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Investigating climate extremes and their synchrony has recently attracted rising attention in the context of
ongoing climate change. With enhanced computational capacity data driven methods such as functional
climate networks have been proposed and have already contributed to significant advances in understanding
and predicting extreme events, as well as identifying interrelations between the occurrences of various cli-
matic phenomena. While the (in its basic setting) parameter free event synchronization (ES) has been widely
applied to construct functional climate networks from extreme event series, its original definition has been re-
alized to exhibit problems in handling events occurring at subsequent time steps, which need to be accounted
for by a correction scheme. Along with the study of this conceptual limitation of the original ES approach,
event coincidence analysis (ECA) has been suggested as an alternative approach, which incorporates an addi-
tional parameter for selecting certain timescales of event synchrony. In this work, we systematically compare
functional climate network representations of South American heavy precipitation events obtained using ES
and ECA without and with the correction for temporal event clustering. We find that both measures exhibit
different types of biases, which are thoroughly explained based on the obtained network structures. By com-
bining the complementary information captured by ES and ECA, we revisit the spatiotemporal organization
of extreme events during the South American Monsoon season. While the corrected version of ES captures
multiple timescales of heavy rainfall cascades at once, ECA allows to systematically disentangle them and
thereby to trace the spatiotemporal propagation in greater detail.

The occurrence of extreme events and their dy-
namics is one central topic of Earth System Sci-
ence. Such events are often not only a direct
danger for people’s lives, but can also cause fi-
nancial damage. This holds particularly true for
weather extremes, the intensity and frequency
distributions of which can be heavily affected by
climate change. In the last years, several studies
have been conducted employing the concept of
event synchronization (ES) to quantify the sta-
tistical association between the occurrences of
rainfall extremes at different locations. This in-
formation allows constructing functional climate
network representations, which can potentially
reveal dynamical characteristics of the Earth’s
climate system that are hidden to more tradi-
tional techniques of statistical climatology. How-
ever, some recent studies have identified poten-
tial caveats of ES when being applied to tempo-
rally clustered events, which are a common situ-
ation in the context of climate extremes. While
some works have introduced a simple correction
to account for the resulting bias, the parallel de-
velopment of event coincidence analysis (ECA)
has provided a powerful alternative measure for
quantifying event synchrony. In this context, it

is important to better understand the conceptual
benefits and limitations of both methods to put
forward the appropriate interpretation of the re-
sults of event based functional climate network
analyses. This work aims to provide the corre-
sponding details, based on the reconsideration of
the spatiotemporal organization of heavy rainfall
over South America from the perspective of func-
tional climate networks based upon either ES or
ECA. Our results help in understanding the dif-
ferences of the resulting network structures and,
thus, potential issues with the climatological in-
terpretation of previous studies.

I. INTRODUCTION

In the last two decades, computational power and
data availability in many fields of science have grown
by various orders of magnitude. Among the manifold
approaches which have been proposed to cope with the
sheer amount of data, complex networks have attracted
increasing attention, providing a powerful tool to study
different kinds of systems1–4.

Simultaneously, the analysis of extreme events has
gained importance in the scope of Earth System Science
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due to their changing characteristics under ongoing cli-
mate change5–7. In recent years, several studies have
effectively incorporated measures to quantify synchrony
of such extreme events and revealed a multitude of re-
lated spatiotemporal patterns. Among the variety of syn-
chrony measures, event synchronization (ES)8,9 stands
out as the most frequently applied method to construct
functional climate networks based on the synchrony of
extreme events10–13 and has already successfully con-
tributed to the prediction and classification of extreme
event cascades11,14,15.

Recent work has pointed out a conceptual limitation of
ES to properly capture serially dependent events16–18 and
has suggested event coincidence analysis (ECA)19,20 as
an alternative method to quantify synchrony. Although
the corresponding clustering bias of ES had already been
mentioned in some earlier studies on event based func-
tional climate networks and can be addressed using a
simple algorithmic modification11,15,21, several questions
remain, especially regarding the differences between un-
corrected and corrected ES, possible influences of the cor-
rection scheme on functional networks constructed utiliz-
ing ECA, and distinct information provided by functional
climate networks based on the uncorrected and corrected
versions of both, ES and ECA, respectively.

In this work, we systematically compare ES and ECA
based functional climate networks without and with cor-
rection by reanalyzing two examples of spatiotempo-
ral dynamics of heavy precipitation over South Amer-
ica along with the South American Monsoon System
(SAMS)21–25. First, we investigate the spatial patterns
of extreme event cascades over the South American con-
tinent. Here, we apply both, ES as well as ECA without
and with the algorithmic correction to emphasize the dif-
ferences among the resulting networks’ degree fields, and
provide explanations of the observed differences by draw-
ing upon the recently introduced pairing coefficient16,17.
Second, we specifically revisit extreme rainfall cascades
propagating from South East South America (SESA) to-
wards the Eastern Central Andes11,14. We demonstrate
the possibility of assessing different time scales of the un-
derlying climatological mechanisms by varying the intrin-
sic algorithmic parameter of ECA (the global coincidence
window ∆T ), while the corrected version of the param-
eter free ES provides a time scale integrated picture of
the whole process.

The remainder of this paper is organized as follows:
First, we review the contemporary definitions of ECA
and ES along with the aforementioned correction for tem-
poral event clustering. Second, we describe the data
set used in this paper and elaborate on the different
approaches to constructing functional climate networks.
Third, we introduce the atmospheric setting of the SAMS
and compare the resulting degree fields of functional cli-
mate networks after the application of the different event
synchrony measures. Finally, we analyze rainfall cascades
by measuring the cross degree between different regional
subnetworks.

II. METHODOLOGY

In this section, we first introduce some basic concepts
of network theory to the extent employed in this work.
Then, we describe the concepts of ES and ECA and
summarize their correct mathematical formulation as re-
cently pointed out in refs.16,17. Subsequently, we discuss
the motivation and implications of the correction of ES
as employed in some previous studies11,15.

A. Complex Networks

We investigate the topology of a complex network with
N nodes and E edges by analyzing the symmetric, binary
adjacency matrix A. Its coefficients aij take values of 1
if node i is connected with node j, and 0 otherwise.

The degree ki of node i characterizes the number of
connections of node i to the rest of the network and is
thus defined as

ki =

N∑
j=1

aij . (1)

In the context of functional climate networks, where
nodes represent areas of the globe with potentially dif-
ferent sizes, network properties like the degree need to
be properly corrected. For this purpose, we consider so-
called nodesplitting invariant (n.s.i.) characteristics26,
which are obtained from the traditional ones by intro-
ducing proper node weights that reflect the areal share
of each node. In the context of the degree, this leads to

ki =

N∑
j=1

wjaij , (2)

where wj represents the n.s.i. weight of node j (for a reg-
ular latitude-longitude grid as used in the present work,
wj corresponds to the cosine of the latitudinal position
of j). In the remainder of this paper, we will exclusively
consider the n.s.i. degree, but will omit this specification
to simplify all discussions.

In addition to the full degree, the last part of this work
will also consider the total cross degree13,27 between dif-
ferent subnetworks characterizing distinct spatial regions,
which is defined as

Km,n =
∑

x∈Rm

∑
y∈Rn

axy (3)

with Rm and Rn specifying the regions between which
the cross degree is computed. Since the differences in
latitude are relatively small in the considered region, we
will neglect the relevance of differently sized nodes for
the calculation of the cross degree.
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Fig. 1: Schematic sketch of the definition of event
proximity used in the estimation of ES.

B. Event Synchronization

Event Synchronization (ES), first introduced by
Quiroga et al.8, is a parameter free method to quan-
tify the synchrony of events, which has been originally
developed for the analysis of spike train synchrony in
EEG recordings, but has later also been applied for the
construction of functional climate networks. Here, two
events l and m in time series from observations made at
node i and j at time til and tjm are considered synchro-
nized if and only if they have occurred closer to each
other than the local (dynamical) coincidence interval18

τ ijlm =
1

2
min

{
til+1 − til, til − til−1, t

j
m+1 − tjm, tjm − t

j
m−1

}
.

(4)

As we compare the temporal distances between the actual
and the preceding and subsequent events, we need to
exclude the last and the first event of each series in all
further calculations16,17. Assuming that time series i and
j have si and sj events, respectively, we therefore set
l = 2, 3, ..., si − 1 and m = 2, 3, ..., sj − 1.

With these prerequisites, we next define the synchro-
nization condition

σij
lm =

{
1, if 0 < til − tjm ≤ τ

ij
lm,

0, otherwise,
(5)

depending on the temporal distance between the events
and the local coincidence interval which, in principle, can
be limited by an additional parameter τmax, to avoid
overly large coincidence intervals. The basic idea is de-
picted in Fig. 1. To compute the total number of “syn-
chronized” events

c(i|j) =

si−1∑
l=2

sj−1∑
m=2

J ij
lm, (6)

implying that an event in time series j precedes an event
in time series i, we sum over all coincidences captured by

the following indicator function16,17:

J ij
lm =


1, if σij

lm = 1, σji
m,l−1 = 0 and σji

m+1,l = 0,
1
2 , if either til = tjm

or σij
lm = 1 and (σji

m,l−1 = 1 or σji
m+1,l = 1),

0, otherwise.

(7)

Here, we have to use this rather unhandy version as we
otherwise might end up double counting the same event
pairs as synchronized in both, c(i|j) and c(j|i), where
c(j|i) denotes the total number of synchronized events,
where an event in time series i precedes an event in time
series j.

Finally, we calculate the event synchronization strength
(hereafter shortly termed “event synchronization” or ES
for brevity) as

QES
ij =

c (i|j) + c (j|i)√
(si − 2) (sj − 2)

. (8)

The resulting symmetric matrix QES =
(
QES

ij

)
can be

used to construct a functional climate network, as will
be further detailed in Section III.

From a conceptual perspective, we note that in real
world time series, events are often far from homoge-
neously distributed. In this regard, the use of a local
coincidence interval τ ijlm in the computation of ES covers
different time scales with one measure only. On one hand,
this makes ES potentially effective in extracting mean-
ingful patterns from climate data, where delays between
events usually vary. On the other hand, mixing informa-
tion from different time scales may blur the identifiability
of certain climatological processes. Specifically, in cases
where the waiting time distribution between subsequent
events becomes very heterogeneous, depending on τmax,
the local coincidence intervals cover very different toler-
able delays. Moreover, as we will further discuss in the
course of this paper, temporal clustering of events may
lead to a systematic bias of the estimated ES strength.
This may impact the topological properties of functional
network representations of spatiotemporal data obtained
based on ES as a statistical association measure16–18.

C. Event Coincidence Analysis

As a potential alternative to ES, ECA follows a gen-
erally similar rationale with the exception that the time
interval used for distinguishing whether or not two events
are synchronized is set as a global parameter – the global
(static) coincidence interval ∆T – instead of being locally
chosen in a fully data adaptive way.

Similar to ES, we again start by comparing events at
times til and tjm. Two events are considered to be syn-
chronized if they occur within the global coincidence in-
terval, i.e., 0 < til− tjm < ∆T (time symmetrized versions
may be easily defined, but shall not be further discussed
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Fig. 2: Schematic sketch of the definition of event
proximity used in ECA, including the extension to time

delayed events.

here to maintain easy comparison with ES). In contrast
to ES, we do not have to calculate local coincidence in-
tervals for all pairs of events individually, which renders
the computation somewhat faster and allows for analyt-
ical considerations19,20. The basic idea of the method is
illustrated in Fig. 2.

To quantify the overall synchrony between events in
the two time series, we consider event coincidence rates

r (i|j; ∆T ) =
1

sj − s′j

sj−s′j∑
m=1

Θ

{
si∑
l=1

1[0,∆T ]

(
til − tjm

)}
(9)

with the indicator function

1I (x) =

{
1, if x ∈ I,
0, otherwise,

(10)

and the left-continuous Heaviside step function

Θ (x) =

{
1, if x > 0

0, otherwise,
(11)

which prevents double counting of events. Hence, this
event coincidence rate gives the fraction of events in i that
are preceded (within ∆T ) by at least one event in j. For
a correct normalization of the event coincidence rate16,17,
we consider the number of events occurring between tf −
∆T and tf ,

s′j =

sj∑
m=1

1[tf−∆T,tf ]

(
til
)
, (12)

and remove the latter from the total number of events at
node j.

Similar as for ES, we may be interested in a sym-
metric matrix of pairwise statistical association coeffi-
cients. For the directional coincidence rates r (i|j; ∆T )
and r (j|i; ∆T ), this is typically done in either of the two

following ways: highlighting strong unidirectional associ-
ations by calculating the maximum of the two pairwise
event coincidence rates

QECA,max
ij = max (r (i|j; ∆T ) , r (j|i; ∆T )) , (13)

or the bidirectionality of undirected connections by cal-
culating the mean of the event coincidence rates

QECA,mean
ij =

r (i|j; ∆T ) + r (j|i; ∆T )

2
. (14)

Notably, a similar duality could be incorporated in the
study of ES as well by implementing a symmetrization
as in Eq. (13) into Eq. (8); however, this has not been
commonly done in previous works, so that we refrain here
from studying both variants also for ES.

Finally, for a multivariate (spatiotemporal) climate
dataset, we obtain a functional network representation by
utilizing the similarity matrix QECA =

(
QECA

ij

)
, which

is further described in Section III.
Along with our use of ECA, it should be noted that

we have ignored the distinction between precursor and
trigger coincidence rates raised in previous works20, while
only considering here the latter version (corresponding
to what has been described above). In our real world
climate example discussed below, we have found that the
difference between the results obtained based on both
versions is rather negligible (not shown).

D. Time Delayed Versions of ES and ECA

In addition to the global coincidence window ∆T , ECA
commonly features a second parameter, the time lag τ20

(cf. Figure 2). Despite being widely considered an algo-
rithmic parameter of ECA but not ES, in the context of
our conceptual comparison with ES, we emphasize that
this time lag is in fact not a unique feature of ECA, but
shall be considered in the same fashion like in lagged cross
correlations and, hence, could be equally implemented in
the ES to search for time delayed event synchronization.
In the course of this work, we will, however, consider
only time lagged versions of ECA when discussing the
application to studying the spatiotemporal propagation
of rainfall extremes over South America, while the corre-
sponding analysis could be easily extended to ES. Specif-
ically, everything that changes here with respect to the
equations provided in the previous subsections is a shift
of one of the event timing sequences by a constant value
τ .

E. Correction scheme for Clustered Events

The common version of ES as described above inherits
one possible caveat related to the treatment of temporally
clustered events16,18. Specifically, if two events in one se-
ries occur at subsequent time steps (or very close in time),
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the local coincidence window will collapse to 1
2 timestep

(see Fig. 1), so that there is an increased likelihood that
two events actually occurring in close succession are not
identified as synchronized. Notably, due to the consider-
ation of a global coincidence window, this problem is not
shared by ECA. In a parallel study17, a detailed analysis
of data sets with serially dependent events has been car-
ried out, which demonstrates that the characteristics of
the single time series tend to dominate the values of ES
in some scenarios. This is compatible with recent numer-
ical results of modeled spreading phenomena on different
types of networks18.

The issue mentioned above has already been addressed
in previous studies11,15 where a modification of the ES
computation has been suggested: to avoid temporal clus-
tering and the resulting bias of ES, each time series has
to be analyzed individually first to eliminate all but the
first event of each event cluster.

Depending on the density of events in time and the
employed significance criterion for defining an edge, the
application of this correction step can have substantial
effects on the functional network structure inferred from
the matrix of pairwise ES strengths. Beyond the effect
of providing a tool for handling the issue of subsequent
events, we can further motivate the proposed correction
scheme as a method to interpret a cluster of multiple
events as a single persistent event. In the context of cli-
mate extremes, this persistence can be caused by both,
temporal persistence and spatial extent of a weather sys-
tem feeding heavy rainfall in a large area. From this per-
spective, it appears reasonable to study the consequences
of applying the same correction scheme to ECA as well.
However, we stress that the application of the decluster-
ing step prior to applying ES and ECA is motivated by
different rationales.

III. FUNCTIONAL NETWORK REPRESENTATION OF
SOUTH AMERICAN PRECIPITATION EXTREMES

As a particular application of both ES and ECA, we
focus on spatiotemporal patterns of extreme precipita-
tion associated with the South American Monsoon Sys-
tem (SAMS), which is schematically shown in Figure 3.
The monsoon season in South America, which lasts from
December to February (DJF), is strongly affected by
moisture influx from the tropical Atlantic Ocean asso-
ciated with trade winds converging at the Intertropi-
cal Convergence Zone (ITCZ)28. Driven by low level
winds, moisture is recycled over and transported across
the Amazon Basin towards the northern part of the
Andes mountain range, where the low level winds get
blocked and reflected, and moisture transport is chan-
neled southwards29,30. Depending on the Rossby wave
train phase31, either the South American Low Level
Jet (SALLJ) distributes moisture towards South Eastern
South America (SESA)32–35, or low level winds transport
moisture along the South American Convergence Zone

1

7
6
5
4 3

2 SESA

ECA

ITCZ

SACZ

SALLJ

Fig. 3: Topography of South America and key features
of the South American Monsoon System (SAMS),

including typical wind directions (light blue arrows) and
the South American Low-Level Jet (SALLJ). The

climatological positions of the Intertropical Convergence
Zone (ITCZ) and the South Atlantic Convergence Zone
(SACZ) are shown by dashed dark blue lines. The red

boxes illustrate the parcellation of the study area into 7
boxes to track the propagation of extreme precipitation

events (see text).

(SACZ) towards South East Brazil (SEBRA)33,36. This
behavior results in the most prominent rainfall variability
pattern in South America, the South American Rainfall
Dipole23,31,32,37.

For the identification of heavy precipitation events, we
utilize rainfall estimates from the Tropical Rainfall Mon-
soon Mission (TRMM, version 3B42 V7)38, which are
available on a 0.25◦ × 0.25◦ spatial grid at a temporal
resolution of 3 hours between 1998 and 2015. As we are
specifically interested in the rainfall events during the
monsoon season, we employ 3 hourly and daily precip-
itation sums for DJF. For each grid point, we consider
an event (i.e., precipitation value) to be extreme if the
rainfall estimate exceeds the empirical 98th percentile of
the raw 3-hourly data or the 90th percentile of the daily
sums at each given site (node), respectively. Thereby, we
obtain the same number of extreme events in most time
series and ignore dry spots with an insufficient number
of wet days during the study period. Thereafter, we will
investigate the features of the resulting extreme event se-
ries by applying ES and ECA in different settings for con-
structing functional climate networks (see Section IV).

The widely used way to construct such networks (af-
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ter identifying the events of interest) consists of applying
either ES or ECA and thresholding the resulting simi-
larity matrix Q at some value to obtain an adjacency
matrix with a desired link density. For the uncorrected
versions of both measures and therefore the same number
of extreme events in all time series, this is a reasonable
strategy39,40, which we will also adopt in the following
(the chosen link density will be specified along with the
respective discussion). In the corrected versions of both
methods, we apply the declustering scheme as discussed
above, which modifies the characteristics of the event se-
quences. It should be kept in mind, that although the
correction scheme has the advantage of accounting for
the clustering bias, it also reduces the number of events
in some time series. At this point, there are several ways
to tackle this issue.

In recent studies by Boers et al.11,15,21, each link has
been defined based on significance testing utilizing sur-
rogates which account for different numbers of extreme
events in each pair of time series. Accordingly, network
construction has been consistently adapted to the de-
scribed correction scheme. Although this strategy does
not conserve the serial temporal dependency structure of
extreme events in each time series, it is the most often
applied strategy to address the problem of temporally
clustered events. A possible alternative way to cope with
the clustering bias would be iteratively considering new
events of lower magnitude as additional events until the
desired number has been reached, thereby successively re-
ducing the empirical percentile that has been effectively
used for defining an event in each time series. While this
would preserve the number of events, it also renders the
analysis computationally costly.

As our study focuses on the different synchrony con-
cepts and is not primarily meant to reveal novel climato-
logical information, we will continue with the most naive
approach and neglect the influence of different numbers
of extreme events in the time series. This choice appears
justified in the present setup, where the number of events
does not vary drastically after the application of the cor-
rection scheme in most of the study area (see Fig. 4). Ex-
ceptions include the Pacific ocean region off the Chilean
coast, the Atacama desert and the Orinoco Basin, along
with some regions in the Atlantic ocean to be further dis-
cussed below. In the following, we, therefore, obtain the
adjacency matrices for the different functional climate
networks (as previously described) by thresholding the
respective similarity matrix at a certain value to obtain
a specific link density.

For more in-depth future studies, we recommend ob-
taining links in functional climate networks through one
of the described strategies and not by varying link den-
sities until certain features become visible. Varying link
densities go in hand with substantial changes in network
structure41,42 and should be therefore handled with care.
In our analysis, we on purpose chose a well-studied re-
gion to highlight the differences between the different ap-
proaches while being confident about the interpretation

20 40 60 80 100 120 140 160
number of events

Fig. 4: Number of remaining events after declustering
the obtained event sequences with initially a constant
number of events for daily precipitation data (see text

for details).

of the described climatic features.

IV. RESULTS

A. Method Intercomparison

The first aim of this paper is to highlight the different
features of functional climate networks from precipitation
data when inferred by using different event based statis-
tical association measures. To tie in with previous stud-
ies, our analysis copies a previously employed setup22 for
studying daily precipitation estimates from the TRMM
satellite mission, setting an upper bound to the local co-
incidence interval of ES as τ ijlm ≤ τmax = 3 days (note
that this should potentially have a similar effect like the
global coincidence interval of ECA, avoiding synchro-
nized events to be too heavily mutually lagged). We set
the link density of the resulting functional climate net-
work to ρ = 0.02, which is a common choice for climate
networks with high spatial resolution13,41.

In line with ref.22, we initially apply ES in the original
version without the algorithmic correction and show the
resulting node degree pattern of the described setup in
Figure 5a. We identify a low degree channel in the area of
the ITCZ as well as elevated node degrees at the position
of the SALLJ driven moisture pathways along the Andes,
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while the moisture exit zone in SEBRA is not clearly
recognizable.

To emphasize the effect of temporal declustering on
the results of ES based functional climate networks (i.e.,
the network was constructed after we deleted clustered
events in the way described above), the resulting degree
field is depicted in Fig. 5b. Here, we observe more pro-
nounced features in comparison with the degree field of
the network obtained by the application of the uncor-
rected ES version. While the degree field in Figure 5a
appears blurry especially in the southern Amazon basin,
we can differentiate regions of high degree much better
from such with lower degree in Figure 5b. This effect
is caused directly by the correction scheme, which pre-
vents a systematic underrepresentation of regions with
clustered events (i.e., nodes exhibiting a negative bias
of the ES strength16–18). Among the visible differences,
we firstly observe a narrow and distinct low degree band
associated with the ITCZ. Secondly, the northern part
of the Amazon basin, where heavy precipitation events
and moisture recycling take place, is characterized by el-
evated degree values. Thirdly, we observe relatively high
degree values at the Eastern flank of the Andes moun-
tain range, where the SALLJ transports moisture to-
wards the southern parts of South America. Finally, the
strongest variability pattern associated with the SAMS,
the South American Rainfall Dipole with maximal vari-
ance in SESA and SEBRA, is also well visible in the
degree field.

To further compare the networks obtained based on ES
with those inferred by utilizing ECA, Figure 5c shows the
degree pattern of the network constructed by employing
ECA with ∆T = 3 and using the mean of the two pair-
wise event coincidence rates as the proxy for statistical
association. This choice ensures that we capture similar
time scales as in the ES based networks. Note that in
the ECA, the global coincidence interval ∆T defines the
maximal time lag between synchronized extreme events,
which agrees with the limitation of the local coincidence
interval of ES to τ ijlm ≤ 3 days used above. In compari-
son with previous degree fields based on ES, the pattern
derived by the application of the ECA exhibits major dif-
ferences. The area north of the ITCZ is much stronger
represented in the ECA based network and is character-
ized by much higher degree values than any other re-
gion in the ES based networks. In particular, we again
clearly recognize the ITCZ as a key feature. As we have
employed the same fixed link density, the other features
previously observed in the ES based networks necessarily
appear less pronounced. While the rainfall dipole areas
in SESA and SEBRA are partly visible and the northern
part of the Amazon basin is represented by elevated de-
gree, there is no coherent pattern at the Eastern flank of
the Andes mountain range.

Finally, to investigate the effect of event declustering
on the ECA based networks, Figure 5d shows the node
degree based on the ECA in combination with the correc-
tion scheme. While there are certain differences between

the uncorrected ECA and the corrected version, the main
features are similar to those of the networks based on cor-
rected ES (Figure 5b) and the corrected ECA and only
differ in terms of a weaker effect in the Eastern Central
Andes along the SALLJ and a slightly intensified differ-
entiation of the ITCZ and the South American Rainfall
Dipole in the ECA based network.

B. Network Patterns and Event Clustering

To further understand the differences between the ES
and ECA based networks, we investigate the pairing co-
efficient Pi of each underlying time series16,17

Pi =
1

si − 1

si−1∑
l=1

δ[
(
til+1 − til

)
− 1]. (15)

The pairing coefficient quantifies the temporal clustering
of events in a time series and is normalized such that Pi =
0 if there are no pairs of events at subsequent time steps
present in the event time series, while Pi = 1 corresponds
to a situation where all events occur at subsequent time
steps. Note that the pairing coefficient does not measure
any association between two time series, but a feature of
each single time series at each grid point.

Figure 6 reveals the corresponding intrinsic features of
the event time series. Notably, there is no simple di-
rect correspondence between the pairing coefficient and
the number of events after declustering (Fig. 4), since
both are affected differently by different size distributions
of clustered event sequences (not shown). Interestingly,
the prominent region of high pairing coefficients coincides
with the region north of the ITCZ where the ECA based
network exhibits relatively high degree values. As the
uncorrected ES does not properly address series of sub-
sequent events due to the definition of a possibly overly
narrow local coincidence interval, regions in which events
occur frequently at subsequent time steps get systemat-
ically underrepresented by the uncorrected ES. In turn,
the uncorrected ECA counts every single event as an iso-
lated event even though some occur at subsequent time
steps, which automatically leads to higher possible event
coincidence rates. As weather systems normally have a
spatial extent that covers multiple grid points, this effect
gets amplified, because these systems can cause extreme
events at subsequent time steps among a multitude of
geographically nearby nodes. As a consequence, we ob-
serve higher degree values in the uncorrected ECA based
network in comparison with the uncorrected ES based
network in regions with high pairing coefficient.

In the corrected version of ES and ECA, we reduce
all event clusters before applying the synchrony mea-
sures. Therefore, as the absolute number of events in
such time series decreases, the possible number of syn-
chronous events decreases as well. This can lead to a
reduction of the estimated value of the considered as-
sociation measure and, thus, a lower node degree in the
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Fig. 5: Degree of the functional climate network representations of heavy rainfall events based on (a,b) ES and (c,d)
ECA without (a,c) and with (b,d) the utilization of the correction scheme for temporally clustered events. For the

two ES based networks, we set τ ijlm ≤ 3 days, while for ECA, ∆T = 3 days. All networks exhibit a link density of
0.02.

affected regions of the resulting network. As ES and ECA
exhibit certain structural differences, we correct here for
different effects by applying the correction scheme prior
to the utilization of the synchrony measures. On the one
hand, ES underrepresents regions with high pairing coef-
ficient due to sometimes overly narrow local coincidence
intervals. On the other hand, ECA potentially overrep-
resents regions with high pairing coefficient, because sub-
sequent rainfall events may belong to the same weather
system and therefore should be considered as one event
that should be counted once instead of multiple times.
However, we obtain rather similar results with both mea-
sures when we restrict the considered time scales to the
same (short) length and apply the same declustering pro-
cedure.

To further highlight the differences between ES and
ECA based networks, we show scatter plots of the ob-
tained degrees for all nodes in Fig. 7, which underline
the limitations of, and the differences between the differ-
ent measures. To confirm that the characteristics of the
time series are responsible for the observed differences,
we color-code all displayed pairs of values according to
the pairing coefficient of the associated node. We ob-
serve that nodes with high and low pairing coefficients
are separated in the scatter plots based on the uncor-
rected measures, see Figure 7a. While only nodes with
a high pairing coefficient can exhibit a high degree in
the ECA based networks, such nodes tend to exhibit low
to intermediate degree in the ES based network16,17. In
turn, nodes with a low pairing coefficient can have both,
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Fig. 6: Pairing coefficient of heavy daily precipitation
events.

low or high degrees in the ES based network, but display
mostly low degrees in the ECA based network. These
findings are consistent with the expected behaviors dis-
cussed in the previous paragraph.

In Figure 7b, we show the degrees of each node in
the networks constructed from the corrected versions of
both ES and ECA. Here, the points appear more closely
aligned along the line of identity, indicating that the de-
gree of the nodes is commonly comparable in both net-
works. In addition, we do not observe a marked separa-
tion between nodes with high and low pairing coefficient.
This is in line with Figure 5, where we had shown the
spatial patterns of the node degree and observed a strong
similarity between the ES and the ECA in their corrected
versions, which is a direct consequence of the limitation
of τmax = 3 for ES (and setting ∆T = 3 for ECA ac-
cordingly). Residual differences hence originate from the
existence of local coincidence windows of ES that are
smaller than the global one of ECA (yet still larger than
zero), thereby focusing on different delay time scales.

C. South American Moisture Pathways Across Scales

To highlight the relevance of the different aspects of
event synchrony captured by ES and ECA, we finally
apply both measures to extreme 3-hourly rainfall sums
over South America, to track associated rainfall patterns
traversing from SESA to the Eastern Central Andes11,14.

Specifically, we are interested in the capabilities of both
approaches to reveal distinct features of the climate dy-
namics in comparison with the results of a previous ES
based study11. In the latter reference, the authors pre-
sented a comprehensive framework employing ES along
with the declustering of events to unveil the sources,
pathways, and time scales of extreme precipitation events
in the region of interest. For this purpose, several re-
gions of interest have been identified within the study
area (cf. red boxes in Fig. 3), and the direction of ex-
treme precipitation event propagation between those re-
gions has been unveiled by utilizing a directed network
approach, focusing on network divergence as the differ-
ence between the numbers of incoming and outgoing links
at each node. Specifically, these previous works analyzed
the time scales of subsequent rainfall events which first
occur in box 1 followed by heavy precipitation in the
other boxes. Along with the utilization of the ES concept,
they quantified the number of extremes in the consecu-
tively numbered regions that occurred in close succession
to those in region 1.

Unlike in those earlier works, we here aim to identify
the characteristic time scales of those subsequent rainfall
events by applying ECA and using the resulting func-
tional climate network properties only. For this purpose,
we consider a set of functional climate networks based
on the same data, which are distinguished by different
parameter settings of the ECA. In particular, we set the
link density for all ECA configurations to ρ = 0.05 and
also fix ∆T = 1 time step (3 hours), while systemat-
ically varying the delay τ ∈ [0, 9] time steps. As we
choose ∆T = 1, we do not correct for temporally clus-
tered events in this scenario. In each network configura-
tion, we measure the total cross degree between region
1 and each of the other regions, K1,n, and subtract the
corresponding value K1,r;e of the same measure that one
would expect when considering the link distance distri-
bution of the entire functional climate network and the
fraction of area covered by the respective region (i.e., the
number of nodes per region):

K1,n∗ = K1,n −K1,n;e = (1− Fn)K1,n (16)

with

Fn =
|E1,n|∑

e∈E

[
Θ
(
d(e)− d1,n

min

)
−Θ

(
d(e)− d1,n

max

)]
(17)

being the ratio between the total number of possible edges
between the source region 1 and the target region n and
the actual edges in the network in the range of allowed
link distances between both regions. Θ(•) again denotes
the Heaviside step-function and d(e) the distance covered
by an edge e ∈ E. To compare the results obtained from
the ECA based networks to those of the networks based
on the parameter free version of the corrected ES (no
time lag, no upper bound to the local coincidence inter-
val), we additionally perform the same analysis for the
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Fig. 7: Degree–degree scatter plot for the uncorrected (left) and corrected (right) versions of ES and ECA. The x
axes show the degree of a node in the ES based network, while the y axes show the degree in the ECA based

network. The color code indicates the respective pairing coefficient, the dashed line the line of identity.

latter, using the same link density of ρ = 0.05. The corre-
sponding results are shown in Fig. 8 and feature multiple
characteristics that indicate the specific capabilities of
the different methods:

Firstly, we obtain rather distinct results for the various
parameter settings of the ECA. For small time delays τ ,
we find high rescaled total cross degrees for the areas 2
and 3 which are close to the source region 1, as opposed
to low values for those areas at larger distance to the
source region. With increasing delay, the maxima of the
rescaled total cross degree continuously shift towards the
more distant regions.

Secondly, we highlight the differences between the two
previously suggested symmetrization methods for event
coincidence rates that can be used to obtain the adja-
cency matrix for the ECA based networks. Specifically,
we find that utilizing the maximum of the two pairwise
event coincidence rates (Eq. 13) allows a better track-
ing of the event propagation than when employing their
mean value (Eq. 14). This is a natural consequence of
the physical process of directed propagation of extreme
events, which is much better represented by keeping the
unidirectional information and leads to the clear shift of
the maximum total cross degrees from regions close to the
source region to the more distant regions best visible for
the maximum symmetrization. Notably, this approach
also reproduces the time scale of the event propagation
from SESA to the Eastern Central Andes of 18h − 24h,
which was found earlier by Boers et al.11. By contrast,

the average symmetrization results in positive total cross
degree values for region 2 for all considered values of
the delay parameters. This is likely a consequence of
regionally confined (as opposed to northwestward trav-
eling) weather systems associated with heavy rainfall in
SESA.

Finally, we also find that the corrected version of the
ES can capture the full cascade of extreme events in all
regions at once without selecting any parameters, which
can be seen in terms of consistently positive rescaled total
cross degrees between the source region 1 and all other
regions. However, all these values are relatively low in
magnitude in comparison to the maximum rescaled total
cross degrees values in the ECA based networks, which in
turn commonly do not feature the complete cascade indi-
vidually. Moreover, there is no clear order of the rescaled
total cross degree in the ES based networks without de-
lay, thereby not allowing to infer the detailed pathways
of event propagation.

V. CONCLUSION AND OUTLOOK

We have studied synchrony measures for construct-
ing functional climate networks from event time series.
Specifically, we have investigated event coincidence anal-
ysis (ECA) and event synchronization (ES) in their most
appropriate definitions, including a correction scheme for
the application of both synchrony measures to temporally
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Fig. 8: Rescaled total cross degree K1,m∗ between region 1 and the other boxes in Figure 3 for (left) ECA using the
maximum of the pairwise event coincidence rates, (center) ECA using the mean of the pairwise rates, and (right)

corrected ES, allowing for a varying delay in the ECA based networks.

clustered events.

To highlight the influence of the said correction scheme
as well as the differences between ES and ECA, we have
investigated the spatiotemporal dynamics of heavy pre-
cipitation in the context of the South American Monsoon
System as a well studied regional climate phenomenon in
terms of different network analyses. We have illustrated
the effect of the correction scheme on both, ES and ECA,
by comparing the resulting node degree fields constructed
using both approaches without and with the correction
scheme. The difference is remarkable and indicates that
studies using event synchrony measures should not only
consider the structural bias of the original formulation
of ES due to temporal event clustering but also precisely
elaborate on the event definition and take possible biases
resulting from temporal clustering of events into account
when applying the ECA as well.

Finally, we have analyzed the propagation of heavy
rainfall events in South America with the parameter free
version of ES in combination with the correction scheme
as well as ECA in various parameter settings and with
both common choices of symmetrizations of pairwise (di-
rectional) event coincidence rates. We have shown that
the ES in combination with the correction scheme can
capture the presence of propagating events without any
further adaptation or filtering of the data by estimating
the total cross degree between different regions within a
functional climate network. Utilizing ECA along with
the implementation and systematic variation of possible
time delays, we have demonstrated that the latter ap-

proach effectively highlights the different time scales of
the extreme precipitation cascade traveling through dif-
ferent regions.

As the main focus of this study was to compare the well
established ES and the more recently introduced ECA in
the context of functional climate networks, we have not
attempted to provide detailed climatic interpretations of
the obtained network structures, particularly not the fea-
tures like the region north of the ITCZ and in the eastern
Pacific characterized by elevated degree, which were not
found in previous ES based studies but highlighted by
ECA. In addition, we have not further investigated the
differences between the different strategies for defining
links in functional climate networks, which could further
clarify differences between common approaches to con-
struct such networks. To this end, we outline correspond-
ing further investigations and developments as subjects
of future research.
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