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Abstract. Climate oscillations are periodically fluctuating oceanic and atmospheric phenomena, which are
related to variations in weather patterns and crop yields worldwide. In terms of crop production, the most
widespread impacts have been observed for the El Niño–Southern Oscillation (ENSO), which has been found to
impact crop yields on all continents that produce crops, while two other climate oscillations – the Indian Ocean
Dipole (IOD) and the North Atlantic Oscillation (NAO) – have been shown to especially impact crop produc-
tion in Australia and Europe, respectively. In this study, we analyse the impacts of ENSO, IOD, and NAO on
the growing conditions of maize, rice, soybean, and wheat at the global scale by utilising crop yield data from
an ensemble of global gridded crop models simulated for a range of crop management scenarios. Our results
show that, while accounting for their potential co-variation, climate oscillations are correlated with simulated
crop yield variability to a wide extent (half of all maize and wheat harvested areas for ENSO) and in several
important crop-producing areas, e.g. in North America (ENSO, wheat), Australia (IOD and ENSO, wheat), and
northern South America (ENSO, soybean). Further, our analyses show that higher sensitivity to these oscillations
can be observed for rainfed and fully fertilised scenarios, while the sensitivity tends to be lower if crops were to
be fully irrigated. Since the development of ENSO, IOD, and NAO can potentially be forecasted well in advance,
a better understanding about the relationship between crop production and these climate oscillations can improve
the resilience of the global food system to climate-related shocks.

1 Introduction

Climate oscillations are periodically fluctuating oceanic and
atmospheric phenomena, and they have been shown to im-
pact hydroclimatological conditions (Dai et al., 1998; Hurrell
et al., 2003; Saji and Yamagata, 2003; Trenberth, 1997; Um-
menhofer et al., 2009; Ward et al., 2014) and crop productiv-
ity (Anderson et al., 2017; Ceglar et al., 2017; Heino et al.,
2018; Iizumi et al., 2014; Yuan and Yamagata, 2015) world-
wide. The most notorious climate oscillation, the El Niño–
Southern Oscillation (ENSO), is the most significant driver
of global climate variability (Trenberth, 1997), while two
other prominent and widely studied climate oscillations, the

Indian Ocean Dipole (IOD) (Saji et al., 1999) and the North
Atlantic Oscillation (NAO) (Hurrell, 1995), are also known
to affect temperature and precipitation patterns around the
globe (Hurrell et al., 2003; Saji and Yamagata, 2003).

All three of these climate oscillations have been shown
to significantly impact crop productivity in global (Heino et
al., 2018; Iizumi et al., 2014) and regional studies (Ander-
son et al., 2017; Ceglar et al., 2017; Yuan and Yamagata,
2015). The IOD, for example, strongly affects Australia’s
drought patterns (Ummenhofer et al., 2009) and crop produc-
tion (e.g. wheat; Yuan and Yamagata, 2015), while NAO has
been shown to particularly impact crop productivity in Eu-
rope (Ceglar et al., 2017), but also in the Middle East, north-
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ern Africa, and some parts of Asia (Heino et al., 2018; Wang
and You, 2004). However, the largest fingerprint of these
three oscillations is that of ENSO, which has been found
to influence crop productivity on all continents that produce
crops (Anderson et al., 2019; Iizumi et al., 2014).

As the phase and development of ENSO, IOD, and NAO
can potentially be forecasted from several months (IOD,
NAO; Luo et al., 2008; Scaife et al., 2014) up to 1 year
(ENSO; Luo et al., 2005; Ludescher et al., 2014) in advance,
considerable possibilities arise from understanding the im-
pacts of these climate oscillations on crop production. If
these impacts were better understood, it would allow national
food agencies, international aid organisations, and food in-
dustries and farmers to prepare for varying crop develop-
ment conditions. This would yield great benefits in increas-
ing the resilience of the global food system to climate-related
shocks.

Until now, global-scale studies about the relationship be-
tween crop production and climate oscillations have re-
lied on individual satellite-based (Iizumi et al., 2014) or
single-model-simulated (Heino et al., 2018) crop yield es-
timates. The data produced and published in phase 1 of
the global gridded crop model intercomparison (GGCMI) of
the Agricultural Model Intercomparison and Improvement
Project (AgMIP) now allows for the conducting of assess-
ments related to crop yield variability with an ensemble of
models and a range of fertiliser use and irrigation set-ups
(Elliott et al., 2015; Müller et al., 2019). Given the large vari-
ation in crop yield estimates across models (Müller et al.,
2017; Rosenzweig et al., 2014), using an ensemble of mod-
els can allow for more robust estimates with a better quantifi-
cation of uncertainty in estimated yield impacts than using a
single model.

By using the historical crop yield output derived from a
multi-model ensemble of GGCMI, we aim to analyse the
impacts of ENSO, NAO, and IOD on maize, rice, soybean,
and wheat yields at the global scale. This extends previous
studies, which are based on crop yield estimates from sin-
gle datasets (Heino et al., 2018; Iizumi et al., 2014) and have
solely assessed the impacts of ENSO (Iizumi et al., 2014)
or the impacts of multiple oscillations on an aggregated crop
productivity proxy (Heino et al., 2018). Further, since it is
well known that agricultural management can have a major
influence on climate-induced crop yield variations (Challi-
nor et al., 2014; Müller et al., 2018), we assess these impacts
in different irrigation and fertiliser use scenarios. As a result,
we are able to highlight potential management options to mit-
igate the impacts of these oscillations on crop production. In
the “Results and interpretation” section we also compare our
results with previous work in order to provide a comprehen-
sive overview of known phenomena while avoiding repeti-
tion.

2 Data and methods

2.1 Physically simulated crop yield data

Global data for physically simulated maize, rice, soybean,
and wheat yield (t ha−1) were obtained from the global grid-
ded crop model (GGCM) simulations included in phase 1
of the GGCMI of AgMIP (Elliott et al., 2015; Müller et al.,
2019). While most of the 12 models included here simu-
late the growth of all four target crops, a few simulate only
some (Table 1): EPIC-TAMU (maize and wheat), pAPSIM
(maize, soybean, and wheat), and PEGASUS (maize, soy-
bean, and wheat). A recent study evaluated the performance
of the models included in the GGCMI of AgMIP in repro-
ducing reported historical yield anomalies and did not find
any GGCM clearly superior to any other (Müller et al., 2017;
Fig. S1 in the Supplement), thus highlighting the benefits of
utilising a model ensemble in yield variability assessments to
account for uncertainty in individual model results.

Yield variability in the GGCMs included in GGCMI is
mainly driven by weather circumstances and CO2 concen-
tration, while soil conditions and agricultural management
practices are considered static (Müller et al., 2019). To ac-
count for varying assumptions of growing season and fer-
tiliser use, in GGCMI, model simulations were conducted for
three configurations: standard model assumptions (default),
harmonised growing season and nutrient input (fullharm),
and harmonised growing season with no nutrient limitation
(harm-suffN). For the default configuration each modelling
group used their own model assumptions. In the harmonised
model set-ups, crop planting and harvesting dates were stan-
dardised among the models and are literature based (Elliott
et al., 2015), while fertiliser application rates are either un-
limited (harm-suffN) or based on published data (fullharm).
Further, all of the GGCMI simulation results are provided
separately for irrigated and rainfed conditions. In the irri-
gated simulation settings, no restrictions on water availability
are considered (Müller et al., 2019). In GGCMI, the models
simulate only a single growing season per year. Two models
included in the GGCMI archive, PRYSBI2 and CLM-Crop,
were excluded from this study because either the harmonisa-
tion of the growing season provided unreliable results (CLM-
Crop) or the model does not distinguish between rainfed and
irrigated crops (PRYSBI2).

The “actual” cropping scenario, used in the main analyses
(with literature-based shares of rainfed and irrigated areas;
see Sect. 2.3), utilises the fullharm set-up and the harm-suffN
setting for LPJ-GUESS and LPJmL, which do not consider
nitrogen limitation and thus cannot harmonise on fertiliser
settings (Table 2). For comparison, the sensitivity analysis
(see Sect. 2.4) for the actual cropping scenario was repeated
with the default model set-up (see the Supplement), while
the harm-suffN scenario was used to assess the impacts of
the oscillations in fully fertilised conditions.
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Table 1. Crop yield data used in this study. “All” refers to all of the crops included in this study, i.e. maize (M), rice (R), soybean (S), and
wheat (W). Three model configurations were utilised: harmonised growing season and nutrient input (fullharm), harmonised growing season
and no nutrient limitation (harm-suffN), and standard model-specific assumptions (default). Details about the climate forcing data availability
are given in the footnotes.

Crops included for different model
configurations

Fullharm Harm-suffN Default Model reference Data reference

CGMS-WOFOST – – All1 de Wit and Van Diepen (2008) Hoek and de Wit (2018a, b, c, d)

EPIC-Boku All1,2 All1,2 All1,2 Izaurralde et al. (2006), Schmid (2018a, b, c, d)
Williams (1995)

EPIC-IIASA All1 All1 All1 Izaurralde et al. (2006), Balkovic et al. (2018a, b, c, d)
Williams (1995)

EPIC-TAMU M, W1,2 M, W1,2 – Izaurralde et al. (2012) Reddy et al. (2018a, b)

GEPIC All1 All1 All1 Folberth et al. (2012), Liu et Folberth (2018a, b, c, d)
al. (2007), Williams (1995)

LPJ-GUESS – All1,2 All1 Lindeskog et al. (2013), Smith et Pugh et al. (2018a, b, c, d)
al. (2001)

LPJmL – All1,2 All1,2 Bondeau et al. (2007), Waha et Müller (2018a, b, c, d)
al. (2012)

ORCHIDEE-crop M1,3, R1,3, M1,3, R1, M1, R1,3, Wu et al. (2016) Wang and Ciais (2018a, b, c, d)
S1,3, W1 S3, W1 S1, W1

pAPSIM M, S, W1,2 M, S, W1,2 M, S, W1,2 Elliott et al. (2014), Keating et Elliott (2018a, b, c)
al. (2003)

pDSSAT All1,2 All1,2 All1,2 Elliott et al. (2014), Jones et al. Elliott (2018d, e, f, g)
(2003)

PEGASUS M, S, W1,2 M, S, W1 M, S, W1 Deryng et al. (2011, 2014) Deryng (2018a, b, c)

PEPIC All1 All1 All1 Liu et al. (2016), Williams Liu and Yang (2018a, b, c, d)
(1995)

1 AgMERRA, time span: 1980–2010; 2 Princeton, time span: 1948–2008; 3 Princeton, time span: 1979–2010.

Table 2. The management scenarios used in this study. The actual set-up is used in the main analyses, while the fully irrigated, rainfed, fully
fertilised, and fully irrigated and fertilised management scenarios are used for comparing the impacts in different cropping systems.

Management scenario Irrigated areas Fertiliser use

Actual Literature based Literature based∗

Fully irrigated All areas irrigated Literature based
Rainfed No areas irrigated, all areas rainfed Literature based
Fully fertilised Literature based Fully fertilised
Fully irrigated and fertilised All areas irrigated Fully fertilised

∗ For LPJ-GUESS and LPJmL, limitations on fertiliser use are not considered. These models are excluded from the
“actual” scenario for the comparison with varying fertiliser use.

This study utilises simulations driven with two histori-
cal meteorological forcing datasets (bias-corrected reanaly-
sis weather datasets): AgMERRA (Ruane et al., 2015) and
the Princeton Global Forcing dataset (Sheffield et al., 2006)
(Table 1). AgMERRA was selected as the main climate input

for this study, as a large number of GGCMs supplied data for
this climate forcing dataset, while the Princeton data were se-
lected for reference due to their long time span and previous
use in a similar study (Heino et al., 2018). A detailed descrip-
tion of the GGCMI phase 1 modelling protocol can be found
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in Elliott et al. (2015), and the output dataset is described by
Müller et al. (2019).

2.2 Climate oscillation data

To represent the historical fluctuations of ENSO, IOD, and
NAO, the following indices were chosen: the Japan Meteoro-
logical Agency (JMA) SST index (Florida State University,
2018), the SST Dipole Mode Index (NOAA Earth System
Research Laboratory, 2018; Saji et al., 1999), and Hurrell’s
North Atlantic Oscillation Index (primary component (PC)
based) (Hurrell, 1995; National Center for Atmospheric Re-
search, 2018), respectively. These indices were selected be-
cause they are all well established and have already been used
in several studies related to crop production (Heino et al.,
2018; Kim and McCarl, 2005; Yuan and Yamagata, 2015).
For ENSO, the Niño 3.4 index (NOAA Earth System Re-
search Laboratory, 2019) was also tested given its common
use in ENSO-related studies (Stuecker et al., 2017; Zhang et
al., 2015), with results shown in the Supplement. The indices
were transformed to annual values by calculating the mean
index for the months when the oscillations tend to have the
strongest signal according to existing sources: i.e. Decem-
ber (year t), January (t + 1), and February (t + 1) for ENSO
(Trenberth, 1997) and NAO (Hurrell et al., 2003); Septem-
ber, October, and November (year t for all) for IOD (Saji et
al., 1999). This therefore only tests for relationships with a
phase-locked measurement of the oscillation rather than in-
vestigating intra-annual temporal effects. Using seasonal or
monthly data increases the number of significance tests for a
given location and therefore the risk of false positives, and in-
terpretation of the results would require an understanding of
how climate oscillations, local weather conditions, and yield
are connected over time. However, it requires accurate, high-
resolution global crop calendars which are not available. Fi-
nally, in order to make the oscillation indices comparable
with each other, each oscillation index time series was stan-
dardised (by subtracting the average index value from the an-
nual values and dividing by their standard deviation).

2.3 Crop yield data aggregation and de-trending

The gridded crop yields were allocated to annual yields based
on the sowing dates used in the harmonised GGCMI simula-
tions. The harvest year t is assigned to crop yields which are
sown between May of the actual year (t) and April of the next
year (t+1). This definition for harvest years was selected be-
cause it ensures that the average lifespans of all these oscilla-
tions are within the harvest year, and thus many of the major
known teleconnections of these oscillations during the crop
growing season are included in the analysis (e.g. in Australia,
Africa, and South America).

The crop yield data were aggregated spatially to the geo-
graphical scale of food production units (FPUs), which di-
vide the world into 573 spatial units that are hybrids of river

basins and administrative (economic) areas (Kummu et al.,
2010). For the actual cropping scenario, rainfed and irrigated
crop yields were combined by calculating the mean yield as
the total production divided by the total harvested area across
both cropping systems using literature-based values for har-
vested area (Portmann et al., 2010). The aggregation for fully
irrigated and rainfed scenarios was conducted similarly by
dividing total production by harvested areas but assuming
that all cropland is either irrigated or rainfed, respectively.

In order to extract the interannual variability of the crop
yield data, they were de-trended. This was conducted by sub-
tracting a 5-year moving average yield from the annual yield
values (3-year average at both ends of the time series), simi-
larly to several previously conducted studies about yield vari-
ability (Iizumi et al., 2014; Iizumi and Ramankutty, 2016;
Müller et al., 2017, 2018). The anomalies were then divided
by 5-year (or 3-year) averages to obtain the proportional an-
nual deviation from the normal values. The equation of the
procedure is shown below:

1Yf,s,m,c,t =
Yf,s,m,c,t −Y f,s,m,c,t

Y f,s,m,c,t
× 100, (1)

where 1Yf,s,m,c,t denotes the relative yield anomaly for each
FPU (f), scenario (s), model (m), crop (c), and year (t) com-
pared to the average yield (Y f,s,m,c,t ) for the moving time
window around year t . The use of a shorter time window
at the beginning and end of the yield time series allows
for longer de-trended time series, and it is assumed that it
would rarely lead to errors in the sign of yield anomalies and
thus the derived relationships between climate oscillation and
yield anomalies. Other studies have tested other de-trending
methods as well but have found no major impact from the
method selected (Iizumi et al., 2014; Iizumi and Ramankutty,
2016; Müller et al., 2017).

2.4 Crop yield sensitivity to the oscillations

The sensitivity of actual crop yield to the oscillations was
investigated using a multivariate linear regularised ridge re-
gression model, with the oscillation indices as explanatory
variables and the annual crop yield anomalies as the depen-
dent variable. The ridge regression framework was selected
because it allows correlations among the explanatory vari-
ables to be accounted for (here oscillation indices). For the
main analysis (actual scenario), the regression was calculated
for each FPU separately using crop yield anomaly time se-
ries from all GGCMs that simulate the crop in question with
the AgMERRA climate input (N = 216–297, depending on
crop). Hence, we utilise the crop yield time series of all the
models in fitting the regression. In the regression model, the
slope coefficients represent sensitivity. The optimal regular-
isation value for the regression was selected by performing
a generalised cross-validation (tested regularisation values
ranged between 10−6 and 10).
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The existence of significant relationships was assessed
by calculating a multivariate ridge regression from random
bootstrap samples (N = 1000, with replacement) of crop
yield–oscillation index combinations. Statistical significance
therefore tests the robustness of observed ridge regression
coefficients across different samples drawn from the time se-
ries. The optimal regularisation value was selected for each
bootstrap sample as described above, which follows the prin-
ciple described in Abram et al. (2016). The linear relation-
ship was defined to be significant (p < 0.1) if 95 % (two-
sided test) of the sampled sensitivity values were either larger
or smaller than zero. Thus, a 10 % probability was accepted
of wrongly classifying a linear relationship as significant.
Note that the relatively high risk level in statistical regression
(p < 0.1) is commonly used in global climate-yield analysis
because of the limited access to high-quality yield data at the
global scale (e.g. Ray et al., 2015). To check the robustness
of the results, the same analysis was also conducted utilising
the crop yield data derived using the Princeton climate input,
different model configurations, and individual models and
average weather (soil moisture and temperature) conditions
(Martens et al., 2017; Ruane et al., 2015) during the growing
season. Further, to illustrate the effect of using phase-locked
indices rather than investigating intra-annual temporal vari-
ation (see Sect. 2.2), the sensitivity of crop yield to these
oscillations was also assessed by using the average harvest
season oscillation indices as an explanatory variable (see the
Supplement).

2.5 Average crop yield anomalies during strong
oscillation phases

The crop-specific average yield anomalies observed during
strong oscillation phases were investigated for the actual
cropping scenario. The crop yield changes that occur during
years when the oscillations are in their strong phases were
summarised by the median crop yield anomaly (in percent) of
those years. The median anomaly was calculated using all the
GGCMs that simulate the crop in question (N = 216–297,
depending on crop) for the actual scenario with AgMERRA
climate input. Strongly negative (positive) phases of the os-
cillations were defined as the years when the respective os-
cillation index was smaller (larger) than the 25th (75th) per-
centile of all yearly index values (Nanomaly = 54–74, depend-
ing on crop). The statistical significance (p < 0.1) of the
changes was assessed by bootstrapping (n= 1000, with re-
placement) the crop yield anomalies and calculating the me-
dian of each bootstrap sample. If over 95 % (two-tailed test)
of the sample of medians was either larger or smaller than
zero, the change was considered statistically significant. Sta-
tistical significance therefore tests the robustness of observed
anomalies across different samples drawn from the time se-
ries.

2.6 Impacts in different cropping systems

To assess how expanding or reducing the extent of irrigated
area and increasing fertiliser use would change the impacts
of climate oscillations on crop yields compared to the actual
scenario, the main sensitivity analysis (see the description
above – Sect. 2.4) was conducted for a set of scenarios (Ta-
ble 2): (i) all cropland was only rainfed (with fullharm set-
up), (ii) all cropland was fully irrigated (fullharm), (iii) all
cropland was fully fertilised (actual irrigation with fullharm-
suffN), and (iv) all cropland was fully irrigated and fertilised
(fully irrigated with harm-suffN). In addition to analysing
how the abovementioned four scenarios compare against the
actual scenario, the fully irrigated and rainfed scenarios were
also compared. To quantify how the impacts in these crop-
ping systems vary, average sensitivity magnitudes were com-
pared for each crop. Specifically, for a pair of scenarios, the
average difference of their absolute sensitivity values was
calculated across all oscillations and FPUs, whereby at least
one of the scenarios shows a significant sensitivity. To ob-
tain a measure relative to the actual (or irrigated when com-
paring irrigated and rainfed scenarios) scenario, the average
difference values were divided with the average sensitivity
magnitude of the actual (or irrigated) scenario for the FPUs
included. The corresponding equation is

1Ss12,c =
∑
o,f

∣∣Ss1,c,f,o
∣∣− ∣∣Ss2,c,f,o

∣∣∣∣Ss1,c,f,o
∣∣ /

nF,O × 100%, (2)

where |Sf,s1,c,o| or |Sf,s2,c,o| is statistically significant; f,
s∈ {s1, s2}, c, and o are indices of FPU, management sce-
nario, crop, and oscillation, respectively. 1Ss12,c denotes the
average proportional sensitivity difference of each crop (c)
between the scenarios, while Sf,s1,c,o and Sf,s2,c,o represent
the sensitivity in the respective management scenarios s1
and s2; nF,O is the number of cases (oscillation and FPU)
in which at least one of the scenarios has a significant sensi-
tivity.

For each crop, to assess whether the mean sensitivity mag-
nitude difference is statistically significantly different from
zero, a distribution of the mean sensitivity magnitude differ-
ence was created by calculating the average from the boot-
strapped (N = 1000, with replacement) difference values of
each FPU and oscillation. For the comparisons with varying
fertiliser use, only the nine GGCMs which have data for both
the fullharm and harm-suffN settings, and thus simulate nu-
trient stress (Table 1), were included.

3 Results and interpretation

3.1 Global extent of climate oscillation impacts

Globally, climate oscillations have widespread effects on
crop yields (Table 3), but both the direction and magnitude
of impacts vary spatially and across crops (Fig. 1). Out of
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Figure 1. Actual maize (a–c), rice (d–f), soybean (g–i), and wheat (j–l) yield sensitivity to ENSO, IOD, and NAO at the FPU scale. The
sensitivity values are derived using crop yield data from all GGCMs that simulate the crop in question with the AgMERRA climate input.
Statistically insignificant (p > 0.1) sensitivity values are marked as zero (grey). White denotes that the crop in question is not produced in
that area. Results with Princeton climate input and default model set-up are shown in Figs. S4 and S5, respectively. Median, maximum, and
minimum sensitivities as well as consistency across individual models are shown in Figs. S7–S10, respectively. Results for individual models
are shown in a zip file in the Supplement. Results with oscillation indices calculated in the harvest season are shown in Fig. S11, with the
associated seasons shown in Fig. S12.

the oscillations studied here, ENSO shows the widest im-
pacts on yields of maize (statistically significant sensitivity
in 51 % of harvested areas), wheat (49 %), and rice (48 %),
while IOD and ENSO both show a similar extent of impacts
on the yields of soy (53 % and 50 %, respectively) (Table 3).
Generally, NAO seems to have the smallest impacts on the
yields of the crop types inspected here in terms of harvested
areas, although it still shows a relatively strong influence on
wheat (42 %) and maize (35 %) yields. In terms of sensitiv-
ity direction, it is notably more widespread for yield to in-
crease towards the positive phase of ENSO (i.e. El Niño)
for all crop types inspected here (i.e. positive sensitivity).
For IOD and NAO, the results are more mixed, though both
show larger harvested areas where yield decreases towards
the positive phase for maize. These results align with crop
yield anomalies during strong oscillation phases, as they also
show widespread average impacts (Table S2).

3.2 Impacts in different areas

ENSO’s relationship with crop yield seems to provide the
most distinct spatial patterns across the crop types, crop mod-
els, and oscillations studied here (Figs. 1–3 and S4–S10 in
the Supplement). Crop yields tend to decrease towards the
positive phase of ENSO (El Niño) in a large proportion of
sub-Saharan Africa, as well as eastern parts of South Amer-
ica and Australia, while yields seem to increase towards
the positive phase on the coast of Peru and North Amer-
ica (Fig. 1; global regions mapped in Fig. S1). In general,
these results align well with the spatial patterns found in ex-
isting studies on the Palmer drought severity index (Dai et
al., 1998) as well as soil moisture and temperature anoma-
lies (Figs. S2 and S3). Also, in terms of model and method-
ological agreement, a consistent increase (decrease) in wheat
yields in parts of the Middle East can be observed for ENSO
towards its positive (negative) phase (Figs. 1–3 and S11–
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Table 3. Extent of significant sensitivity. Crop-specific harvested area (106 ha) extent (and percent of total crop-specific harvested area);
actual crop yield shows statistically significant positive (+) or negative (−) sensitivity to ENSO, IOD, and NAO; i.e. there is a statistically
significant (two-sided p value < 0.1) linear relationship between crop yield anomalies and the studied oscillations (see Methods). Harvested
area extent showing significant anomalies is shown in Table S2.

ENSO IOD NAO

Sensitivity − + − + − +

Maize 30 (20 %) 46 (31 %) 36 (24 %) 18 (12 %) 44 (29 %) 10 (6 %)
Rice 31 (19 %) 47 (29 %) 22 (13 %) 16 (10 %) 1 (0 %) 8 (5 %)
Soybean 6 (8 %) 31 (42 %) 32 (42 %) 8 (11 %) 22 (29 %) 6 (8 %)
Wheat 28 (13 %) 77 (36 %) 45 (21 %) 46 (21 %) 20 (10 %) 69 (32 %)

S12). For the southern tip of Africa, wheat and soybean seem
to be related with opposite impacts. This is potentially be-
cause of differences in harvest timing and the related weather
conditions; wheat is harvested in the autumn, while soybean
is harvested the following spring and is thus more exposed to
the drier conditions related to ENSO during the boreal winter
(Fig. S2, Philippon et al., 2012).

When comparing our results to a study about ENSO’s
crop yield impacts, which utilised satellite-based crop yields
(Iizumi et al., 2014, 2018a), the agreement of the impacts
varies. Our results agree with existing studies, for example,
for large parts of Africa and eastern Asia, where El Niño is
mostly related to negative impacts, while results do not agree
in North America (wheat, maize) and Australia (maize).
However, it should be noted that these differences are no sur-
prise, since it has been shown that only a third of global crop
yield variability can be attributed to seasonal climate varia-
tion (Ray et al., 2015). In contrast to satellite-based data, the
models used here deliberately focus on weather impacts on
crop yield and do not consider the impacts of e.g. multiple
cropping or weather-triggered pest outbreaks and manage-
ment responses, which can also be major contributors to crop
yield variations.

For IOD, strong and consistent impacts (Figs. 1 and 2)
among crop models (Fig. 3) can be observed in eastern Aus-
tralia, especially for soybean and wheat (Figs. 1–3), where
the IOD is related to drier and warmer weather conditions
(Figs. S2 and S3). This corroborates a previous study con-
ducted on the relationship between IOD and wheat yields,
which showed that around 40 % of Australia’s wheat yield
variability can be attributed to the IOD (Yuan and Yama-
gata, 2015); where the oscillations are together it is also
able to explain a substantial portion of crop yield variability
(> 25 %, Fig. S13). Further, consistent results among mod-
els and methods (Figs. 1–3) for IOD can be observed in parts
of eastern Europe and central Asia, where the positive (neg-
ative) phase of the IOD is related to an increase (decrease)
in wheat, maize, and soybean yields. In Southeast Asia and
southern Africa, the impacts of the IOD vary between crops.
For example, in Southeast Asia, rice shows a positive sen-
sitivity (increasing yield towards the positive phase), while

maize and soybean show a negative one. In eastern China,
maize, wheat, and soybean yield variability seems to be re-
lated to the IOD to some extent. However, these relationships
are less certain, as they are not consistently found by the ma-
jority of the individual models (Fig. 3).

For NAO, the relationships are generally less certain in
terms of model agreement compared to ENSO and IOD
(Fig. 3). NAO’s most significant impacts can be observed in
eastern Europe and the Middle East for maize, soybean, and
wheat yields (Figs. 1 and 2). In the Middle East, the sensitiv-
ity of wheat and maize (soybean) yield to NAO seems to be
negative (positive), while mostly positive sensitivity is found
in Europe and western Russia for maize, soybean, and wheat.
These differences between crop types observed in the Mid-
dle East can potentially be due to differing growing seasons.
In the models, the sowing dates of soybean vary strongly in
space and between irrigation regimes (for some areas soy-
bean sowing occurs in spring before May, while in other ar-
eas soybean is planted later in the year), which can have an
effect on the observed signal compared to maize and wheat.
In general, the patterns observed in eastern Europe, western
Russia, and the Middle East align well with results from pre-
vious studies about crop productivity and weather variations
(Cullen et al., 2002; Heino et al., 2018; Hurrell et al., 2003).
Although the results for NAO are relatively similar between
different model configurations (Figs. S4 and S5), the results
are not as consistent among the GGCMs as for the other os-
cillations (Fig. 3).

3.3 Magnitude of impacts in different cropping systems

Irrigation plays a key role in reducing crop yield sensitiv-
ity to climate oscillations, with yield varying up to 3 times
more (for wheat) across the range of oscillations when com-
paring fully irrigated and rainfed scenarios (Fig. 4). Com-
paring rainfed to actual conditions shows that irrigation has
already substantially reduced the effects of climate oscilla-
tions on crop yields. The average difference in sensitivity is
the largest for rice, for which the average sensitivity would
be over 2 times higher, i.e. the yield would vary 2 times
more across the range of the oscillations, if all cropland was
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Figure 2. Actual maize (a–f), rice (g–l), soybean (m–r), and wheat (s–x) yield anomalies during strong phases of ENSO, IOD, and NAO at
the FPU scale. The anomaly values are derived from a sample including crop yield data from all GGCMs that simulate the crop in question
with the AgMERRA climate input. Statistically insignificant (p > 0.1) anomaly values are marked as zero (grey). White denotes that the
crop in question is not produced in that area. Patterns are discussed in Sect. 3.1 and 3.2.
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Figure 3. Summary of the relationship between ENSO, IOD, and NAO and crop yields across models and methods for maize (a–c), rice (d–f),
soybean (g–i), and wheat (j–l). The y axis of the colour bar shows whether there is agreement between the sensitivity analysis (Fig. 1) and the
average anomalies during strong oscillation phases (Fig. 2): “neither” denotes that the strong oscillation phases are not related to significant
average crop yield anomalies that are consistent with the sensitivity analysis; “one” means that either the positive or negative oscillation
phase shows a significant average anomaly that is consistent with the sensitivity result (e.g. positive sensitivity and positive anomaly during
a positive oscillation phase); and “both” means that both phases of the oscillations show consistent average anomalies during the strong
oscillation phases (e.g. positive anomaly during a positive oscillation phase and negative anomaly during a negative oscillation phase in an
FPU with positive sensitivity). The x axis of the colour bar shows the proportion of individual models that show significant sensitivity of the
same sign compared to the result from the ensemble analysis (see Fig. 1 above, Fig. S10, and zip files in the Supplement). Areas where the
ensemble results do not show a statistically significant relationship are marked in grey, while white denotes that the crop in question is not
grown in that area.

rainfed (Fig. 4g). The difference in sensitivity is the small-
est for soybean (29 %, Fig. 4l), while maize and wheat show
a relative increase in sensitivity of 47 % (Fig. 4b) and 60 %
(Fig. 4q), respectively. This ranking is expected, as the ma-
jority of rice harvested areas are irrigated (62 % globally) and
soybean has the smallest irrigated area share of these four
crops (8 %), while maize (21 %) and wheat (31 %) fall in be-
tween (Portmann et al., 2010).

Conversely, average sensitivity would be reduced if crops
were fully irrigated without any limitations on water avail-
ability compared to the actual situation for all the inspected
crop types. The benefits of further irrigation are limited by its
current use, which might be why rice shows the smallest dif-
ference in average impacts (most of the rice harvested area is
already irrigated; Fig. 4h). The average decrease in crop yield
sensitivity to the oscillations is the largest for wheat (54 %;
i.e. yield varies 54 % less across the oscillations compared
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Figure 4. Relative average difference in sensitivity magnitude of maize (a–e), rice (f–j), soybean (k–o), and wheat (p–t) between a range
of cropping scenarios through all the studied oscillations and FPUs. To quantify how the impacts in these cropping systems vary, average
sensitivity magnitudes were compared for each crop. Specifically, for a pair of scenarios, the average difference of their absolute sensitivity
values was calculated across all oscillations and FPUs, with at least one scenario showing a significant sensitivity. To obtain a measure relative
to the actual (or irrigated when comparing irrigated and rainfed scenarios) scenario, the average difference values were divided with the
average sensitivity magnitude of the actual (irrigated) scenario for the FPUs included. For each crop, to assess whether the mean sensitivity
magnitude difference is statistically significantly different from zero, a distribution of the mean difference was created by calculating the
average from the bootstrapped (N = 1000, with replacement) difference values of each FPU and oscillation. For the scenarios with varying
fertiliser use set-up, we included only the nine GGCMs which have data for both the fullharm and harm-suffN settings and also simulate
nutrient stress, i.e. pDSSAT, EPIC-Boku, EPIC-IIASA, GEPIC, pAPSIM, PEGASUS, EPIC-TAMU, ORCHIDEE-crop, and PEPIC. Triple,
double, and single asterisks denote the confidence level at 99.9 %, 99 %, and 90 %, respectively. Maps of sensitivity for each cropping system
are shown in Figs. S14–S18 and differences in sensitivity magnitude in Figs. S19–S23. Please note the different scale in the x axis between
the columns.

to actual conditions – Fig. 4r) and soybean (39 %, Fig. 4m),
while maize shows a 35 % (Fig. 4c) average decrease.

Unlimited fertiliser (fully fertilised scenario) use yields
statistically significantly larger average sensitivity compared
to actual conditions for maize (21 %, Fig. 4d), rice (11 %,
Fig. 4i), and wheat (18 %, Fig. 4s). For these crops, these
climate oscillations have a stronger impact on yields in crop-
ping systems that do not have limitations related to nutrient
availability. This reflects previous research that has found in-
creased crop yield variability under additional fertiliser in-
puts (Müller et al., 2018). This is potentially because in low-
crop-yield years, fertiliser use is not the main limiting factor,
so yields are not significantly improved, while in years when
climate conditions are suitable for crop growth, yields be-

come even higher, which would increase the sensitivity value
as well (Fig. S24). Note that this does not mean fertiliser fails
to improve crop yields, only that it does not lead to more sta-
ble yields in the face of weather variability. Soybean has very
little change in sensitivity under full fertilisation (Fig. 4n).
This is likely because it is a legume and has lower nitrogen
requirements (nitrogen availability is not even considered in
soybean simulations in some models).

Combining both unlimited irrigation and fertilisers, all of
the crop types show smaller average sensitivity compared
to the actual cropping system scenario (Fig. 4). The de-
creased sensitivity due to increased irrigation dominates the
increased sensitivity due to increased fertiliser use. How-
ever, the differences in sensitivity magnitude are large be-
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tween crops, with wheat having the largest decreases in aver-
age sensitivity magnitude (39 %, Fig. 4t) and rice having the
smallest (16 %, Fig. 4j).

The abovementioned results can be observed spatially in
the Supplement (Figs. S14–S23), which e.g. clearly show
that, in most areas, the sensitivity magnitude is larger in the
rainfed and fully fertilised scenarios; i.e. yields vary more
across the range of the oscillation index. The spatial results
also highlight areas with the potential to reduce the impact of
oscillations, for example for ENSO in northern South Amer-
ica (soybean and rice) and for IOD in Australia (wheat),
where high sensitivity to the respective oscillations can be
observed for the actual scenario.

4 Discussion

In this study, we inspected the historical relationship between
crop yield variability and climate oscillations in a range of
cropping systems by utilising an ensemble of historical crop
yield simulations generated in GGCMI. The results of this
study highlight the widespread impacts that ENSO, IOD, and
NAO have on crop yields at the global scale, as well as po-
tential options for mitigating their impacts. Further, we find
robust impacts for these oscillations in many areas around
the globe, e.g. in North and South America for ENSO and
in eastern Australia for IOD, where these insights can poten-
tially be utilised in efforts to mitigate weather-driven varia-
tions in crop productivity (Iizumi et al., 2018b).

The reliability and usefulness of these results vary signif-
icantly between regions, crops, and oscillations. In general,
the teleconnections related to ENSO are the strongest, which
is sensible, since ENSO has been shown to be the most sig-
nificant driver of global climate variability (Dai et al., 1998;
Trenberth, 1997). Various institutions (including the United
Nations) already provide action plans to mitigate ENSO’s
impacts on society. In Australia, there is significant potential
to utilise the information for IOD along with ENSO to un-
derstand crop yield fluctuations, as they can explain a large
proportion of local crop yield variability (Fig. S13; Yuan and
Yamagata, 2015). Some promise also exists in using oscilla-
tion forecasts to predict crop yield variability (Nobre et al.,
2019). However, the quality of predictions of this type would
naturally depend on the skill of the climate forecasts and the
strength of the teleconnection. This study only provides a
first assessment of correlations, and further work is needed
before reliable forecasts can be provided.

Our results join existing research (Müller et al., 2018;
Schauberger et al., 2016; Okada et al., 2018) in highlighting
the major role of irrigation in mitigating climate-related crop
yield variations and thus securing global food production.
This is an important point, since water supplies are highly
stressed in many important crop-producing areas (Kummu et
al., 2016) which are also impacted by climate oscillations,
such as parts of North America and South Asia. Thus, di-

minishing water resources could pose a major barrier to mit-
igating future negative impacts related to climate oscillations
and climate variability in general. This can be very prob-
lematic, given that climate change will likely increase the
occurrence of extreme weather in the future (Coumou and
Robinson, 2013). With given water shortages in some regions
(Heinke et al., 2019), exploiting potentials to improve sus-
tainable water use in agriculture (Jägermeyr et al., 2017) may
thus be highly important for maintaining the long-term sta-
bility of the global crop production system. It should also be
noted that there is substantial potential to improve water use
efficiency with integrated crop water management measures
(Jägermeyr et al., 2016).

Interestingly, at the global level, increasing fertiliser use
does not seem to decrease the sensitivity of crop yields to
oscillations, potentially because low-crop-yield years remain
the same, while in years when conditions are suitable for
crop growth, yields become even higher (Müller et al., 2018),
which would increase the sensitivity value as well. This ex-
planation aligns with previous research, which has shown
that increasing fertiliser use has limited potential to increase
crop yields during years when weather conditions limit crop
growth (Liebig’s law). In other words, additional fertiliser
use in years with unfavourable seasonal climate condition
does not lead to yield gain and is not cost effective, even if
it is beneficial in normal conditions. Therefore, decision sup-
port systems which guide farmers about optimal fertiliser use
under the predicted growing season climate can be useful to
avoid investments in fertilisers in bad years (Hayashi et al.,
2018).

Limitations and way forward

The selection of the time windows for calculating the oscil-
lation metric and defining the related growing seasons can
have an impact on the spatial crop yield sensitivity footprint,
as briefly illustrated in this study as well (Figs. 1 and S11).
Previously used approaches for identifying these relation-
ships include e.g. looking at crop yield anomalies for the year
(Heino et al., 2018; Iizumi et al., 2014; Yuan and Yamagata,
2015) and years around (Anderson et al., 2017) strong oscil-
lation anomalies. In these studies, strong oscillation anoma-
lies are calculated either for the season in which the oscil-
lations show their strongest signal (Heino et al., 2018; An-
derson et al., 2017; Yuan and Yamagata, 2015) or the harvest
season (Iizumi et al., 2014). In general, it can be said that it
is very difficult to find metrics for the oscillations that would
work perfectly everywhere. A lack of accurate, spatially de-
tailed crop calendars makes addressing this issue particularly
challenging. The justification for the methods used here is to
look at how crop yields vary around the time at which these
oscillations show their strongest signal, which can provide
valuable information for early warning systems.

Future work could try to trace intermediate effects in or-
der to explain the mechanisms at play, e.g. combining the
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effect of oscillations on weather, the effect of each aspect of
weather on crop planting, development, and harvest, and the
final result in terms of crop yield. Such research could addi-
tionally provide useful information for decreasing crop yield
variations and thus increasing the resilience of crop produc-
tion to climate variability.

The teleconnection patterns related to the IOD can be dif-
ficult to fully disentangle from ENSO due to their coevolu-
tion. Previous studies have shown that around 20 % to 45 %
of IOD variability could be explained by ENSO depending
on the data and the investigated time frame (Saji and Yama-
gata, 2003; Zhang et al. 2015). The nature of this relationship
is still debated (Hameed et al., 2018; Stuecker et al., 2017),
and determining the influence of ENSO on the IOD and vice
versa is not in the scope of this study. However, through the
use of multivariate ridge regression, we aim to filter the influ-
ence of ENSO from the IOD patterns. Also, the relationship
between ENSO and NAO has been studied, but that relation-
ship has been shown to be relatively weak (Hurrell et al.,
2003).

The data used here are from state-of-the-art global gridded
crop models included in phase 1 of the GGCMI of AgMIP.
However, major uncertainties in the simulated crop yields
still exist, and the relationships observed here between crop
yields and these oscillations are often not consistent through-
out the ensemble of crop models (see Fig. 3). Differences and
uncertainties among the models arise e.g. from soil and crop
type parameterisations as well as handling of water and nu-
trient stress (e.g. Folberth et al., 2019). Additionally, uncer-
tainties in these GGCMs arise from the simulated cropping
systems, as simulations assume only a single annual harvest
per crop and per grid cell, whereas multiple harvests are com-
mon for e.g. rice. In general, simulated crop yields seem to
be most reliable in high-nutrient-input areas (Müller et al.,
2017), where observed climate variability also explains a ma-
jority of reported crop yield variation (Ray et al., 2015).

This study has included comparisons with fully fertilised
and irrigated management scenarios intended to capture
(unattainable) ideal management, with no water or nutrient
stress anywhere. This helps us understand the physical po-
tential of management measures for mitigating the crop yield
variability related to these oscillations according to the mod-
els used. In future, practical limitations could also be taken
into account by limiting water and fertiliser use to locally
available resources.

The three climate oscillations included here are only a
share of the whole range of periodically fluctuating clima-
tological phenomena that could impact crop growing condi-
tions. Thus, studying the relationship between simulated crop
yields and other climate oscillations not included here, such
as the Scandinavian pattern or the Arctic Oscillation, would
provide additional insights into this topic, as demonstrated in
a recent study by Ceglar et al. (2017).

5 Conclusions

This study strengthens the evidence that climate oscillations
are drivers of crop yield variability around the world. In sev-
eral areas where these oscillations show robust impacts on
crop production, e.g. Australia, southern Africa, and parts of
North and South America, local risk reduction efforts and
global efforts can already benefit from utilising these known
relationships to improve stakeholder preparedness against
crop production shocks associated with the climate oscilla-
tions. Information for maintaining the stability of global crop
production is of high importance, given that anticipated cli-
mate change and population growth will keep increasing the
pressure on the global food system. Finally, our results sug-
gest that increases (decreases) in the extent of irrigated area
would, on average, reduce (amplify) the impacts of these os-
cillations on crop yields, which highlights the importance of
sustainable water use in maintaining the long-term stability
of the global crop production system.

Code and data availability. The processing scripts are available
from GitHub: https://github.com/matheino/crops_and_oscillations
(last access: 19 September 2019) (Heino, 2019). The simulated crop
yield data were retrieved from the GGCMI data archive at: http:
//www.rdcep.org/research-projects/ggcmi (last access: 11 Novem-
ber 2017) (Center for Robust Decision-making on Climate and En-
ergy Policy, 2017); they are also available through the links pro-
vided in the references of Table 1.
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