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ABSTRACT

Most impact studies using downscaled climate data as input assume that the selection of few global climate

models (GCMs) representing the largest spread covers the likely range of future changes. This study shows

that including moreGCMs can result in a very different behavior.We tested the influence of selecting various

subsets of GCMs on the climate change signal over Poland from simulations based on dynamical and

empirical–statistical downscaling methods. When the climate variable is well simulated by the GCM, such as

temperature, results showed that both downscaling methods agree on a warming over Poland by up to 28 or
58C assuming intermediate or high emission scenarios, respectively, by 2071–2100. As a less robust simulated

signal through GCMs, precipitation is expected to increase by up to 10% by 2071–2100 assuming the in-

termediate emission scenario. However, these changes are uncertain when the high emission scenario and the

end of the twenty-first century are of interest. Further, an additional bootstrap test revealed an un-

derestimation in the warming rate varying from 0.58 tomore than 48C over Poland that was found to be largely

influenced by the selection of few driving GCMs instead of considering the full range of possible climate

model outlooks. Furthermore, we found that differences between various combinations of small subsets from

the GCM ensemble of opportunities can be as large as the climate change signal.

1. Introduction

The changing climate impacts society and ecosystems

in a broad variety of ways. For example, climate change

affects human health, can cause damage to property and

infrastructure, affect the crop yield, and cause changes to

forests (Field et al. 2012). Global climatemodels (GCMs)

combined with projections of greenhouse gas concentra-

tions form the basis to assess climate projections in the

future. The GCMs are designed to simulate large-scale

phenomena and processes; however, they are not capable

of providing local details on a country level. Therefore,

downscaling techniques continue to be used as unavoid-

able alternatives to provide local climate informationmore

accurately. There are two commonly used strategies in

downscaling: regional climate downscaling, also referred

to as dynamical downscaling (DD), and empirical–

statistical downscaling (ESD).

In most regional or local climate impact studies, there

has been an increasing demand in selecting a smallDenotes content that is immediately available upon publica-

tion as open access.
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number of climate simulations in order to reduce com-

putational costs (Vano et al. 2015). Ideally, models that

are employed in the simulation framework should rep-

resent the observed climate well (Lutz et al. 2016) and

cover the range of future climate scenarios appropri-

ately (Lutz et al. 2016; Vano et al. 2015), at least for the

(climate) variable(s) under investigation and the region

of interest. Often, the multimodel ensemble provides an

overall good estimation of future climate at continental

scales; however, individual models’ performance vary

for different regions, variables under investigation, and

evaluation metrics, causing the subselection process to be

subjective and based on the priorities and background of

users (Pierce et al. 2009; Overland et al. 2011).

There are few key climatic aspects for selecting a

subset of climate model simulations that are generally

required. For instance, Pierce et al. (2009) indicated the

importance of including climate simulations with per-

turbed initial conditions to reduce biases caused by the

effects of natural internal climate variability. They also

demonstrated that the good performance of the multi-

model ensemble mean is often caused by the cancellation

of systematic errors in the individual global models.

Overland et al. (2011) underlined 1) the large-scale climate

physics and 2) the use of a multiple models instead of a

single one as key elements in choosing a subset of climate

models simulations. McSweeney et al. (2012) emphasized

the need of a reliable sampling strategy to extract the

most credible information on regional climate change,

while minimizing the redundancy in climate model

simulations and hence reducing the computational time

and costs. Mendlik and Gobiet (2013, 2016) argued

that a representative subset of simulations enhances the

quality of the ensemble as it excludes redundant simu-

lations that would lead to biased statistics. Similarly,

Wilcke and Bärring (2016) suggested the use of more

specific information around the requirements of the

impact study in climate model selection so that the

characteristics of the subset fit the purpose of the re-

search more appropriately. By selecting models having

small biases in the present-day seasonal cycle, Herger

et al. (2017) were able to considerably reduce the de-

pendence between the members while maintaining

‘‘acceptable’’ spread in their projections. Most of the

studies mentioned above have assumed that selecting a

few GCMs that represent the largest spread in the

multimodel ensemble of simulations would systemati-

cally lead to covering the largest sensitivity of the driven

regional climate model (RCM) or local climate model.

To our knowledge, this statement has never been tested,

and different combinations of GCM–RCM may also

lead to unexpected climate responses, hence, affecting

the spread of the climate signal.

There have also been various applications of ESD

approaches to project climate information at local scale

into the future as an alternative to the dynamical

downscaling (Benestad 2008; Huth 2002; Mezghani and

Hingray 2009; Wilby et al. 1998). In basic terms, ESD

tries to establish a direct statistical link between the

large-scale climate variables, for example, as simulated

by the GCMs, and the target local climate variables, for

example, as measured by the observational network. A

more detailed discussion of ESD approaches can be

found in Maraun et al. (2015), Takayabu et al. (2016),

and in textbooks such as Benestad et al. (2008) and

Maraun and Widmann (2017). An exhaustive list of

studies is given below. Pioneering works were done by

Wilby (1998), who implemented a statistical downscal-

ing of daily precipitation using daily airflow and seasonal

teleconnection indices. The use of ESD moved on with

Huth (2002), who used statistical downscaling to estimate

daily temperature in Central Europe. Later, Linderson

et al. (2004) proposed using statistical downscaling to

construct scenarios of precipitation in southern Sweden.

It was also evident that ESD methods were useful tools

for assessing uncertainties as they are able to account for

the spread in large multimodel ensembles (e.g., Benestad

2002; Schmidli et al. 2007). For instance, Chen et al. (2006)

used the method to quantify the uncertainty originating

from using GCMs in regional precipitation changes over

Sweden. Few attempts have also been made by com-

paring ESD results with those from dynamical down-

scaling in simulating climate variables (Hellström et al.

2001;Haylock et al. 2006; Chen et al. 2012). For instance,

Busuioc et al. (2001) found a good agreement between

the two methods in estimating winter precipitation

changes over Romania. Similarly,Mezghani et al. (2017)

found a good agreement in simulating temperature warm-

ing over Poland; however, disagreements in simulating

precipitation changes are obtained, especially when a high

emission scenario and the endof the century are considered.

Much of the downscaling within the climate science

community is coordinated within a project of the World

Climate Research Programme’s (WCRP) project known

as the Coordinated Regional Downscaling Experiment

(CORDEX; Giorgi and Lionello 2008). Within this proj-

ect, an ensemble of high-resolution regional climate pro-

jections for Europe (EURO-CORDEX, the European

branch of the CORDEX initiative) have been made avail-

able for use in climate change impact, adaptation, and

mitigation studies (Jacob et al. 2014). Even though the

EURO-CORDEXensemble size is considered to be large

(’15) by the RCM community, the regional climate sim-

ulations are usually based on few (,10) GCMs. Similarly,

an ESD branch of the CORDEX experiment has recently

been implemented following recommendations from
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the IPCC (2007) (http://cordex.org/domains/cordex-esd/)

and aims at supporting joint DD and ESD activities.

This, for instance, permits increasing the size of down-

scaled ensembles because ESD is less time consuming.

Therefore, one could expand the projections to the large

ensemble, and one might improve the projected outcome

by taking into account for uncertainties associated with the

ensemble spread.

Themain objective of this paper is to assess the impact

of selecting a subset of GCMs being used in regional or

local impact studies over Poland. As most of the above

studies have assumed that the selection ‘‘should’’ pre-

serve the full spread of the climate change signal, an

additional test using a bootstrapping technique is per-

formed on raw GCM results by resampling all possible

combinations of selected GCMs and multimodel en-

semble sizes. A secondary objective is to evaluate how

robust (i.e., whether the two downscaling strategies

agree or not) is the simulated climate change signal by

confronting results of local climate projections based on

dynamical and empirical downscaling strategies. The cli-

mate impact is defined here in terms of mean and spread

of the future climate, based on temperature (as a robust

climate variable simulated by the models) and pre-

cipitation (as a less robust simulated signal through

GCMs). We also made use of the statistically based ESD

simulations to investigate themore physically based ones,

as it can easily be extended to cover the full set of global

climate simulations based on phase 5 of the Coupled

Model Intercomparison Project (CMIP5). The study has

been conducted over Poland because a collection of high-

resolution gridded observational and climate-projection

datasets is publicly available (http://data.4tu.nl/repository/

collection:CHASE-PL).

2. Data

a. CMIP5 GCMs

CMIP5 (WCRP 2011) comprises a set of multimodel

ensembles of climate projections that follow different

representative concentration pathways (RCPs). We

used climate runs following the intermediate RCP4.5

and the high RCP8.5 emission scenarios. There are 108

runs for temperature and 105 runs for precipitation as-

suming the RCP4.5 emission scenario, and there are 81

runs for temperature and 77 runs for precipitation as-

suming the RCP8.5 emission scenario. The above runs

include those that have perturbed initial conditions and

cover the period 1900–2100, as described in Taylor et al.

(2012). Table B1 in appendix B shows the distribution of

the different model runs by the corresponding institution

and for each climate variable.

b. Bias-corrected EURO-CORDEX simulations

The RCM simulations consist of 18 bias-corrected

EURO-CORDEX simulations for the period 1949–2100

produced within the CHASE-PL project: Climate change

impact assessment for selected sectors in Poland (http://

www.chase-pl.pl). The CHASE-PL climate-projection

dataset (CPLCP-BCDPT5) was created by Mezghani

et al. (2016) and contains adjusted historical and pro-

jected daily minimum and maximum air temperatures

and precipitation totals of nine regional climate simu-

lations following the two representative concentration

pathways RCP4.5 and RCP8.5 (Table 2).

c. Definition of the various multimodel ensembles of
projections

To assess the influence of selecting few simulations

from the multimodel ‘‘ensemble of climate opportunities’’

such as CMIP5-based simulations, we constructed various

multimodel ensembles of climate projections depending

on the 1) driving GCMs and 2) downscaling method in-

volved in the simulation framework. In total, we identified

five (sub) ensembles of simulations for each climate vari-

able (Table 1) that will be subject to various tests and an-

alyses. These are theGCM-All ensemble of all CMIP5 raw

GCM simulations (i.e., no downscaling is involved), the

DD-All (also referred to as DD for simplicity) bias-

corrected EURO-CORDEX simulations as described in

Table 2, the ESD-All (also referred to as ESD for sim-

plicity) ensemble of all empirical–statistical downscaled

simulations, and the GCM-Com and ESD-Com as

subsamples of GCM-All and ESD-All ensembles by

keeping the set of simulations based on the common

GCMs used in both DD and ESD only. Then, near- and

far-future changes in temperature and precipitation are

estimated for each of the predefined ensembles de-

scribed above and for both the RCP4.5 and RCP8.5

emission scenarios.

3. Downscaling methods

Projections of local climate over Poland involved two

widely used downscaling methods such as dynamical and

empirical–statistical downscaling (Fig. 1). Details on how

thesemethods are implemented and used in this study are

described below along with a developed strategy on how

one could achieve a fair comparison of the downscaled

results.

a. Dynamical downscaling

TheDD is based on bias-correctedEURO-CORDEX

RCM simulations (section 2). The bias-corrected

procedure follows Gudmundsson et al. (2012), which
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attempts to adjust the distribution of simulated training

data so that they fit closely to the observed climatology.

The quantile-mapping approach was used to correct any

systematic biases in the RCM simulations (Piani et al.

2010). The quantiles of the simulated time series were

then mapped on to the observed ones at each grid cell

and the number of quantiles was set to 1000. Further, a

constant model bias similar to the one proposed by Boé
et al. (2007) was used to enable simulating values lying

outside the range of the training period including an ad-

justment of the wet-day frequencies between observa-

tions and simulations. Furthermore, the RCM outputs

weremappedonto the high-resolution (53 5km) gridded

daily precipitation and temperature dataset (GDPT5;

Berezowski et al. 2016) to produce high-resolution pro-

jections of gridded daily precipitation and temperature

for the three time slices: 1971–2000 (historical), 2021–50

(near-future horizon), and 2071–2100 (far-future horizon),

as described in section 2. Additional details about the bias

correction procedure used in this study are presented in

Mezghani et al. (2017). A validation of both downscaling

methods is presented in appendix A.

b. Empirical–statistical downscaling method

In this study, a similar approach as proposed by

Benestad (2001) was adopted. First, common-empirical

orthogonal functions (common-EOF) were applied to

the reanalysis and modeled fields by the global models

to extract common spatial patterns to define the pre-

dictors. Then, part of the corresponding principal com-

ponents associated with the reanalysis (in this case,

NCEP reanalyses) was used to calibrate the empirical–

statistical model while the corresponding spatial

pattern associated with the GCM was used for the

downscaling (identical spatial patterns). Similar to

EOFs, the predictand was represented by a set of

principal components—as in Benestad et al. (2015)—

computed on the set of available weather stations to

represent local climate patterns. Further, large-scale

fields of 2-m air temperature and precipitation were

TABLE 1. Definition of the multimodel ensembles based on the ‘‘ensemble of opportunities’’ of CMIP5 simulations. The first column

gives the acronym of the defined ensemble or experiment. A short description of the simulations that belong to each ensemble or

experiment being tested is given in the second column. The third and fourth columns show the number of runs and the corresponding

GCMs for both temperature T and precipitation P assuming intermediate (RCP4.5) and high (RCP8.5) emission scenarios.

No. of simulations

Expt Description RCP4.5: T—P RCP8.5: T—P

GCM-All Ensemble of all CMIP5 GCM simulations as described

in Table B1

108—105 runs 81—78 runs

39—36 GCMs 35—35 GCMs

DD-All Ensemble of all EURO-CORDEX bias-corrected

simulations as defined in Table 2

9—9 runs 9—9 runs

414—414 GCMs1RCMs 414—414 GCMs1RCMs

ESD-All Ensemble of all ESD simulations 108—105 runs 81—78 runs

39—36 GCMs 35—35 GCMs

GCM-Com Ensemble of the subset of GCM-All based on common

GCMs used in both DD and ESD

9—8 runs 9—7 runs

4—4 GCMs 4—4 GCMs

ESD-Com Ensemble of the subset from ESD-All based on the set

of GCMs common to both DD and ESD

9—8 runs 9—7 runs

4—4 GCMs 4—4 GCMs

TABLE 2. Summary of the CORDEX simulations. The simulations are based on a combination of RCMs in which the lateral boundary

conditions are driven by GCMs. ICHEC is the Irish Centre for High-End Computing. Other GCM institute expansions can be found

online (https://www.ametsoc.org/PubsAcronymList). The institute expansions for the RCMs can be found online (https://is-enes-

data.github.io/CORDEX_RCMs_info.html).

No.

GCM RCM

Institute Model Run Institute Model Period

1 CNRM-CERFACS CNRM-CM5 r1i1p1 CLMcom CCLM4-8-17 1 Jan 1950–31 Dec 2100

2 CNRM-CERFACS CNRM-CM5 r1i1p1 SMHI RCA4 1 Jan 1970–31 Dec 2100

3 ICHEC EC-EARTH r12i1p1 CLMcom CCLM4-8-17 1 Dec 1949–31 Dec 2100

4 ICHEC EC-EARTH r12i1p1 SMHI RCA4 1 Jan 1970–31 Dec 2100

5 ICHEC EC-EARTH r1i1p1 KNMI RACMO22E 1 Jan 1950–31 Dec 2100

6 ICHEC EC-EARTH r3i1p1 DMI HIRHAM5 1 Jan 1951–31 Dec 2100

7 IPSL IPSL-CM5A-MR r1i1p1 SMHI RCA4 1 Jan 1970–31 Dec 2100

8 MPI M-MPI-ESM-LR r1i1p1 CLMcom CCLM4-8-17 1 Jan 1970–31 Dec 2100

9 MPI M-MPI-ESM-LR r1i1p1 SMHI RCA4 1 Dec 1949–31 Dec 2100
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used as predictors to project local mean temperature

and precipitation, respectively.

c. Enabling a fair comparison of the
downscaling methods

Both DD and ESD make use of independent sources

of information to downscale climate information and are

often designed for different research questions. This

makes them more powerful when combined, as con-

verging results would suggest a more robust signal. They

have different strengths and weaknesses, and in some

cases, one may outperform the other. For instance, ESD

can only provide projections for variables for which long

and good quality of observational datasets are available,

but because of its low computational demands it is well

suited for downscaling large multimodel ensembles

(Benestad et al. 2016). DD, on the other hand, can

provide a more complete picture of the processes in-

volved and does not require a full set of observations,

but it is more computationally expensive and is typically

applied to a smaller ensemble of GCM runs. Observa-

tions are important in both DD and ESD for validation

purposes that are often necessary before the downscaled

results can be used in impact studies (cf. appendix A).

Whereas the ESD method was applied to observations

from selected weather stations and using the full set of

CMIP5 GCMs, DD used gridded datasets and a small

subset of GCMs. This makes the comparison between

the two downscaling methods difficult to achieve. To do

so, the DD projections were additionally bilinearly in-

terpolated onto the set of weather stations used in ESD.

Downscaled values from both strategies were then aver-

aged over all common GCMs and locations. To enable a

fair comparison between the two downscaling strategies,

we selected the common set of GCMs employed in the

two downscaling strategies. The selection led to a limited

number of four GCMs, which are marked with stars in

TableB1 and are summarized inTable 2. ESD results were

additionally weighted on the basis of how many times the

driving GCMs have been used in regional downscaling

(i.e., different RCMs driven by the same GCM).

4. Results

a. Projected future climate changes based on the
small set of common GCMs

Seasonal and annual changes in projected tempera-

tures and precipitation by both ESD and DD methods

assuming the intermediate and high emission scenarios

are presented in Table 3 and Figs. 2 and 3. Remember

that here the changes are derived from the all bias-

corrected DD dataset (DD-All, similar to DD) and

the ESD-Com subensemble of common GCMs to

both downscalings. Results are presented in Table 3 for

projected seasonal and annual changes in mean tem-

perature (absolute changes; 8C) and monthly sums of

precipitation (relative changes; %) by the near future

(2021–50) and far future (2071–2100) and assuming

both intermediate (RCP4.5) and high (RCP8.5) emis-

sion scenarios.

1) PROJECTED CHANGES BY THE DYNAMICAL

DOWNSCALING

Projections made by the dynamical downscaling sug-

gest increasing temperature in the future over Poland

(Table 3). The annual mean temperature over Poland is

expected to rise by 1.18 and 1.38C for the period 2021–

50 and by 2.08 and 3.68C for the period 2071–2100, as-

suming the RCP4.5 and RCP8.5 emission scenarios,

respectively. Results also exhibit low seasonal varia-

tions, except for winter RCP8.5 by 2071–2100 indicat-

ing an increase by up to 4.48C. On average, there are

small intermodel deviations varying approximately

about 0.58 and 1.08C on an annual and seasonal basis,

respectively. Similarly to temperature, DD projected

annual means of monthly sums of precipitation are

FIG. 1. Schematic diagram of the two downscaling strategies: (A) ESD and (B) DD.
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expected to increase for both future time horizons and

emission scenarios. On average, the rate of precipitation

increase is expected to be about 6% and 10% assuming

the RCP4.5 emission scenario and about 8% and 16%

assuming the RCP8.5 emission scenario. The strongest

increases are expected to occur in winter and spring

reaching up to approximately 30% by the far future ho-

rizon (2071–2100). However, summer changes exhibit a

low and steady increase by about 5% regardless of the

future horizon and the emission scenario of interest.

Model differences in simulating precipitation changes

were also found to be large and vary between 28% for

spring and 144% for winter for the period 2071–2100

when assuming the RCP8.5 emission scenario.

2) PROJECTED CHANGES BY THE SMALL ESD
ENSEMBLE

Like DD projections, ESD-Com based projections

indicate a ubiquitous warming over Poland in the near

and far futures and the annual warming rate is estimated

to be about 1.08C and 2.28C, respectively, assuming the

intermediate emission scenario RCP4.5. This warming

accelerates and is expected to reach 4.78C by the end

of the twenty-first century assuming the high emission

scenario RCP8.5. On a seasonal basis, results show low

variations among seasons for the RCP4.5 emission sce-

nario and enlarged for the RCP8.5 emission scenario.

Seasonal changes are not consistent and depend on time

horizon and the emission scenario of interest. For instance,

the highest increase is expected to occur in summer (1.28 6
0.58C) for the RCP4.5 emission scenario, whereas it is

expected to occur in spring (8.68 6 2.58C) when consid-

ering the high emission scenario (RCP8.5). In contrast to

temperature, projected precipitation show inconsistencies

in simulating future changes. Assuming the RCP4.5

emission scenario, results show that Poland is expected

to get more precipitation by about 5% in decades to

come. Unlike RCP4.5, projections based on the RCP8.5

emission scenario reveal uncertain changes indicating

wetter or drier climate conditions over Poland, espe-

cially by the end of the twenty-first century. This in-

consistency remains on a seasonal level, except for

winter during which there is a general agreement among

ESD-Com simulations on an increase in monthly sums

of precipitation, reaching up to ’40% by 2071–2100

assuming the RCP8.5 emission scenario. However, it

exhibits a large ensemble spread that varies between27%

and 177% (Table 3).

3) COMPARISON OF PROJECTIONS BASED ON THE

COMMON SUBSET OF GCMS

The comparison between the two downscaling strat-

egies suggests that when the climate variable is well

simulated by theGCMs, which is the case for temperature,

the two methods show consistent results. It also indicates

that there is a close connection between the large-scale

patterns and the local response of temperature, for ex-

ample, between predictor and predictand as in ESD.

TABLE 3. Comparison between projected temperature and precipitation, as given by a summary of absolute changes in seasonal and

annual means of daily temperature DT and relative changes in seasonal and annual means of monthly sums of precipitation DP (%) by the

near (2021–50) and far (2071–2100) future time horizons and following the RCP4.5 and RCP8.5 emission scenarios, respectively. All

values are estimated from the common subset of GCMs and averaged over the selected weather stations. Values in parentheses indicate

the 5th and 95th percentiles, respectively, of the projected ensembles and, hence, represent the 90% confidence interval of the mean

estimates.

Scenario by horizon Method Winter Spring Summer Autumn Annual

DT (8C)
RCP4.5 by 2021–50 ESD 10.9 (10.4, 11.6) 11.2 (11.0, 11.4) 11.2 (11.1, 11.8) 11.2 (11.0, 11.4) 11.0 (10.9, 11.5)

DD 11.2 (10.3, 11.9) 11.0 (10.5, 11.8) 11.0 (10.6, 11.5) 11.1 (10.6, 11.6) 11.1 (10.7, 11.5)

RCP4.5 by 2071–2100 ESD 12.2 (11.2, 13.1) 11.9 (11.5, 12.2) 12.3 (11.8, 13.0) 12.1 (11.4, 12.5) 12.2 (11.5, 12.5)

DD 12.5 (11.2, 13.4) 12.0 (11.1, 13.0) 11.7 (11.2, 12.5) 11.9 (11.4, 12.6) 12.0 (11.3, 12.6)

RCP8.5 by 2021–50 ESD 11.7 (10.8, 14.9) 13.5 (12.1, 14.6) 11.5 (1.1, 12.1) 11.6 (20.1, 11.9) 11.6 (11.4, 13.3)

DD 11.4 (10.3, 12.4) 11.3 (10.8, 12.1) 11.1 (10.6, 11.4) 11.3 (10.6, 11.8) 11.3 (10.8, 11.8)

RCP8.5 by 2071–2100 ESD 15.1 (13.6, 112.2) 18.6 (16.4, 111.1) 14.0 (12.9, 15.8) 13.2 (10.5, 14.4) 14.7 (14.2, 18.3)

DD 14.4 (13.6, 15.5) 13.2 (12.4, 14.2) 13.2 (12.4, 14.1) 13.5 (12.7, 14.2) 13.6 (12.9, 14.1)

DP (%)

RCP4.5 by 2021–50 ESD 1 5 (27, 116) 1 9 (12, 116) 1 6 (25, 120) 1 2 (25, 111) 1 5 (21, 112)

DD 1 8 (22, 117) 1 8 (21, 121) 1 4 (26, 116) 1 6 (27, 120) 1 6 (11, 112)

RCP4.5 by 2071–2100 ESD 1 6 (211, 122) 1 4 (113, 124) 1 4 (210, 121) 1 0 (28, 18) 1 5 (22, 114)

DD 116 (14, 129) 118 (17, 129) 1 5 (29, 119) 1 7 (23, 117) 110 (14, 116)

RCP8.5 by 2021–50 ESD 114 (22, 132) 21 (212, 112) 23 (215, 113) 24 (216, 19) 12 (211, 117)

DD 110 (21, 127) 113 (12, 126) 1 5 (25, 115) 1 7 (23, 120) 1 8 (13, 114)

RCP8.5 by 2071–2100 ESD 136 (27, 177) 1 1 (225, 128) 215 (249, 126) 24 (233, 130) 24 (217, 19)

DD 127 (110, 144) 127 (112, 141) 1 6 (28, 122) 114 (25, 132) 116 (18, 126)
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When the climate variable is more difficult to predict by

the climate models, such as precipitation, the results of

the bias-corrected DD and ESD exhibit considerable

differences. This suggests that it is necessary to include

more thanonly precipitation to characterize the large-scale

pattern (the predictor) in the ESD procedure because the

large-scale precipitationmay not be able to carry a climate

change signal very well. The differencemay also be related

FIG. 2. Comparison between changes in raw (i.e., without downscaling; solid curves) and downscaled (dashed curves) global mean

temperature (8C) anomalies assuming the (a) RCP4.5 and (b) RCP8.5 emission scenarios over Poland. These are derived from rawGCM-

All ensemble (orange) and GCM-Com ensemble (dark cyan) and downscaled DD-All ensemble (blue), ESD-All ensemble (gray), and

ESD-Com ensemble (red). Area averages are estimated from the spatial domain covering Poland. Envelopes indicate the 5th and 95th

percentiles of the projected ensembles and, hence, represent the 90% confidence interval from the mean estimates. The legend displays

the different (sub) ensembles as described in Table 1, and the values in parentheses indicate the number of runs included in each global and

regional multimodel ensemble. Changes in annual mean temperature anomalies by the end of the twenty-first century (2071–2100) with

regard to the reference period (1971–2000) for each scenario and each ensemble are drawn as boxes and inner dots. Inside each box, the

mean (horizontal line) and the confidence interval (shading) are shown. The upper and lower limits of each box represent the minimum

and maximum values for small ensembles and the 5th and 95th percentiles for large ensembles. The dots highlight individual climate

model results. The numbers at the edges of each box refer to the EURO-CORDEX simulations described in Table 2.

FIG. 3. As in Fig. 2, but for monthly sums of precipitation (relative changes; %) anomalies.
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to the fact that temperature is less affected by local phe-

nomena and is more homogeneous in space, unlike pre-

cipitation, which can be more variable in space and more

affected by local conditions such as topography that are

misrepresented in coarse-resolution GCMs (e.g., more

than 18).
For projected seasonal changes in precipitation, our

results showmerely good agreement in themagnitude of

changes by 2021–50 assuming the RCP4.5 emission

scenario. However, they exhibit large discrepancies

when the end of the twenty-first century is considered;

which shows weaker increases in ESD projections for all

seasons than in bias-corrected DD projections, espe-

cially, when the RCP8.5 emission scenario is considered.

For instance, winter and spring precipitation changes by

ESD projections are expected to be about 16%

and 14%, respectively, whereas the bias-corrected DD

projections indicate higher increases of about 116%

and 118%, respectively. An exception is made for

winter, which shows similar order of magnitudes. Pro-

jected precipitation for autumn also differs depending

on the downscaling method. The ESD projections show

almost no changes (0%6 8%) in the ensemble mean by

2071–2100 assuming the intermediate emission scenario,

whereas the bias-corrected DD projections suggest an

increase of about 7% in monthly sums of precipitation,

with a range between 23% and 117% (Table 3).

Results also suggest a good agreement in both the

magnitude and spread of projected seasonal changes in

downscaled temperature, regardless of the representative

concentration pathway of interest (Table 3). The only ex-

ception was found in spring in which there was a stronger

increase in ESD than bias-corrected DD projections by

approximately 28C more in the near future (2021–50) and

58C more in the far future (2071–2100), assuming the

RCP4.5 and RCP8.5, respectively, and reaching up to

approximately198C by the end of the twenty-first century

when the high emission scenario is considered.

b. Impact of selecting few driving GCMs

To better understand the impact of the multimodel

ensemble size on the climate change signal over Poland, a

statistical test was performed using a bootstrapping

technique applied to the set of GCM simulations, that is,

using raw data without downscaling. The application of

this test can be summarized in the following steps:

1) Select a random subset of n climate model simula-

tions from the full ‘‘ensemble of opportunity,’’ that

is, CMIP5 ensemble. The subset represents then

one subset of C combinations of n climate model

simulations.

2) From this selection, estimate the mean value and

range (maximum 2 minimum) of the mean climate

change (temperature and precipitation) toward the

end of the twenty-first century (2071–2100) with

regard to the reference period (1971–2000).

3) Repeat steps 1 and 2 10 000 times to produce a

bootstrap distribution of the mean and range of

the climate change signal for ensembles of size n

(n 5 1, . . . , N).

4) Last, repeat steps 1–3 for increments of multimodel

ensemble sizes until the full ensemble is sampled

(e.g., N5 108 for the temperature ensemble assuming

the RCP4.5 emission scenario).

Because the CMIP5 ensemble includes multiple runs

for some of the GCMs, this test was applied in two dif-

ferent ways by allowing or not allowing resampling of

various realizations of the same GCM. This enables

evaluating the uncertainty that may arise from internal

climate variability (Deser et al. 2012). Although simu-

lations from different GCMs may have shared code and

developmental history and therefore are not guaranteed

to be independent of each other, the exclusion of simu-

lations from the same GCM reduces the interdepen-

dence within the ensemble. Results of the bootstrap test

(Figs. 4 and 5) show that reducing the ensemble size

can result in a large (positive or negative) bias in the

ensemble mean, regardless of the climate variable

and emission scenario of interest. This is evident from

the large spread in the mean climate change associ-

ated with low ensemble sizes (Figs. 4a,b and 5a,b) and

indicates that the ensemble mean can be heavily

skewed if many simulations sharing strong climate

change signal of the same sign are selected. A small

ensemble size is also associated with a systematic

underestimation of the range of possible climate

change outcomes (Figs. 4c,d and 5c,d). The poten-

tially misleading effect of a small ensemble size is

enhanced when the climate change signal is strong,

for example, when assessing the climate change

signal assuming the high emission scenario RCP8.5

(Figs. 4b,d and 5b,d). For the high emission scenario

(RCP8.5), the mean temperature change slightly in-

creases (0.28C) when limiting the sampling to only

one realization from each GCM (Fig. 4b); however,

for the intermediate RCP4.5 emission scenario (Fig. 4a)

and for precipitation (Figs. 5a,b), the mean change

signal remains unchanged while the uncertainty

around the spread is impacted. This suggests that al-

lowing resampling of multiple realizations from a single

GCM can, but does not always, lead to a biased esti-

mation of the ensemble mean and spread of the climate

change signal.
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5. Discussion

Both DD and ESD have their drawbacks and strengths,

and we believe that the combined use of the two

downscaling methods would be beneficial to pro-

duce reliable projections in the future. Contrary to

RCM output that can inform about both weather

and climate, a limitation of an empirical–statistical

downscaling method, such as the one implemented in

this paper, is that it gives information about the climate

only (i.e., fitting parameters of probability distribution

functions) and not the weather (i.e., reproducing day-by-

day patterns). Another limitation is the degree of appli-

cability of the ESD approach to other regions and climate

conditions that should also be tested, because it relies on

the place-specific relationship between large-scale pat-

terns and local climate response.

The temperature projections driven by the common

subset of GCMs show systematic weaker changes in the

mean temperature anomaly by almost 0.58C by 2071–

2100 and a systematically reduced ensemble spread in

the future compared to the full ensemble of available

simulations (Figs. 2 and 3). However, the bias-corrected

DD and ESD projections of temperature (Figs. 2 and 6)

agree well with each other both in terms of ensemble

mean and spread when the same subset of models is

taken into consideration. This lends support to both

FIG. 4. Bootstrap test of ensemble size impact on the projected temperature change over Poland by 2071–2100with regard to 1971–2000.

The calculations were based on random sampling from the CMIP5 ensemble of raw GCM temperature projections. The figures show the

(a),(b) mean and (c),(d) spread (maximum2minimum) of the temperature change as a function of the ensemble size assuming the (left)

intermediate (RCP4.5) and (right) high (RCP8.5) emission scenarios, respectively. The plots show results from two experiments, allowing

multiple simulations (blue) and only one GCMmember (orange) in the selection. The dots represent the estimated mean value, and the

thick and thin vertical segments represent the 90th confidence interval and the range from the bootstrap distribution, respectively. The

range derived from the bootstrap distribution is displayed between the minimum and maximum estimates.
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downscaling methods, but suggests that the sampling of

GCMs introduces a considerable bias (see section 4).

On average, downscaled projections indicate wetter

future climate conditions over Poland in decades to

come by assuming the intermediate emission scenario

(RCP4.5), especially when the subset of GCMs as those

used in the EURO-CORDEX simulations is consid-

ered. Figure 3 shows that, over all multimodel ensemble

means, annual mean precipitation is expected to increase

in the future regardless of the downscaling methods and

the time horizons of interest and tends to closely follow

rawGCM results (Figs. 6 and 7). The spread in simulated

precipitation changes is largely affected by the selection

of multimodel ensemble of projections. Ensembles based

on the common set of GCMs (i.e., GCM-Com and ESD-

Com) exhibit positive changes, whereas it is uncertain

whether precipitation will increase or decrease in future

when additional GCM simulations (i.e., large ensembles

such as GCM-All and ESD-All) are included in the

multimodel ensemble. Nevertheless, bias-corrected DD

tends to inflate the change signal in modeled precipita-

tion by GCMs (i.e., raw GCM results), whereas down-

scaling based on ESD tends to weaken the climate

change signal (see Figs. 6 and 7).

When assuming the RCP8.5 emission scenario, results

of projected temperature changes (Fig. 2b) suggest that,

if we discard the IPSL-CM5A GCM (simulation 7 in

Table 2) from the ensembles, both the magnitude and

the spread of temperature changes derived from the

ESD-Com and DD-All datasets become very close

and a better agreement between the twomethods will be

obtained. Results obtained with the IPSL-CM5A GCM

exhibits also extreme changes in temperature when the

DD results are considered. However, there are few

discrepancies between the methods in simulating pre-

cipitation changes. For instance, the downscaled ESD

ensemble mean is expected to decrease by 5% and is

slightly increasing in the ESD-Com subset. ESD results

FIG. 5. As in Fig. 4, but for projected precipitation change.
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also indicate inconsistencies between the subsets in simu-

lating the sign and magnitude of precipitation changes

toward the end of the twenty-first century. ESD-All en-

semble mean of changes in precipitation is almost zero,

whereas downscaling based on ESD indicates drier future

conditions down to 8% when considering the common-

GCM-based ensembles.

Similar to the results based on RCP4.5 emission sce-

nario, the bias-corrected DD results are consistent with

the raw GCM results and confirm increases in pre-

cipitation. This increasing rate is enhanced and can reach

up to 25% by the end of the twenty-first century (highest

values are simulated by simulation 7) when assuming the

high emission scenario (RCP8.5). Although raw GCM

FIG. 6. Scatterplots of the changes in temperature as modeled by GCMs (x axis) and simulated by the DD (blue points) and the ESD

(All: gray points and Com: red points)methods by the two horizons (a),(b) 2021–50 and (c),(d) 2071–2100 assuming the (left) intermediate

(RCP4.5) and (right) high (RCP8.5) emission scenarios. The numbers inside the points refer to the simulation number as described in

Table 2. The shaded area shows the 90% confidence zone derived from the ESD-All ensemble. Note that drawing a confidence zone for

small ensembles is meaningless because the number of simulations in both DD-Com and ESD-Com is equal to or less than 9. The dashed

line shows the line with slope 1 and intercept 0. Note also that the same coloring as in Fig. 2 has been used here.
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results exhibit increases in annual mean of precipitation

amount by about 10%, ESD results suggest altered pre-

cipitation change signal, showing in some cases a de-

creasing rate of precipitation by almost 25% (simulations

3 and 4). One explanation could be that modeled pre-

cipitation by the GCM, which is used as a predictor in the

ESD framework, does not seem to carry enough in-

formation about the climate change signal and including

other predictors would be necessary.

Of interest is that the subset of GCMs preserves both

the mean and spread of modeled precipitation (i.e., raw

GCM without involving downscaling) reasonably well

(Fig. 3) but that the two downscaling strategies show

considerable disagreement, especially for the high emis-

sion scenario. The intermodel variations in the ESD pro-

jections tend to follow the large-scale climate signal; hence,

they are more sensitive to the driving GCM (see Figs. 6

and 7). The bias-corrected DD projections, on the other

hand, produce a smaller range and stronger increase in

precipitation than the corresponding ESD-Com results.

This suggests that the bias-corrected RCMs are less

influenced by the driving GCM, possibly related to their

FIG. 7. As in Fig. 6, but for changes in precipitation.
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tendency to develop their own internal climate system

(Evans and Westra 2012). Although the bias-corrected

DD projections tend to slightly overlap with the ESD

projections for the near future (Fig. 3a), they show a

stronger increase in precipitation by the end of the

twenty-first century. The discrepancy between the two

indicates that one or both of the methods are flawed,

revealing large uncertainties in projecting precipitation

over Poland. However, both the downscaled results

(bias-corrected DD and ESD; Fig. 3) suggest that pre-

cipitation is likely to increase in future, although this

trend is uncertain. This further supports the findings of

Piniewski et al. (2017) who argued that changes in annual

precipitation were not robust for Poland, even though the

climate models agreed on an increase. The disagreement

in precipitation change between the two downscaling

methods becomes more evident for the high emission

scenario RCP8.5 in both the sign andmagnitude (Table 3).

The uncertainty originating from subsampling a se-

lection of GCM simulations (i.e., range of the estimated

values without including downscaling) tends to produce

large differences when compared to the full CMIP5 GCM

ensemble of climate simulations. For instance, given an

ensemble size of n 5 5 when sampling from different

GCMs (Figs. 4 and 5), has led to differences in the 90%

confidence interval by up to 618C by the end of the

twenty-first century when assuming the intermediate

emission scenario RCP4.5, which is doubled (628C) when
the high emission scenario (RCP8.5) is considered. This

suggests that the difference between various combinations

of small subsets from the CMIP5 ensemble of opportuni-

ties (including or not including the internal variability) can

be as large as the climate change signal, which is in line

with Dwyer et al. (2012) and Yettella and England (2018).

The impact of the subsampling is also clearly depicted

in Figs. 2 and 3, which compare projected annual mean

temperature (Fig. 2) and precipitation (Fig. 3) over Poland

derived from various datasets as defined in Table 1. The

selection of a small number of ‘‘representative’’ GCMs

seems to underestimate the projected temperature change

byDD and ESD over Poland. Both the magnitude and the

spread of the change are affected by the subsampling,

suggesting that the subsample in theCORDEXsimulations

does not cover the full range of possibilities in the CMIP5

ensemble. Even without involving any of the downscaling

methods, the projected temperature tends to be systemat-

ically underestimated by about 0.58C toward the end of the

twenty-first century and covers approximately one-half of

the full range spread of all available GCMs.

Although the RCM community is partly aware of the

need for increasing the number of GCMs used in re-

gional downscaling, as stressed by Zubler et al. (2016),

more work remains to be done. For instance, in the

Producing Regional Climate Projections Leading to Euro-

pean Services (PRINCIPLES) project (C3S_34b Lot2), al-

though the existing ensemble of regional climate simulations

for Europe will be extended to 10 GCMs, these efforts are

still limited to a very small proportion of CMIP5 (10 of 40

GCMs) orCMIP6 global climate simulations andhence lead

to a misrepresentation of the spread of the ‘‘effective’’ cli-

mate change signal on regional and local scales.

6. Conclusions

We made use of empirical–statistical methods and

demonstrated that selecting a subset of GCMs to run

RCMs, as in the CORDEX experiment, may lead to un-

der/over estimation of the magnitude and/or spread of the

climate change signal over Poland. For instance, the effect

of the subselection is clear for temperature (Figs. 2 and 4)

as indicated by an underestimation by about 0.58C in the

mean and by 18C in the spread of temperature change

assuming the intermediate RCP4.5 emission scenario, a

result that is doubled toward the end of the twenty-first

century and assuming the high RCP8.5 emission scenario.

Model selection can be done in a number of ways (e.g.,

(Herger et al. 2017; McSweeney et al. 2015; Knutti et al.

2017). The subset of models is often influenced by sub-

jective choices such as the metrics and methods of

evaluation as well as regions and variables of interest.

We demonstrated that a small ensemble size, as is typically

the case for most of the dynamically downscaled ensem-

bles (e.g., CORDEX simulations) as compared with ESD,

may not fully represent the uncertainty in the CMIP5 en-

semble of possible climate change outlooks over Poland.

There are substantial differences in the climate change

signal among climate model simulations, and a random

or even more sophisticated selection method of few

GCMsmay lead to a biasedwarming rate and strong biases

in precipitation changes. This was demonstrated by the

bootstrapping tests, which highlight the need for using

large multimodel ensembles of climate model simulations.

For a better adaptation to climate change over Poland,

we recommend using additional but not only representa-

tive GCM simulations such as EURO-CORDEX simula-

tions when driving the boundary lateral conditions in the

RCMs to ensure a better representation of the spread of

the climate variability on regional and/or local scales.
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APPENDIX A

Evaluation of the Downscaling Methods

To ensure that downscaled estimates are representative

of the local climate response, it is important to evaluate

whether the ESD and DD methods are performing as

intended. One common quality control method is cross

validation, in which downscaled values for the historical

period are compared with independent subsamples taken

from observations.

a. Bias-corrected DD method

For DD, the quality control of the RCMs typically fo-

cuses on the evaluation of near-surface temperature, pre-

cipitation and mean sea level pressure on the basis of

gridded observational datasets, that is, reanalysis products.

A detailed analysis of the performance of the RCMs

involved in this study was presented in Kotlarski et al.

(2014). They found that the RCMs are able to capture the

basic features of the climate systemoverEurope, including

Poland, with regional and seasonal mean biases generally

below 1.58C for temperature and640% for precipitation.

Similarly, Mezghani et al. (2017) assessed the raw EURO-

CORDEX regional climate simulations over Poland and

found large biases in the multimodel ensemble mean of

mean annual precipitation (’630%) and temperature

(’228C). The authors indicated also the existence of an

overall cold bias for all seasons except summer, during

which a positive bias was found in the eastern part of the

region and the mountains in the south. They argued that

FIG. A1. Example of an evaluation of the DD method showing simulated precipitation by the SMHI-RCA4 RCM driven by the MPI-

ESM-LR GCM. The maps show the root-mean-square errors (RMSE; mm month21) derived from (top) raw and (bottom) corrected

precipitationwith respect to the gridded observational datasetGDPT5 for annual and all seasons. RMSEvalues displayed in the bottomof

each map show the area average over all individual RMSEs (i.e., at grid cells). This figure was adopted from Mezghani et al. (2017).
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all biases found in the raw data were considerably reduced

(close to zero) in the bias-corrected datasets for both an-

nual and seasonal values (Fig. A1). However, they un-

derlined that there remained small biases in summer

precipitation as an effect of the inclusion of the wet-day

frequency in the adjustment procedure (less than 5%) and

in temperature (less than 0.28C) in the south enhanced by

the Carpathian Mountains.

FIG. A2. Evaluation (by season) of the ESD method in reproducing precipitation characteristics found in the reference datasets, i.e.,

recorded precipitation at weather stations (top-left plot of each panel) and NCEP reanalysis (top-right plot of each panel). Also shown in

each panel are the results of the cross-validation procedure (bottom-left plot) and how well the estimated values follow the reference data

(bottom-right plot). In this case, the reference data are the first principal component.

MAY 2019 MEZGHAN I ET AL . 1075



b. Empirical–statistical downscaling method

For ESD, this was done by excluding a subsample

(one fifth) of the observational data when the statistical

model was calibrated and then using these data points to

test the method. The cross validation was repeated (five

times) until each part of the observational time series

had been withheld from calibration and used for in-

dependent comparison. This procedure ensures a close

relationship between the predictand and the predictor,

that is, that selected large-scale climate patterns can be

used to predict the local response. Before applying the

ESD model to future projections, one should also make

sure that the predictor is well represented by the GCMs.

In our case this was achieved by using a common-EOF

analysis to ensure similar spatial patterns in the NCEP

reanalysis products and the CMIP5 GCM data as de-

scribed in section 2. By examining the statistical quan-

tities of the common-EOF, one can verify how similar

the structures of the GCM and reanalysis data are

(Benestad 1999). Further, we used data from the same

observational sites in Poland as in Szwed et al. (2017),

which consists of 43 weather stations recording daily

precipitation and temperature and covering the period

1952–2013. The data were provided by the Institute of

Meteorology and Water Management–National Re-

search Institute (IMGW-PIB) and were used to train

and evaluate the empirical–statistical downscaling re-

gression models. The location of stations is displayed in

the top-left plot of each panel in Fig. A2. Furthermore,

when the ESD is successful, the statistical properties of

the downscaled ensemble, for example, the mean and

standard deviation during the historical period, tend to

match those from observations. If the ESD ensemble

has a much smaller variability than observations or the

multimodel ensemble mean is far off, this can inform us

about a systematic failure of the procedure. An example

of ESD evaluation is presented in Fig. A2, which shows

the PCApattern (top left of each panel), theEOFpattern

(top right), the cross validation (bottom left), and the

simulated-versus-original time series (bottom right) of

precipitation characteristics across Poland. In this case, the

cross-validation procedure indicated good performance

for all seasons, with correlation coefficient values r that are

higher than 0.79. This good performance was reflected by

the good agreement between the estimated and original

datasets (transformations based on the observations and/

or reanalysis datasets). For temperature, the ESD perfor-

mance was even better, with cross-validation correlation

values of higher than 0.9 for all seasons (not shown).

APPENDIX B

CMIP5 Ensemble of Climate Model Simulations

Details about the distribution of the CMIP5 simula-

tions for each running institution and climate variable of

TABLE B1. Summary of CMIP5 GCM runs driven by the RCP4.5 emission scenario. The values in parentheses show the horizontal grid

resolution of the climate model and the total number of individual runs provided by each institute. The last two columns show the total

number of available simulations used for temperature T and precipitation P, respectively. Lines marked with an asterisk indicate the

names of the GCMs (also marked with an asterisk) that have been used to produce regional climate simulations that are described in

Table 2.

Institute Model

No. runs

T P

SF-DOE-NCAR CESM1-CAM5 (0.9, 3), CESM1-BGC (0.9, 1) 4 4

CMCC CMCC-CM (1.125, 1), CMCC-CMS (1.875, 1) 2 2
*CNRM-CERFACS CNRM-CM5* (0.95) 1 1

CSIRO-QCCCE CSIRO-Mk3.6.0 (1.875, 10) 10 10
*ICHEC EC-EARTH* (1.125, 7) 7 6

LASG-CESS FGOALS-g2 (2.8125, 1) 1 1

FIO FIO-ESM (2.8, 3) 3 3

NOAA-GFDL GFDL-CM3 (1.8, 1), GFDL-ESM2G (2.5, 1), GFDL-ESM2M (2.5, 1) 3 3

NASA-GISS GISS-E2-H-CC (1, 1), GISS-E2-H (2, 15), GISS-E2-R (2, 17), GISS-E2-R-CC (1, 1) 34 18

MOHC HadGEM2-CC (1.875, 1), HadGEM2-ES (1.875, 4) 5 5

NIMR-KMA HadGEM2-AO (1.875, 1) 1 1

INM INM-CM4 (2, 1) 1 1
*IPSL IPSL-CM5A-LR (1.9, 4), IPSL-CM5A-MR* (1.25, 1), IPSL-CM5B-LR3 (1.25, 1) 6 7

MIROC MIROC5 (1.4, 3), MIROC-ESM (2.8, 1), MIROC-ESM-CHEM (2.8, 1) 5 5
*MPI MPI-ESM-LR* (1.875, 3), MPI-ESM-MR (1.875, 3) 6 12

MRI MRI-CGCM3 (1.125, 1) 1 2

NCC NorESM1-M (1.9, 1), NorESM1-ME (1.9, 1) 2 2

Total 108 105
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interest are presented in Table B1. This table also gives the

total number of available simulations used for temperature

T and precipitationP assuming the intermediate (RCP4.5)

and high (RCP8.5) emission scenarios.
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