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Comprehensive and robust statistical estimates of trends during heavy precipitation

events are essential in understanding the impact of past and future climate changes

in the hydrological cycle. However, methods commonly used in extreme value statistics

(EVS) are often unable to detect significant trends, because of their methodologically

motivated reduction of the sample size and strong assumptions regarding the underlying

distribution. Here, we propose linear quantile regression (QR) as a complementary and

robust alternative to estimating trends in heavy precipitation events. QR does not require

any assumptions on the underlying distribution and is also able to estimate trends for the

full span of the distribution without any reduction of the available data. As an example, we

study here a very dense and homogenized data set of daily precipitation amounts over

Germany for the period between 1951 and 2006 to compare the results of QR and the

so-called block maxima approach, a classical method in EVS. Both methods indicate

an overall increase in the intensity of heavy precipitation events. The strongest trends

can be found in regions with an elevation of about 500 m above sea level. In turn, larger

spatial clusters of moderate or even decreasing trends can only be found in Northeastern

Germany. In conclusion, both methods show comparable results. QR, however, allows

for a more flexible and comprehensive study of precipitation events.

Keywords: quantile regression, heavy precipitation, extreme value statistics, time series analysis, climate change

1. INTRODUCTION

During the past decades, climate change has been one of the most intensively discussed topics in
atmospheric science. The drivers behind the debates not only include the question of whether
or why climate change is occurring, but also the assessment of the potential impacts of climate
change on nature and society. This applies in particular to changes in the frequency and intensity
of meteorological extreme events such as droughts, heat waves, and heavy precipitation events,
as these directly endanger people’s health and can cause tremendous damage to nature and
infrastructure. Quantifying the future risk and potential intensity of such extreme events is thus
of high social and economic relevance. However, assessing the risks of future climate extremes
requires a reliable and robust statistical framework. Otherwise, the results could lead to false
decision making in risk management.
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The robustness and reliability of a statistical framework for
extreme events can be evaluated by considering three main
relevant aspects:

1. The definition of an extreme event. The special report on
extreme events (SREX) by the Intergovernmental Panel on
Climate Change (IPCC, 2012) defines an extreme event as
the occurrence of a value of a weather or climate variable
above/below a threshold value near the upper/lower ends of
the observed distribution of the respective variable. However,
there are usually no common values for the thresholds
themselves. In turn, these must be specifically defined in each
statistical framework. A poorly defined threshold could either
exclude events that might be considered extreme or include
too many events that are not extreme and thus may lead to a
bias in the results.

2. Insensitivity against small deviations from the assumptions
(Huber and Ronchetti, 2009). This includes prior assumptions
on the underlying distribution of the data (e.g., in Bayesian
inference), fitting a distribution to the data (e.g., Zolina
et al., 2008) or the assumption of independent and identically
distributed (iid) data (e.g., in linear regression).

3. Robustness against outliers.

All three characteristics significantly influence the result of
a statistical assessment and are usually present in most
common statistics for analyzing extreme events. Therefore,
they can be seen as a natural source of uncertainty in every
statistical framework for extreme events, independent of the
applied method.

In the context of climate research, two widely applied
statistical frameworks based on the concepts of extreme value
statistics (EVS) are block maxima (BM; Fisher and Tippett, 1928)
and the peak-over-threshold (POT; Coles, 2001) approach. Both
methods aim to approximate the probability density function
(PDF) by fitting a generalized parent distribution to a series
of extreme events, where an extreme event is defined as either
the maximum of a certain time period (for BM) or as each
value above a given threshold (for POT). Hence, BM and POT
systematically reduce the data via their intrinsic definition of an
extreme event. However, fitting distributions require a sufficient
amount of data, otherwise the parameter estimation is subject
to large variances. Therefore, depending on the definition of
an extreme event and the length of the underlying time series,
reducing the data could add another aspect to the already
described sources of uncertainty.

Given the current state of the art and accounting for the
potential sources of uncertainty, robust, and reliable alternatives
are necessary to corroborate or expand knowledge on climate
change impact. Here, we propose quantile regression (QR) as a
possible alternative. QR is a statistical regression tool that enables
the estimation of non-stationary quantile curves and, thus, the
investigation of the full distribution of any desired variable. It
was first introduced by Koenker and Bassett (1978) and has
multiple advantages compared to classical regression methods.
For example, QR makes no assumptions about the underlying
distribution and is equivariant to monotone transformations
of the underlying data. Furthermore, QR does not require a

pre-processing of the data for the sake of defining extreme events.
By using quantiles, an extreme event is solely defined by a given
probability of occurrence. This probability does not affect the
sample size, because QR always uses all the data to estimate non-
stationary quantiles. The definition of an extreme event does
therefore not affect the sample size or its properties. This further
motivates the use of QR in EVS. The method also proved to be
extremely robust against outliers (John, 2015).

QR has already been widely applied in various studies in
economics (Machado and Mata, 2005; Coad and Rao, 2008),
medicine (Austin et al., 2005; Ding et al., 2010), survival analysis
(Koenker and Geling, 2001; Peng and Huang, 2008), and many
other fields. Applications to extreme events include the analysis
of sea level (Barbosa, 2008; Donner et al., 2012; Ribeiro et al.,
2014) and air temperature trends (Barbosa et al., 2011; Gao and
Franzke, 2017; Rhines et al., 2017; Haugen et al., 2018), the
increase in the intensity of tropical cyclones (Elsner et al., 2008),
or the scaling of extreme precipitation with temperature (Wasko
and Sharma, 2014).

In this article, we further demonstrate the proficiency of
QR and its potential of being a complementary and powerful
statistical tool for non-stationary extreme value analysis through
the study of recent trends in the intensity of heavy precipitation
over Germany. In order to demonstrate its methodological
consistency in the context of EVS, we will also apply the BM
approach and compare the results of both statistical frameworks.
Furthermore, applying both methods should improve the
understanding of trends in the intensity of heavy precipitation.

Precipitation is one of the key climate variables that has
a direct impact on humanity and can be seen as the driving
force behind the hydrological cycle. Extreme precipitation events
are closely related to subsequent natural hazards such as flash
floods or landslides. Trends in heavy precipitation are generally
harder to detect than for temperature (Alexander et al., 2006).
The latest 5th Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC) states that since 1950 the
number of heavy precipitation events over land has increased
in more regions than over which it has decreased, where
the highest confidence levels are generally found in the mid-
latitudes of the Northern Hemisphere (Hartmann et al., 2013).
Past studies of precipitation extremes in Europe have shown
significant positive trends, where most assessments have been
either based on descriptive indices or EVS (Klein Tank and
Können, 2003; Alexander et al., 2006; van den Besselaar et al.,
2013). Trends in the intensity of heavy precipitation events
specifically for Germany were already investigated by Zolina
et al. (2008). They associated precipitation extremes with the
95th and 99th percentiles and estimated linear trends within
these percentiles for each season separately. However, in contrast
to the present study the percentiles were derived from fits of
a gamma distribution to daily precipitation data. Their results
showed positive linear trends in the winter, autumn and spring
season for the whole domain, while the summer season exhibits
mostly negative tendencies.

Although the study of Zolina et al. (2008) followed some
goals similar to the topic investigated here, there are certain key
differences. First, an even denser and more complete data set
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is used. Second, we estimate quantiles directly from the data
rather than deriving them from fits of gamma distributions.
Furthermore, our study will focus on annual trends rather
than seasonally dependent changes. This way, we hope to
further complete the picture of trends in the intensity of heavy
precipitation in Germany. In summary, this study has two
objectives: (i) the further promotion of QR as a powerful
statistical tool for assessing trends in climate extremes and (ii) the
thorough extension of the results previously reported in Zolina
et al. (2008).

The remainder of this paper is organized as follows: sections
2 and 3 describe the data and methods used in this study with
the necessary level of detail. In section 4, we discuss different
parameterizations of the EVS and QR models employed in
this work, and demonstrate that a restriction to models with
seasonal cycles and linear trends in the GEV location parameter
and quantile of interest, respectively, commonly provides a
reasonable description of the studied data. The detailed trend
patterns inferred, using both methods, are presented in section 5,
while a corresponding discussion and conclusions are presented
in section 6.

2. DATA

For the statistical assessment, we use a spatially and temporally
high-resolution data set of in-situ measurements of daily
precipitation amounts over Germany. The data set comprises
continuous recordings at 2,342 stations from the rain gauge
network operated by the German weather service (DWD)
and covers the period between 1951 and 2006. The location
and altitude of the stations can be seen in Figure 1 along
with the mean daily rainfall sums and corresponding 95th
percentiles. Notably, the overall rainfall patterns are closely
tied to the orography, with elevated values in the mountain
ranges in Central and Southern Germany and a well-expressed
west-east gradient reflecting increasing continentality of the
climatic conditions. Further details on the spatial distribution of
(seasonal) precipitation over Germany can be found in Zolina
et al. (2008).

Our data set is based on the same operational rain gauge
network used in Zolina et al. (2008). However, their data set
had over 200 stations less, and excluded Northeastern Germany
entirely due to missing data and a lack of information about the
applied measurement technique. Here, we close the information
gap by using the post-processed product from the Potsdam
Institute for Climate Impact Research (PIK).

The data set from PIK has the sole purpose of providing
a complete and dense data basis for climate studies. The
post-processing included a comprehensive quality control, a
statistical replacement of missing values and the removal of
inhomogeneities, if they were not of natural origin. Thus, the
data set is complete and homogeneous for the entire time period
between 1951 and 2006. All post-processing steps were carried
out with careful consideration of statistical and climatological
relationships between neighboring stations to ensure a physically
robust temporal and spatial representation of precipitation

events over Germany. As a detailed description of each individual
post-processing step would exceed the scope of this article, we
refer to Österle et al. (2006) for further information.

3. METHODS

In this section, we give a short description of QR and the
BM approach. For a more comprehensive introduction of QR
and further details about its applications in various scientific
disciplines (see Koenker, 2005). An equally comprehensive and
well-written introduction of not only the blockmaxima approach
but also the POT method can be found in Coles (2001).
Additionally, a description of the likelihood ratio test is given.

All statistical methods used in this work and described below
are available in the framework of existing packages in the
open source statistical programming environment R (R Core
Team, 2019). Specifically, the packages used include extRemes
(Gilleland and Katz, 2016) for the block maxima approach, and
quantreg (Koenker, 2019) for the quantile regression.

3.1. Block Maxima Approach
Let Yt (t = 1, . . . , n) be a sequence of n independent
and identically distributed random variables and Mn the
respective BM

Mn = max {Y1, . . . ,Yn} . (1)

In extreme value statistics,Mn represents the most intense event
in a block (i.e., time interval) of size n. In atmospheric science,
n commonly covers a month or year. Mn would therefore be the
magnitude of the most intense event in a month or year.

Following the extreme value theorem by Fisher and Tippett
(1928), Mn converges for n → ∞ against one of three extreme
value distributions (EVDs), i.e., Gumbel, Fréchet, or Weibull
distribution. Each of these three EVDs represents a different type
of PDF that exhibits a unique type of behavior in the tail. For the
Gumbel distribution (Type I) the probability in the tail declines
exponentially. The Fréchet distribution (Type II) is heavy-tailed,
i.e., the PDF declines with a power law. The Weibull distribution
(Type III), on the contrary, is light-tailed and the PDF has a finite
upper endpoint.

The PDFs of the three EVDs can be generalized in terms of the
generalized extreme value (GEV) distribution

G(x;µ, σ , ξ ) = exp

{

−

[

1+ ξ

(

x− µ

σ

)]−1/ξ
}

, (2)

where µ ∈ R is the location, σ > 0 the scale and ξ ∈ R the shape
parameter. The parameters describe different characteristics of
the GEV. The location parameter µ determines the most likely
magnitude of an extreme event, while σ represents the width of
the density function. The shape parameter ξ is special as it not
only describes the decline in the tail, but also links the GEV to the
classical EVDs. In case of ξ > 0 the GEV corresponds to a Fréchet
distribution, while ξ < 0 defines aWeibull distribution. The limit
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FIGURE 1 | Location and basic properties of the stations forming the rain gauge network considered in this study: (A) altitude (in meters above mean sea level), (B)

mean value, and (C) 95th percentile of daily rainfall sums (in mm).

TABLE 1 | Summary of the EDVs and their linking to GEV.

Type Distribution ξ Properties

I Gumbel ξ → 0 Exponential decline

II Fréchet ξ > 0 Heavy-tailed, declining with power law

III Weibull ξ < 0 Light-tailed, finite right endpoint

case ξ → 0 indicates a Gumbel distribution. A summary of the
EVDs and their link to the GEV is provided in Table 1.

Because of the well-studied properties of the GEV distribution
(Equation 2) and the intuitive definition of an extreme event
as the most intense event in a given time interval (Equation
1), the block maxima approach has become a widely applied
statistical tool not only in climatology and hydrology (Katz et al.,
2002; Katz, 2010; Ribeiro et al., 2014), but also in economics
(Embrechts and Schmidli, 1994) or engineering (Park and Sohn,
2006). However, as intuitive as the definition of Mn may be,
the choice of block size (n) is the main challenge of the block
maximum approach. If n is chosen too large, large sampling
errors may occur due to the strong reduction of the data as
only the maximum value of each block is used for the statistical
inference. On the other hand, if n is chosen too small, estimation
biases could occur due to a large number of unrepresentative local
maxima. Therefore, a careful selection of n is important for every
application of the block maxima approach.

Typically, n is chosen to fit the problem at hand, since the
rate of convergence depends on the underlying distribution of
Yt (Embrechts and Schmidli, 1994). In past studies, 1-month

blocks have proven proficient in representing the characteristics
of heavy daily precipitation events in Europe (Rust et al.,
2009; Fischer et al., 2018). Therefore, our study also uses
monthly maxima for the estimation of the GEV parameters. The
regression model for the parameters of the GEV is discussed in
section 4.

3.2. Linear Quantile Regression
Let us again consider a sequence of n random variables
Yt (t = 1, . . . , n). For a desired probability τ the corresponding
quantile QYt (τ ) is defined as

QYt (τ ) = inf
{

y : FYt (y) ≥ τ
}

, (3)

where τ ∈ [0, 1] and FYt is the cumulative distribution function
(CDF) of Yt . In Equation (3), the quantile is defined as stationary
as long as FYt is stationary and can be interpreted as a threshold
where the probability of an observation y being equal or below
QYt (τ ) is τ . In linear QR, on the other hand, QYt is defined
as depending on a (t × p)-matrix of predictor variables X =

(X11, . . . ,Xnp) such that

QYt (τ |X) = X · βτ , (4)

where βτ = (βτ ,1, . . . ,βτ ,p) is a set of unknown regression
parameters. Equation (4) describes a conditional quantile
function (i.e., quantile values conditional on the set of predictors
X), which serves a similar purpose as the conditional mean or
expectation value in ordinary least square (OLS) regression (see
Wood, 2006). In fact, QR can be seen as an extension of OLS
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regression. Analogous to the latter, Equation (4) is solved by
minimizing a weighted sum of residuals

β̂τ = argmin
β∈Rp

n
∑

i=1

ρτ (Yi − Xi · βτ ), (5)

where ρτ (·) is the tilted absolute value function

ρτ (e) = τeI[0,∞)(e)− (1− τ )eI(−∞,0)(e)

= e(τ − I(−∞,0)(e))

=

[

1

2
+

(

τ −
1

2

)

sgn(e)

]

|e|, (6)

with sgn(·) being the sign function. The above linear quantile
model can be generalized in a straightforward manner to also
address non-linear functional forms of the quantiles’ behavior by
modifying the functional description in Equation (5) accordingly,
in the same fashion as in OLS regression. Moreover, non-linear
quantile trends can also be studied without prescribing a specific
functional form of dependency by using different non-parametric
(or semiparametric) versions of QR (see Donner et al., 2012, for
a corresponding example).

By making use of Equations (4)–(6) (along with the possible
generalizations as described in the previous paragraph), QR
is able to estimate the parameters of arbitrary non-stationary
functional relationships (quantile curves) for each set of desired
quantiles τ in dependence on any given set of predictors X. In
the context of the time series analysis, QR can be understood
as an analog to a simple OLS regression for a time-dependent
quantile, e.g., changes in the 99th percentile of daily observation
values in each year. However, it should be noted that QR has a
number of advantages compared to such a simplified approach.
Most importantly, linear OLS regression for the 99th percentile
of a year would reduce the data to one value per year. By
contrast, QR estimates the trend coefficient of the linearly time-
dependent 99th percentile using the whole time series (i.e.,
taking each individual observation value into account). This
ensures a potentially more robust result for the estimated linear
quantile trends.

3.3. Likelihood Ratio Test
In most applications of parametric regression, it is not necessarily
evident whether or not a selected regression model is the most
adequate to describe the problem at hand. In such cases, model
selection approaches are commonly used to provide a degree of
certainty about the selected regression model, i.e., the feasibility
of a null model M0, by testing it against one or more alternative
model. Depending on the test statistic,M0 is either rejected or not
for a given significance level α.

One of the most flexible model selection tests is the
likelihood-ratio test (LRT), a parametric test which compares the
likelihood of two regression models. The test can be used in a
straightforwardmanner if two conditions are satisfied. First, both
regression models are nested such thatM0 with 2 = (θ1, . . . , θj)
is a simplification of M1 with 2 = (θ1, . . . , θk), where j < k.
Hence, M0 can be obtained by setting one or more parameters

in M1 to zero. Second, the parameters have been fitted using the
method of maximum likelihood (see Wilks, 2011).

The null hypothesis of the LRT is that M0 is a valid
simplification of M1 and will only be rejected if the likelihood
associated withM1 is sufficiently larger than that ofM0. The test
statistic is

D = 2 log

[

L (M1)

L (M0)

]

= 2
[

log L (M1) − log L (M0)
]

, (7)

where L is the likelihood of the respective regression model.
Equation (7) defines the so-called deviance statistic. Under the
null hypothesis, and given a large sample size, the deviance’s
distribution resembles a χ2 distribution with k − j degrees of
freedom. Therefore, M0 is rejected if the empirical value of D is
in an improbable region of the tail of the χ2 distribution defined
by the residual error probability α.

We note that extensions of the LRT exist that work under
more general conditions, i.e., cases in which the competing
regression models are either nested, non-nested, or overlapping
(e.g., Vuong, 1989). Such generalizations pose additional
computational challenges, but would allow comparing regression
models with unrelated predictors. However, since in this study all
considered models are mutually nested, we will consider only the
original LRT in the remainder of this work.

4. MODEL SELECTION

In this section, the above introduced LRT (section 3.3) is used
to evaluate our regression models for QR and the block maxima
approach. Both statistical methods will have the same regression
models. Therefore, this section has two purposes. First, and most
obviously, the selection of the most adequate regression model
for this study. Second, to test whether both methods identify
the same signals (i.e., significant parameters) in the observation
data. The only major difference between QR and GEV will be
that the same regression model may be applied to more than one
parameter of the GEV, while in QR only one regression model is
used for all probability levels.

Assuming a linear trend and annual cycle in the distribution
of monthly maxima of daily precipitation, the parameters of the
GEV are described as follows:

µ(t) = µ0 + µ1t + µ2 sin(ωci)+ µ3 cos(ωci), (8)

ln σ (t) = σ0 + σ1t + σ2 sin(ωci)+ σ3 cos(ωci), (9)

ξ (t) = ξ , (10)

where ω = 2π/365.25 is the angular frequency and ci = ci(t) the
center of the i-th month in counted days beginning from the start
of each year. The methodology and terminology were adapted
from Rust et al. (2009) and, for the purpose of this application,
extended by a linear trend component. The shape parameter is
left stationary, as it is often difficult to estimate the parameter
due to a lack of information in the tails of the distributions.
Analogously, the regression model for QR will be

qτ = β0 + β1t + β2 sin(ωci)+ β3 cos(ωci), (11)
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where qτ is the quantile value for the probability level τ .
To verify whether or not there is a significant trend in the fitted

GEV parameters, four different settings will be tested against
each other:

M1: No trend at all (µ1 = 0, σ1 = 0)
M2: Trend only in the location parameter (µ1 6= 0, σ1 = 0)
M3: Trend only in the scale parameter (µ1 = 0, σ1 6= 0)
M4: Trend in the location and scale parameter (µ1 6= 0, σ1 6= 0).

For QR, we will only test for β1 6= 0 against β1 = 0. All LRTs
will be executed at a confidence level of α = 0.05. Note that in all
configurations the annual cycle will be part of the regression. This
is because we want to explain as much natural variability within
the data as possible while estimating the trends.

We note that in general, long-term trends in climatological
variables are not necessarily linear, but often mutually entangled
with low-frequency variability, making the “slow” changes (i.e.,
on time scales of the order of the observation period) in fact
non-linear. Despite this, we have to acknowledge this fact,
as we restrict ourselves to linear time dependencies here for
two main reasons: First, linear trends can be characterized by
a single coefficient (i.e., the slope), which can be interpreted
in a very intuitive way. Specifically, non-linear trends imply
that the rate of changes becomes itself time-dependent, which
needs to be accounted for in the interpretation. Second, we
attempt a comparative study between temporal changes in GEV
parameters and conditional quantiles of the distribution of daily
precipitation values. Since the employed extreme value statistics
makes use of block maxima, using more complex than linear
behaviors (in addition to the modeled seasonality) as parts of
the corresponding modeling problem is likely to render the
resulting parameter estimates more uncertain and, therefore less
interpretable. Recalling that a statistical model should be as
complex as necessary, but not more complex, we will exclusively
study the aforementioned linear model versions in this work.

Figure 2 shows the resulting p-values for the comparison
of all configurations. For the BM approach, most stations in
Germany show no significant trends in heavy precipitation
events. When there is a significant trend, then it is usually found
in the location parameter of the GEV (Figure 2A). For the scale
parameter there are close to no significant trends (Figure 2B).
This suggests that the intensity distribution of heavy precipitation
events rather tends to shift to higher or lower intensities while
the overall variance remains about the same. There is no visible
improvement when both parameters include a linear trend as
compared to a GEVmodel where only the location parameter has
a linear trend (Figure 2C).

Notably, significant trends in the location parameter
(Figure 2A) mostly occur at stations in Central, Southeast,
Southwest and higher altitude regions of Western Germany.
More than half of these stations are located at least 300 m above
sea level (cf. Figure 1). There are only a few significant trends in
Northern Germany and almost none in Eastern Germany.

Figure 2D shows the resulting p-values for QR with τ =

0.95. Most stations in Germany show a significant trend in
the 95th percentile. In accordance with Figure 2A, there are
particularly large clusters of significant trends in Southeastern

and Central Germany. Differences can be seen for Western,
Northwestern and Eastern Germany. Here, the 95th percentile
exhibits significant trends for a majority of the stations. Other
percentiles between 90 and 99% show similar results when tested
under the same conditions (not shown).

Based on the results in Figure 2 and considering the purpose
of this article, the remainder of our analysis will focus on the
GEV model where only the location parameter is modeled with
a linear trend (M1) along with the QR model with β1 6= 0 for all
desired percentiles.

5. RESULTS

5.1. Comparison of QR and the Block
Maxima Approach
Because of their distinct methodological foundations, the BM
approach and QR do not have much in common conceptually.
However, both methods are able to represent statistical
characteristics of the tails of a given distribution. Therefore, it
is meaningful to investigate the relationship between the fitted
location parameter of the GEV and the upper quantiles of the
precipitation distribution.

Figure 3 shows two scatter plots for the intercepts and trend
coefficients, respectively. There is a high correlation between the
intercepts (µ0 and β0) for all upper quantiles (Figure 3A). For the
95th percentile, µ0 and β0 are almost equal. Note, that there is no
physical interpretation for the intercept. In a regression model,
the intercept is the expected mean value of the response variable
if the predictor equals zero. Here, in a case were the predictor
is never zero, the intercept has no intrinsic meaning and is fully
dependent on the data. For the given data and regression models,
our block maxima approach and the QR estimate of the 95th
percentile estimates similar intercepts. One could interpret this as
both approaches using similar starting values for their regression.

Based on the results in Figure 3A, only the comparison of
the respective trend coefficients for the GEV location parameter
and 95th percentile is shown in Figure 3B. The estimated β1 and
µ1 show a medium high correlation of r ≈ 0.65. All estimates
are located close to the diagonal line, implying µ1 ≈ β1. Since
the scatter cloud is slightly shifted toward the right side of the
plot, µ1 seems to have larger values overall than β1. However, the
respective parameter estimates of both methods do not always
perfectly coincide, which is expected since the mean amplitude
of monthly block maxima (representing about 12/365.25 or 3.3%
of all daily observations) and the 95th percentile of the full
distribution of the daily data constitute two closely related yet
different statistical properties.

5.2. Trends in Precipitation Extremes
To quantify the magnitude and spatial distribution of trends in
the intensity of heavy precipitation events, Figure 4 shows the
maps of β1 and µ1 over Germany. The trends are categorized
from large positive trends to large negative trends. We do this
for two reasons; (i) a categorization simplifies the visualization of
spatial patterns and (ii) it filters small differences between β1 and
µ1, which are solely based on the different methodologies of QR
and GEV, or small variance in the respective estimators.
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FIGURE 2 | Resulting p-values from the LRT for (A–C) different configurations of the GEV (M1-M4) and (D) QR for 95th percentile (β1 6= 0 vs. β1 = 0). A trend is

considered significant for p ≤ 0.05.

Figure 4 shows that most regions in Germany have
experienced an increase in the intensity of heavy precipitation
for the period between 1951 and 2006. Trends are generally

stronger in the BM than in the 95th percentile. The spatial
distribution, however, is similar for both β1 and µ1. The regions
with the strongest increases in intensity are Southeastern and
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FIGURE 3 | Scatter plots for the relationship between the location parameter of the GEV and QR for (A) the respective intercepts (µ0, β0) and (B) the respective trend

coefficients (µ1, β1) with associated Person correlation coefficient (r). The intercepts are compared for different τ .

FIGURE 4 | Trends in the intensity of heavy precipitation over Germany. Trends are categorized into large positive trend (++, x > 0.04 mm/yr), small positive trend (+,

x > 0.01 mm/yr), nearly no change (+–0, –0.01 mm/yr < x < 0.01 mm/yr), small negative trend (–, x < –0.01 mm/yr), or large negative trend (–, x < –0.04 mm/yr),

where x is a place holder for (A) β1 and (B) µ1.

Central Germany. In both regions, the majority of β1 and µ1

are considered to be significant (cf. Figure 2). Most of the large
positive trends in Figure 4 can be associated with stations about
300 m above sea level and in close approximation too even
higher altitude regions (cf. Figure 1). This suggests an increasing
role of orographic lifting in heavy precipitation events. However,

the majority of stations display only a small increase in intensity
of heavy precipitation.

Overall, the blockmaxima approach andQR show a consistent
picture for trends in the intensity of heavy precipitation events.
An exception to this is Northeastern Germany, where the
patterns are more distinct between both methods. Here, µ1
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FIGURE 5 | Location and names of the 10 example stations.

shows no clear trends in heavy precipitation, while β1 suggests
an overall decrease in intensity. Similarities apply to the Alpine
Foreland, where almost all block maxima exhibit positive trends,
whereas the trends in the 95th percentile either indicate no
changes or a decrease in intensity. In both regions, Figure 2
shows almost no significant trends in µ and only a few in
β . In such cases of disagreement, we suggest exploring both
methods in parallel instead of taking one as a reference, since
(as stated above) both are based on different rationales and
thereby capture related, yet different aspects of a time-dependent
probability distribution.

5.3. Trends in Precipitation Quantiles
One of the advantages of QR compared to the block maxima
approach is its ability to provide a more comprehensive
understanding of the PDF’s behavior because it is not limited to
a particular definition of an extreme event. To give an example,
we selected 10 stations from different regions in Germany
(Figure 5) and estimated the linear trends in various quantiles.
Figure 6 shows the resulting quantile trends for probabilities
from 0.6 to 0.98 (henceforth denoted as trend curves). Associated
uncertainties were estimated using the inverted rank test for
dependent data as proposed by Koenker and Machado (1999).

Generally, the strongest quantile trends can be seen in the
upper quantiles (above τ > 0.8) of the distribution. Here, most
of the stations show an increase in intensity. Only the stations
Brück and Limbach display negative trends over the observation
period. Surprisingly, none of the stations shows a continuous
transition between quantile trends. However, there seem to be

similar patterns in the transition. From Figure 6, four different
categories can be identified. First, a slow increase of the trend
curve with a drop at the 0.98 quantile (Figure 6, Sassnitz and
Selsingen). Second, almost no response below the most extreme
quantiles (Figure 6, Dortmund and Herzberg-Scharzfeld). Third,
strong positive quantile trends for almost all probabilities
(Figure 6, Feilnbach, Oberried-Hofsgrund, Ingolstadt and Floss).
Fourth and last, a decreasing trend curve in the upper quantiles
(Figure 6, Brueck and Limbach).

The uncertainty of the estimate increases together with the
probability level. This is to be expected, since although QRmakes
use of the full data, independent of the desired τ , the weighting
function (Equation 6) still increases the impact of a smaller
number of values on the estimate as τ reaches the tails. For
example, consider the estimation of the 99th percentile. In such a
case, the majority of the residuals would get a weighting of 0.01,
while only few residuals would be weighted with 0.99. Hence, the
minimization process (Equation 5) would be mostly governed by
just 1% of the data.

Figure 6 suggest a regional pattern of trend curves, since the
stations within the above identified categories are usually from
the same region. For example, the stations Sassnitz and Selsingen
are both located in the northern part of Germany. To further
study the corresponding pattern, we use k-means clustering for
the obtained linear QR trend curves as a function of the percentile
all stations in Germany using Lloyd’s algorithm (Lloyd, 1982).
Here, k initial cluster means are estimated by randomly choosing
k out of all available stations (initialization step). Each individual
station is assigned to the cluster who’s mean QR trend curve
has the least squared Euclidean distance to that of the respective
station (assignment step). Afterwards, new means are estimated
depending on the cluster variance (update step). The assignment
and update step are repeated until the algorithm converges, i.e.,
the assignments of stations to different clusters no longer change.
The final mean QR trend curves of all stations belonging to the
same cluster are called the centers of those clusters. A more
comprehensive description of Lloyd’s algorithm can be found in
Lloyd (1982).

A drawback of k-means clustering is that the number of
clusters k has to be prescribed prior to the application of the
algorithm. If there is no a priori knowledge about the possible
number of clusters within the data, k must be chosen based
on empirical reasoning. There are various statistical approaches
to the assessment of clustering quality that can be used for
determining an appropriate k, ranging from simple visual
methods to more complex measures for cluster comparison.
Here, we use the average silhouette method proposed by
Rousseeuw (1987), which provides a quantitative way to measure
how well each point lies within its cluster in comparison to the
other clusters. Both, the average silhouette method and Lloyd’s
algorithm, are available in the R package NbClust (Charrad
et al., 2014).

To find an optimal number of clusters among all stations
based on the similarity between the quantile curves, the average
silhouette method is applied to different ensembles of clusters,
where each ensemble consists of 50 k-means clustered members
all evaluated with the same k. In our case, the number of clusters k
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FIGURE 6 | Estimated quantile trends and corresponding uncertainties (vertical error bars) for probabilities τ ≥ 0.6 at 10 different stations in Germany. The uncertainty

was calculated using a maximum entropy bootstrap algorithm.
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varies between 2 and 6. Therefore, silhouette values are calculated
for 5 ensembles of 50 k-means members each. The ensemble
with the on average highest silhouette value is the ensemble with
the optimal k. We use ensembles to account for the variance
in cluster assignments originating from the initialization step
in Lloyd’s algorithm, because the random picking of stations as
initial means can lead to somewhat different clustering each time
the algorithm is applied, which needs to be considered when
choosing between different k. The results of the above described
methodology (not shown) suggest that k = 2 is the optimal
number of clusters for our problem according to the average
silhouette criterion.

The cluster centers for k = 2 and the respective cluster
assignments of all stations are shown in Figure 7. The resulting
clusters are nearly balanced, with group 1 consisting of 1,071
stations and group 2 of 1,271 stations. Both cluster centers
display only positive trends in all quantiles (Figure 7, lower
panel). The quantile curves in group 1 exhibit positive trends,
which strongly increase toward the upper quantiles. The quantile
curves of stations in group 2, on the other hand, show only
weak positive trends, which display a rather slow and continuous
increase toward the uppermost quantiles. Stations with negative
trends like Limbach (see Figure 6) are assigned to group 2,
suggesting that stations with negative or decreasing trends in
the upper quantiles are too rare to justify individual clusters
in the considered version of the k-means approach. Indeed,
when allowing for a larger number of clusters k, the diversity
of behaviors markedly increases and qualitatively matches the
empirical observations made based upon Figure 6 (not shown).

The spatial distribution of the two clusters (Figure 7, upper
panel) supports the results in Figures 4A,D. Stations with strong
positive trends in the upper quantiles (group 1) usually cluster
westwards of high orography (Central and Southeast Germany)
or in the northwestern region near the North Sea, while the
northeastern part of Germany is mostly caused by stations with
only weakly positive or even negative trends (group 2) in the
upper quantiles.

6. DISCUSSION AND CONCLUSION

In this article, we proposed QR as a complementary and powerful
statistical tool for EVS. QR’s proficiency was shown by a statistical
assessment of recent trends in the intensity spectrum of heavy
precipitation over Germany based on a spatially and temporally
high-resolution data set covering the period from 1951 to 2006.
To verify the methodological consistency of QR in the context
of EVS, an additional well-established method from extreme
value theory was applied—the BM approach.While QR estimates
quantile curves from data in a fashion similar to OLS, the BM
approach aims to approximate the GEV for a set of given BM.

Although both methods follow a different philosophy, a high
correlation between the location parameter of the GEV and
the 95th percentile estimated by QR could be found. This high
correlation and the similar results from sections 5.2 and 5.3 show
the methodological consistency of both methods and support the
statement that, when applied together, a more comprehensive

and complete understanding is achieved. Two regions with large
clusters of significant trends were identified by both QR and
the BM approach, one in Central and another in Southeastern
Germany. Both regions exhibit the strongest overall trends for
the period 1951–2006. Additionally, QR identified a significant
increase in the 95th percentile for large parts of Germany. In the
test statistics for QR, however, we compared a regression model
consisting of a parameterization of the annual cycle with the same
regression model plus a linear trend. A simple parameterization
of the annual cycle might be insufficient to effectively describe
the underlying data, which is why the inclusion of a linear
trend could already significantly improve the regression model
and thus cause the LRT indicating too many significant trends.
However, stations for which both QR and the BM approach
produce significant trends are likely to have experienced a change
in the intensity of heavy precipitation events.

The strongest trends with a significant increase in intensity
can be found at stations with an altitude of 300 m above sea level
or more. These results suggest an increasing role of orography
in the intensity of heavy precipitation. This hypothesis is further
supported by the fact that the majority of negative trends were
found in the northeastern part of Germany, a region with an
average altitude of about 100 m above sea level and less, or in
a mountain lee. Here, however, only a few of stations showed a
significant trend in both QR and the BM approach. Furthermore,
a k-means clustering analysis of quantile trend curves showed
that the upper percentiles (80th percentile and above) usually
experience stronger trends than those below.

The mainly positive trends in the northwestern part of
Germany could be governed by the North Atlantic oscillation
(NAO) through an increased import of moist air in the
winter periods. The NAO is a major source of interannual
variability in the atmospheric circulation and influences the
surface westerlies across the North Atlantic onto Europe (Rogers,
1985). Its positive mode is highly correlated to precipitation
in North and Northwest Germany, especially in winter (Cleary
et al., 2017). Hurrell (1995) found that the NAO shows an
increased tendency toward the positive mode since 1980. Hence,
an upward trend in the occurrence probability of positive
NAO modes would be directly linked to increasing trends in
winter precipitation.

In summary, the results suggest that positive trends in the
intensity of heavy precipitation could be associated to regional
characteristics such as high elevation and orography or moisture
transport from adjoining large water bodies. This increasing role
of regional effects on precipitation could be indirectly related
to the aerosol effect on cloud droplet size. The cloud droplet
size is found to be smallest in polluted air masses over the
continent (Bréon et al., 2002). Clouds consisting of too many
small cloud droplets, however, are less likely to produce raindrops
due to coalescence, leaving longer-lived clouds (the so-called
“cloud lifetime hypotheses,” see Albrecht, 1989). A characteristic
of these clouds could be that they need a trigger to initiate
other precipitation formation processes such as the Wegener-
Bergeron-Findeisen process (Findeisen, 2015). Such a trigger
could be regional effects like orographic lifting. In the context
of climate change, this could mean that future extreme events
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FIGURE 7 | Resulting k-means clusters (Upper) with corresponding centers (Lower) represented by the mean QR trend curves for quantiles from 0.6 to 0.98. The

color of each group applies to both panels.

become increasingly related to regional characteristics due to
increasing emissions of aerosols from anthropogenic sources.

However, pinpointing direct or even indirect causes for such
trends is hardly justifiable within the scope of the presented
assessment, since we only analyze daily precipitation amounts
without consideration of related climate variables such as
temperature, wind or pressure. Further investigation is needed
to provide physical robust explanations of changes in heavy
precipitation and its causes.

As a final note, we emphasize that our results indicate a spatial
dependency of heavy precipitation trends in Germany. Therefore,
it might be reasonable to explicitly account for this dependency
in future investigations of climatic changes. Especially in the
context of regression approaches, including parameters for
altitude and location of the event which could further improve

the models, thereby leading to a better understanding of
regional precipitation characteristics. The potential of such a
regression model was already evaluated in Fischer et al. (2017).
Here, the authors introduced spatially and seasonally varying
parameters into a GEV distribution fitted on monthly maxima
of daily precipitation sums using Legendre polynomials for
spatial characteristics (i.e., longitude, latitude, and altitude) and
harmonic functions for seasonality. Their results showed a
significant improvement in model accuracy, as the inclusion of
time and location dependent parameters allowed the GEV to
be applied to the entire data set instead of each month and
station separately. For future investigations, it would thus be
interesting to see if such a similar strategy of spatial modeling
could also further improve the performance of our quantile
regression approach.
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