments, we use ambiguous visual stimuli,
whose classification causes uncertainty in decision-making when
ambiguity is high (Hramov et al., 2018). Finally, in agreement
with Kornmeier et al. (2017), the Necker cube interpretation can
be considered as a cognitive decision process.

According to previous research (Sehatpour et al., 2008;
Michalareas et al., 2016), neuronal activity in α- and β-bands
represents two stages: a sensory processing stage and a perceptual
decision-making stage. During the former stage, α- and β-
band activity is involved in top-down stimulus processing
and subserves the neural interaction within the visual cortex
(Michalareas et al., 2016). The β-band activity is also shown
(Sehatpour et al., 2008) to coordinate the neuronal activity in the
occipital and prefrontal areas during visual stimulus processing.
During the latter stage, the β-band activity subserves the neural
interactions between the anterior cingulate-insula network and
the fronto-parietal network during the decision-making (Chand
and Dhamala, 2016, 2017). According to an earlier review (Siegel
et al., 2011), the decision accuracy correlates with the power of
the frontoparietal β-band activity registered during the decision
period of the trial. A wide body of literature shows that both α-
and β-band activity is relevant to attention in general (i.e., not
restricted to the visual stimuli processing; Linkenkaer-Hansen
et al., 2004; Gola et al., 2013; Baumgarten et al., 2014). Attention
modulates the prestimulus α- and β-band power (Anderson and
Ding, 2011; Bauer et al., 2012; Gola et al., 2013) and affects
decision accuracy. Thus, either medium or low α- and high
β-band power during the prestimulus period is beneficial for
sensory perception (Van Dijk et al., 2008; Gola et al., 2013).
According to Hanslmayr et al. (2007), not only the power but also
the prestimulus EEG phase coupling in the α- and β-bands affects
visual perception performance. Namely, better performance is
associated with low phase coupling in the α-band and high phase
coupling in the β-band.

Thus, the visual sensory processing stage is characterized
by the pronounced α- and β-band activity in the occipital
cortex, whereas the decision-making stage is associated with an
increase in the β-band activity across the frontoparietal cortex.
Conforming to these studies, we suppose that since the neural
interactions in the α- and β-bands are involved in both the
sensory processing and the decision-making stages, and at the
same time characterized by different spatial configurations, the
functional network structure should change during the transition
from one stage to another.

In this work, we analyze the reaction time (RT) defined as
the time interval between the stimulus presentation and the
subject’s behavioral response (button pressing). We find that
RT depends on the stimulus ambiguity and, more importantly,
fluctuates in time, even when the ambiguity remains unchanged.
Interestingly, such RT fluctuations for stimuli with similar
ambiguity are not associated with mental fatigue since long RTs
dominate at the beginning of the experiment. We associate these
RT fluctuations with the functional network reconfiguration
under stimulus classification. We suppose that RT includes
two temporally separated stages: visual information processing
and decision-making. These stages require the emergence of
large-scale neuronal interactions within a functional cortical
network. Our results reveal that neuronal interactions during
the decision-making stage do not affect RT; it is almost the
same regardless of the stimulus ambiguity. We hypothesize that
RT is affected by the processes preceding the decision-making
stage, e.g., encoding visual sensory information and extracting
decision-relevant features from raw sensory information.

2. MATERIALS AND METHODS

In this section we provide the detailed description of
experimental and computational methods, including reporting
on human participants, visual stimuli and timing parameters,
recording instruments and characteristics, data preprocessing
and connectivity analysis (Gross et al., 2013; Keil et al., 2014).

2.1. Participants
Twenty healthy unpaid volunteers, 11 males and 9 females,
between the ages of 26 and 35 with normal or corrected-to-
normal visual acuity participated in the experiments. All of them
provided informed written consent before participating. The
experimental studies were performed in accordance with the
Declaration of Helsinki and approved by the local research Ethics
Committee of the Innopolis University.

2.2. Visual Stimuli
The Necker cube is a 2D image which looks like a cube with
transparent faces and visible edges (Figure 1). An observer
without any perception abnormalities perceives the Necker cube
as a bistable 3D object due to the specific position of the inner
edges. The value g ∈ [0, 1] defining a contrast of the three middle
edges is usually used as a control parameter. It is calculated as
g = y/255, where y is the brightness of themiddle lines according
to the 8-bit grayscale palette. The values g = 1 and g = 0
correspond, respectively, to 0 (black) and 255 (white) pixels’
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FIGURE 1 | (A) Complete set of visual stimuli divided into two subsets according to the degree of ambiguity. Classification of cubes with high ambiguity is a

high-complexity (HC) task, whereas classification of low-ambiguous cubes is a low-complexity (LC) task. (B) Schematic representation of the experimental protocol.

luminance of the middle lines. Each Necker cube image drawn
by black and gray lines was located at the center of the computer

screen on a white background. A red dot drawn at the center of

the Necker cube was used to attract the subject’s attention and

prevent possible perception shifts due to eye movements while

observing the image. To demonstrate stimuli, we used a 24” BenQ

LCD monitor with a spatial resolution of 1920× 1080 pixels and

a 60-Hz refresh rate. The subjects were located at a distance of

70–80 cm from the monitor with a visual angle of∼0.25 rad. The

Necker cube size on the monitor was 14.2 cm. The visual task
was to classify consistently presented ambiguous Necker cubes

with different g as left- or right-oriented (Kornmeier et al., 2011;

Hramov et al., 2017).
As seen in Figure 1, the degree of ambiguity g indicates how

difficult it is to determine a correct cube orientation. While for
g ≈ 1 and g ≈ 0 the Necker cubes can easily be classified
as a left- or a right-oriented one, for g ≈ 0.5 the classification
task is more complex since we deal with a highly ambiguous
image. In our experiment, we present to each subject a set
of Necker cubes with g ∈ [0; 0.15; 0.4; 0.45; 0.55; 0.6; 0.85; 1]
divided into two subsets g ∈ [0.4; 0.45; 0.55; 0.6] (high-
ambiguous images) and g ∈ [0; 0.15; 0.85; 1] (low-ambiguous
images; Figure 1A). It is clear that the classification of the cubes
belonging to the former subset is a simpler task and therefore
it is considered as a low-complexity (LC) task, whereas the
classification of the cubes from the latter subset requires a higher
cognitive effort and hence it is referred to as a high-complexity
(HC) task.

2.3. Different Task Conditions
Generally, accomplishing an LC task takes lower RT than a
HC task. At the same time, for both LC and HC tasks, RTs
are distributed within a certain time interval. In Figure 2 the
typical RT distributions are presented for LC and HC tasks
as probability density functions (PDF) and box-and-whisker
diagrams. While the statistical test evidences a significant
difference between the mean values (*p < 0.05 via Mann-
Whitney U-test for 200 stimuli), there is a time interval for
which the considered PDFs are overlapped (0.6–1.1 s for this
particular case). Thus, it can be supposed that along with the
task complexity, neural activity can be considered as a potential
candidate underlying different RTs during the accomplishing of
tasks with similar complexity.

To reveal the mechanism underlying such a behavior, we
consider three groups of EEG trials defined in accordance
with different conditions of stimuli perception based on the
relation between stimulus complexity and corresponding RT
(see Figure 2).

• SH1 condition includes trials associated with long RTs during
HC task accomplishing. RTs belong to the interval between
75th and 97.5th PDF percentiles.

• SH2 condition includes trials associated with short RTs during
HC task accomplishing. RTs belong to the interval between
PDF medians.

• SE2 condition includes trials associated with RTs similar to
SH2 during LC task accomplishing. RTs belong to the interval
between PDF medians.
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FIGURE 2 | Different task conditions. Typical probability distribution functions (PDFs) of RT for HC (solid line) and LC (dashed line) tasks and corresponding

box-and-whisker diagrams for a single subject (*p < 0.05 via Mann-Whitney U-test for 200 stimuli). MLC and MHC correspond to medians of the PDFs.

The described choice of visual perception conditions aims at
the analysis of neuronal mechanisms underlying changes in RT
related to stimulus complexity (SH1 vs. SE2) and regardless
of it (SH1 vs. SH2). After the process selection, each group
contains 23–37 trials. To keep the number of trials constant
across different conditions and subjects, we consider K = 20
randomly selected trials in each group.

2.4. Experimental Procedure
The participants were not subjected to a training session before
the main experiment. Each subject participated in a 40-min
experiment, during which the Necker cubes with different g
randomly selected from the whole set of stimuli (Figure 1A)
were presented about 50 times. The structure of the experimental
session is schematically shown in Figure 1B. The participants
were instructed to press either the left key with their left hand or
the right key with their right hand to indicate the first impression
on the orientation of each successively presented cube. In
the consecutive presentation of bistable images, previously
demonstrated cubes could affect the perception of subsequent
cubes. We refer this phenomenon to as memory effect. For
example, if the subject observes several left-oriented cubes in
a row, then his/her perception will stabilize the left-oriented
cube, even if the following cube is right-oriented. To reduce
the memory effect (Leopold et al., 2002), each stimulus was

presented for a time interval randomly selected from the
[1–1.5] s range. A random variation of the control parameter
g was applied to prevent the perception stabilization. Lastly, to
draw away the observer’s attention and make the perception
of the succeeding cube independent of the previous one,
different abstract pictures were exhibited for about 3–5 s between
subsequent demonstrations of the Necker cubes.

2.5. EEG Recording
The EEG signals were recorded by 31 sensors (see Table 1) with
two reference electrodes A1 and A2 on the earlobes and a ground
electrode N just above the forehead. To record EEG data, we used
cup adhesive Ag/AgCl electrodes placed on the “Tien-20” paste
(Weaver and Company, Colorado, USA). Immediately before
the experiments started, we performed all necessary procedures
to increase skin conductivity and reduce its resistance using
the abrasive “NuPrep” gel (Weaver and Company, Colorado,
USA). The impedance was monitored after the electrodes
were installed and measured throughout the experiments.
Usually, the impedance values varied within a 2–5 k� interval.
The electroencephalograph “Encephalan-EEG-19/26” (Medicom
MTD company, Taganrog, Russian Federation) with multiple
EEG channels and a two-button input device (keypad) was
used for amplification and analog-to-digital conversion of the
EEG signals. This device possessed the registration certificate
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TABLE 1 | Experimental parameters.

Parameter Value

Number of participants 20

Duration of stimulus presentation randomly chosen between 1 and 1.5 s,

step size 0.016 s

Interval between stimulus presentations randomly chosen between 3 and 5 s,

step size 0.064 s

Number of stimulus configurations 8

Total number of presented stimuli 400

Total duration of the experimental session 40 min

Recording time of the resting state EEG 5 min

Location of EEG scalp electrodes International 10-10 system

(31 channels)

EEG recording sampling rate 250 Hz

EEG recording filter 1–100 Hz (bandpass), 50 Hz

(notch) filters

Considered EEG frequency bands α-waves (8–12 Hz), β-waves

(15–30 Hz)

Experimental conditions SE2, SH2, SH1

Number of trials per condition 20

of the Federal Service for Supervision in Health Care No.
FCP 2007/00124 of 07.11.2014 and the European Certificate CE
538571 of the British Standards Institute (BSI). The raw EEG
signals were filtered by a band-pass filter with cut-off points at
1 Hz (HP) and 100 Hz (LP) and by a 50-Hz notch filter by an
embedded hardware-software data acquisition complex.

Recorded EEG signals presented in proper physical units
(millivolts) were segmented into a set of 4-s trials, where each
trial, associated with a single presentation of the Necker cube,
included a 1-s interval before and a 3-s interval after the cube
demonstration, due to specific needs of connectivity analysis
methods. To reduce muscular artifacts, the participants were
asked to take a pose which excluded excessive tension of neck
muscles. However, a number of artifacts still appeared in the
EEG data. Artifacts caused by eye movement, muscle activity
and cardiac rhythm were corrected with the method based
on empirical mode decomposition (Maksimenko et al., 2018b).
Artifacts were considered as properly removed if their EEG
amplitude after filtration dropped below 30% of the initial value.
Trials where artifacts were not properly removed were excluded.
The overall number of trials used for every subject was about 350
out of the initial 400.

2.6. Functional Connectivity Analysis
We investigate functional connectivity based on the analysis of
spectral power correlations in α- and β-frequency bands using
the recurrence measure of dependence. As reported by Hipp
et al. (2012) and Siegel et al. (2012), amplitude or spectral
power correlations may be informative indicators of large-scale
neuronal interactions during cognitive activity despite the fact
that amplitude and phase correlation emerge independently from
each other. Thus, inference of functional connectivity between
two EEG signals is performed according to the following steps.

Step 1. Wavelet transform. To provide functional
connectivity analysis in terms of amplitude correlation,
we extract time-varying spectral power in α- and β-bands
from recorded EEG signals. We provide the time-frequency
representations of EEG signals via a continuous wavelet
transform (Hramov et al., 2015) (see Figure 3):

W(f , t0) =
√

f

∫ +∞

−∞
x(t)ψ∗(f (t − t0))dt,

ψ(η) =
1
4
√
π
ejω0ηe−

η2

2 , (1)

where x(t) is a raw EEG signal, ψ(η) is a Morlet complex
function, and ω0 = 2π is the wavelet central frequency. Time
evolutions of spectral powers Eα(t) and Eβ (t) calculated as

Eα(t) =
∫

f∈fα
|W(f , t)|df ,

Eβ (t) =
∫

f∈fβ
|W(f , t)|df (2)

characterize dynamics of oscillatory neuronal activity in the fα
(8–12 Hz) and fβ (15–30 Hz) frequency bands, respectively. We
use these time series for the functional connectivity analysis in
terms of spectral power correlation.

Schoffelen and Gross (2009) stated that restoration of
functional connectivity from a surface-level EEG signal could
be problematic due to a field spread effect, resulting in
unexpectedly high correlation between the signals of neighboring
electrodes. Having analyzed Pearson’s correlation of Eα,β (t) for
all combinations of neighboring electrodes in a resting state,
we obtained poor influence of the field spread effect in these
particular frequency bands (median correlation coefficient ρ <
0.6 for both α- and β-bands).

To verify that power correlations are not influenced by the
systematic power differences between conditions, we compared
averaged power spectra at each electrode during stimulus
processing (1 s after stimulus presentation) using two-factorial
ANOVAs with the condition (SH1 vs. SH2 vs. SE2) and electrodes
as within-subject factors with Bonferroni correction for multiple
comparisons. Repeated measures ANOVA demonstrates the
absence of the significant difference of the wavelet spectral power
between conditions in both α-band [F(2,38) = 1.092, p = 0.346,
SE2 (0.148 ± 0.011 SE), SH2 (0.153 ± 0.011 SE), and SH1 (0.152
± 0.011 SE)] and β-band [F(2,38) = 0.179, p = 0.837, SE2 (0.488±
0.018 SE), SH2 (0.489± 0.016 SE), and SH1 (0.491± 0.017 SE)].

Step 2. Recurrence-based measure of dependence. The
recurrence-based approach for inference functional links from
the time series (Goswami et al., 2013; Ramos et al., 2017)
inspired by the concepts of non-linear dynamics, is a suitable
method to explore synchronization and directed non-linear
dependencies in the functional network of the brain cortex,
especially while considering relatively short trials. Recurrence
is a fundamental property possessed by natural processes and
means that a considered process recurs to the neighborhood
of its earlier state. Recurrence plot (RP), a visualization of
a recurrence process, is a powerful tool for system analysis
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FIGURE 3 | Time-frequency representation. (A) Typical EEG trial recorded from O1 sensor during background activity [–1,0] s and stimulus processing [0,1] s. The

moment of stimulus presentation is indicated with a vertical dashed line. (B) Time-frequency representation of the EEG trial via wavelet transform with highlighted α

and β frequency bands. (C) Spectral power of α and β oscillations Eα,β extracted from time-frequency representation of EEG trial according to Equation (2).

using time series (see a comprehensive review of Marwan
et al., 2007). The comparison of recurrence structures of two
processes using joint recurrence provides information on the
interrelation between them. The idea standing behind this
statement was suggested by Romano et al. (2005), who stated
that two processes are related by a functional dependence (in
case of generalized or lag synchronization; Boccaletti et al.,
2014) if they have similar recurrence plots. Based on this
statement, Goswami et al. (2013) developed a connectivity
measure called recurrence-based measure of dependence (RMD).

This measure indicates “non-independence” and its direction
obtained from given time series introducing a lag in a possible
driving process. In all, RMD determines the presence or
absence of a causal relation in a pair of processes in terms
of establishment of a functional relationship (linear or non-
linear) between them. Recently, this recurrent-based approach
was applied to analyze functional connectivity in short biological
and climatic time series (Goswami et al., 2013; Ouyang
et al., 2013; Builes-Jaramillo et al., 2018; Maksimenko et al.,
2018a).
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To calculate RMD values, we analyze the time series of the
spectral power in α- and β-bands Equation (2) obtained via
wavelet transform of the original EEG data. In order to estimate
a statistically significant increase (or decrease) in the coupling
strength for each interchannel link during stimulus processing
against a preceding baseline, we calculate corresponding RMD
values for K = 20 presented stimuli.

Let a subject observe K visual stimuli and Ekxy(t) be a time
series of a spectral power in a particular frequency band, recorded
from x and y EEG channels during kth stimulus processing,
calculated by Equation (2). Then, RMD indicating the level of
interdependence between rhythmic neuronal activity in x and y
EEG channels, is defined as

RMD|kxy = log2

(

1

N

N
∑

i=1

RMDi|kxy

)

, (3)

RMDi|kxy =
P(Ekx(ti),E

k
y(ti))

P(Ekx(ti))P(E
k
y(ti))

, (4)

where N is a length of the time series, P(Ekx,y = Ekx,y(ti))

is a probability for Ekx,y to take the value Ekx,y(ti), and

P(Ekx(ti),E
k
y(ti)) = P(Ekx = Ekx(ti))P(E

k
y = Eky(ti)) is a joint

probability that Ekx = Ekx(ti) at the same time, where Eky = Eky(ti).
These probabilities are determined using recurrence matrix
calculations (Marwan et al., 2007) as follows

P(Ekx,y(ti)) =
1

N

N
∑

j=1

Rk
x,y

(

i, j
)

, (5)

P(Ekx(ti),E
k
y(ti)) =

1

N

N
∑

j=1

JRk
(

i, j
)

, (6)

JRk = Rk
x

(

i, j
)

Rk
y

(

i, j
)

, (7)

where Rk
x,y

(

i, j
)

are recurrence matrices of Ekx(t) and Eky(t)

time series and JRk
(

i, j
)

is their joint recurrence matrix. The
recurrence matrix calculation was performed using the Python
package pyunicorn (Donges et al., 2015).

To examine the direction of the non-linear dependence
between x and y, we introduce an appropriate time lag τ in the
definition of RMD given by Equations (3) and (4). Let us suppose
that x drives y, then Equations (3) and (4) can be rewritten
as follows

RMD(τ )|kxy = log2





1

N′

N′
∑

i=1

RMDi|kxy(τ )



 , (8)

RMDi(τ )|kxy =
P(Ekx(ti),E

k
y(ti + τ ))

P(Ekx(ti))P(E
k
y(ti + τ ))

, (9)

where N′ = N − τ and Eky(ti + τ ) is a time series of Eky shifted

τ units with respect to Ekx. The dependence of RMD on lag τ has
a local maximum τ ∗|kxy = argmax[RMD|kxy(τ )] which indicates

the relevant time lag between interacting processes, while its sign
determines the direction of a functional link; x drives y if τ ∗|kxy >
0 and y drives x otherwise. Also, RMD∗|kxy = RMD|kxy(τ ∗|kxy)
represents a relevant measure of the coupling strength between
x and y.

Step 3. Single-subject statistics. The aim of the statistical
analysis is the quantification of reliability of changes in
the functional network structure obtained from single-subject
data (Gross et al., 2013). First, we test the significance of a
functional link between x and y by the pairwise comparison
of samples RMDb|xy = {RMD∗

b
|1xy,RMD∗

b
|2xy, . . . ,RMD∗

b
|Kxy} and

RMDt|xy = {RMD∗
t |1xy,RMD∗

t |2xy, . . . ,RMD∗
t |Kxy} composed of

RMD∗ values during background (1 s prior task accomplishment)
and task-related activity via t-test for related samples (K = 20
stimuli). To attack the multiple comparison problem (MCP),
we use a non-parametric method implying estimation of
distributions with maximal statistics across tests by permutation
with 2,000 iterations according to Maris and Oostenveld
(2007). Finally, the corrected value of α-level is used to
define significant changes in functional links. When p < α,
changes in the coupling strength are supposed to be significant
and the link is classified according to the value of S =
sign[median(RMDt|xy) − median(RMDb|xy)], i.e., S > 0 for
the link with increasing coupling strength and (S > 0) with
decreasing coupling strength.

Field spread effect. The connectivity analysis from

multichannel EEG or MEG data is usually problematic due

to volume conduction and field spread effect (Schoffelen and
Gross, 2009). This phenomenon consists in a spatial spread of
electromagnetic fields, thus one recording channel or sensor

might pick up the activity of multiple neuronal sources (Cohen,

2017). The field spread effect, which causes spurious functional
links, should obviously be taken into account during functional

connectivity analysis from EEG or MEG data. The strategies for

avoiding the field spread effect were described by Bastos and
Schoffelen (2016). We suppose that the proposed method follows

some of them. First, our measure reveals significant changes in

the emergence of functional links during the stimulus-related
process in contrast to pre-stimulus brain dynamics associated

with the observation of the abstract image. Thus, the comparison

of these two states based on MCP corrected statistical test
should effectively reduce the number of spurious estimates.

Second, our method uses a connectivity metric that analyzes

lagged dependencies and does not consider instantaneous
(zero-phase) interactions which usually contain most of the
false correlations caused by the field spread effect. Moreover,
the provided connectivity analysis is based on the wavelet
spectral-power time-series, where phase dynamics of the raw
EEG data is excluded. Therefore, the effects of false zero-phase
correlations emerging due to a common source are reduced
as well.

Graph metrics. To describe functional network evolution
during visual stimulus processing, we use the following graph
metrics: the ratio R between the number of increasing and
decreasing links and outgoing node degree Di. We suppose
that a functional connectivity network is described by two
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FIGURE 4 | Illustration of recurrence-based approach for functional links inference. (A) β-band spectral power Eβ (t) calculated for the following pair of EEG channels

in a single trial: O1–Fp2 (upper panel); O2–Pz (middle panel); Oz–P4 (lower panel). The moment of stimulus presentation is indicated with a vertical dashed line. (B)

Left column: RMD|k (τ ) dependence for considered pairs of Eβ (t) trials in background (gray) and visual perception (green) activity. Maximal values RMD∗
b,t|

k are

indicated by horizontal lines. Right column: results of pairwise comparison of maximal RMD values collected over K = 20 trials for background and task-related brain

activity via t-test for related samples. Here, * indicates significance level of p < α via t-test for related samples corrected for MCP by non-parametric permutation test.

(C) β-band functional networks containing links with increasing (upper panel) and decreasing (lower panel) coupling strength related with visual stimuli processing.

Bold arrows indicate links selected for recurrence-based method demonstration.

matrices, Minc and Mdec, containing links with increasing and
decreasing coupling strengths, respectively. Then, the ratio
between the number of increasing and decreasing links is
defined as

R =
∑Ns

i=1

∑Ns
j=1Minc(i, j)

∑Ns
i=1

∑Ns
j=1Mdec(i, j)

, (10)

where Ns is a number of EEG sensors. The outgoing node degree
Di determines the number of increasing links outgoing from the
ith EEG sensor and defined as

Di =
Ns
∑

j=1

Minc(i, j). (11)

Next, the averaged outgoing node degree D over a certain brain
area can also be used to quantify functional network properties
in a group of participants. Let a brain area A be composed of Na

EEG sensors {x1, x2, . . . , xNa}. Then, the averaged outgoing node
degree is

D =
1

Na

∑

xi∈A
Di. (12)

Across-subjects statistics. To provide statistical analysis across
participants we compare the above-described graph metrics,
which characterize integral properties of the single-subject
functional connectivity. In particular, we use repeated measures
ANOVA to perform a multi-factor analysis. We consider
averaged degree D as a dependent variable with brain areas (O, P,
Cp, C, Fc, F, Fp), experimental conditions (SE2, SH2, SH1), and
time as within-subject factors.

Illustrative example. Figure 4 demonstrates the application
of the above described RMD measure. Let us consider β-band
functional connectivity with three pairs of EEG signals: O1–Fp2,
O2–Pz, and Oz–P4. Figure 4A illustrates the evolution of β-band
spectral power Eβ (t) for these EEG signals during single visual
stimulus processing. The left column in Figure 4B shows the
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FIGURE 5 | Reaction times. (A) Median RT for HC and LC tasks averaged over all subjects (**p < 0.01 via Wilcoxon signed-rank test, n = 20 subjects). (B) Median

RT for SE2, SH2, and SH1 conditions averaged over all subjects (*p < 0.05, via repeated measures ANOVA with Bonferroni correction, n = 20 subjects). (C) Median

presentation times over the course of the experiment for stimuli belonging to SE2, SH2, and SH1 conditions averaged over all subjects (*p < 0.05 via repeated

measure ANOVA with Bonferroni correction, n = 20 subjects).

results of RMD(τ ) calculation based on the recurrence analysis of
Eβ (t) for each pair of EEG channels presented in Figure 4A. The
graphs of RMD(τ ) are calculated for both background and visual
perception brain activities to estimate changes in the functional
coupling strength and direction. The right column in Figure 4B

illustrates the results of pairwise comparison of the functional
coupling strength in background and stimulus perception phases
collected over K = 20 trials via t-test for related samples
with MCP correction. The example demonstrates that functional
coupling in the Oz–P4 link does not change significantly. By
contrast, temporal correlation increases in the O1–Fp2 pair and
decreases in the O2–Pz pair during visual perception. Finally,
typical functional connectivity structures restored for a single
participant are presented in Figure 4C. The upper panel shows
the functional connectivity network composed of links with
increasing coupling strength, while the lower panel shows the
network structure with decreasing links.

3. RESULTS

3.1. Reaction Times and Task Complexity
The performance of a more complicated task as known to require
longer RT. In particular, the classification of highly ambiguous
Necker cubes (HC task) takes longer RT than less ambiguous
right- or left-oriented cubes (LC task). Following Rousselet and
Wilcox (2019), we use median to describe the central tendency
of RT for each subject. As a result, the median RT reaches
1.1 s for HC tasks while the median RT for LC tasks is only
0.8 s (for comparison see Figure 5A, *p < 0.05 via Wilcoxon
signed-rank test).

Figure 5B shows the median RTs of SH1, SH2, and SE2 trials
via box-and-whiskers diagrams reflecting the full distribution of
the data (Weissgerber et al., 2015; Rousselet et al., 2016). The

repeated measures ANOVA with Greenhouse-Geisser correction
reveal a significant difference between RT within conditions
[F(1.03,19.57) = 25.57, p < 0.001]. In addition, post-
hoc comparison using paired sample t-test with Bonferroni
correction reveals a significant difference for SH1 vs. SE2
(1RT = 0.563 s ± 0.08 SE) (p < 0.001, t = −5.208, df =
19) and SH1 vs. SH2 (1RT = 0.527 s ± 0.077 SE) conditions
(p < 0.001, t = −4.997, df = 19). At the same time, SE2 and
SH2 conditions are characterized by a comparable RT (1RT =
0.039 s±0.012 SE).While the significantly larger RT for SH1 with
respect to SE2 condition is intuitively clear, and can be explained
by higher complexity of the stimuli, the significant difference
between SH1 and SH2 piques the interest. One expects that an
increase in RT can be caused by mental fatigue due to a long
duration of the task performance. However, longer RTs dominate
at the beginning of the experiment.

Median times of SH1, SH2, and SE2 stimuli presentation
during the experimental session are shown in Figure 5C.
The repeated measures ANOVA reveal a significant difference
between these three conditions [F(2.0, 38.0) = 11.43, p < 0.001].
Specifically, the Bonferroni corrected pairwise comparison shows
that SH1 condition stimuli are mostly presented earlier as
compared with SE2 (p = 0.018, t = −3.094, df = 19)
and SH2 (p = 0.004, t = −3.792, df = 19) conditions.
Thus, we conclude that the RT growth is not a consequence
of mental fatigue, since RTs are larger at the beginning of
the experiment.

3.2. Functional Network Reconfiguration
To reveal neural mechanisms underlying the observed behavioral
results, we analyze the functional network reconfiguration during
the visual stimuli processing in each of three conditions. First, we
determine functional links whose strength exhibits a significant
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FIGURE 6 | Functional network reconfiguration. (A,B) Ratio R of the number of increasing functional links to the number of decreasing links in β- and α-frequency

bands. The arrows indicate the moments of time t1(SE2, SE2, SH1) when R exceeds the level of R = 1 shown by the dashed horizontal line. t3(SE2) is a time moment

(Continued)

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 September 2019 | Volume 13 | Article 220



Maksimenko et al. Neural Interactions During Perceptual Decision-Making

FIGURE 6 | when R reaches the maximal value for SE2 condition. The vertical dashed lines indicate median RT and the shaded area around these lines illustrates RT

distributions in the 25th–75th percentile. (C) Median values of t1 and median RT for each of the three conditions (SE2, SH2, SH1) for the group of 20 subjects. The

data are shown as group mean ± SE (*p < 0.05 via repeated measures ANOVA and post-hoc pairwise comparison with Bonferroni correction).

change with respect to the value obtained before the Necker cube
presentation (see Methods).

Figure 6 shows the ratio R of the number of increasing links to
the number of decreasing links during visual stimulus perception
and processing in the β (Figure 6A) and α (Figure 6B) bands.
Different curves in the graphs correspond to SH1 (blue),
SH2 (green), and SE2 (red) experimental conditions and
dashed vertical lines indicate median RTs inside the shaded
areas corresponding to the 25th–75th percentile. As seen
from Figures 6A,B, the ratio R exhibits growth, reflecting the
prevalence of increasing functional links before the subject’s
behavioral response. This means the development of densely-
connected spatially-distributed functional networks in both
considered frequency bands. The moments of time t1(SH1, SH2,
SE2) when R crosses the unity level, are considered as starting
points of this process for SH1, SH2, and SE2 experimental
conditions, respectively.

To relate the functional connectivity structure formation
in α- and β-bands to the behavioral response, the extracted

moments of time t
α,β
1 (SH1, SH2, SE2) are compared with RT via

repeated measure ANOVA (Figure 6C). Different experimental

conditions (SH1, SH2, SE2) and time moments (tα1 , t
β
1 , RT)

are considered as within-subject factors. As a result, ANOVA
shows a significant difference between conditions [F(2,38) =
15.826, p < 0.001]. Moreover, ANOVA with Greenhouse-Geisser

correction shows a significant difference between t
α,β
1 and RT

within each condition [F(1.07, 20.33) = 8.461, p < 0.05]. Post-hoc
tests using Bonferroni correction reveal that SH1 significantly
differs from both SH2 (p = 0.0024, t = −3.98, df = 19)
and SE2 (p = 0.0015, t = −4.184, df = 19), while the
difference between conditions SH2 and SE2 is insignificant (p =
0.228, t = −1.875, df = 19). In addition, post-hoc analysis based
on the paired samples t-test with Bonferroni correction reveals
a significant (p = 0.023, t = −2.982, df = 19) difference

between t
β
1 (0.81 s ± 0.11 SE) and RT (1.204 s ± 0.10 SE),

while the difference between tα1 (0.983 s ± 0.1 SE) and RT is
insignificant (p = 0.101, t = −2.289, df = 19) for all conditions.

Finally, tα1 is shown to significantly exceed t
β
1 across conditions

(p = 0.003, t = 3.843, df = 19). Importantly, according to the

repeated measures ANOVA, the time interval between t
β
1 and

RT is (0.394 s ± 0.115 SE) and differs insignificantly between
conditions [F(2,38) = 2.606, p = 0.087].

Thus, for all experimental conditions, the network structure
formation in the β-band starts earlier than that in the α-band
and about 0.394 s before the behavioral response. Furthermore,
in the α-band, the starting point of the functional network
development does not differ significantly from the subject’s
reaction time. Taken together, it can be supposed that the
evolution of the functional connectivity structure in both
β- and α-frequency bands is temporally distinguished. Thus,
cognitive decision-making processes lead to the formation

of a new network structure in the β-band, but not in
the α-band.

3.3. Spatio-Temporal Features of the
Functional Network
Here, we focus on functional connectivity in the β-band, whose
structure, as was shown above, starts to form about 0.394 s before
the actual behavioral response. We consider the evolution of
the functional connectivity in the β-band on the time interval
of [t1, t3], where t1 is a starting point of the network structure
formation, t3 is associated with the maximal value of R (see
Figure 6), and t2 = (t3 − t1)/2 is chosen to analyze the transient
network topology.

The R values reflecting the connectivity evolution in the
β-band are analyzed via repeated measures ANOVA under
experimental conditions (SE2, SH2, SH1) at time moments
(t1, t2, t3) as within-subject factors. As a result, ANOVA with
Greenhaus-Geiser correction shows a significant difference
between R values at the time moments [F(1.005,19.095) =
7.143, p < 0.05]. Post-hoc analysis using paired sample t-test
with Bonferroni correction shows a significant increase in R(t3)
with respect to R(t1) (p = 0.042, t = 2.706, df = 19) and
R(t2) (p = 0.048, t = 2.644, df = 19). Thus, we verify
that R increases during the time interval [t1, t3] indicating the
formation of a spatially extended cortical network in the β-band.
Finally, according to repeated measures ANOVA, no significant
difference between t3 and RT was found for all conditions
[F(1,19) = 2.88, p = 0.106]. Thus, we conclude that the functional
network in the β-band forms at the moment of the subject’s
behavioral response.

The spatio-temporal features of the functional network in the
β-band are analyzed for experimental conditions SH1, SH2, and
SE2 at time moments (t1, t2, t3) by considering the topology
of increasing links. For each participant we estimate the mean
degree of outgoing links D for seven EEG sensor regions shown
by the horizontal shaded lines in Figure 7A. These regions
are defined by means of equal distance in order to parcellate
the electrode along the longitudinal brain axis. Each region
includes EEG sensors on both hemispheres. Lateral effects are
not considered since each condition includes equal proportions
of the left- and right-oriented Necker cubes. The value of D
characterizes the mean number of outgoing links from each
region. Consequently, a high D value reflects a leading role of
a particular EEG sensor region in the cognitive process. The
obtained D values (group mean) are shown in Figures 7B–D for
different experimental conditions (SE2, SH2, and SH1) by the
colored histogram. Each EEG sensor region is characterized by
three bars of different color, where the color indicates the time
moment according to the figure legend.

The obtained D values were analyzed via repeated measures
ANOVA. The experimental condition (SE2, SH2, SH1), time
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FIGURE 7 | Properties of decision-making functional connectivity in β-band. (A) Schematic illustration of selected EEG sensor regions. (B–D) The degree D (mean ±
SE) vs. EEG sensor region (horizontal axis) and time (different color) for different experimental conditions (SE2, SH2, and SH1) (∗p < 0.05 via repeated measures

ANOVA with Bonferroni correction).

(t1, 2, 3) and EEG sensor region (O–Fp) were considered as
within-subject factors. ANOVA with a Greenhouse-Geisser
correction shows that D differs significantly between time
points [F(1.08, 20.52) = 14.758, p < 0.01], EEG sensor regions
[F(1.15, 21.85) = 10.503, p < 0.01], and different time*area
conditions [F(1.34, 25.46) = 8.237, p < 0.05]. Importantly,
D changes insignificantly between different experimental
conditions [F(2, 38) = 0.48, p = 0.618]. These results indicate
that D in different EEG sensor regions changes differently over
time, but the way it varies over time was the same regardless of
experimental conditions.

Post-hoc analysis using paired samples t-test with Bonferroni
correction reveals that D changes significantly between all time

moments: Dt1 < Dt2 (p = 0.007, t = −3.512, df = 19),
Dt2 < Dt3 ,((p = 0.0033, t = −3.755, df = 19), Dt1 <

Dt3 (p = 0.003, t = −3.924, df = 19) and between EEG
sensor regions: DP < DF(p = 0.047, t = −4.37, df = 19),
DP < DFp(p = 0.045, t = −4.442, df = 19). To analyze
the time*region interaction effect, we run post-hoc ANOVA for
each EEG sensor region separately with experimental condition
and time as within-subject factors. A significant within-subject
time effect is found for all EEG sensor regions except area P.
The further pairwise comparison using paired samples t-test with
Bonferroni correction reveals a significant increase in Dt2 with
respect to Dt1 for regions Cp (Dt1 = 0.35 s ± 0.06 SE,Dt2 =
0.76 s ± 0.14 SE, p = 0.031, t = 2.831, df = 19), Fc (Dt1 =
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0.32 s±0.06 SE,Dt2 = 0.87 s±0.16 SE, p = 0.046, t = 2.664, df =
19) and a significant increase in Dt3 with respect to Dt2 for
regions O (Dt2 = 0.45 s ± 0.1 SE,Dt3 = 1.02 s ± 0.19 SE, p =
0.021.t = 3.021, df = 19), Cp (Dt2 = 0.76 s ± 0.14 SE,Dt3 =
1.59 s ± 0.36 SE, p = 0.028, t = 2.901, df = 19), C (Dt2 =
0.49 s±0.11 SE,Dt3 = 1.53 s±0.22 SE, p = 0.001, t = 4.365, df =
19), Fc (Dt2 = 0.87 s ± 0.17 SE,Dt3 = 1.83 s ± 0.31 SE, p =
0.002, t = 4.079, df = 19), F (Dt2 = 3.26 s ± 0.88 SE,Dt3 =
10.81 s ± 2.57 SE, p = 0.013, t = 3.237, df = 19), and Fp

(Dt2 = 1.87 s ± 0.37 SE,Dt3 = 3.76 s ± 0.7 SE, p = 0.031, t =
2.856, df = 19).

Summarizing the results of the statistical analysis, we conclude
that spatio-temporal evolution of the β-band functional brain
network in the time interval of [t1, t3] takes place in a similar way
regardless of experimental conditions. During the growth of the
network structure from t1 to t3, each EEG sensor region except
region P exhibits a significant increase in the number of outgoing
links D, especially pronounced in the regions F and Fp.

DISCUSSION

We considered a perceptual decision-making task consisting in
the classification of the ambiguous visual stimuli (Necker cubes)
according to its interpretation as left-or right-oriented. Having
analyzed the response time (RT), which the subject spent for the
Necker cube classification, we have found that stimuli with high
ambiguity usually required ∼0.3 s longer RT than stimuli with
low ambiguity. We also discovered that RT was not constant
for stimuli with the same ambiguity. In particular, RT to the
same highly ambiguous stimulus was larger at the beginning of
the experiment than at the end (1.4 vs. 0.8 s). This allows us
to conclude that the observed changes in RT are not related
to mental fatigue, which is known to cause an increase in the
RT (Langner et al., 2010). In turn, the decreasing RT in the
course of the experiment can be associated with the training
effect. The role of training in the performance of the perceptual
decision-making tasks was demonstrated by Yang et al. (2014).
The authors suggest that the training could improve the efficiency
of high-level visual processing, which therefore would provide
less ambiguous sensory information to the decision-related brain
networks. While in Yang et al. (2014) the training period lasted
for 3 days, our results suggest that the training effect could already
be notable even within a 40-min session.

To investigate the neuronal activity which is supposed to
stand behind the obtained behavioral results, we considered
the evolution of functional connectivity on EEG sensor level
as spectral power correlation separately in α and β frequency
bands. Our results demonstrate that in both bands the functional
connectivity exhibits the formation of a spatially-extended
network. The structure formation in the β-band starts earlier
than that in the α-band and earlier than RT. In the α-band,
the starting point of the network formation does not differ
significantly from the RT. This allows us to conclude that the
evolution of the functional connectivity structure in the β- and α-
frequency bands is temporally distinguished. A detailed analysis
of the spatial properties of the β-band network reveals that

frontal areas are characterized by a higher degree of outgoing
links with respect to the parietal area.

It is known that perceptual decision-making implies encoding
sensory information, accumulating this sensory input over time
and planning an ensuing motor action, and the neuronal
populations in sensory, parietal and frontal cortices are involved
in different stages of this process (Hanks and Summerfield, 2017).
It was also shown that the perception and decision-making
stages are temporally dissociated. The sensory information
processing is limited to an early time window (0.13–0.35 s)
and associated with occipital areas, whereas decision-related
processing is increasingly pronounced over time and involves
parietal and frontal areas (Mostert et al., 2015). According to
a previous review (Siegel et al., 2011), perceptual decisions are
mediated by oscillatory interactions in the β-band in the large-
scale frontoparietal network during the decision period of the
trial. In addition, Rahnev et al. (2016) also report a critical
role of the frontal cortex in the control of perceptual decision-
making. Taking these results into account, we suppose that
the observed reorganization of the β-band functional network
with the highly involved frontal zone confirms that neuronal
processes captured in the [t1, t3] interval are associated with the
decision-making stage.

Finally, our results demonstrate that the time lag between t
β
1

and RT takes around 0.39 s for all stimuli, indicating that the
duration of the decision-making state does not affect the overall
RT. Based on this result, we assume that changes in RT are
related to the mechanisms of the neuronal activity preceding the
decision-making stage. In particular, it can be supposed that the
earlier sensory processing stage is affected by the quality of the
visual sensory information. If stimulus ambiguity is increased,
more sensory evidence is required to make a decision; therefore,
the sensory processing stage can spend more time. As reported
by Siegel et al. (2006, 2011), stimulus features can affect the
brain activity related to the encoding of sensory evidence. Using
the motion discrimination task, the authors demonstrate that
this process is associated with occipital γ -band oscillations,
and the motion strength (the strength of the evidence) affects
the amplitude of these oscillations. Moreover, Philiastides and
Sajda (2005) found the relation between the duration of the
sensory evidence accumulation process and the strength of
visual evidence. Using a face vs. car categorization task they
demonstrated that as the evidence for faces vs. cars decreases, the
stimulus processing time increases. In the case of the Necker cube
classification, an increase in the cube ambiguity can be associated
with a decrease in the evidence for left-oriented vs. right-
oriented cubes. Therefore, the processing of highly ambiguous
stimuli takes a longer time than processing stimuli with
low ambiguity.

Lastly, the changes in RT can also be related to the processes
underlying the extraction of decision-relevant information of
the stimulus from raw sensory information acquiring during
visual perception (Wyart et al., 2012). As noted in Siegel et al.
(2008), the brain can optimize this process by selecting only those
features of sensory evidence that are relevant for the particular
task. The top-down selection of sensory evidence is commonly
referred to as selective attention. Having considered the selective
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attention in the context of perceptual decision-making, Siegel
et al. (2011) suggest that this process is subserved by a long-
range oscillatory synchronization between frontoparietal regions
and early sensory processing stages and mediates the selection
of sensory information features required for the perceptual
decision. We suppose that this process can be a potential reason
for decreasing RT in the course of the experiment. Since in our
perceptual decision-making task the presented Necker cubes are
distinguished from each other by the contrast of some inner
edges, the brain is likely to start using this particular feature of
visual information to make a decision according to the Necker
cube interpretation.

4. CONCLUSION

In this paper, we have analyzed the reaction time (RT) and
functional neuronal interactions in α- and β-frequency bands
during the perceptual decision-making task of ambiguous visual
stimuli classification.

Behavioral analysis revealed an increase in RT as the stimulus
ambiguity is increased. It is important that RT fluctuates among
stimuli even when their ambiguity remains unchanged. The
observed RT fluctuations are not associated with mental fatigue,
because longer RTs dominate at the beginning of the experiment.
We suppose that the decreasing RT throughout the experiment
can be caused by the training effect, which improves the
efficiency of high-level visual processing and therefore provides
less ambiguous sensory information to the decision-related
brain networks.

Functional connectivity analysis evidenced that the subject’s
behavioral response is preceded by the emergence of a large-scale
functional network in the β-frequency bandwith the pronounced
driving role of frontal cortical areas, which we associate with
the decision-making network. Both the structural properties of
this network and the time required for its development are
independent of the stimulus ambiguity and do not affect RT.

To conclude, we suppose that RT fluctuations are related
to the processes preceding the decision-making stage, e.g.,

encoding visual sensory information and extracting decision-
relevant features from raw sensory information. According to
the literature, the duration of these stages can be affected by the
quality of the sensory evidence and selective attention, implying
the brain’s ability to select only those features of sensory evidence
which are needed for a particular task.
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