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Abstract
Aim: We analyse how functional diversity (FD) varies across European natural forests 
to understand the effects of environmental and competitive filtering on plant trait 
distribution.
Location: Forest ecosystems in Europe from 11°W to 36°E and 29.5°N to 62°N.
Taxon: Pinaceae, Fagaceae and Betulaceae, Oleaceae, Tiliaceae, Aceraceae, 
Leguminosae (unspecific).
Methods: We adopted the existing Dynamic Global Vegetation Model Lund-Potsdam-
Jena managed Land of flexible individual traits (LPJmL-FIT) for Europe by eliminating 
both bioclimatic limits of plant functional types (PFTs) and replacing prescribed val-
ues of functional traits for PFTs with emergent values under influence of environ-
mental filtering and competition. We quantified functional richness (FR), functional 
divergence (FDv) and functional evenness (FE) in representative selected sites and at 
Pan-European scale resulting from simulated functional and structural trait combina-
tions of individual trees. While FR quantifies the amount of occupied trait space, FDv 
and FE describe the distribution and abundance of trait combinations, respectively, 
in a multidimensional trait space.
Results: Lund-Potsdam-Jena managed Land of flexible individual traits reproduces 
spatial PFTs and local trait distributions and agrees well with observed productivity, 
biomass and tree height of European natural forests. The observed site-specific trait 
distributions and spatial gradients of traits of the leaf- and stem-resource economics 
spectra coincide with environmental filtering and the competition for light and water 
in environments with strong abiotic stress. Where deciduous and needle-leaved trees 
co-occur, for example, in boreal and mountainous forests, the potential niche space is 
wide (high FR), and extreme ends in the niche space are occupied (high FDv). We find 
high FDv in Mediterranean forests where drought increasingly limits tree growth, 
thus niche differentiation becomes more important. FDv decreases in temperate for-
ests where a cold climate increasingly limits growth efficiency of broad-leaved sum-
mer green trees, thus reducing the importance of competitive exclusion. Highest FE 
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1  | INTRODUC TION

Functional diversity (FD) is a key control of the stability and adapt-
ability of ecosystems under climate change (Yachi & Loreau, 1999). 
Abiotic conditions (e.g. climate, soil) as well as biotic processes (e.g. 
competition) determine plant community assembly (Kunstler et al., 
2016; Ratcliffe et al., 2017; Ruiz-Benito et al., 2017), and thus the FD 
of communities (Cadotte, Carscadden, & Mirotchnick, 2011; Lavorel 
& Garnier, 2002a; Naeem, Duffy, & Zavaleta, 2012). Ecosystem FD 
has been measured based on the diversity of morphological and/or 
physiological plant traits (Villeger, Mason, & Mouillot, 2008), which 
are linked to plant productivity, transpiration or nutrient cycling, and 
thus to ecosystem functions (cf. Lavorel & Garnier, 2002a). For in-
stance, specific leaf area (SLA) and leaf nitrogen content have been 
linked to plant productivity, and stem traits such as wood density 
(WD) to carbon storage and evapotranspiration (Funk et al., 2017) 
and, among others, determine species tolerance of environmental 
stresses (Hallik, Niinemets, & Wright, 2009) and control competitive 
interactions between individual plants (Kunstler et al., 2016).

Climatic conditions are the most important drivers of commu-
nity assembly and generally constrain the relations between traits 
globally (Butler et al., 2017; Šímová et al., 2018). Gradients in trait 
expression, associated with climatic conditions, have been found 
at global scales (Díaz et al., 2016; Wright et al., 2017) and at the 
European scale by extrapolating site-specific plant trait data (Butler 
et al., 2017) and using forest inventories (Ruiz-Benito et al., 2017). 
Recent studies investigated a mix of globally important physiolog-
ical traits (e.g. SLA, WD, seed mass and leaf nitrogen content) and 
morphological traits (including maximum plant height and basal 
area) (Ratcliffe et al., 2016; Ruiz-Benito et al., 2017), or separate 
the effects between those trait types (e.g. Madrigal-Gonzalez et al., 
2016; Schneider et al., 2017). They advance our understanding of 
spatial pattern of plant traits at the landscape and continental scale.

Under given climate conditions, the distribution of multiple in-
dividual traits results from community assembly rules and opens a 
multi-dimensional trait space of functionally related traits (Chave et 
al., 2009; Díaz et al., 2016; Mason, Mouillot, Lee, & Wilson, 2005; 

Wright et al., 2004). To quantify how environmental and competitive 
filtering influence niche complementarity, multidimensional indices of 
FD are required to quantify occupation and overlap of niches (Mason 
& de Bello, 2013). In addition, these indices should be scale indepen-
dent and applicable at regional scale to investigate changes in FD 
along climatic gradients (Carmona, Bello, Mason, & Leps, 2016).

Many different indices have been used to describe the size of trait 
spaces, the distribution and the clustering of their trait combinations 
(e.g. Ratcliffe et al., 2016; Schneider et al., 2017). Villeger et al. (2008) 
suggested to describe these FD aspects using three independent in-
dices: functional richness (FR), divergence (FDv) and evenness (FE). 
Whereas FR quantifies the amount of occupied trait space, FDv and 
FE describe the distribution and abundance of trait combinations in a 
multidimensional trait space (Mason et al., 2005; Villeger et al., 2008). 
Whereas FR describes the size of potentially available, functional 
space, in which niches can be occupied by plants, FDv quantifies 
the distribution of trait values, thus the degree of niche differentia-
tion, likely the result from competitive exclusion (Garnier, Navas, & 
Grigulis, 2016; Mason et al., 2005). FE describes the regularity of trait 
distribution and points to resource-use efficiency within the occupied 
trait space. Lower FR could relate to lower capability of an ecosystem 
to buffer environmental stress, whereas lower FE and FDv could indi-
cate reduced ecosystem resilience (Mason et al., 2005).

By dividing FD into richness, divergence and evenness, the mech-
anisms that link biodiversity to ecosystem functions and describe 
community assembly can be described (Mason, Bello, Mouillot, 
Pavoine, & Dray, 2013; Mason et al., 2005). Computing scale-inde-
pendent FD indices from trait distributions (Carmona et al., 2016) 
allows investigating FD from community to meta-community scale 
and extrapolating them to the regional or continental scale. Huge ef-
forts are under way to explore links among plant traits, vegetation 
composition and climate based on site data (Bruelheide et al., 2018; 
Díaz et al., 2016; Wright et al., 2017). They are complemented by 
dynamic global vegetation models (DGVM) with flexible or adaptive 
individual traits (e.g. Langan, Higgins, & Scheiter, 2017; Sakschewski 
et al., 2015) which explore and map the mechanisms between FD 
and ecosystem functions from local to regional scales. The interplay 
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between flexible morphological and physiological traits within plant 
functional types (PFT, Lavorel et al., 2007; Prentice et al., 2007) in 
combination with the physiology and biogeochemistry of a DGVM 
allows analysing the effect of community assembly on ecosystem 
functions, for example, productivity and carbon storage, in forest 
ecosystems. Because these flexible-trait DGVMs vary plant traits for 
individual trees that belong to a specific PFT, inter-PFT as well as 
the intra-PFT trait diversity are captured which allows investigating 
effects of niche complementarity along climatic gradients.

The overall aim of this study is to investigate the interaction 
among climate, ecosystem functions and pattern of FD of forest 
ecosystems. Therefore, we adapted the DGVM Lund-Potsdam-
Jena managed Land of flexible individual traits (LPJmL-FIT) to PFTs 
growing in strongly seasonal European climatic conditions, while the 
model previously has been successfully applied to tropical rainfor-
ests (Sakschewski et al., 2015). We break down the overall aim of the 
study into the following research questions:

1.	 What is the role of environmental and competitive filtering on 
trait distributions and productivity of Mediterranean, temperate 
and boreal natural forests?

2.	 How does FD emerge from climate and plant competition at the 
local and pan-European scale?

3.	 How does FD vary between and across European natural forests?

We focus on European natural forests ranging from broad-
leaved evergreen vegetation in the Mediterranean basin, to tem-
perate forests and to boreal forests in northern Europe. Here, 
natural forests are defined as potential natural forests whose 
compositions and ecosystem functions (see Geller et al., 2017; 
Hooper et al., 2005 for definition) results from climate and soil 
conditions. Forests and other wooded land are usually defined fol-
lowing the percentage of woody cover (FAO, 2018). However, we 
denote forests hereafter as vegetation with a significant amount 
of biomass (>50 gC/m2), at least 5% coverage of woody PFTs and a 
minimum mean tree height of 5 m.

To address these research questions, we check the validity of the 
adapted LPJmL-FIT model by assessing to what degree the model re-
constructs observed (a) productivity and biomass, (b) trait distribution 
and (c) distribution of PFTs as a result of environmental and compet-
itive filtering. We quantify for selected sites and on a Pan-European 
scale FR, FDv and FE of simulated physiological and morphological 
traits (cf. Schneider et al., 2017; Villeger et al., 2008). We expect FD 
to be relatively high in natural forests as was found in, for example, 
Schneider et al. (2017) and climatic stressors considered in LPJmL-FIT 
to be a strong environmental filter (Bernard-Verdier et al., 2012).

Our analysis of FD in natural forests can provide a reference 
state for restoring highly managed or degraded ecosystems and in-
crease their diversity and stability in face of climate change (Mori, 
Lertzman, & Gustafsson, 2017). We focus here on the interaction 
of physiological and morphological plant traits with community as-
sembly processes at the local and Pan-European scale to understand 
how FD emerges from those interactions.

2  | MATERIAL S AND METHODS

We connected the leaf and stem economics approach as imple-
mented in LPJmL-FIT (Sakschewski et al., 2015) with a phenology 
model (Forkel et al. (2014) to simulate potential natural vegeta-
tion in Europe under current climatic conditions. Herbaceous PFTs 
(C3 and C4 grasses) were simulated as in LPJmL (Schaphoff, von 
Bloh, et al., 2018). To allow for environmental and competitive fil-
tering to take full effect within and across PFTs, we removed the 
bioclimatic limits that are used in most DGVMs to emulate bio-
geographic limitations of PFT occurrence (Schaphoff, von Bloh, et 
al., 2018; Sitch et al., 2008). Phenology, leaf-economics (LES) and 
stem-economics (SES) traits (cf. Chave et al., 2009; Wright et al., 
2004) were assigned to each individual tree sapling at establish-
ment allowing any trait combination (everything-is-everywhere 
approach, see Figure 1 for trait-selection algorithm) whose com-
petitiveness in a given climate then determines its survival and 
growth. The implemented LES traits include Specific Leaf Area 
(SLA, leaf area per unit leaf mass, mm2 mg−1), Leaf Longevity (LL, 
average life span of leaves, in months), leaf nitrogen content (Nleaf, 
leaf nitrogen content per leaf area, mg/g) and Vcmax (maximum 
carboxylation rate of the RUBISCO enzyme per leaf area at 25°C, 
μmol CO2 m−2 s−1). While the LES traits influence vegetation pro-
ductivity, the SES trait Wood density (WD, wood dry mass per unit 
of green volume, g/cm3) is related to biomass and tree mortality 
(for more details, see Sakschewski et al., 2015). Physiology, growth 
and mortality of trees within the forest patch were as described in 
Sakschewski et al. (2015). Applying this simulation framework to 
current European climate, environmental and competitive filtering 
result in site-specific trait distributions, productivity, biomass and 
in tree height.

LPJmL-FIT combines flexible individual traits with gap dynam-
ics and plant physiology, hydrology and biogeochemistry. Being 
structured into vertical leaf layers every two meters, trees com-
pete for light and water as they grow in size. The trait combination 
of each tree determines its competitive strength under given cli-
mate conditions at a given site, where several plant strategies can 
co-exist and form diverse communities in forest ecosystems. The 
suitability of the trait combinations to the local climate conditions 
determines trees’ competitiveness, and thus which tree strategy 
is dominant from wet to dry tropical conditions (Sakschewski et 
al., 2015). In general, the model approach of LPJmL-FIT allows all 
tree strategies to establish everywhere at any time (“everything 
is everywhere”). Trees that underperform due to trait combina-
tions less suitable for local climate and/or competitive conditions 
have a relatively high mortality probability (see Sakschewski et al., 
2015 and 2.1 below). Under stable climate conditions, establish-
ment and mortality lead to an equilibrium of tree abundance and 
community composition in which only those trees occur whose 
functional traits are suited to the local environmental conditions 
(climate and soil).

In the following, we describe the adjustments required to apply 
the LPJmL-FIT model to European natural forests.
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2.1 | Adjusted LPJmL-FIT model

Lund-Potsdam-Jena managed Land of flexible individual traits 
was originally developed for Amazonian rainforests (Sakschewski 
et al., 2015). Adapting it to climatic conditions which are strongly 
seasonal and with a high intra-annual variability requires a num-
ber of adaptations and implementations for multiple, co-oc-
curring PFTs to describe Mediterranean, temperate and boreal 
natural forests in Europe. The LES and SES approach, as imple-
mented in LPJmL-FIT, has therefore been adapted to accommo-
date four tree PFTs, namely, “broad-leaved summer green” (BL-S), 
“broad-leaved evergreen” (BL-E), “Temperate needle-leaved ev-
ergreen tree” (T-NL) and “Boreal needle-leaved evergreen tree” 
(B-NL). Each PFT is based on an earlier implementation of these 
PFTs in LPJmL-4 (Schaphoff, von Bloh, et al., 2018) which has 
been extensively evaluated (Schaphoff, Forkel, et al., 2018). To 
account for the phenology of the Mediterranean, temperate and 

boreal forests under the influence of light, water and tempera-
ture stress, we implemented the phenology model of Forkel et 
al. (2014) into LPJmL-FIT. This model couples the phenological 
status of a tree, which ranges between 0 (complete senescence) 
and 1 (fully leaved), to the local climate. The actual value of the 
phenology status is determined by the product of four phenology 
functions, which depend on a set of PFT-specific parameters and 
the daily temperature, water stress and radiation. We calibrated 
the phenology parameter (Table S1) to yield a best possible PFT 
distribution that matches the spatial distribution of European 
natural vegetation from Bohn et al. (2007). In addition, leaf se-
nescence now occurs immediately if the phenological status of 
a tree drops below 0.2, forcing a tree to rebuild the complete 
canopy leaf area in the next simulation year. Given the climate 
influence on leaf phenology changes along continental climate 
gradients, a continuous spectrum from summer to winter decidu-
ousness for BL-S trees is captured in the model.

F I G U R E  1   Conceptual scheme illustrating how flexible individual parameter are assigned to tree individuals belonging to a specific 
woody PFT (Steps 2 and 3), including LES (leaf-) and SES (stem economics) plant traits in LPJmL-FIT (SLA – Specific leaf area; WD – Wood 
density). Parameter sets consist of Phenology (temperature (T), light and water), LES and SES traits (WD) and are assigned to individual tree 
saplings at model initialization and gap opening (step 4). Climate, soil conditions (environmental filtering) and competition between individual 
trees within and across PFTs (competitive filtering) result in aggregated grid-cell trait distributions within patches (top-right figure in output 
panel). They are visualized as trait maps and are used to quantify diversity indices. PFT: BL-S – Broad-leaved summer green tree, BL-E – 
Broad-leaved evergreen tree, B-NL – Boreal needle-leaved evergreen tree, T-NL – Temperate needle-leaved evergreen tree. LPJmL-FIT, 
Lund-Potsdam-Jena managed Land of flexible individual traits; PFT, plant functional type
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The algorithm to combine the PFT parameter set of the LES- and 
SES-related traits (WD) with the phenology parameter is implemented 
as follows: When a new sapling establishes, the selection of the trait 
combination occurs in three steps. First, the PFT type is randomly cho-
sen out of the four possible PFTs independent of its climate suitability 
or the present PFT composition (Figure 1). Second, the selected PFT 
type defines the set of phenology parameters that are assigned to the 
tree sapling (see Table S1), and it defines the SLA range from which the 
SLA value is drawn from a uniform distribution. The SLA range differs 
for BL-E, T-NL, B-NL and BL-S (see Table S2). The functionally related 
plant traits leaf longevity (LL), leaf N and Vcmax (maximum carboxyl-
ation rate of Rubisco per leaf area) are assigned in a third step to the 
sapling following the LES approach as in Sakschewski et al. (2015), see 
Figure 1. Both, SLA and WD are drawn from a continuous uniform dis-
tribution for each individual tree for which the PFT-specific range is 
derived from the TRY v4.0 database (see https​://www.try-db.org/ and 
Kattge et al., 2011) considering only sites located inside our study area. 
Hence, the parameter set of each newly established sapling in the for-
est patch contains trait values drawn from the LES and SES as well as 
the phenology parameters. This approach is applied to the 20 new sap-
lings that are established per patch each year. Grasses are integrated 
in the model as homogeneous layers using the remaining radiation at 
the bottom of every forest patch for photosynthesis. C3 and C4 grasses 
compete with trees for water only. The establishment rate of grass is 
anti-proportional to the actual tree cover and the mortality rate de-
pends on carbon balance by the end of every year (see Schaphoff, von 
Bloh, et al., 2018 for details). Grasses are assigned phenology parame-
ters (see Table S1), but are simulated without individual trait flexibility 
following the LPJmL4 modelling approach (Schaphoff, von Bloh, et al., 
2018). Therefore, in this study model simulations will be used to evalu-
ate trait distributions and FD regarding trees only.

Different from the LPJmL-FIT version of Sakschewski et al. 
(2015), the trade-off between SLA and LL has been adopted from 
LPJmL4 (Schaphoff, von Bloh, et al., 2018):

where DMc denotes the dry matter carbon content of leaves 
(

DMc=0.4763
)

 and the parameter ∝=2 ⋅10−4. The parameter �1 is set 
to 0.4 and �0 to 2.2 for broad-leaved PFTs, while �0=2.08 for both, 
T-NL and B-NL. All parameters in Equation (1) were obtained from 
Kattge et al. (2011). The parameters �1 and ∝ influence the steepness 
of the SLA-LL relation, whereas �1 alters the offset.

The mortality mortWD is coupled to its wood density WD by 
using the equation from King, Davies, Tan, and Noor (2006):

and assigned to each tree individual at establishment (Sakschewski et al., 
2015). Because no general mortality–WD relationship for tree species 
of temperate forests is currently available in the literature, we calibrated 
�1 and �2 to the locally observed biomass. Calibration was carried out 

at European sites still containing natural forests (Hainich National Park 
(NP) and Bialowieza NP) because the model simulates natural vegetation 
only. Following this calibration, we set the parameter �1 to −4.5 and �2 
to −2.66 for the broad-leaved trees, and �1=−2.66 and �2=0.255 for 
needle-leaved trees. The term mortWD is used as the maximum of the 
growth-efficiency mortality in LPJmL-FIT, meaning that trees with a low 
growth efficiency resulting from low productivity under unfavourable 
climate conditions have a higher mortality risk (Sakschewski et al., 2015).

In addition, we reduced the tree allometry parameter kep to 1.5 
(1.6 in Schaphoff, von Bloh, et al., 2018) for needle-leaved trees to 
simulate realistic tree shapes and growth pattern of needle- in com-
parison to broad-leaved saplings:

where kep mediates between crown area (CA) and stem diameter (D). 
The lower kep, the CA for needle-leaved trees is reduced which then 
affects LAI:

where Cleaf is whole plant carbon investment in leaves (kg per tree) (cf. 
Sitch et al., 2003). Because of the lower SLA, needle-leaved trees then 
have to invest more leaf carbon in their first years to reach the same 
LAI compared with broad-leaved trees.

Fire is an important natural disturbance in European forest ecosys-
tems (Naveh, 1990; Tinner et al., 1999). We applied the simple Glob-
FIRM model (Thonicke, Venevsky, Sitch, & Cramer, 2001) as embedded 
in LPJmL4. Here, fire probability depends on soil moisture in the top soil 
layer and a fuel load threshold modelled by an exponential probability 
function calculated by the end of every year. We apply this probability 
to each patch separately. If a patch is burnt, every tree is ignited and 
survives with a PFT-specific fire resistance probability (cf. Thonicke et 
al., 2001) which is the same for all individuals that belong to the same 
PFT. In the patch burnt, all litter carbon is combusted completely.

In boreal forests, evergreen trees exhibit water stress in spring, 
when relatively high air temperature increases evaporative demand, 
while the soil is still frozen and thus limits the water availability in the 
soil. This water stress forces evergreen trees to shed their needles and 
making them less competitive against BL-S trees which might have 
their bud burst later in the year. To correctly balance competition be-
tween B-NL and BL-S in boreal forests, we increased the root-distribu-
tion factor �root for B-NL trees from 0.943 (Schaphoff, von Bloh, et al., 
2018) to 0.965, which allows B-NL to reach deeper, non-frozen layers 
during spring thereby preventing them from leaf senescence.

2.2 | Model input data, simulation protocol and 
validation sites

To post-process and analyse our simulation data, we used R3.6.0 
(R-Core-Team, 2019) and MATLAB 2019 (MATLAB, 2019). All 

(1)
LL=10

�0−log10

(

SLA
∝

⋅DMc

)

�1

(2)mortWD=10�1+�2∕WD

(3)CA∼D
kep

(4)LAI=
Cleaf ⋅SLA

CA
,

https://www.try-db.org/
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R-packages used in this study including their citation are listed in 
Table S6.

2.2.1 | Climate and soil data input

Lund-Potsdam-Jena managed Land of flexible individual traits uses 
air temperature [°C], precipitation [mm/d] and radiation (short-wave 
down and long-wave net radiation [W/m2]) of the combined data-
set of the WATCH (Weedon et al., 2011) and WFDEI (Weedon et 
al., 2014) datasets at daily resolution on a 0.5° x 0.5° longitude–
latitudinal grid. This climate data set is based on the reanalysis of 
ERA-Interim, where precipitation was bias corrected using the 
Global Precipitation Climatology Centre data set (GPCC, Schneider 
et al., 2011). The climate data range from 1901 to 2013 with WFD 
(WATCH Forcing Data) covering 1901 to 1978 and WFDEI-GPCC 
(WATCH-Forcing-Data-ERA-Interim) is used from 1979 onwards. 
The atmospheric CO2 concentration is held constant at 296  ppm 
over the whole time period.

Soil texture is needed as model input and was taken from the 
Harmonized World Soil Database version 1.2 (Nachtergaele et al., 
2009). The soil depth was kept constant at 2m for all grid cells. Our 
simulation domain covers Europe from 11°E to 36°W and 29.5°N to 
62°N.

2.2.2 | Simulation protocol

Model simulation starts from bare-ground and simulates a spin-up 
period of 500  years by recycling the first 30  years of the climate 
data set (1901–1930) to bring natural vegetation composition (here 
individual trees with their individual trait combinations) and all living 
and dead carbon fluxes into equilibrium with the spin-up climate. We 
then performed a transient run simulating potential natural vegeta-
tion until the end of 2013, that is, without land use. For the European 
simulation domain, 1,000 forest patches being equivalent to 10 ha 
of forest area are simulated in each grid cell where all patches re-
ceive the same climate data and the same soil data as model input. 
Respective model output is then aggregated over all simulated 
patches within a grid cell.

To allow for a detailed analysis of plant-trait distribution, FD 
and productivity, we chose six different sites across Europe with 
near-natural forest stands and which cover a broad range of climates 
(Table S4). Site-specific simulations follow the same protocol as de-
scribed above and were performed with 2,500 patches at each site 
to ensure a higher spatial coverage.

2.2.3 | Model validation

Simulated seasonal and intra-annual GPP is validated against ob-
served and remotely sensed GPP data at six sites (Table S3) cov-
ering a climatic gradient (Table S4). We used monthly MODIS 

remote-sensing data (MOD17A2H) for the years 2004–2013 
(Running, 2015) at six sites (see Table S1) and respective flux tower 
measurements from the Euroflux network for the Laegeren (CH-
Lae, D'Odorico, 2014; Paul-Limoges, 2018) and Hainich NP (DE-
Hai) (for general information, see Papale et al., 2006; Reichstein et 
al., 2005). Simulated maps of vegetation height and biomass were 
evaluated against remotely sensed products (Lefsky, 2007; Thurner 
et al., 2014). Details on the validation of Gross Primary Productivity 
(GPP), vegetation height and biomass are described in the Data S1. 
Simulated plant trait distributions were compared against observed 
plant trait data from the TRY database (Kattge et al., 2011), see Data 
S1 for methods and data origin.

2.3 | Computation of FD indices

We quantified three complementary indices on multidimensional 
traits to describe FD, namely, FR, FDv and FE, following Villeger et 
al. (2008) and Schneider et al. (2017), where each point represents 
one tree individual (higher than 2  m) with its unique trait com-
bination. In this study, this multidimensional trait space is based 
on SLA, LL, WD and tree height. While SLA, LL and WD influ-
ence productivity and biomass (Reich, 2014) and therefore point 
to competitive exclusion, tree height is regarded to describe niche 
differentiation (Garnier et al., 2016). We calculated the FD indi-
ces across and within PFTs to capture assembly processes across 
meta-communities.

Functional richness describes the extent of the occupied trait 
space and is calculated by the convex hull volume including all 
points in that trait space, which is normalized by the maximum 
possible trait volume. However, it implies that FR reacts strongly 
to outliers. FDv describes how far environmental niches are sepa-
rated and indicate the intensity of competitive interactions, where 
FDv = 0 indicates convergent trait distribution due to strong en-
vironmental and competitive filtering (Mason et al., 2005; Villeger 
et al., 2008). To measure FDv in a multidimensional trait space, a 
sphere with radius dG centred in the trait cloud is calculated. FDv 
then quantifies how points (trait combinations of trees) scatter rel-
ative to the surface of the sphere (see eqs. 5–7 in Data S1 and 
Figure S1). If all points are located on the sphere, FDv becomes 
unity independent on the respective distribution on the sphere. 
The more the index decreases, the wider the points are spread 
around (inside and outside) the sphere. FDv therefore quantifies 
how the occupied niches are separated. FE describes how regu-
larly points are distributed in the trait space, that is, how efficient 
available resources are used through niche occupation. FE is based 
on the minimum spanning tree (MST) linking all points in the trait 
space in such a way that the sum of all branches becomes minimal 
(see eqs. 11–13 in Data S1 and Figure S1). Therefore, FE increases 
when a) the points are evenly distributed, that is, having equal 
branch length; or b) the trait combinations of the trees are equi-
distant in the trait space (Villeger et al., 2008). Further details on 
FE, FDv and FR quantification are provided in Data S1.
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Each index was computed by considering all trees as evenly 
weighted. Before calculation, traits were normalized to their min-
imum and maximum observable values in the TRY sites in Europe, 
thus ranging between 0 and 1. For each grid cell we checked that no 
dimensional reduction was required by using the function “dbFD” 
of the R-package “FD” performing a principal coordinates analysis 
(Laliberté et al., 2014). Due to constrained computation capacity, 
we calculated all FD indices separately in groups of 50 patches in 
each grid cell (for which 1,000 patches were simulated in total) and 
aggregated them to the grid level by using the arithmetic mean. To 
visualize the stochastic uncertainty of the model, we calculated the 
coefficient of variation (COV) of each index in a grid cell out of the 
groups of 50 patches (n = 20). As all of these groups in a cell received 
the same climate data, the COV can be seen as a measure for the 
stochastic uncertainty of the model.

3  | RESULTS

3.1 | Climate influence on trait distribution, 
productivity and tree height

Environmental and competitive filtering allows those trees to es-
tablish and survive whose trait combinations are suitable for local 
climate conditions in the forest patches simulated by LPJmL-FIT. 
Unsuitable or less suitable trait combinations lead to a low growth 
efficiency and are therefore outcompeted. The combination of cli-
mate suitability and competiveness has the effect that the continu-
ous, uniform distribution with which the model is initialized results 
in a normal trait distribution at the local scale. The resulting trait 

distributions therefore emerge from the LPJmL-FIT modelling frame-
work (Figure 1). We compare simulated SLA and WD against TRY 
observations for BL-S, BL-E trees and needle-leaved evergreen, that 
is, B-NL and T-NL trees (Figure 2). Simulated mean trait distribu-
tions match the TRY observation reasonably well for both, SLA and 
WD, for BL-S, BL-E and the two needle-leaved PFTs (dashed lines in 
Figure 2). Simulated ranges of SLA, however, are smaller than the 
original trait range (see Table S2) and smaller than observed SLA 
(Figure 2). LPJmL-FIT simulates a mean SLA of 16.11 with a stand-
ard deviation of ±1.25 mm2/mg for BL-S compared to 14.95 ± 6.09 
documented in TRY. The simulated range for SLA is also smaller for 
BL-E (LPJmL-FIT: 9.31  ±  1.13 mm2/mg; TRY: 6.95  ±  2.72  mm2/mg) 
and the needle-leaved evergreen (LPJmL-FIT: 6.11 ± 0.95 mm2/mg; 
TRY: 6.95 ± 2.72 mm2/mg). Simulated ranges for WD are quite close 
to observed ranges in TRY for BL-S, slightly smaller for BL-E, but 
broader for the needle-leaved PFTs (Figure 2, bottom row).

The combined effects of environmental filtering and plant com-
petition for light and water in LPJmL-FIT also result in reasonable 
seasonal and interannual productivity (GPP) as observed on six se-
lected sites. The model quality is shown by a high Pearson's R (≥0.89) 
and low NMSE (0.03–0.29; see Table S3, Figure S2 and Data S1 for 
details on the evaluation methods and results, sites are described 
in Table S4). The simulated competition between tree individuals 
results in closed forest cover and corresponding high biomass stor-
age in temperate and boreal forests (Figure S3). We found simulated 
vegetation height and biomass to compare well against remotely 
sensed observations and local in situ data, although the comparison 
of natural forest and actual vegetation is limited as remote-sensing 
products detect properties of actual vegetation cover which are in-
fluenced by current land use and forest management (see Data S1 

F I G U R E  2   Trait distribution of Specific Leaf Area (top panel) and Wood Density (bottom panel) for broad-leaved summer green PFT (BL-
S, left column), broad-leaved evergreen PFT (BL-E, central column) and both, boreal and temperate, needle-leaved evergreen PFTs (NL, right 
column) as simulated by LPJmL-FIT (light red) and observed by TRY database entries (light cyan). Dashed vertical lines show the simulated 
(light red) and measured (light cyan) average trait values for each PFT. LPJmL-FIT, Lund-Potsdam-Jena managed Land of flexible individual 
traits. PFT, plant functional type
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for details on the evaluation method and results). Centuries of land 
clearing, agricultural and forestry have greatly changed land cover 
and reduced natural forests to few remaining small areas (Ellis et al., 
2013), which further complicates the evaluation of simulated poten-
tial natural vegetation.

3.2 | Climate influence on trait distributions 
within and across PFTs

Spatial distribution of simulated fractional cover of each PFT result 
from the PFT-specific phenology and functional trait combinations, 
which determine the suitability of each parameter set to the climate 
and soil conditions in a given grid cell (cf. Figure 1). Tree individu-
als with trait combinations adapted to current climate are the most 
competitive and most productive in sites with limited environmental 
stress severity (while their productivity may decrease at stressed 
sites, Zhang, Niinemets, Sheffield, & Lichstein, 2018), and thus 
cover larger proportions of a given grid cell (Figure S4). The most 
suitable combination, to shed leaves under cold and/or dry climate 
conditions, results in BL-S dominating central Europe, even though 
it also occurs – albeit at much smaller fractions – in the boreal and 
the Mediterranean forests. B-NL dominates northern Europe, and 
T-NL the Mediterranean basin, where it co-occurs with BL-E. Several 
PFTs co-occur in the Mediterranean forests (three tree PFTs and C3 
grasses), whereas temperate forests in lowland Europe are domi-
nated by just one tree PFT (Figure S4). Note that in all cases, the tree 
individuals still vary in their trait combination within each PFT.

Abiotic conditions, here aggregated to MAT [°C] and MAP 
[mm], are strongly linked to tree establishment (Figure 3). The cli-
mate space occupied by trees across all PFTs converges towards 
higher MAT and lower MAP. Intra-PFT variation in SLA values 
decreases with warmer and drier conditions. Most SLA variation, 
however, happens between PFTs that occupy different parts of 
the climate space (Figure 3a). The SLA of BL-S varies from values 
around 13 mm2/mg under warmer and drier climate conditions to 
>20 mm2/mg in colder climate conditions (<7°C) with a wide range 
in precipitation (500 to >2,000 mm MAP). BL-S co-exists with B-NL 
in cold/wet climate conditions, with BL-E in warmer and increas-
ingly drier climate conditions (>10°C MAT and 300–2,000  mm 
MAP). Although many trait combinations are possible under the 
“everything-is-everywhere” approach of LPJmL-FIT, BL-S with SLA 
values lower than 13 mm2/mg do not occur despite a possible min-
imum of 7 mm2/mg (see Table S2). BL-E cover a similar tempera-
ture range as BL-S, but occur across a wider SLA range between 
a MAT of 8–17°C, although the possible SLA range of BL-E is 
among the smallest of all simulated PFTs. Again, this realized trait 
space separates these PFTs clearly from the two needle-leaved 
PFTs, T-NL and B-NL, where T-NL increasingly dominates at MAT 
>10°C and MAP <1,000 mm with SLA ranging from 5 to 8 mm2/
mg, whereas B-NL shows lowest SLA values at a MAT below 10°C 
(see Figure 3a; Figure S5 shows PFT-specific SLA maps, Figure S8 
maps the COV of SLA).

Simulated mean WD clearly separates along climate gradients 
across all PFTs (Figure 3b). Low WDs are simulated in cold climate 
conditions, and WD increases with increasing MAT and decreasing 

F I G U R E  3   Mean Specific Leaf Area (SLA) and Wood Density (WD) distribution for each PFT plotted against mean annual temperature 
(MAT) and mean annual precipitation (MAP). The colour of each dot represents a mean SLA (a) and WD (b) value and each panel belongs to 
a woody PFT. (Broad-leaved summer green: BL-S; Broad-leaved evergreen: BL-E; Boreal needle-leaved evergreen tree: B-NL; and Temperate 
needle-leaved evergreen tree: T-NL) Mean trait values are averaged over the 2004–2013 time period for 1,000 patches per grid cell. PFT, 
plant functional type
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MAP. B-NL and BL-S cover the WD space between 0.5 and <0.7 g/
cm3 below 10°C MAT. WD around 0.7 g/m3 are found in cold (<10°C 
MAT) and drier climate conditions (<1,000 mm MAP), with similar WD 
values found in warmer (10–12°C MAT) and wetter (>1,000 mm MAP) 
climate conditions. Highest WD values (>1.1 g/cm3) are simulated for 
T-NL, BL-S and BL-E with >15°C MAT and <1,000 mm MAP (Figure 3b). 
Higher WD allows slow plant growth and lowers tree mortality risk 
(Equation (2) in 2.1) which explains why high WD values are simulated 
across all PFTs under dry climate conditions (see also Figure S6 for 
PFT-specific WD maps and Figure S9 for maps displaying the COV of 
WD).

3.3 | FD emerging from climate and plant 
competition

The calculation of all diversity indices is based on the initial four-di-
mensional trait space out of SLA, LL, WD and tree height. However, 
for visualization, we remapped the trait space from four dimen-
sions to a three-dimensional trait space composed of SLA, WD and 
tree height. We plot the position of each tree individual in the trait 
space for the climatologically different sites Seitseminen, Laegern 

and Dundo (Figure 4, left column). The occupied trait space forms 
the hypervolume, that is, the FR (shown in grey-blue in Figure 4, 2nd 
column) for each site. The sphere around the centre of gravity (grey 
surface and green cross, respectively, shown in Figure 4, 3rd column) 
illustrates site-specific FDv, whereas FE is quantified from the MST 
(Figure 4, last column). Table S4 shows the site-specific FD indices for 
the six sites.

The wide bi-modal distribution of SLA between BL-S and B-NL 
trees in Seitseminen increases the trait space, that is, FR, whereas 
in Laegern and Dundo simulated SLA distributions show narrower 
bi-modal distributions or even converge (see density distribution in 
Figure 4, left column). Niche separation (FDv) and regularity of niche 
occupation (FE) are more comparable across the three sites (Table S4). 
FDv is highest in Dundo because points in trait space lay closer to the 
surface of the sphere compared with Seitseminen and Laegern (notice 
points outside the sphere in Seitseminen and Laegern). Compared with 
Laegern, we find slightly higher FDv in Seitseminen because of the di-
vergent SLA distribution. Niche occupation is less regularly distributed 
(FE) in Dundo compared with Seitseminen and Laegern because the 
trait space of B-NL trees is less occupied in Dundo, leading to larger 
path length in between points of this PFT (Data S1, Figure S1). This 
leads to more irregular distances in between points, which lowers FE.

F I G U R E  4   Distribution of simulated trees in a three-dimensional trait space (Height, WD and SLA). We plot density (far left) and 
functional diversity indices for 2,500 simulated patches (FR centre left; FDv centre right and FE (far right) for three sites (Seitseminen (top 
row), Lägern (middle row) and Dundo (bottom row)). Ranges of the SLA and WD axes correspond to the maximum trait range across all 
woody PFTs used in the simulation (see Table S2). Seitseminen, Laegern and Dundo represent boreal, mixed temperate and Mediterranean-
type forests respectively. Each dot represents a trait combination of one tree larger than 5 m while the colour indicates its PFT type. Plant 
Functional Types are as followed: Broad-leaved summer green (BL-S), Broad-leaved Evergreen (BL-E), Boreal needle-leaved evergreen tree 
(B-NL) and Temperate needle-leaved evergreen tree (T-NL). FE, functional evenness; FR, functional richness; PFT, plant functional type; SLA, 
specific leaf area; WD, wood density
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When calculating the FD indices for each PFT trait space separately 
and for each site, FDv and FE are similar to the corresponding across-
PFT values (Table S5 and Data S1 for computation of within-PFT FD 
indices). Within each PFT, diverse functional strategies co-exist, that 
is, the intensity of plant competition and regularity of niche occupa-
tion are comparable to the one across PFTs. Specifically, FDv is high 
at Seitseminen for B-NL trees compared with the overall FDv because 
the point cloud is clearly separated along the tree-height niche axis 
and shows a wider WD distribution compared with the other sites 
(Figure 4, left column). However, intra-PFT FR is three orders of magni-
tude lower than FR across PFTs. This is mainly caused by a much lower 
realized trait space for LL (e.g. BL-S) and SLA (e.g. B-NL, see Figure 4), 
whereas the intra-PFT range of tree heights and WDs is similar to that 
between PFTs. In summary, environmental and competitive filtering in-
fluence niche occupation in a similar way within as well as across PFTs.

3.4 | FD at the European scale

At the European scale, spatial gradients in FD indices are relatively 
small and a few spatially distinct patterns stand out (Figure 5). FR in-
creases with the number of PFTs present through which the size of the 
trait space increases (Figure 5a, compare Figure S4). Higher FR is found 
in mountain areas throughout the continent, in boreal forests but also 

on the British Isles. Where B-NL and BL-S occupy distant parts of the 
trait space, FR reaches its maximal values of 0.03–0.04, very much 
alike in the Seitseminen site (compare Figure 4, top row). In contrast, 
lowest FR values are computed for areas where one PFT is dominant, 
especially in the lowland areas of temperate forests which are domi-
nated by BL-S trees (Figure 5a). The COV for FR is high in temperate 
and alpine forests, where mean FR is low because variability increases 
where the mean of a variable is close to 0. On the contrary, low values 
are found in Mediterranean and boreal forests (Figure S7).

Functional divergence is high in natural forests reaching val-
ues between 0.68 and 0.82 (Figure 5b). Where needle-leaved and 
broadleaved trees co-exist (cf. Figure S4), FDv is higher, that is, in bo-
real and mountain forests, and in southern Mediterranean forests. 
Where only one PFT dominates, FDv is lower (0.7–0.73 compared 
to >0.75), for example, in lowland temperate and Mediterranean 
forests. In the transition zone to boreal forests or mountain forests, 
trait distributions of BL-S-dominated forests further converges 
(FDv ~0.68). Here, intensity of filtering increases (FDv converges) 
when climate conditions reduce growth efficiency of BL-S trees. 
Further north, growing conditions for B-NL are more suitable, al-
lowing establishment of another plant strategy causing an increase 
in FDv (Figure 5b). In contrast, in the southern Mediterranean for-
ests, needle-leaved and broad-leaved trees are smaller (Figure S3) 
and in competition with grasses for water, thus, FDv is higher again 

F I G U R E  5   Maps of Functional Richness (FR, panel a)), Functional Diversity (FDv, panel b)) and Functional Evenness (FE, c)). All three 
functional diversity indices are computed from specific leaf area, leaf longevity, wood density and tree height averaged over all individual 
trees, which are at least 5 m tall. Effects on FR, FDv and FE result from trait variability within and across woody PFTs present in 1,000 
patches within a grid cell. PFT, plant functional type
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(~0.76, see Figure 5b). COV of FDv is generally very low with max-
imum values found in some mountainous and boreal transitional 
areas (Figure S7).

Functional Evenness follows a different spatial pattern across 
Europe than the other two indices (Figure 5c). Lower FE values 
(~0.72) are found in lowland temperate forest in central and east-
ern Europe as well as in the transition zone to the boreal forest in 
north-eastern Europe, where BL-S dominate but still grow in com-
petition with B-NL trees (Figure S3). FE increases where only one 
NL-PFT dominates (e.g. British Isles, Norway) and is high in wet 
Atlantic and in southern Europe, where high environmental stress 
results in efficient resource use. Here, COV of FE corresponds to the 
spatial gradient of mean FE, maximum COV is found where mean FE 
is lower (Figure S7).

4  | DISCUSSION

4.1 | Effect of environmental and competitive 
filtering on trait distribution and productivity

The adapted LPJmL-FIT model is capable of reproducing observed 
GPP with a small modelling error and high correlation with ob-
served data (see Data S1). Biomass and plant height follow the 
spatial distribution of previous publications (Thurner et al., 2014; 
Healey et al., 2015), although the comparison is limited by the long-
term land use history in Europe which restricts the comparability 
between simulated and observed data and may explain the discrep-
ancy found. Simulated SLA and WD are in close agreement with 
observed TRY data. These results show that the new version of 
LPJmL-FIT reproduces the spatial PFT and local trait distributions 
as well as the productivity and biomass of European natural for-
ests. Even though a preference for measuring short-lived, broad-
leaved species can influence measured trait data which could 
overestimate, for example, SLA (Sandel et al., 2015), such bias is 
found to be small for European trees and should have little influ-
ence on our results because LPJmL-FIT clearly separates between 
broad-leaved and needle-leaved trees and focuses on trees only. 
The model is capable of simulating potential natural vegetation 
without prescribing the spatial extent of PFTs via bioclimatic limits 
and without prescribing the functional traits in question (e.g. SLA, 
LL, WD). Therefore, it enables to investigate the interaction be-
tween environmental and competitive filtering in European natural 
forests in an unprecedented manner.

Simulated ranges for SLA (BL-S and BL-E) and WD (BL-E and 
needle-leaved trees) are smaller than observed (Figure 2 and Table 
S2). Heat and drought stress as well as light availability (seasonal, 
vertical canopy structure) influence growing conditions of trees. 
These climate factors act as environmental filter favouring plant 
strategies that are adapted to the local climate. Tree growth effi-
ciency influences tree competitiveness and its capacity to reach 
the top layer in the canopy and gain most light in temperate and 
boreal forests. Therefore, competitive filtering is the second driver 

of trees surviving and growing in a forest patch. Additional pro-
cesses not yet explicitly captured by LPJmL-FIT might explain the 
remaining trait variability and include: (a) dispersal and adaptive 
responses (incl. phenotypic plasticity of traits), (b) nutrient avail-
ability (e.g. nitrogen limitation), (c) variable rooting strategies and 
disturbances other than fire (Van Bodegom et al., 2012; Douma 
et al., 2012) and (d) trade-offs between different trait combina-
tions and species capacities to tolerate multiple environmental 
stresses simultaneously (Laanisto & Niinemets, 2015; Niinemets 
& Valladares, 2006). While the influence of adaptive responses on 
trait distribution is perhaps difficult to measure, including nutri-
ent availability would introduce another niche axis and perhaps 
differentiate the trade-off with SLA in the LES better. Variable 
rooting strategies could alleviate water stress in seasonally dry 
environments and increase growth efficiency, hence tree height 
of Mediterranean forests (cf. Figure S3). We have included fire 
disturbance in LPJmL-FIT, which simulates high fire activity in the 
Mediterranean forests, less in boreal and low fire activity in tem-
perate forests, but other disturbance agents such as windthrow 
or frost could also further diversify plant strategies, and thus in-
crease the width of the simulated trait distribution. Implementing 
these disturbances into LPJmL-FIT would be expected to decrease 
the competitiveness of the BL-S trees in boreal and mountainous 
forests, and thus further restrict their spatial extent.

Specific model functions determine the model outcome. The 
phenology parameter (Table S1) influences GPP, growth efficiency 
and thus the performance of a tree in the forest patch. In exchange 
with climate conditions, the phenology parameters determine the 
spatial distribution of the PFTs, including grasses. The trade-off 
between SLA and LL defines the carbon cost for leaves (or nee-
dles) under specific climate conditions which then determine the 
length of the growing season, and thus vegetation productivity. 
With more SLA and LL measurements available for temperate for-
ests, this relationship could be adjusted and contribute to further 
reduce modelling error of the simulated trait distribution (Figure 2). 
The WD-dependent mortality function (see Equation (2)) influences 
simulated biomass, therefore more data on WD and tree mortality 
would help to improve parameterization of this function. Further 
reductions in the model error of simulated WD distribution, tree 
height and biomass could be expected.

Plant-trait validation would profit from more and better resolved 
plant trait measurements in natural forests in Europe. In this study, 
we had to aggregate several TRY sites and also to merge T-NL and 
B-NL to validate simulated trait distributions. Ideally, trait measure-
ments at FLUXNET sites, where we can evaluate both productiv-
ity and plant traits, would allow high resolution and in-depth model 
evaluation. With these consistently measured data available, model 
evaluation could be extended to water fluxes and biomass as well 
as stand structure and their related plant traits. Alternatively, re-
motely sensed traits which are already available at the Laegern site 
(cf. Schneider et al., 2017) or emerging from global remote-sens-
ing missions (cf. Jetz et al., 2016; Ma et al., 2019) could be used in 
the future. However, cross-validation experiments are required to 
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compare spatially continuous traits observed from remote sensing 
to traits simulated by DGVMs using flexible-individual traits, but ap-
proaches are underway (cf. Garonna et al., 2018; Lausch et al., 2018). 
Simulated trait maps for SLA and WD can be validated against inter-
polated observed trait maps (Butler et al., 2017; Šímová et al., 2018), 
even though observed trait distributions include those from highly 
managed forests. Interpolated trait maps, which combine plant trait 
data with actual species’ presence data, can lead to a potential bias 
in data-model comparison because species are planted in managed 
forests. Generating trait maps which use potential natural species 
distribution would improve such data-model comparison because 
they would be closer to the spatial trait distribution that would result 
from environmental and competitive filtering, for example, at local 
scales (Benavides, Scherer-Lorenzen, & Valladares, 2019). Model-
data comparison could be improved with a) more trait data being 
extracted in natural vegetation and extrapolated using species dis-
tribution data to the continental scale; and b) allowing for a better 
overlap of observed versus simulated plant traits such as leaf N (ob-
servation available but simulated map missing) or WD (observation 
missing, but simulated map available).

4.2 | Community-assembly effects on traits and FD 
across Europe

Community assembly at a site results from dispersal or migration, 
environmental filtering of trait combinations adapted to local climate 
and finally plant competition (Bernard-Verdier et al., 2012). In the 
adapted LPJmL-FIT model, trait combinations are drawn from ob-
served ranges for SLA and WD. It principally means that any con-
ceivable trait combination can establish everywhere at any time 
for every PFT without explicitly considering trait inheritance or 
seed dispersal. Currently, surviving trait combinations in the model 
represent those trees whose traits are best suited to local climate 
and the competitive conditions in the established tree community. 
Therefore, environmental filtering interacts with competitive filter-
ing and reproduces observed trait distributions and productivity of 
natural forests. Scaling up to the whole study region, SLA and WD 
gradients emerge along climatic gradients and reflect variability in 
trait ranges.

Simulated SLA cover a wide temperature and precipitation range, 
separated by SLA ranges as observed for the four PFTs in Europe. 
Where cold temperatures and light increasingly limit productivity, 
that is, in the boreal zone, simulated SLA for BL-S increases, meaning 
trees with extremely high SLA and short LL survive cold winters and 
grow in short summers. The shift towards higher WD in southern 
Europe indicates a local adaptation to seasonally dry Mediterranean-
type climate. In general, the increasingly dry climate filters higher 
WD for BL-E and T-NL which indicates better adaptation to drought.

The identified spatial FD patterns reflect the combined effect 
of environmental and competitive filtering. The influence of climate 
on surviving plant strategies and their coexistence are reflected in 
the occupied trait space. FR is high where trait clusters of different 

PFTs are distant and thus cover a large volume of the trait space. In 
high-elevation areas and the boreal zone, BL-S adapt to high SLA 
values and lower LL because of shorter vegetation periods lead-
ing to a wider functional gap in these two traits between BL-S and 
B-NL trees. FR is small due to small trait variation, where only BL-S 
trees dominate the patches of temperate forests (Figure 5). In the 
Mediterranean region, FR is comparable to temperate forests be-
cause lower tree heights limit trait space and counteract the effect 
of diverse leaf strategies. In the southern Mediterranean, where tree 
growth reaches its limits, FR decreases because few niches can be 
occupied under the dry climate conditions.

Functional divergence describes the diversity of co-existing 
functional strategies. A high FDv illustrates a high degree of niche 
differentiation, thus high competitive exclusion or intense competi-
tive interaction (Garnier et al., 2016; Mason et al., 2005; Villeger et 
al., 2008). The larger the influence of environmental filtering through 
abiotic stress, the more the trait distribution converges (Bernard-
Verdier et al., 2012). Maps of FDv (Figure 5) therefore illustrate 
the relative strength of environmental versus competitive filtering 
on trait composition. Where climate allows needle- and broad-
leaved trees to co-exist (in mountains, boreal forests, wet temper-
ate and Mediterranean forests), FDv is high because of the distant 
SLA distribution of BL-S and B-NL. In Mediterranean and temper-
ate climates, SLA distributions converge more, and FDv declines 
(Figure 5b). Interestingly, FDv declines further in the transition from 
temperate forests to boreal and to mountain forests respectively. 
Being dominated by BL-S, the performance of these trees declines 
as climate gets colder, thus the abiotic stress increases which leads 
to a less divergent distribution. Further north (or at higher elevation) 
the growing conditions for B-NL improve, thus their dominance in-
creases and increases FDv again. Physiological traits (SLA, WD and 
LL) converge at the transition from temperate to boreal forests, indi-
cating competitive exclusion. In contrast, in southern Mediterranean 
forests, increasing drought stress reduces tree height and favours a 
wide SLA range and higher WD (Figure 3, Figure S5), and thus the 
trait distributions diverge again, promoting co-occurring alternative 
strategies (Figure 5b, Figure S3). We find that such bi-modal changes 
in FDv reflect shifts between competitive exclusion, linked to physi-
ological traits (SLA, WD, and LL), and niche differentiation, linked to 
morphological traits (tree height).

Functional evenness quantifies the regularity of the distribution 
in the trait space, that is, niche occupation (cf. Mason et al., 2005; 
Villeger et al., 2008) and could be interpreted as a lower utilization 
of resources due to the more irregular occupation of the trait space, 
that is, environmental niches (cf. Mason et al., 2005). However, 
there are few studies which have investigated the changes in FE 
along climatic gradients. Recent studies focussed on changes in FE 
along disturbance gradients (e.g. Mouillot, Graham, Villeger, Mason, 
& Bellwood, 2013) and at the local scale (Pakeman, 2011). We find 
high FE in areas where dry and cold climate conditions limit tree 
growth and under wet (Atlantic) conditions. Increasing disturbances 
(fire) and climatic stress (drought) increase resource-use efficiency 
as suggested by Pakeman (2011). In highly stressed environments, 
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no strategy can dominate, thus functional traits are more evenly 
distributed. Low FE is found in mixed temperate forests and in the 
transition from temperate to boreal forests, where BL-S and B-NL 
occupy distant parts of the trait space. At the Pan-European scale, 
FE does not follow a unique climatic gradient which could be inter-
preted as habitat filtering as suggested by Pakeman (2011). In our 
study, it is rather a combination of environmental and competitive 
filtering within and across PFTs.

We computed FR, FDv and FE from four traits following the ap-
proach of Villeger et al. (2008) as implemented for the Laegern site 
in Schneider et al. (2017). The FD indices change with the traits con-
sidered and the dimensionality of the trait space. At the Laegern site, 
we compute FR values one order of magnitude lower than published 
in Schneider et al. (2017) because we calculate FR for a four- instead 
of a three-dimensional trait space. In contrast, we derived compara-
ble FDv and slightly lower FE values for the Laegern site (Schneider 
et al., 2017). A direct comparison between remotely sensed and sim-
ulated FD based on three traits is of interest and relies on directly 
comparable trait spaces and indices. Quantification of FD indices 
strongly depend on the type of traits (physiological vs. morpholog-
ical) and the context of their interpretation, for example, niche dif-
ferentiation or ecosystem functions to which the considered traits 
relate. Comparing site-specific FD indices based on similar traits 
where also trait observations are available would be a great step 
forward to evaluate site-specific FD and its changes along climatic 
gradients at the regional as well as continental scale. Model-data 
comparison can help to further investigate the importance of spatial 
scale or abiotic gradients at the landscape scale, where DGVMs with 
flexible individual traits such as LPJmL-FIT can be used to test and 
explore respective FD hypotheses to advance biodiversity–ecosys-
tem functions theory (Hisano, Searle, & Chen, 2018).

Trees occupy trait ranges within each PFT allowing different 
PFTs to co-exist as a result of FD, tree demography and disturbance 
in all biomes. Site-specific water availability and temperature have 
been shown to influence functional composition in temperate for-
ests emphasizing the importance to investigate FD along climate 
gradients (Zhang et al., 2018).

We find high FD in European natural forests not only for temper-
ate forests as found by Liebergesell et al. (2016) but also for boreal 
and Mediterranean forests. The simulated community assembly of 
European biomes can be explained by the interplay between envi-
ronmental and competitive filtering: 

1.	 In the boreal zone and in high-mountain areas (e.g. Carpathian 
Mountains, Alps or the Pyrenees) the growing season is short, 
and needle-leaved trees (low SLA), which keep their leaves longer 
(high LL) but grow relatively fast due to low WD, are the dom-
inant tree growth strategy mostly as a result of environmental 
filtering. B-NL trees have high resistance to cold temperatures 
and their evergreen strategy allows them to fully exploit the 
short growing season (see Table 1). In contrast, broad-leaved 
trees (BL-S), which are more prone to cold temperatures and 
have to unfold their thin, short-lived leaves at the start of TA
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the growing season, have a disadvantage under this climate. 
Nevertheless over a wide range within the boreal zone, B-NL 
trees are accompanied by BL-S trees. This means, in this range 
environmental and competitive filtering are not strong enough 
to select for B-NL trees only and both growing strategies can 
co-exist. Competitive filtering though pushes BL-S towards lower 
LL and higher WD as in the temperate zone, which minimizes 
the overlap of trait values between the two PFTs (Figure 1). 
Due to the BL-S and B-NL co-existence, a wide trait space 
(high FR) is covered in which trait combinations are mostly 
evenly spaced (high FE) and divergent (high FDv), allowing for 
relatively high resource-use efficiency. The same effect applies 
further South towards the temperate zone, where B-NL trees 
can still be found in mixed temperate forests.

2.	 In the temperate zone, climate supports a longer growing sea-
son, higher productivity and biomass. Here, BL-S trees dominate 
due to competitive filtering. Their tolerance of warmer tempera-
tures together with low carbon investment in short-lived and thin 
leaves (Table 1) makes this PFT very competitive along a large 
climate gradient. Moreover, towards warmer and drier climate 
conditions, the WD of BL-S trees increases to survive this climatic 
stress keeping this PFT dominant. The clear PFT dominance de-
creases FR, and leads to intermediate FE and FDv. Towards the 
Mediterranean zone new tree growth strategies (BL-E, T-NL) 
enter the forest community with milder winter and drier summer 
changing environmental filtering effects.

3.	 In the Mediterranean zone, forests are stressed by drought and 
warm temperatures, therefore, limitations of growing conditions 
vary and environmental filtering plays an important role. BL-E and 
T-NL trees with low SLA and high WD are adapted to season-
ally dry summers and can therefore co-exist in complementary 
and regularly spaced niches which confirms previous findings 
(Carnicer, Barbeta, Sperlich, Coll, & Penuelas, 2013). Whereas 
BL-E trees tolerate warm temperatures and drought, T-NL trees 
are specialists for warm, dry and fire-prone environments (Table 
1). Given those dynamic changes in niche occupation, FE and 
FDv are high in mountainous areas and in the semi-arid southern 
Mediterranean areas. Where T-NL dominate FDv is slightly lower, 
that is, niche occupation being less diverse.

5  | CONCLUSION

We introduce a new generation, large-scale vegetation model for 
Europe allowing to dynamically simulate FD on a continental scale, 
alongside with productivity and tree demography. Approximating 
competition of individual trees with randomly selected functional 
trait combinations has proven successful to reproduce trait pat-
terns, productivity and tree demography of natural forest ecosys-
tems. Whereas some trait ranges are constrained by PFTs (SLA), 
others follow similar climatic gradients across all PFTs (WD). These 
results complement the currently available data of trait distributions 

derived from Earth observation data, and allow large-scale estimates 
of FD across Pan-Europe. We demonstrate how FR, FDv and FE vary 
strongly across Pan-Europe and emerge from environmental and 
competitive filtering alike. Co-existence of functionally diverse trees 
results from plant trait diversity, tree demography and disturbance 
under varying strength of environmental and competitive filtering.
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