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Abstract
Climate extremes, such as droughts or heat waves, can lead to harvest failures and threaten the
livelihoods of agricultural producers and the food security of communities worldwide. Improving our
understanding of their impacts on crop yields is crucial to enhance the resilience of the global food
system. This study analyses, to our knowledge for thefirst time, the impacts of climate extremes on
yield anomalies ofmaize, soybeans, rice and springwheat at the global scale using sub-national yield
data and applying amachine-learning algorithm.We find that growing season climate factors—
includingmean climate as well as climate extremes—explain 20%–49%of the variance of yield
anomalies (the range describes the differences between crop types), with 18%–43%of the explained
variance attributable to climate extremes, depending on crop type. Temperature-related extremes
show a stronger associationwith yield anomalies than precipitation-related factors, while irrigation
partlymitigates negative effects of high temperature extremes.We developed a composite indicator to
identify hotspot regions that are critical for global production and particularly susceptible to the effects
of climate extremes. These regions includeNorthAmerica formaize, springwheat and soy
production, Asia in the case ofmaize and rice production aswell as Europe for springwheat
production. Our study highlights the importance of considering climate extremes for agricultural
predictions and adaptation planning and provides an overview of critical regions that aremost
susceptible to variations in growing season climate and climate extremes.

1. Introduction

Different types of climate extremes are projected to
intensify and become more frequent in a number of
regionsworldwide due to climate change (IPCC 2012).
Extreme events, such as droughts and heat waves, can
adversely impact agricultural production and have
implications for the livelihoods and food security of
communities. Not only regions immediately experien-
cing the extreme event are affected, but also regions in
other parts of the world, which may suffer from

indirect consequences such as reduced exports of
agricultural products and higher food prices
(GFSP 2015, Puma et al 2015). A recent example of the
impacts of climate extremes on agricultural productiv-
ity is the European heat wave and drought in summer
2018, which lead to widespread harvest failures and
shortages of fodder for livestock in many countries
across the continent (DW 2018). To secure and
optimise yields in a changing climate, it is crucial to
understand the impact of climate extremes on crop
yields in the past and present climate.
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Previous studies have investigated the impacts of
extreme events on crop yields for individual regions
for which high-resolution yield and climate data were
available (Schlenker and Roberts 2009, Troy et al 2015,
Lüttger and Feike 2017). Studies focusing on agri-
cultural impacts of climate extremes at the global scale
often use nationally aggregated yield data and climate
extreme indicators (e.g. Lesk et al 2016). While these
studies provide valuable insights into the effects of cli-
mate extremes on yields at national scale, the spatial
aggregation—one yield time series per country—can
mask out the effects of more localised extremes, espe-
cially in major crop producing countries with large
land areas, such as China, the US or Russia, potentially
resulting in an under-estimation of their effects. Pre-
vious research that combined fine-scale yield statistics
with high-resolution climate data focused on estimat-
ing the sensitivity of crop yields to climate variability,
without looking at the effects of climate extremes spe-
cifically (Ray et al 2015). To our knowledge, a global
study analysing the impacts of climate extremes on
crop yields, using yield data at sub-national scale, has
not been performed to date.

Amajor challenge for the analysis of extreme event
impacts on global agriculture has been the availability
of high-quality yield and climate extremes data at sui-
table spatial and temporal scales. Extreme events are—
by definition—rare, therefore, their analysis requires a
sufficiently large number of observations, spanning
several decades or including a large dataset of spatially
independent data points. Here, we use a global agri-
cultural database providing data at sub-national spa-
tial resolution, combined with global coverage climate

and climate extreme indicator datasets, to estimate the
effect of temperature and precipitation extremes on
yields of the top four global crops (maize, soybeans,
rice, wheat—the latter separated into winter and
spring wheat), from 1961 to 2008.We predict grid-cell
yield anomalies—deviations of yields from an overall
trend—using ‘Random Forests’ (Breiman 2001), a
machine learning algorithm that allows for capturing
nonlinearities and complex interactions in the investi-
gated statistical relationships between climate
extremes and yields. The selected predictors include
mean precipitation and temperature as well as extreme
event indicators representing warm and cold temper-
ature extremes, drought and heavy precipitation
(table 1).

We find that climate variables considered in this
study—representing both mean climate conditions
and climate extremes during the growing season—
explain 20%–49% of the variance of yield anomalies at
the global scale (range over all crop types). Climate
extremes increase the explained variance of yield
anomalies by 18%–43% over what mean conditions
may explain, which represents more than half of the
explained variance in maize, soybeans and rice. Our
study further shows that temperature extremes have a
stronger association with yield anomalies than pre-
cipitation-related variables such as drought or heavy
precipitation indices. Irrigation is found to mitigate
negative effects of extreme warm days, particularly for
spring wheat and soybeans, which underlines the close
link between water availability and the effects of heat
extremes found in earlier research.We identify regions
that are highly relevant for global production and in

Table 1.Overview of predictor variables.

Variable name Short name Description Data source

Mean temperature tmp Meanmonthly temperature during the growing

season

CRUTS 3.23 (Harris et al 2014)

Meanprecipitation pre Meanmonthly precipitation during the growing

season

CRUTS 3.23 (Harris et al 2014)

Diurnal temperature range dtr Mean diurnal temperature range during the grow-

ing season

CRUTS 3.23 (Harris et al 2014)

Frost day frequency frs Mean frost day frequency during the growing

season

CRUTS 3.23 (Harris et al 2014)

Maximum temperature TXx Maximum temperature during the growing

season

HadEX2 (Donat et al 2013b)

Minimum temperature TNn Minimum temperature during the growing

season

HadEX2 (Donat et al 2013b)

Warmday frequency TX90p Percentage of days during the growing season

with dailymaximum temperature above the

90th percentile

HadEX2 (Donat et al 2013b)

Cold night frequency TN10p Percentage of days during the growing season

with dailyminimum temperature below the

10th percentile

HadEX2 (Donat et al 2013b)

Maximum5-day precipitation

intensity

Rx5day Maximum5-day rainfall intensity during the

growing season

HadEX2 (Donat et al 2013b)

SPI-6 spi-6 Mean SPI-6 (standard precipitation index for
6-month time interval) during the growing
season

Calculated fromCRUTS 3.23

precipitation (Harris et al 2014)
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which production variability may be particularly
influenced by climate extremes, using a composite
indicator built upon the results of the statistical analy-
sis. The regions that are most influenced by climate
extremes are North America (for maize, spring wheat
and soy production), Asia (maize and rice) and Europe
(spring wheat). The results of this study may support
efforts to increase the resilience of agricultural pro-
duction systems by identifying differences in yield sen-
sitivity to climate extremes and by supporting efforts
to adapt to climate extremes, including the develop-
ment or improvement of seasonal forecasts for
agriculture.

2.Data

2.1. Agricultural data
We used a global, high-resolution crop yield dataset
which includes data of the top four global crops
(maize, wheat, rice, soybeans) across ∼13 500 spatial
units worldwide, spanning the years 1961–2008 (Ray
et al 2012). The dataset was developed by retrieving
agricultural information frompublic source, statistical
bureaus and agricultural agencies and contains time
series of production, yields and area harvested for each
crop type and administrative unit. Data availability
was variable across regions and time periods, with data
missing especially in the early years of the available
data. Where data were missing, the 5-year average per
spatial unit was used to interpolate the time series,
constrained by available data of the geographic unit at
the next higher level (e.g. the national scale; see Ray
et al (2012) for further information on the data
collection and processing). We separated the wheat
yield data into winter and spring wheat based on the
distinction provided in the crop calendar by Sacks et al
(2010, SI section 1.1.1 is available online at stacks.iop.
org/ERL/14/054010/mmedia).

2.2. Climate and climate extremes data
To analyse the impacts of mean and extreme climate
conditions on crop yields, we used data from the
Climatic Research Unit (CRU) TS 3.23 dataset (Harris
et al 2014) and the HadEX2 extremes indicator dataset
(Donat et al 2013b) as predictor variables, spanning the
same time period as the yield data. These two datasets
were used as they are based on observational data,
provide meteorological and climate extremes data at
monthly resolution, which is required for focusing on
the growing season months (the extremes indicators
were calculated from daily-scale station data and
aggregated to the monthly scale). Both datasets have
nearly global coverage and cover several decades back to
at least the mid-20th century. This means that relating
climate data to the crop dataset is possible, taking
advantage of the entire length of record.While the CRU
TS 3.23 dataset is available on a 0.5°×0.5° grid, the
HadEX2 data was available on a comparatively coarse

2.5°×3.75° grid. Other extreme indicator datasets at
higher resolution are available, but these either do not
provide quasi-global coverage and were not quality
controlled to the same extent as the HadEX2 data (e.g.
GHCNDEX, Donat et al 2013a; see supplementary
figure 1 for a comparison of global coverage of HadEX2
and GHCNDEX), or are based on reanalyses data that
do not cover the complete time period for which
agricultural data is available (e.g. indices based on ERA-
Interim, Dee et al 2011, starting in 1979; see SI section
1.1.2 for a discussion of the dataset choice).

Climate variables included in our analysis are:
meanmonthly precipitation, meanmonthly near-sur-
face air temperature, mean diurnal temperature range,
frost day frequency, extreme indicators from HadEX2
capturing high and low temperature extremes as well
as heavy precipitation events (see table 1 for an over-
view of predictor variables). The high and low temper-
ature predictors measuring the frequency of warm
days (TX90p) and cold nights (TN10p) are percentile-
based relative to the local temperature distribution,
hence thresholds are based on local climate conditions
(see Donat et al 2013b). We further calculated the SPI-
6 index from CRU TS 3.23 precipitation data as a
proxy formeteorological drought conditions (table 1).

2.3. Calculation of growing season climate data
The harmonised crop calendar (v1.0) of the Agricul-
tural Model Intercomparison and Improvement Pro-
ject (AgMIP) (Rosenzweig et al 2013) was used to
define planting and harvesting dates. We masked this
calendar to only include grid cells where published
growing season dates from either Sacks et al (2010) or
the MIRCA2000 dataset (Portmann et al 2010) were
available. The crop calendar provides different grow-
ing season dates for irrigated and rainfed systems for
each crop and grid cell.We selected the growing season
dates with the dominant irrigation status based on the
MIRCA2000 land use dataset (Portmann et al 2010).
Planting and harvest dates were converted into
months; statistical parameters (minimum, mean and/
or maximum) were calculated over all months of the
growing season, including planting and harvesting
months.

2.4.Data processing
All spatial data were re-gridded to a common
1.5°×1.5° grid by bilinear interpolation to balance
the coarse resolution of HadEX2 (2.5°×3.75°) with
the finer 0.5°×0.5° resolution of all other datasets
(see SI section 1.1.4). The regridded time series were
detrended using a parameter-free trend estimation
method, singular spectrum analysis (Vautard et al
1992), implemented in the ‘ssa’Rpackage (Zhao2016),
yielding a multi-annual smoothing (see supplemen-
tary figure 2 for a comparison of detrendingmethods).
Yield time series were detrended to remove temporal
trends due to technological progress andmanagement

3

Environ. Res. Lett. 14 (2019) 054010

http://stacks.iop.org/ERL/14/054010/mmedia
http://stacks.iop.org/ERL/14/054010/mmedia


changes. Climate time series were detrended assuming
that agricultural managers are continuously adapting
to changing climate conditions (Butler and Huybers
2013), and climate shocks deviating from the expected
trend have the most detrimental effect on yields.
Detrended climate predictors and yields were standar-
dised per grid cell by dividing by their standard
deviation to account for the fact that grid cells with
smaller mean yields tend to have smaller anomalies
and assuming that local agriculture is adapted to local
mean climate variability (SI section 1.1.5).

All data are publicly available or available on
request (see supplementary table 2 for data access).

3.Methods

3.1. RandomForestmodel and cross-validation
We applied the machine learning algorithm ‘Random
Forests’ (Breiman 2001) to detrended and standar-
dised time series of crop yields and climate predictors
to predict crop yield anomalies. The Random Forest
algorithm is a non-parametric statistical method,
which uses an ensemble of decision trees and can be
applied to regression and classification problems
(Breiman 2001). RandomForests have previously been
applied to the analysis of the influence of climate
factors on yields in specific countries or regions (Jeong
et al 2016, Hoffman et al 2017), but an analysis of
extreme event impacts at the global scale, using sub-
national yield data, has not yet been done.

To estimate the variance of yield anomalies
explained by climate predictors, we calculated R2

values from cross-validated out-of-sample predictions
(SI section 1.2.3 for further information).We obtained
R2 values from time series at the continental and global
scale by calculating aggregated yield anomalies (actual
and predicted) as weighted arithmetic mean with har-
vested area as weighting factors. This calculation
ensures that grid cells with large harvesting areas,
where yield losses have greater impacts on regional or
global production anomalies, contribute more to
overallR2 values—unlike calculating a simplemeanR2

over all grid cells (SI section 1.2.3).
To assess the relative impact of the climate

extremes, we subsequently trained a Random Forest
on a subset of predictor variables representing only
mean climate conditions during the growing season
and calculated the differences in explained variance
(out-of-sample R2) as a proxy for the relative influence
of extreme event indicators.

We tested the robustness of our results to the
choice of statistical learning method by comparing the
Random Forest model against four other widely used
methods (Support Vector Machine, Generalised addi-
tive models, K-Nearest neighbours, and multiple lin-
ear regression). While the Random Forest method
yielded overall slightly higher explained variances (R2),
we found the results of this study with respect to the

yield effects of climate variations and extremes on
yields, including the relative importance of climate
extremes, to be robust to the choice of statistical
method (see SI section 1.4).

3.2. Variable importance and partial dependence
plots
The Random Forest algorithm allows for an invest-
igation of relationships between climate variables and
yield anomalies by providing the relative variable
importance and the functional relationship between
each predictor and the target variable (Jeong et al
2016). Variable importance values were calculated for
each crop type, based on a metric that captures the
increase inmean squared error (MSE), calculated from
out-of-sample predictions, after randomly permuting
the values of the respective predictor. Variable impor-
tance values were obtained using the R ‘randomForest’
library (Liaw andWiener 2002).

Partial dependence plots visualise the functional
relationship between a predictor variable and the
response variable after all other predictors are accoun-
ted for, similar to a sensitivity test for each predictor.
Partial dependence plots were created by randomly
sampling 500 observations from the complete dataset
of climate observations (pooling all grid cells and time
steps) and varying the one predictor variable of inter-
est at 100 equidistant points between itsminimumand
maximum. After applying the statistical model to the
resulting 5000 data points (500×100), we calculated
the mean yield response across the whole range of the
predictor variable as well as the uncertainty bands of
the predictions (see SI section 1.2.7 for further
information).

3.3. Sensitivity of regional crop production to
climate conditions
To put our findings into the context of global food
production, we estimate the contribution of climate
factors, and particularly extreme events, to fluctua-
tions in regional crop production. Crop production
varies with crop yields (t/ha) and harvested areas (ha).
Thus, to estimate the relevance of climate variations to
global and regional variances in crop production, we
considered: (i) the share of a region’s crop production
relative to global production, (ii) the mean variability
of regional production, (iii) the extent to which
production anomalies are associated with yield
anomalies (as opposed to variations in harvest area),
and (iv) the explained variance of yield anomalies,
predicted by fluctuations in climate conditions and
specifically extreme events. The four indices are
combined into composite indices by calculating the
geometricmean of factors i–iv.

A detailed description of the methodological
approach and a discussion of limitations can be found
in the supplementary information (‘Extended metho-
dology’ and ‘Limitations’). The data processing and
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analysis scripts are available online (at https://github.
com/elisabethvogel/gs_clim_data for the preparation
of the growing season climate data, and https://
github.com/elisabethvogel/climate_extremes_
agriculture, for the statistical analysis).

4. Results

4.1. Climate conditions explain 20%–49%of the
variance of global aggregated yield anomalies
The Random Forest models—including both growing
season climate means and extremes as predictors—
were able to explain nearly half of the variance of global
yield anomalies for maize and spring wheat (49% and
46%, respectively), about one quarter (28%) of yield
anomalies for rice and one fifth (20%) for soybeans
(figure 1(a); all numerical values shown in supplemen-
tary table 3). Explained variances of maize yields were
highest among all crops, both globally and for most

regions (explained variances between 45% and 55% of
variance in all continents, except South America, with
25%, and Oceania, with 10%, see figure 1(a)). For
soybeans, explained variances are highest in South
America and Africa (28%–30%). For rice, approxi-
mately 28% of the variance in yields in Asia is
explained by the considered climate variables.
Explained variances for spring wheat were highest in
Oceania, specifically in Australia with an R2 of 67%,
i.e. about two-third of the variance of observed crop
yields can be explained by climate conditions. In
contrast, the considered climate indicators can only
explain a minor component of observed variations in
winter wheat yields (not shown) likely due to the
comparatively long growing season spanning several
seasons. Therefore, winter wheat was excluded from
this analysis.

4.2. Extreme event indicators explain 18%–43%of
the variance of yield anomalies, contributingmore

Figure 1.Explained variance (R2) fromRandomForest out-of-sample predictions. (a) Light-coloured bars:R2 values of the full
statisticalmodel accounting formean climate conditions and extreme events; dark-coloured bars:R2 of reducedmodel only
accounting formean climate conditions. (b)Difference inR2 of full statisticalmodel and reducedmodel, as an estimation of the partial
explained variance from climate extremes indicators.R2 valueswere calculated from a regression of predicted yield anomalies against
observed yield anomalies; yield anomalies were previously averaged over continents and globally (Methods). The thin bars indicate the
5- to 95-percentile range of the bootstrapped distribution ofR2 differences between the full and reduced statisticalmodels (SI section
1.2.5).
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than half of the explained variance inmaize,
soybeans and rice
By comparing the explained variances of the full
statistical models to variances explained by reduced
models which only account for mean climate condi-
tions, we quantify the fraction of the explained
variance that can be attributed to extreme climate
conditions. While growing season mean climate con-
ditions captured nearly 30% of the global variability in
springwheat yields, they do not capture any significant
part of the variance of maize, soybeans and rice yields
(6%, 0% and 1%, respectively; figure 1(a); supplemen-
tary table 3). When excluding temperature and
precipitation extremes as predictors in the Random
Forest models, the explained global yield variance
dropped by 43% formaize, 20% for soybeans, 27% for
rice, and 18% for spring wheat (figure 1(b); supple-
mentary table 3). For maize, soybeans and rice, the
additional variance explained by the extreme indica-
tors is larger than the variance that can be explained by
mean climate indicators alone.

Climate extremes have a particularly strong asso-
ciation with maize yields at the continental scale; the
explained variance in North America and Asia reduces
by nearly 40% when extreme event indicators are
excluded (figure 1(b)). Both regions together were
responsible for more than 70% of global maize pro-
duction in 1990–2008 (production shares shown in
figure 4). Compared to mean growing season temper-
ature and precipitation, extreme climate conditions
also have a large influence on rice production in Asia
(the explained variance decreased by 26% when
excluding extreme event indicators, figures 1(a) and
(b)), the most important rice producing continent
with a 90% contribution to global production.
Accounting for extreme conditions also more than
doubles the explained variances of soy yields in North
and South America (figures 1(a) and (b)), together
responsible for more than 80% of global soy
production.

4.3. Temperature-related indicators have highest
predictive capacity for crop yields.
Overall, our analysis suggests that temperature-related
predictors aremore strongly correlated with crop yield
anomalies than precipitation-related predictors across
all four crops (see supplementary figure 9 for variable
importance plots). Here, the relevance or predictive
capacity of a predictor is quantified by the relative
increase inMSE—calculated as out-of-sample error—
between observed and predicted yield anomalies after
randomly permuting the values of the predictor of
interest (Methods).

For each crop, the top three predictor variables
were among the following temperature-related vari-
ables: (i) warm day frequency (TX90p), (ii) cold night
frequency (TN10p), (iii) the growing season average
temperature, or (iv) the mean diurnal temperature

range (supplementary figure 9). A greater diurnal
temperature range indicates a wider temperature dis-
tribution at the hourly scale, characterised by high
day-time temperatures and low night-time tempera-
tures, both of which are shown to have negative yield
effects (see next section).

While the number of frost days has low predictive
capacity, we find that the indicator for cold night fre-
quency has high variable importance for all crops
except spring wheat. Frost events are defined by a
fixed, absolute temperature threshold (New et al 2000)
and may never occur in warm climate zones, or may
generally not occur during the growing season in tem-
perate regions, whereas the indicator for cold nights is
percentile-based and depends on the temperature dis-
tribution of the given day of year at a particular loca-
tion (Donat et al 2013b). Our results suggest that
colder than usual temperatures reduce crop yields
even above the frost-event threshold, because plant
growth depends on accumulated temperature expo-
sure (McMaster and Wilhelm 1997, Schlenker and
Roberts 2009). Mean precipitation and SPI-6 play a
less significant role for determining crop yield anoma-
lies (with the exception of spring wheat in Oceania,
supplementary figure 10 for variable importance plots
by region). Similarly, the maximum 5-day precipita-
tion intensity, which captures extremely intense pre-
cipitation events, has low variable importance across
all crops (supplementary figure 9). Additionally, we
tested the 1-day maximum rainfall intensity (Rx1day
instead of Rx5day, with all other predictors being the
same), resulting in equally low variable importance
values for extreme precipitation at shorter time scales
(not shownhere).

4.4. Negative yield effectswith increasing exposure
to hot and cold temperature extremes
RandomForests do not rely on a prescribed functional
relationship between predictors and the dependent
variable, but represent a data-driven form that can be
visualised by partial dependence plots (Methods). In
the following and plots are provided for warm day
frequency (TX90p) and cold night frequency (TN10p),
i.e. two temperature predictors with highest predictive
capacity.

We find negative impacts from increased warm
day frequencies on all crops, i.e. an increase in num-
bers of unusually warm days is associated with decrea-
ses in yields (figure 2). Similar to the warm day
frequency, higher frequencies of unusually cold daily
minimum temperatures also have negative effects on
yields of all crop types, except of spring wheat
(figure 2). However, overall, the cold night frequency
has low variable importance for spring wheat (see sup-
plementary figure 9 for variable importance), hence
the uncertainty of the functional shape is higher. At
the regional scale, the effect of increased warm day fre-
quency is particularly negative for maize in Europe
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and soybeans, springwheat and rice inNorth America;
increased occurrences of unusually cold days are nega-
tively correlated withmaize and soybean yields in Eur-
ope and rice yields in Oceania (supplementary figure
10 for regional variable importance plots).

4.5. Irrigation canmitigate parts of the effect of high
temperature extremes
Guided by previous studies (Lobell et al 2013, Carter
et al 2016)—which indicate that observed yield reduc-
tions associated with high temperatures may be
induced by heat-related water scarcity—we tested
whether the decline in yields with increasing warmday
frequency is reduced by irrigation. We assessed the
effect of irrigation on extreme event impacts by
calculating the Random Forest for irrigated and
rainfed grid cells separately (defined as�80% irrigated
or rainfed, respectively) and visualising their partial
dependences (Methods). We find that irrigation can
mitigate negative yield impacts of high temperature
extremes for maize, soybeans and spring wheat, with
the greatest effects found for soybeans and spring
wheat (figure 3). For soybeans, irrigation shifts the
threshold above which temperatures have a negative
impact to higher temperatures, while for maize and
spring wheat, the response curve is flatter and the
negative effect of high temperatures reduced. For rice,
the fraction of rainfed cropping area is less than 10%
globally, therefore, we omitted rice from this analysis.

4.6. Relevance of climate extremes for agricultural
production particularly high formaize and spring
wheat
Agricultural production is the product of yield (t/ha)
and area harvested (ha), i.e. fluctuations in both
variables have effects on fluctuations in crop produc-
tion. We tested to which extent yield fluctuations due
to variations in climate conditions and extreme events
translate into production anomalies at the regional
and global scale. By developing an aggregate indicator
that takes into account a region’s contribution to
global production, the mean variability of production
and the correlation between production anomalies
and yield anomalies, we identify hot spot regions that
are critical for food production and at the same time
particularly susceptible to fluctuations in climate
conditions, including climate extremes (Methods).

At the global scale, crop production anomalies are
strongly correlated with fluctuations in yields. Corre-
lation coefficients range between 0.78 and 0.94 (except
for soybean production, which is dominated by fluc-
tuations in harvested area) and inter-annual changes
in yields explain ∼60%–90% of the variance in pro-
duction anomalies of spring wheat, maize and rice
(figure 4; see table 2 for the numeric values). In combi-
nation with our previous results on the explained frac-
tion of variance in yield anomalies (figure 1), we find
that at the global scale, maize and spring wheat are the
crops with the highest sensitivity of production to

Figure 2.Partial dependence of standardised crop yield anomalies on exposure to unusually warmdays (a)–(d) and exposure to
unusually cold nights (e)–(h). Black lines: average effect on crop yields when the influence of all other predictors is accounted for.
Positive valuesmean a positive effect on yield anomalies, negative values indicate a negative effect. Grey areas show the 95%, 85%,
75%and 66%uncertainty bands (Methods). The graph for springwheat/cold night frequency ismarkedwith a dash line, as this index
has very low variable importance for this crop (see supplementary figure 9 for the variable importance).
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climate variations and extremes, as they are char-
acterised by a large variance of production anomalies,
high correlation of production anomalies with yield
fluctuations and a strong relationship between yields
and climate conditions during the growing season
(table 2).

Analysed separately by continent, the regions with
highest contribution to global food production and at
the same time high estimated sensitivity to climate
conditions are: spring wheat production in Oceania,
Europe, North America and Asia as well as maize pro-
duction in North America and Europe (table 2, col-
umn for indicator A). Hotspot regions that show
strong impacts of climate extremes include: North
America for maize, spring wheat and soybeans pro-
duction, Asia for rice and maize production and

Europe for production of spring wheat (table 2, col-
umn for indicator B).

5.Discussion

In this study, we examined the historical and current
impacts of climate extremes during the growing season
on crop yields, using reported agricultural statistics at
high spatial resolution. We used a non-parametric,
nonlinear machine learning algorithm that allows for
investigating these relationships without making
assumptions about the functional shape of the effects.
Our results underline the importance of considering
impacts of climate extremes on the global food system
and adapting agriculture to changes in extreme events

Figure 3.Effect of irrigation on functional relationship betweenwarmday frequency and crop yields. Partial dependence of
standardised crop yield anomalies on standardised anomalies of warmday frequency (TX90p), differentiated between irrigated and
rainfed systems. Partial dependence plots are shown for (a)maize, (b) soybeans and (c) springwheat. Blue areas and lines: irrigated
cropping areas with irrigation fraction of greater than 80%.Orange areas and lines: rainfed cropping areas with irrigation fraction of
less than 20%. Black lines: averagemarginal effect on crop yields of all cropping areas (irrigated, rainfed andmixed). The 50%
uncertainty range (25th–75th percentiles) is added as shaded area.

Figure 4.Explained yield variability in the context of global crop production. Top panel (a)–(d): slices represent themean production
share per continent (1990–2008); dark shaded inner circles: the standard deviation of production anomalies (after detrending) relative
tomean production. Bottompanel (e)–(h): the size of each pie represents the share of production anomalies for every continent. The
three inner circles represent (fromoutside to inside): (i) the fraction of variance of production anomalies that can be explained by yield
anomalies, (ii) the fraction of variance of production anomalies explained bymean climate conditions plus extreme indicators (R2 of
full statisticalmodel for yield anomaliesmultipliedwith the factor (i); (iii) the fraction of variance of production anomalies explained
bymean climate conditions (R2 for reduced statisticalmodel for yield anomaliesmultipliedwith the factor i) (Methods).
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Table 2. Indicators ranking global and regional production by relevance for total crop production and sensitivity to climate fluctuations. Indicators i–iv: (i) share of a region’s crop production relative to global production in 1990–2008 (%),
(ii)mean variability of regional production (SD of anomalies relative tomean production, in%), (iii) the extent towhich production anomalies are associatedwith yield anomalies (R2 of regression between production anomalies calculated
from yield anomalies versus actual production anomalies), (iv) the explained fraction of variance of yield anomalies, predicted by climate conditions (a—all climate factors, b—contribution of extreme events). Indicators A andB are the
aggregate of indicators i, ii, iii and iv-a/iv-b (calculated as geometricmean). Numbers in bold highlight the six largest values in each column for all continent-crop combinations (without global values).

(i) (ii) (iii) (iv-a) (iv-b)
Indicator A (i, ii, iii
and iv-a)

Indicator B (i, ii, iii
and iv-b)

Crop Continent

Share of global

production (%)

rel. SD of
production

anomalies (%)

R2
—production anomalies

related to yield anoma-

lies (%)

R2
—full statisticalmodel

(extreme events+mean

conditions) (%)
R2
—contribution of climate

extremes only (%)

Production and total
climate

conditions (−)

Production and
climate

extremes (−)

Maize Global 100 4 72 49 43 35.0 33.8

Soybeans 100 4 24 20 20 20.9 20.9
Rice 100 2 60 28 27 24.2 23.9

Springwheat 100 10 88 46 18 44.4 34.8

Maize Africa 7 7 69 55 16 20.5 15.1

Asia 26 5 71 45 38 25.4 24.4
Europe 13 11 80 47 19 27.0 21.6

SouthAmerica 9 9 66 25 15 18.7 16.6
North America 45 8 82 47 38 34.8 33.1
Oceania 0 25 5 10 6 3.2 2.8

Soybeans Africa 1 8 50 30 −1 9.1 —

Asia 14 6 26 12 12 12.8 12.8

Europe 2 14 19 6 2 7.5 5.6
SouthAmerica 39 6 47 28 16 23.7 20.4

North America 45 8 72 15 15 24.8 24.8
Oceania 0 39 46 1 0 2.9 1.0

Rice Africa 2 5 59 3 3 6.3 6.3
Asia 91 2 62 28 26 23.9 23.5
Europe 1 4 64 6 6 6.2 6.2
SouthAmerica 4 8 36 5 4 8.3 8.0

North America 2 6 27 3 −4 5.9 —

Oceania 0 27 25 17 6 6.7 5.1

Springwheat Africa 2 10 21 1 1 4.2 4.1
Asia 20 12 89 40 11 30.2 22.1

Europe 21 20 90 28 8 32.4 23.7
SouthAmerica 0 7 37 0 −3 2.2 —

NorthAmerica 40 11 82 29 17 32.0 28.1
Oceania 16 25 95 67 7 39.9 22.5
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—to the extent it is possible—to meet future food
demands. In the following paragraphs, we summarise
and discuss the main results and outline potential
applications and avenues for future research. A
comprehensive discussion of the limitations of this
study is included in SI section 2.

5.1. Yield variance explained bymean climate and
climate extremes
Overall, we find that the climate factors considered in
this study—capturing climate variability and climate
extremes during the growing season—explain almost
half of the variability in maize and spring wheat yield
anomalies globally, and up to two third of the regional
variability, e.g. for spring wheat in Oceania. We show
that variables describing climate extremes contribute
more than half of the explained variance of yield
anomalies of maize, rice and soybeans and nearly half
of spring wheat at the global scale, and hence are
fundamental for understanding crop yield variations.
The explained variances (R2) presented here are of
similar magnitude as previously reported in other
studies: Lobell and Field (2007) and Ray et al (2015)
estimate that growing season mean temperature and
precipitation explain about one third of crop yield
variations globally; Frieler et al (2017) determined the
influence of weather variations on crop yields of main
producers to be in the range of ∼5% (rice in India) to
∼80% (wheat in Australia). The reported values and
findings are not directly comparable due to very
different study designs and methods of calculating the
explained variance. However, these studies agree that
climate variations only explain a part of the yield
variability and other factors, such as soil properties,
management decisions (e.g. irrigation rate, fertiliser
use) and market factors (e.g. fertiliser and energy
prices) likely contribute to the remaining yield varia-
tions. To our knowledge, this study is the first to
provide estimates of the fraction of variance of yield
anomalies explained specifically by climate extremes.
Unlike other previous studies, we report a conservative
estimate of the explained variances by using a cross-
validation approach and reportingR2 values from out-
of-sample predictions, and by applying one statistical
model in one configuration for all crop types and
regions.

5.2. Variable importance of temperature and
precipitation for predicting yield anomalies
We identified the most influential predictors using a
variable importance metric based on an increase in
mean squared error, and found temperature-related
predictors to be more relevant for yield predictions
than precipitation-related climate factors (such as
extreme precipitation or drought). The close link
between temperature indicators, particularly high
temperature indices, with yields is consistent with
previous research at the national scale, which found

heat waves to be significantly associated with grain
yields (Lesk et al 2016, Zampieri et al 2017). In
contrast, SPI-6—low values of which are indicative of
meteorological drought—was found to be of low to
medium importance for yield anomaly predictions,
unlike previous studies that found a statistical relation-
ship between reported droughts and yields at the
national scale (Lesk et al 2016, Zampieri et al 2017).
These differences in results suggest that (a) either
droughts only influence yields if they occur at larger
spatial and temporal scales than investigated here, or
(b) meteorological droughts, defined by below-aver-
age precipitation over a given period, may not be
sufficient to capture yield anomalies, and indicators
measuring hydrological or agricultural drought
(Keyantash and Dracup 2002, Passioura 2007,
Quiring 2009) may be more suitable for predicting
crop yield losses. Related to this, the relative contribu-
tions of temperature and precipitation anomalies to
drought are difficult to disentangle—low rainfall and
high temperatures both increase drought severity and
are often significantly correlated (Trenberth and
Shea 2005, Zscheischler and Seneviratne 2017). Pre-
vious research (Frieler et al 2017) as well as our results
show that the negative yield effects of high tempera-
tures are intertwined with water stress and can be
mitigated by irrigation. We discuss the collinearity of
predictors and our approach to address these in SI
section 2.1. Here, we chose not to use a composite
drought index that takes into account both temper-
ature and precipitation to reduce collinearities in the
predictor variables. However, future research could
investigate the use of agricultural drought indicators
that capture both precipitation and temperature
effects, including the Standardised Precipitation-Eva-
potranspiration Index (SPEI) (Beguería et al 2014), or
global gridded soil moisture datasets (e.g. Dorigo et al
2017) for predicting yield losses.

5.3. Critical production regionswith high sensitivity
to climate extremes
Adaptation to long-term climate change requires
concerted efforts at local, regional and international
level to ensure future food security. By using a
composite indicator, this study identifies crop produ-
cing regions that exhibit a strong association with
climate fluctuations and climate extremes and that are
particularly critical for global production. These are
primarily located in industrialised, high-input crop
producing regions, such as North America and
Europe. However, we emphasise that adaptation to
climate extremes is critical not only in major crop
producing countries, but also in regions with a
population that highly depends on local agricultural
production for their livelihoods and nutrition. As
example, maize production in Africa has the second
highest explained variance (R2 of 54%, 15.8% contrib-
ution of extreme event indicators) of any of the crop/
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continent combinations and hence a high dependence
on climate conditions. While the share of global
production is small (∼7%), maize production is
critical for the food security in the region—in Sub-
Saharan Africa, the proportion of maize grain used
directly for human consumption is approximately
70% compared to 3% in North America (Fischer et al
2014); hence any variations in crop production could
have very severe impacts on the region’s food supply.
Such nuances could be further investigated by apply-
ing different weights to the individual indicators or by
introducing additional indicators, such as the share of
subsistence farming or the percentage of production
for human consumption per region. Here, we aimed
to capture influences of climate extremes on global
production anomalies, and therefore calculated a
composite index using equal weights, but a range of
other combinations of indicators are possible andmay
be explored in future studies.

5.4. Adaptation to climate extremes
Climate change is expected to exacerbate the pressure
on food production, as the frequency and severity of
certain types of extremes, particularly high temper-
ature extremes, are predicted to further increase in the
future (Coumou and Robinson 2013, IPCC 2013,
Sillmann et al 2013). Heat and frost extremes already
pose a significant challenge to agricultural producers
(Zheng et al 2012, Barlow et al 2015). Our results
demonstrate that irrigation can partly mitigate the
detrimental effects of extreme heat. However, fresh-
water availability is a concern under future climate
conditions and previous research suggests that con-
siderable areas of irrigated cropland worldwide may
have to be converted to rainfed agriculture (Elliott et al
2014), increasing the vulnerability to high temperature
extremes. Seasonal climate forecasts are an important
adaptation tool that can assist farmers in assessing and
potentially mitigating climate-related risks to crop
production in the upcoming seasons (Hansen 2005,
Ash et al 2007, Meza et al 2008, Hansen et al 2011).
This study helps prioritising research efforts under-
pinning the development of such systems, by identify-
ing the most relevant climate factors for yield
predictions and estimating their contribution to yield
fluctuations, for each region and crop individually. In
future studies, the results may be extended to assess
predictive skill several months prior to harvest and
could be used to improve existing agricultural fore-
casts or support efforts to introduce such forecast
systems in regions where they have not yet been
implemented.
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